矿床的地质特征主要包括哪些内容
① 矿床分类及地质特征
对砂金矿床的分类,不少学者从不同角度进行了划分,有的以砂金矿床的矿质来源为分类依据,有的以成矿作用为分类原则,有的则以成矿环境进行划分。吕英杰等(1992)根据砂金矿床的成矿作用、赋存的地貌部位划分为冲积型砂金矿床、洪积型砂金矿床、残积型砂金矿床、堆积型砂金矿床、岩溶型砂金矿床、海积型滨岸砂金矿床、湖积型滨岸砂金矿床、冰碛(水)型砂金矿床及风积型砂金矿床,见表5-1。
(一)冲积型砂金矿床
指产于第四系由冲积作用形成的松散堆积物中的金矿床。其中包括产于河床或河床底部砂砾层中的河床砂金矿床;产于河漫滩堆积物下部的河漫滩砂金矿床;产于老河漫滩残留部分的阶地砂金矿床(图5-1);产于河滩的河滩砂金矿床。本类金矿床是我国最为重要的砂金矿床类型,其储量占砂金总储量的90%以上。而其中又以河漫滩砂金矿床和阶地砂金矿床最具工业意义,其储量占整个冲积型砂金矿床总储量的90%以上。国内重要砂金矿床均属此类,如黑龙江的韩家园子、兴隆沟、石头河子、古利库,陕西的月河、江西的庄湾等矿床。
表5-1砂金矿床分类表
(据吕英杰等,1992)
图5-1嘉荫河阶地砂金矿床及河漫滩砂金矿床(据吕英杰等)
1—腐殖土层;2—采金迹(废砂堆);3—砂质粘土层,4—砂砾石层;5—基岩;6—河漫滩砂金矿床;7—阶地砂金矿床
(二)洪积型砂金矿床
是指分布于沟谷中、由洪水冲刷、搬运而形成的砂金矿床。这些沟谷的谷底较窄,多呈“V”字型,沟内堆积物分选性差,磨圆度低,多呈棱角-次棱角状,少量为次圆状。每当洪水袭来时,堆积物均有可能被搅动,使砂金进一步筛选而富集在有利部位。本类矿床的矿体多呈透镜状和囊状,规模小而不稳定,品位的贫富相差悬殊,富者可构成小而富的砂金矿床。代表矿床如黑龙江的万鹿沟等。
(三)残积型砂金矿床
分布于分水岭或较平坦的低洼处,是由原生含金地质体在地表条件下经风化破碎后,使金粒解离或经次生加大而在原地富集形成的矿床。其富集程度除与风化程度、形成时间长短有关之外,还取决于下伏原生含金地质体的含金性。本类金矿床迄今尚未见有重大工业意义的矿床,但可作为寻找原生矿的直接标志。
(四)坡积型砂金矿床
是残积型金矿床的下移部分,与残积型金矿床之间无明显界线。本类金矿床是冲积型河谷砂金矿床的物质提供者,其矿床本身规模小,不具有重要工业意义,但可作为岩金矿床的直接找矿标志。
(五)冰碛(水)型砂金矿床
含金地质体破碎后,含金矿物被冰川(水)搬运于有利部位富集形成矿床。包括冰碛型和冰水型两种。真正具有工业意义的不是直接由冰碛所形成,而是在冰碛经融化后,由冰水进一步搬运、分选、沉积而形成的冰水型砂金矿床。如内蒙古毛淖(图5-2),矿体产于毛淖冰碛台地上的冰水沉积物中,矿体长760m,宽160~560m,厚0.73~1.34m,品位一般为0.12~1.3g/m3,单样最高达2.73g/m3,金的粒度为0.38~1.3mm。
图5-2内蒙古中后河毛淖冰碛台地冰水砂金矿床勘探线剖面图(据内蒙古自治区地质研究所,1985)
1—腐殖土层;2—含砾砂层;3—含粘土砂砾层;4—含砂泥砾层;5—基岩(砂质粘土岩);6—砂金矿体
(六)湖积型滨岸砂金矿床
分布于湖泊的滨岸地带,成矿物质由河流携带,经岸流、拍岸浪长期冲刷、分选而成。
(七)海积型滨岸砂金矿床
分布于滨岸的砂堤、阶地、水下砂坝等地带。矿体多与海岸平行,并受拍岸浪和岸流方向的控制。本类矿床以山东三山岛较有前景,该矿床位于山东省掖县三山岛东南坡,其北为渤海。矿体分布在长500m、宽300m的范围内,矿层埋深3.65~30.49m,无固定层位,单个矿体长20~80m,厚0.1~1.8m,品位0.27~5.9g/m3。
(八)岩溶型砂金矿床
在岩溶发育地区,由于水的溶蚀、冲刷等作用,使岩层(或含金地质体)中的金带出并堆积成矿。矿体形态复杂,呈囊状、巢状、条带状、漏斗状、透镜状及不规则状等。矿体规模一般不大,但有的品位很高,如广西镇墟金矿床,最高品位可达几十克到百克每立方米。
② (一)矿床地质特征
该矿床是近年来新发现的与碱性岩有关的一个大型金矿床,其大地构造位置位于华北地台北缘,内蒙地轴与燕山沉降带的交接部位南侧的水泉沟碱性杂岩体中段内接触带(见某金矿床大地构造位置图)。区内出露的地层主要为太古宇桑干群涧沟河组。其岩性主要为角闪斜长片麻岩,其次有斜长角闪岩、黑云母片岩、浅粒岩等。在杂岩体接触带附近片麻理走向约300°,倾向北东,倾角50°~70°。距杂岩体较远部位,小型褶皱构造比较发育,片麻理产状变化大,走向北西或近南北,但倾向多为西—南西,倾角为43°~87°。
岩浆岩以海西期碱性杂岩体为主,其次为燕山期钾长花岗岩,及中酸性脉岩类,脉岩类成群、成带分布,走向北西、北东及近东西,近南北向均有产出,但以北西向比较发育,倾向各异,倾角50°,脉岩一般长几十米到100多米,宽0.5~2m。
矿区内控矿构造主要是断裂构造,按其与成矿作用之间的关系分为成矿前、成矿期及成矿后断裂。在成矿期断裂构造中,按照矿脉之间的相互穿插关系,可分为3个阶段,在每一个阶段中都伴随着一定的成矿作用,但以第二阶段成矿作用最为明显,而且其断裂以北北东向为主,倾向北西,倾角在40°~50°之间。在北东向断裂中普遍发育着羽状分支断裂,矿区内的控矿构造还具有等向距性的特点。
某金矿区域地质图
三类矿体变化较大,有的长度达几百米,但延深较小,有的延深较大但长度较小,多数小矿体长度及延深只有几十米,但分布较集中,多成群成组出现。
矿体厚度变化较大,其最大厚度达36m,最小厚度仅0.12m,如果按矿段统计,矿段的最大平均厚度为10.6m,最小平均厚度为0.5m,多数矿体在1~4m之间。
矿床中矿石的矿物组成:金矿物以自然金矿物为主;此外,还普遍存在含少量金的碲化物。矿石的矿物组成比较简单,金属矿物以黄铁矿为主,脉石矿物主要以石英、钾长石为主。矿区内主要金矿石类型有黄铁矿石英脉型、黄铁矿化钾长石化蚀变岩型和黄铁矿石英钾长石型。此外,还有多金属硫化物、石英脉型和多金属硫化物钾长石化蚀变岩型等,其围岩蚀变主要有:以钾长石化为主的钾化蚀变,黄铁矿化、硅化、钾长石化等组成的复合型蚀变。
矿床勘探工作主要由轻型山地工程、探槽、坑道和钻孔相结合进行,其中:轻型山地工程和探槽主要是为了揭露矿脉在地表的露头;坑道是为了控制矿体在浅部的变化,主要布置在矿区的东北角;钻孔则控制了整个矿体的变化范围,且按规则勘探网布置于整个矿区(见下图)。所有勘探工程都采集了化验分析样品,鉴于矿体的露头较差,地表样品的有效率较低。因而,本次研究中只采用了坑道样品和钻孔样品。
③ 矿床地质特征
新街铂矿位于米易县城北10km处,赋存于新街超基性岩体底部第一堆积旋回下部和底部及第二旋回下部,为白马层状杂岩南延部位。新街岩体呈椭圆形,与万家坡及坝头岩体组成NW向串珠状岩带(图4-27)。层状杂岩自下而上可划出Ⅰ~Ⅲ3个韵律层(表4-22)。含矿岩石为橄榄岩、斜长橄榄岩及斜长辉石岩。自下而上共有Ⅰa、Ⅰb、Ⅳa3个矿(体)层,呈层状、似层状及透镜状产出(图4-28,表4-23)。矿体主要赋存于岩体Ⅰ韵律层下部和底部,厚2.19~11.9 m,平均厚5.68 m,∑Pt 本书中的∑Pt指实际测试的PGE的总含量,通常包含Pt和Pd两个元素
表4-22 米易新街铂矿区矿体特征一览表
表4-23 新街层状杂岩韵律旋回的划分对比
1.矿体特征
1)Ⅰa矿体(层)。该矿体产于新街岩体第一堆积旋回下含矿橄榄岩带(Ⅰσ)下部或底部。铂矿层上部为一层橄榄岩钒钛磁铁矿体,其特点是该层中钒钛磁铁矿呈星点状-稠密细脉或条带,含Cr高。钒钛磁铁矿层与下伏辉石岩接触带之间的橄榄岩-斜长辉石岩中,含有较高的金属硫化物,铂矿体即产于该层中,是最主要的铂矿体产出部位。含铂岩石为斜长橄榄岩、含长橄榄岩、橄辉岩、斜长辉石岩及橄榄岩等。共有层状、似层状矿体3层,厚2~4m,∑Pt品位0.410~0.736g/t,平均0.568g/t。从北向南、自上而下有矿体逐渐增厚、品位增高的趋势。
2)Ⅰb矿体(层)。该矿体产于新街超基性岩体第一堆积旋回下含矿橄榄岩带(Ⅰσ)上部,含矿岩石以斜长辉石岩为主,次为橄辉岩、橄榄岩及含长橄榄岩。可分为两个矿体,矿体长200m、600m,厚0.78m、1.97m;∑Pt含量分别为0.310g/t和0.327~1.030g/t。
3)Ⅳa矿体(层)。该矿体产于新街超基性岩体第二堆积旋回橄辉岩带(Ⅳσ)底部,含矿岩石为斜长橄榄岩及斜长辉石岩。主要有二层矿,控制矿体长500m,矿体厚分别为0.96 m及6.74m;∑Pt品位变化于0.518~1.063g/t,矿体平均0.626g/t。
上述3个矿矿体(层)在万家坡矿段也同样出现,仅矿体规模及品位有所变化而已。
Cu、Ni及PGE元素主要富集于Ⅰ韵律层底部和下部,并形成有一定规模的铂族元素矿体:富Cr的钒钛磁铁矿产于Ⅰ韵律层上部及Ⅱ韵律层底部橄榄岩相中,这两种矿体常部分重合,其厚度达110m;钛铁矿明显富集于Ⅲ韵律层底部。这种上部钛铁矿、中部含铂族元素钒钛磁铁矿、下(底)部铬铜镍铂族元素矿化的垂直分带是攀西基性-超基性层状杂岩的代表性特征。
2.矿石类型
钒钛磁铁矿常有下列二个大类:一为富铬的钒钛磁铁矿体;另一类为一般的钒钛磁铁矿体,并可细分为:铂(族)、含铂(族)、一般钒钛磁铁矿和钛铁矿等4种矿石类型。
1)铂(族)矿石。以橄榄岩相为主,兼有橄辉岩和辉石岩,矿体主要分布在岩体下部,次为中部。PGE含量稳定,与金属硫化物富集有关,并常伴含铬钒钛磁铁矿,而铂(族)矿石又可分为:①橄榄岩-辉石岩型铂矿石,硫化物含量0.3%~2.5%、PGE多赋存于其中,少量为独立铂族矿物,矿石中Pt~Pd;②斜长辉石岩型铂矿石,硫化物少(S含量<0.1%),Pt>Pd,PGE主要分布于硅酸盐及铁-钛氧化物中;③高硫叠加型铜铂矿,主要分布于Ⅰa层上部富钛铬铁橄榄岩及辉石岩中,次为Ⅰa层下部。是本区主要铂族元素矿层,∑ Pt含量为0.5~1.0g/t,最高达1.15g/t,平均0.7g/t,厚2~5 m,最厚8 m,延长200~300 m。
2)含铂(族)的钒钛磁铁矿石,分布于岩体下部橄榄岩相中,常与铂(族)矿重叠,矿石以稀疏浸染状为主,局部见斑杂状和稠密浸染状,金属矿物以含铬钛铁矿为主,共生矿物有钛铁矿,含钛高铁铬铁矿以及少量硫化物及铂族矿物。矿石TFe 6.2%~33.4%、Ti O21.85%~4.7%、V2050.18%~0.3%、Cr2O30.76%~0.83%、Cu 0.08%~0.46%、Ni 0.08%~0.17%、∑Pt 0.24~0.63g/t。
3)一般钒钛磁铁矿石及钛铁矿矿石,含少量金属硫化物、∑Pt含量小于0.002g/t。
按铂矿石的成因,也可以分为4种矿石类型:①早期硫化物型铂矿石:产于Ⅳa底部辉长岩、斜长辉石岩中,控制矿体总厚度达7.5m,特点是矿石中∑Pt含量高、Cu、Ni相对亦高;②晚期硫化物型铂矿:产于Ⅰa或Ⅰb橄榄岩、斜长辉石岩中,以品位低,厚度大和延伸稳定为特征,矿化以铜、铂(族)为主(Cu0.1%~10.3%,∑Pt为0.1~0.4g/t);③高硫叠加型铂矿石:产于Ⅰa下部橄榄岩及斜长辉石岩中,受晚期玄武岩喷溢及辉绿辉长岩侵入影响,矿层蚀变和矿化均有增强,单矿体平均厚约3m,矿层总厚6~8m,∑ Pt 0.5~1.0g/t,最高1.15g/t,平均0.7g/t;④低硫高铂型铂矿石:产于Ⅰa具填隙状结构的斜长辉石岩或橄榄岩中,并常伴粗伟晶斜长辉石岩产出,矿层厚2~4m,硫化物含量低,S 0.03%~0.08%,Cu 0.03%~0.05%、Ni 0.04%~0.05%、C 00.7%~0.9%,∑Pt>1g/t(Pt 0.35~1.25g/t,Pd 0.2~0.78g/t)。产出特征类似于南非梅林斯基层,唯缺铬铁矿层。
按含矿母岩、矿石构造分3种矿石类型:①橄辉岩型矿石。含矿岩石为橄辉岩、含长橄榄岩等,具嵌晶包橄结构和填隙嵌晶结构;块状构造和浸染状构造。矿石矿物主要有黄铜矿、黄铁矿、磁黄铁矿、针镍矿,其次有少量的硫钴矿、硫镍钴矿及次生的铜蓝、孔雀石等;②斜长辉石岩型矿石。含矿岩石主要为斜长辉石岩,在Ⅰa、Ⅰb及Ⅳa矿体中均有分布。矿石具嵌晶包橄结构、他形粒状结构和填隙嵌晶结构;块状构造和马尾丝构造。矿石矿物主要有黄铜矿、黄铁矿、磁黄铁矿、针镍矿,其次有少量的硫钴矿、红砷镍矿及次生的斑铜矿、铜蓝,孔雀石等;③橄榄岩型矿石。含矿岩石为橄榄岩及含长橄榄岩,主要分布在Ⅰa矿体。矿石具嵌晶包橄结构、细-中粒结构和填隙嵌晶结构;块状构造和浸染状构造。矿石矿物主要有黄铜矿、黄铁矿、磁黄铁矿、针镍矿,其次有少量的硫钴矿、硫镍钴矿、辉钴矿、红砷镍矿及次生的斑铜矿、铜蓝、孔雀石等。
3.矿石结构、构造
(1)矿石结构
根据矿相学研究,新街矿区的矿石存在如下主要结构类型:
1)嵌晶包橄结构。其主要出现于脉石矿物中,为橄榄石和辉石特有的结构。
2)固熔体分离结构。其是区内比较常见的矿石结构类型,主要有结状、火焰状及叶片状结构,在钛铁矿与磁铁矿、黄铁矿与磁黄铁矿等矿物粒间可见。
3)结晶结构。其主要有自形晶结构、半自形晶结构、他形晶结构及共边结构等。黄铜矿、黄铁矿、磁黄铁矿、针镍矿矿物粒间可见。
4)交代-溶蚀结构。由于矿物之间相互交代,蚕蚀作用比较普遍,故常形成交代-溶蚀结构,如黄铜矿交代黄铁矿等。
(2)矿石构造
1)浸染状构造。该构造是区内矿石中最常见的构造,金属矿物在矿石中呈星散状-点星状分布,金属矿物含量一般在1%~3%左右。
2)斑杂状构造。金属矿物在矿石中不均匀分布,呈斑染状产出,金属矿物含量5%~8%左右。
3)网脉状构造。金属矿物沿矿石或岩石裂隙分布,形成细脉-网脉状-浸染状构造,金属矿物含量5%~10%不等。
在矿区内还可见马尾丝构造等,但比较少见。
4.矿石物质组分
据不完全统计,矿区主要有钛铁矿、磁铁矿、黄铜矿、黄铁矿、磁黄铁矿、针镍矿、紫硫镍矿,其次有少量的硫钴矿、硫镍钴矿、辉钴矿、红砷镍矿及次生的斑铜矿、铜蓝、孔雀石等。比较常见的有黄铜矿、紫硫镍矿、硫钴镍矿、硫镍矿。主要矿物的电子探针分析结果(表4-24)显示,所有测试矿物成分均比较纯净,除主要元素外,未见有其他成分(特别是铂族矿物)混人。
到目前为止,已在矿石中发现有砷铂矿、硫锇钌矿、硫锇矿、碲锑钯矿和自然铂等,从电子探针分析结果可知,铂族矿物呈类质同象赋存于铜镍硫化物中的可能性比较小,故推测新街矿床的铂族元素可能以独立铂族矿物的形式存在。由于已发现的含铂矿物缺乏相应资料,在此不深入讨论。
表4-24 米易新街铂矿区主要金属矿物电子探针分析结果表(wB/%)
5.成矿期次
综合地质、矿石和地球化学等方面的特征,可知新街铂矿经历了3个成矿期(岩浆期又有2个成矿阶段)。
(1)岩浆熔离成矿期
早期氧化物阶段:为岩浆贯入侵位的早期结晶阶段,本阶段首先析出的主要是造岩矿物,最早结晶的矿物主要为橄榄石、辉石类硅酸盐矿物,其次是磁铁矿、钛铁矿等金属氧化物相继结晶,它们为高温氧化条件下形成。
硫化物-铂族元素矿化阶段:在岩浆作用的中晚期,由于造岩矿物和磁铁矿、钛铁矿的晶出及温度缓慢下降,富含金属硫化物及铂族元素的矿浆从硅酸盐熔浆中熔离出来,在矿区呈现了以磁黄铁矿、黄铁矿、黄铜矿和紫硫镍矿、硫钴镍矿、硫镍矿的共生组合。该阶段也是铂族元素矿化的重要阶段,形成于中高温还原环境。
(2)岩浆后期残余气液成矿期
岩浆熔离成矿之后,饱含挥发分的残余气液中仍富含硫化物和部分铂族元素,由于具较强的活动性和流动性,易向岩体边部、早期成矿裂隙或近矿围岩裂隙等相对薄弱部位迁移、充填交代富集,呈不规则的细-网脉充填,并对早期形成的铂族元素矿化有叠加富集的作用。
(3)表生成矿期
表生成矿是原生矿体在近地表环境中,在氧化作用条件下的低温环境中形成,对矿体有破坏改造的影响;形成的矿物有斑铜矿、铜蓝、孔雀石及褐铁矿等。
④ 矿床地质特征
一、主要控矿构造
在内华达北部卡林金矿床被发现之后,对卡林型和类卡林型金矿形成的构造控制作用研究了30多年,但仍没有认识全面。内华达州和犹他州的类卡林型金矿床主要分布在3个区域,即卡林地区、Battle Mountam-Eumka地区和Getchell地区。这些地区显示了区域热液活动与“盆岭省”主要断裂之间的空间关系,现代地球物理学研究已经证实这些断层是新元古代的基底构造,它们起源于沿美国北部古陆之被动边缘的幕式裂谷作用(Shawe,1991)。Grauch等(2003)针对内华达卡林金矿带的铅、锶以及磁场和重力场数据研究,揭示了该区的地壳包括前寒武纪陆壳、过渡地壳和洋壳,它们分别被北西向和北东向断裂分割开来。依据重力和磁梯度变化,识别出卡林矿集区的一些边界。这些边界常常表现为深大断裂,起源于前寒武纪罗迪尼亚超大陆裂解过程中的裂谷或转换断层,或是晚古生代构造事件过程中容纳侧向运移或增生作用的断裂。金矿床赋存于沿上述地区发育的寒武纪—三叠纪碎屑岩和碳酸盐岩建造中,其中以含碳钙质粉砂岩是最佳赋矿围岩。许多矿带定位于易矿化岩石单元与高角度正常断层相交切的位置(图2-3)。Teal和Branham(1997)指出,卡林型金矿的控矿因素主要是4个方面:①古大陆边缘地壳薄弱部位长期活动带,主断层发育;②地壳减薄的区域性构造背景,多次侵入和高热流;③多期次的热液活动;④活化的高渗透性的碳酸盐岩围岩。
图2-3 卡林型金矿床地空间产出位置
越来越多的证据表明,构造对于卡林型金矿化的控制作用甚至强于地层,但构造的影响在不同的矿区有不同的表现,总体特征可以概括为以下几点:①高角度、北西走向断层系统是主要的导矿构造,通常被煌斑岩和二长岩岩墙充填。如在CarlinTrend北部,南北走向的Bootstrap断层是Bootstrap-Capstone金矿的主要控矿构造,北西向的Post断层是Meikle和Post矿床的主要控矿构造,北西向的Castle Reef断层是North Lantern和West Carlin矿床的主要控矿构造,等等;②高角度、北东走向断层是次要的导矿构造,尤其是在与北西向断层交会的部位,如Gold Quarry矿床和Meikle矿床。1993年Moore发现了Newmont的Hardie Footwall矿床,他认为北东走向地垒的直接底板对于构造流体的捕获具有重要意义。根据他的认识,1994年在走向北北东的West Bounding断层下盘发现了Newmont的West Leeville矿床;③原地碳酸盐岩中宽缓到中等的背斜。一般来说,北西走向的宽缓背斜无论是对于单个矿床还是区域性流体的捕获都具有重要意义;④高角度和层控的成矿前的坍塌角砾岩体。在Meikle、Rain等矿床都存在角砾岩化作用的实例,角砾岩化对于增强后期成矿流体的渗透性是非常必要的。在粗粒的沉积岩中矿化较好,也正是由于渗透性好的缘故。在Carlin Trend北部,矿化集中于碳酸盐岩相由块状含化石灰岩向微晶灰岩和粉砂质灰岩过渡的部位。如Lower Betze和Deep Post矿床的高品位矿化出现在下Popovich组的碎屑流相沉积岩中。在Goldbug-Rodeo矿床,高品位矿化出现在碎屑支撑的垮塌角砾岩带,在Barrel矿床也存在类似情况。
二、赋矿围岩特征
Carlin Trend中的金矿床赋矿围岩主要有3种组合类型:①原地的大陆架碳酸盐岩及碎屑岩层序(东部);②外来的主要是硅质碎屑岩层序(西部);③密西西比纪晚期的超覆层序(在Rain地区也容矿)。矿体主要出现在原地地层层序中,并且大部分出现在上部四五百米的范围内。主要的含矿地层包括:①罗伯茨(Roberts)山组中含有穿层的薄的生物碎屑流和具有不规则纤细纹层的粉砂质灰岩,由于渗透性较好而有助于含金流体的流通,产于其中的金矿床有Carlin、Betze、West Leeville、Screamer、Pete、DeepPos、Goldbug-Rodeo和Mike等;②Popovich组中的微晶灰岩、粉砂质灰岩及含化石灰岩,也由于渗透性好而有助于成矿,该组在Betze-Post、Genesis-BlueStar、Gold Quarry、Meikle、Goldbug-Rodeo、Deep Star、Capstone-Bootstrap和DeeStorm等矿区含矿;③RodeoCreek单元中的粉砂质粘土相有利于大型金矿的形成,如GoldQuarry金矿和PostOxide金矿,而基底硅质泥岩由于渗透性差则不利于成矿;④Vinini组中主要产出一些小的高角度构造控制的金矿床,如Captone、BigSix、Fence和AntimonyHill等矿床。Rain地区的金矿化主要出现在Webb组与泥盆系下部DevilsGate灰岩之间角砾岩化接触带中。
总体来看,以白云质灰岩、白云质粉砂岩的含矿性最好,泥质白云岩、钙质页岩和粉砂岩等岩性相近的岩石次之。上述岩石在去钙作用后常能提高有效孔隙率和增加渗透性,有利于成矿热液的流通。如果含碳质则更有利于吸附富集金。另外,少数矿床产在非碳酸盐岩的硅质碎屑岩和变质火山岩中,个别矿床还可能产在长英质侵入体内。在同类岩石中,薄层状者比厚层致密块状者含矿性高得多,尤其是遭受角砾岩化的薄层状岩石,渗透性很强,有利于成矿。粘土矿物对金有一定的吸附作用,而固结的粘土岩虽然孔隙度高,但有效孔隙率却很低即渗透性差,所以纯的固结粘土岩中无矿。但是,当粘土呈薄层状且与粉砂质或白云质灰岩等相间分布,在一定条件下薄层粘土中可富集金,即金与高岭石、水云母或绢云母等伴生。围岩的层位范围广泛,从寒武系到三叠系都有,但主要为奥陶系、志留系和泥盆系沉积岩层。研究表明除了碳酸盐岩外,还有片岩、燧石岩、凝灰岩、流纹岩、安山岩和白岗岩,也可以是卡林型金矿的容矿岩石。
三、矿化特征及围岩蚀变
卡林型金矿的金既浸染于特定的地层层位,也产于不规则且不整合的角砾岩带中。金矿化表现为强烈的硅化、断层角砾发育、伴随有中等亲铁元素,如As、Sb和Te的富集以及石英、黄铁矿、毒砂及少量其他硫化物的沉淀和显微金(<5~30μm)的浸染状产出。矿石以浸染状、细脉浸染状构造为主,碳酸盐岩常遭受硅质交代。主要矿石矿物为硫化物和硫砷化物,最常见的是黄铁矿,此外还有雄黄、雌黄、辉锑矿、毒砂和辰砂等。次要矿石矿物见少量的铜、铅、锌、钨和钼等的硫化物,但这些次要矿物与金、砷、锑、汞等卡林型矿床的特征痕量元素并无一定的相关关系。脉石矿物有萤石、重晶石、方解石、白云石和粘土矿物。重晶石是常见的重要脉石矿物,但它与金矿化并无直接的成因联系,常常晚于金矿化而穿切金矿体,它的出现主要指示了金矿化系统与热卤水的活动有关。脉石英并不发育,它也与金矿化没有直接的成因关系。卡林型金矿床中的常见特征元素为砷、锑、汞、铊等,金矿化常与这些元素的高异常有一定的相关关系。Ag-As-Au-Hg-Sb地球化学异常标志与雄黄、雌黄、辰砂、辉锑矿等矿物的普遍发育有关,显示热液系统中硫配合物占有绝对优势。在有的矿区还出现有钨、碲、硒或银,它们也与金矿化有一定关系。Au/Ag比值变化范围较大,但是一般都>1。
卡林型金矿床中的自然金绝大多数粒度极细,呈微米级和次微米级,多为次显微不可见金(Hausen et al.,1968;Radtke,1985)。常见的金的赋存状态有:①晶隙金,产于硫化物或硅质物(如蛋白石、石英等)的晶体裂隙中;②间隙金,产于矿石矿物及脉石矿物的间隙内;③包裹体金,包裹于黄铁矿等硫化物的晶体内,有人认为是固溶体。在未氧化矿石中,除了上述3种赋存状态外,还有被碳质物所吸附或结合在一起。在氧化矿石中,金常以游离状态产出。研究表明(Bancroft,1982,1990;Renders et al.,1989),黄铁矿等硫化物的表面吸附是导致金在一些含杂质细粒硫化物表面以“不可见”金形式沉淀的有效途径之一,热液流体的pH值对金的吸附效率有主要影响。吸附在硫化物表面上的金是以Au+形式存在,没有被还原成自然金(Cardile et al.,1993)。
在卡林型金矿床中,碳酸盐岩分解,以脱钙为主,有时包括白云岩分解,是最广泛的特征性蚀变作用。该作用提高了岩石孔隙度和渗透性,因而增强了其后热水流体运移(Kuehn,1989;Bakken,1990)。含钙粉砂岩比纯碳酸盐岩的碳酸盐分解程度高,因为碎屑沉积岩的原始渗透性较高。相反,硅化作用在切穿碳酸盐岩的构造带附近最强烈,因为此处的水/岩比值较大。泥质蚀变主要限于形成高岭石、伊利石、蒙脱石和少量绢云母,绢云母取代了碎屑岩的硅酸盐碎屑。富铁主岩的硫化物化和流体的混合最易使二硫化金配合物失稳(Hofstra et al.,1991)。对于未氧化的矿石来说,其蚀变作用主要为硅化-似碧玉岩化、黄铁矿化、雄(雌)黄化、伊利石化、黄钾铁矾化和明矾石化。
许多研究者描述了一个相同而具特征性的蚀变模式(Christensen,1993;Teal et al.,1997)。不同的金矿床具有不完全相同的蚀变特点,但总体上说由远矿围岩到近矿围岩具有一定的蚀变分带性(图2-4):
图2-4 卡林型金矿床的围岩蚀变特征
1)新鲜的粉砂质灰岩:方解石+白云石+伊利石+石英+钾长石+黄铁矿;
2)弱至中等脱方解石化(白云石晕):白云石±方解石+石英+伊利石±高岭石+黄铁矿±自然金;
3)强脱方解石化:白云石+石英+伊利石±高岭石+黄铁矿±自然金;
4)脱碳酸盐化:石英+高岭石/地开石+黄铁矿±自然金。脱碳酸盐化作用在卡林型金矿的形成过程中起了重要作用。
四、成矿流体
流体包裹体研究显示,卡林型金矿床内存在3种类型的包裹体:①气液相包裹体(以液相为主),盐度为1%~17%;②液-气相包裹体(以气相为主),盐度小于1%,均一温度变化较大;③三相包裹体。Arehart(1996)认为卡林型金矿床形成过程中存在有两种流体事件。一是与晚古生代或早中生代期间油气生成有关,而与金矿化事件无关的高盐度流体,包裹体均一温度为155±20℃;另一是与金矿化有关的流体事件,其均一温度为215±30℃,从成分来看,存在富含气体的中等盐度流体和贫气体的低盐度流体。从稳定同位素来看,卡林型金矿床硫同位素变化范围较大,其中,黄铁矿硫同位素存在明显的分带现象。与金矿化有关的黄铁矿硫同位素δ34S值域为+15~+25。大多数矿床的氢同位素值域为-140~-170,表明卡林型金矿床形成过程中大气水起着非常重要的作用。Arehart(1996)提出卡林地区的金矿床是两种不同流体在中等地壳深度上混合而形成的。大气流体穿过古生代和前寒武纪基底进行物质循环,并可能从中获得Au和S。随着大气流体在源岩内流动,在高温下与岩石交换氧,结果使流体的δ18O升高,同时有不同来源的CO2加入,从而导致流体所经过的地段碳酸盐发生溶解。稳定同位素资料表明,CO2不可能来自有机质,而是可能来自深部的变质流体,或者是与火成侵入体相伴形成的矽卡岩。
在卡林型金矿床中,围岩蚀变与成矿物质的搬运、沉淀离不开流体的作用,实际上导致围岩渗透性提高的角砾岩化作用也离不开流体的作用。研究表明,内华达北部卡林型矿床是由低盐度(<8%)、含CO2(10mol%)和H2S的流体,H2S的富集有助于硫化作用和含金黄铁矿沉淀。富含成矿物质的流体在180~250℃、2.5~6.5km深的环境下沉淀而形成金矿床(Kuehn,1989;Hofstra et al.,1991)。至于成矿流体的成因究竟是否全部来自大气水(Ilchik et al.,1997),还是含有深层地壳变质流体或岩浆流体成分(Hofsta et al.,1991),还缺乏统一认识。但越来越多的研究者相信成矿流体是高度演化的大气水与岩浆水的混合流体。
流体作用在卡林型金矿中表现在以下几个方面:①碳酸盐的溶解作用。在卡林型金矿带,沿高角度构造通道和有利层位出现的酸性热液流体引起了成矿前的脱方解石化、岩石致密程度的降低、孔隙度和渗透性的增强。首先是方解石(尤其是高角度流体通道及其附近围岩中的方解石)的溶解,然后是方解石与白云石一起溶解。②硅酸盐的泥化。泥化蚀变与脱方解石化相伴随,在粉砂质灰岩或钙硅质角岩容矿的矿床中特别发育。碎屑粘土和钾长石蚀变为蒙脱石、高岭石、伊利石和少量绢云母。③硅化。硅化与金矿化的关系清楚,硅化强的部位矿化也强。在Meikle矿床至少有5期硅化:Ⅰ.早成矿前期与侏罗纪侵入岩相伴的变质石英脉;Ⅱ.晚成矿前期与早期脱方解石化相伴的硅质交代;Ⅲ.主成矿期硅化,石英脉充填,伴随有细粒黄铁矿的沉淀;Ⅳ.成矿后的玉髓杏仁充填和膜化;Ⅴ.最后期出现在Vinin组中的分带石英。在某些金矿床中还出现早期硅化和贱金属的沉淀。
五、与矿化有关的岩浆岩
虽然卡林型金矿床的含矿围岩通常为古生界沉积岩层,但金矿化在空间上毫无例外的与中-酸性中、小侵入体,以及次火山岩或火山岩的分布有关。越来越多的矿床和同位素地质证据指示了金的成矿作用与这些岩浆活动存在成因上的联系(Ressel et al.,2006)。这些岩浆活动都晚于古生界含矿围岩的成岩时代,从侏罗纪、白垩纪到第三纪都有发育(Bray,2007)。例如在Cortez金矿区,发育有侏罗纪的黑云二长岩岩株、白垩纪的正长岩岩颈和渐新统的流纹岩。卡林型金矿床的成矿作用固然与岩浆活动有关,但越来越多的研究表明成矿物质主要来自围岩,岩浆活动主要为提供成矿作用所需的热和驱动力。当然,在一些局部并不排除岩浆活动与金矿化直接相关。
六、成岩成矿时代
美国内华达州卡林型金矿床的成矿绝对时间从最初发现至今,一直争论不休。然而,大量现代同位素定年研究清楚地表明这些金矿床形成于43~34Ma期间(Groff et al.,1997;Hofstra et al.,1999;Cline,2001),即第三纪后期。Radtke早在1985年就提出卡林金矿床是在第三纪时期,由高角度断裂活动、火成岩活动和热液活动相互配合而形成的。对硫砷铊汞矿所做的Rb-Sr等时线年龄指示,Getchell金矿床形成于39.5Ma,Rodeo金矿床形成于39.8Ma。另外,矿化的始新世岩脉、成矿后的火山岩和表生的明矾石等也间接的限定了成矿时代。
⑤ 矿床的地质特征应从哪些方面去理解
(1)岩浆富集作用:在基性岩浆中磷灰石、铬铁矿、榍石、金红石及锆英石等副矿物可首先结晶,紧接著是橄榄石及斜方辉石等硅酸盐矿物,其他硅酸盐矿物则结晶较晚。在很缓慢冷却条件下,最早形成的晶体,特别是铬铁矿等比重大的矿物,有可能由重力作用而在岩浆内沉降下来,并因此而富集成矿床。有时岩浆流中的应力,可使尚未结晶的部分液体从已结晶的粥状物中挤出来,而使其富集成矿床,这种作用称为压滤作用。
(2)接触交代作用:这个术语是指围岩与侵入体接触所产生的交代作用。在这种作用过程中,由侵入体所分泌出来富含铁镁等溶液扩散,与碳酸钙岩石反应而形成钙镁硅酸盐和氧化物的集合体。在这种矿床形成过程中,往往大约同时形成硅卡岩,并分布于矿床周围。
(3)热液作用:是热水溶液以物理化学作用方式,沿著其运动通道及运动地段所引起的岩石的蚀变作用、交代作用以及矿物在空隙中的沉淀作用,例如,绢云母化作用、硅化作用及硫化物矿化作用等。热水溶液,特别是重卤水,在其中可溶解浓度很高的金属。这种溶液通过断裂构造向上运动过程中,可沉积铜、银及其他矿物。
(4)升华作用:是固体受热后挥发的作用。当冷却时,挥发的气体可呈晶质或非晶质而沉积,如硫的升华作用可出现於火山喷气孔中。
(5)沉积作用和机械富集作用:层状盐类矿床是沉积作用的产物;硅藻土、富含钙的石灰岩以及某些磷酸盐岩层也是这种作用的产物。形成於地层及封闭湖盆中的铁和锰的氧化物是由氢氧化物沉淀形成的,随后转变成铁和锰的氧化物和碳酸盐。在沉积物中,矿物的其他同生富集,例如贱金属硫化物的沉淀也属於沉积作用。
(6)残积矿床:是由地表或靠近地表的围岩或矿床中的矿物经过化学分解和机械崩解而富集形成的。其中包括红土矿床、铝土矿矿床、氧化锰矿床及硅酸镍矿床等。铁帽中非常富集的金矿石和含蓝晶石变质岩风化形成的蓝晶石矿床也属於这种作用的产物。
(7)变质作用:是指岩石或矿床在温度、压力变化和热液作用下,其形态的变化和矿物的重新组合。在变质作用下,在某些岩石中可形成蓝晶石、硅线石、红柱石或石榴子石等工业矿物。某些金属矿床在变质作用下,其矿石构造也会发生变化。地壳运动可使矿体发生强烈褶皱,并使矿石构造发生变化。变质作用和地壳运动也可以是一种机械作用,靠这种作用可使沉积地层中不大富集的金属硫化物发生活动,而且被驱赶出来使其在低温低压带中富集。
⑥ 矿床的地质特征应从哪些方面去理解
应该有地质背景,构造环境,矿物组成,围岩蚀变,成因类型。矿床的规模产状等等
⑦ 地质特征包括哪些内容
地质特征包括哪些内容
简单的说,所有为找矿开的课程,都包括在地质特征的范畴内。
包括,地层,构造,岩浆活动,成矿机制,古生物,等都包括在地质特征范围。
⑧ 矿床地质特征
哈达门沟金矿床及其外围柳坝沟金矿床组成哈达门沟金矿田,区内矿体全部赋存在新太古界乌拉山群变质岩中,严格受构造控制,成群成带分布。哈达门沟矿区累计查明金资源储量43吨,平均品位4.22×10-6。矿区北部柳坝沟近年取得重大找矿进展,目前整个矿田金资源储量累计超过100 t。北部西沙德盖钼矿和矿区深部钼矿的发现为区内综合找矿提供很好的前景。
一、矿体特征
矿田内已发现金矿(化)脉100多条,集中分布在三个区域,哈达门沟、乌兰不浪沟和柳坝沟。全矿区共划分为7个脉群:哈达门沟的13号脉群、24号脉群、49号脉群、1号脉群、59号脉群,乌兰不浪沟的113号脉群,柳坝沟的313号脉群。矿体多呈脉状、似板状,以近东西向走向分布为主(如哈达门沟13号脉、113号脉、22号脉、24号脉、25号脉、28号脉、59号脉等和柳坝沟313号脉、314号脉、307号脉、302号脉等),少数呈北西走向分布(如哈达门沟32、1号脉)(图3-10)。
图3-10 哈达门沟-柳坝沟金钼矿田地质简图
矿体主要产于乌拉山群变质岩中,主要矿脉特征如下:
1.13号金矿脉
矿脉位于矿区东部,主矿体分布于勘探线140~235勘探线间,由含金石英脉、含金钾长化蚀变碎裂岩组成(图版Ⅶ),石英脉呈扁透镜状分布,尖灭后,过渡为钾长石化蚀变碎裂岩。相比之下石英脉在矿脉中所占的比例小于钾长石化蚀变碎裂岩。地表控制长度达2200 m,矿脉连续,宽度最大5m,平均宽1~2m。相比之下,矿脉中部,即110线至191线约1100 m长的区间宽度最大,并且比较稳定。向两端矿脉变窄,宽度小于1 m。一般矿脉宽大的部位,石英脉宽度也比较大。
矿脉地表出露标高为1158~1300 m,深部坑道控制标高为578 m,目前钻孔控制标高为166 m。矿脉垂深达1100 m,斜深超过1300 m。现有地上4个中段和地下10个中段控制矿脉。总体呈近EW走向,倾向S。实际上,矿脉呈折线状变化,可分为两组走向,一组呈NWW走向,为280°~293°;另一组呈EW走向,为270°。据14个中段统计,矿脉倾角为45°~65°,平均倾角57°。
在123线以西和187线以东,13号脉发生分支。西部南侧支脉,为13-1号脉,规模较大,东西长617 m,产状与123线以东相近;西部北侧脉仍被称为13号脉,走向偏NW(293°),倾角明显变缓,达45°,石英脉发育。一陡一缓的两条分支脉在1110 m标高上下合并成一条脉。
主脉两侧的小型分支脉比较发育,主要为石英细脉,宽1~10 cm,呈直线、折线或弯曲状,与主脉之间呈锐角相交,约11°。
钾长石-石英脉中普遍含围岩角砾,一般呈棱角状,四边形、三角形、菱形或不规则多边形,大小不等,大者可达几十厘米。角砾被石英脉胶结,遭受钾化蚀变。可见由围岩→半破碎角砾岩带→角砾岩带→乳白色石英大脉的侧向分带顺序。
矿化主要发育在石英脉与钾长石化蚀变碎裂岩的复合部位。即在硅化和钾长石化碎裂岩发育处、石英细网脉发育处或几者的复合部位,金品位高,厚度大。单纯石英脉和钾长石化碎裂岩虽然含金,但品位低。矿脉单工程最高平均品位22.72×10-6,最低品位1.07×10-6,平均5.25×10-6~6.28×10-6。单工程矿体最大厚度9.51 m,最小仅0.25 m,矿体平均厚度1.56~2.27 m。
13-1号矿脉矿化不均匀,尖灭再现较多。品位15.88×10-6~1.26×10-6,平均5.72×10-6。单工程矿体最大厚度3.34 m,平均厚度1.16 m。
成矿后断裂构造较发育,破坏了矿体的连续性,完整性,使矿体形态变的较为复杂,局部形成了一些无矿的 “断空区”。
2.113号脉、14号脉、12号脉
这3条矿脉实际上为一条矿脉。113号脉位于13号脉西部的乌兰不浪沟内,近东西向展布,地表出露全长3040米,由含金石英脉和两侧含金蚀变岩构成。矿体呈脉状产出,形态产状严格受成矿时构造形态的约束,地表自西向东矿体有膨胀收缩现象(图版Ⅷ)。工业矿体主要分布于P23~P48勘探线间,矿脉长1100 m,矿体倾向170°~210°,平均183°,倾角43°~74°,平均60°。矿脉厚度5.85 m~0.09 m,平均2.00 m。品位0.48×10-6~18.31×10-6,平均3.54×10-6。地表最高出露标高1620 m,侵蚀基准面标高1345 m,地上7个中段,地下4个中段,最深坑道标高1185 m,最深钻孔标高970 m。从该钻孔见矿情况来看,深部矿体仍有富集变厚的可能。总体上,矿脉从上到下品位呈下降的趋势,但厚度却有所增加,钼矿化增强。
14号脉位于113号脉以东大坝沟西侧的山脊上,距大坝沟口4 km。呈脉状产出,地表自西向东有膨胀收缩现象,并见有分支现象。该脉西接113号脉。地表出露长度为1200 m,走向近EW,倾向165°~225°,平均182°,倾角49°~76°,平均65°,全脉倾角由东向西,出现由陡变缓的特点。控制矿体长度680 m,控制斜深170 m。厚度0.36~3.90 m,平均1.32 m,品位1.25~8.18×10-6,平均3.16×10-6,西段围岩为辉绿岩,东段的围岩为黑云角闪片麻岩,脉附近的围岩具碎裂结构和糜棱岩构造。地表有两条断层将矿脉平移错断,走向断距35~80 m。
12号脉地表出露长1000 m,矿脉总体走向近EW,但是西段矿脉受构造影响,走向逐渐转为NW方向,以P15为界,以西矿体为北西走向,倾向210°,以东矿体为近东西走向,倾向180°,平均倾向195°。倾角49°~78°,平均65°左右。矿体呈脉状产出,并见有分支现象,较完整连续。主要为含金石英脉和含金蚀变岩,控制工业矿体长度460 m,控制斜深204 m;厚度0.46~8.14 m,平均1.48m;品位1.30~20.00×10-6,平均5.12×10-6。
3.32号脉
矿脉位于13号脉群东北部约500 m处,矿石类型、结构构造和顶底板围岩等方面的特征同13号脉相同(图版Ⅸ),包括两层矿脉,相距100多米。下部矿脉宽大,为主矿脉,上部矿脉窄小,为平行次级脉。现在开采和控制的是下部主矿脉。地表控制长度约1500 m,主要分布在P31线至P40线之间。矿脉宽度一般1~2m。出露标高1360 m,目前最深钻孔控制标高约1060 m,控制延深约300m。矿脉产状变化较大,走向呈折线状,由NW向转为近EW向。其中,P31—P7线之间矿脉呈NW走向,P7—P8线之间矿脉呈EW走向。P8线以东矿脉则又转为NW走向,P31线以西矿脉转为近EW走向。相对来说NW向矿段长,EW向矿段短,所以矿脉总体走向按照NW向进行控制,总体倾向210°左右。矿脉倾角一般为31°~50°,平均45°。矿脉从地表向下倾角变为45°~50°之间。西部各中段,矿脉水平厚度0.30~2.50 m,平均水平厚度1.06~2.26 m。品位一般1.26×10-6~12.34×10-6,平均品位为2.65×10-6~4.49×10-6。其中,P31—P8线1284,1258,1212 m三个中段的矿体品位,厚度相对稳定,形成富矿体。富矿体长240~460 m,矿体平均水平厚度1.34~2.20 m,平均品位2.65×10-6~3.00×10-6。东部品位、厚度相对稳定,矿石品位最高达8.35×10-6,厚度最大2.50 m。其中,P8—P40线之间矿化比较集中,采坑及探槽最高品位8.35×10-6,最低品位1.87×10-6,平均3.97×10-6。矿体水平厚度最厚2.50 m,最薄0.90 m,平均1.55 m。总体上,矿化比较连续,受后期断层错动及脉岩穿插影响较小。但品位和厚度变化大。
矿区矿脉特征见表3-8。
表3-8 哈达门沟金矿床主要矿脉基本特征
续表
二、矿石组成、结构和构造
哈达门沟金矿区矿石类型可分为含金石英脉型、石英-钾长石脉型、钾硅化蚀变岩型和黄铁绢英岩化蚀变岩型。
含金石英脉型:以113号脉比较发育,含金石英脉呈宽大的(几米)或窄的(几厘米)单脉形式出现,以机械充填方式赋存于岩石裂隙中,与围岩界线清晰,围岩蚀变较弱,沿石英脉边部有时发育钾长石化,可见沿石英脉镶 “红边” 现象。主要矿物组合为石英、黄铁矿、黄铜矿、辉钼矿、方铅矿、自然金等。黄铁矿呈团块状、星散状、细脉状、稀疏浸染状分布。
含金钾长石-石英脉型:是哈达门沟金矿区中最重要的矿化类型。钾长石呈脉状,在钾长石裂隙中充填石英脉,或钾长石脉破碎为角砾为石英脉胶结,表明钾长石脉形成早于石英脉。钾长石脉内发育星散状黄铁矿,其间穿插密集的石英细脉,沿石英细脉发育细脉浸染状黄铁矿,局部见团块状方铅矿,石英与钾长石脉共同构成了工业矿体。石英脉矿石细脉状穿插主要矿物组合为钾长石、石英、铁白云石、黄铁矿、赤铁矿、自然金等。黄铁矿在钾长石化蚀变带中呈浸染状分布,颗粒细,而在石英脉中呈稀疏浸染状分布,颗粒较粗。
含金钾长石化蚀变岩型:矿脉中无宽而稳定的石英单脉穿插,矿体由钾长石化蚀变岩及充填其中的含金硫化物细脉或含金硫化物-石英细脉构成。其中仍残存有暗色矿物,形成残存片麻理,黄铁矿在其中浸染状分布,颗粒较细;主要矿物组合与含金石英-钾长石脉型相似,唯钾长石含量多,石英量少,黄铁矿在其中呈浸染状分布,颗粒细。
含金黄铁绢英岩化蚀变岩型:主要矿物组合为石英、绢云母、绿泥石、方解石、黄铁矿、自然金等,黄铁矿在其中呈稀疏浸染状分布。
矿化类型在空间上具明显的规律性:(1)大坝沟—哈达门沟一带以钾长石-石英脉型及钾长石化蚀变岩型为主,而大坝沟以西及哈达门沟以东则以石英脉型及绢英岩化蚀变岩型为主;(2)在含矿断裂的相对张开部位以钾长石-石英脉型为主,相对挤压部位则为钾长石化蚀变岩型,其分布明显受控于含矿断裂的力学环境。
矿石结构包括结晶结构、交代结构、填隙结构、固溶体分离结构和压碎结构。
结晶结构表现在黄铁矿的半自形、部分自形结构;黄铜矿、方铅矿的他形结构;镜铁矿的针状状、放射状结构;黄铁矿包裹黄铜矿,方铅矿中含有碲铅矿的包含结构等。交代结构包括黄铁矿交代磁铁矿呈现交代残余结构,黄铁矿被赤铁矿交代后形成交代环边结构或交代岛状残余结构,交代完全时形成交代假象结构。部分赤铁矿沿磁铁矿内部进行交代,构成交代骸晶结构。后期磁铁矿沿黄铁矿的微裂隙充填交代构成裂隙充填交代结构。填隙结构表现为自然金呈他形充填于黄铁矿,黄铜矿、方铅矿沿黄铁矿裂隙充填。黄铁矿脉状充填于磁铁矿中。固溶体分离结构表现在闪锌矿中有乳滴状、米粒状的黄铜矿固溶体。压碎结构常出现在团块状分布的黄铁矿中,黄铁矿受到比较均匀的挤压力时,形成大小不等不规则粒状碎块,呈现不等粒压碎结构。
矿石构造以脉状、网脉状、浸染状为主,此外还可见团块状构造、条带状构造、角砾状构造、晶洞构造等。金属矿物主要有黄铁矿、磁铁矿、赤铁矿;其次是黄铜矿、方铅矿、辉钼矿、碲铅矿、白铅矿、铜蓝、孔雀石等。脉石矿物以石英、长石、方解石为主,其次是绿泥石、绿帘石、绢云母、重晶石、高岭土、黑云母、角闪石等。金银矿物主要为自然金。副矿物主要为金红石、磷灰石等。
三、围岩蚀变
矿脉中部一般为石英脉,两侧为强钾硅化蚀变岩,近矿围岩蚀变以钾长石化、硅化、绿泥石化为主,多为高岭土化、碳酸盐化叠加;向外逐渐过渡为绿帘石化、绿泥石化和碳酸盐化,局部见碳酸盐化、绢云母化。矿体与断裂关系密切,断裂多形成于矿体底板附近,偶见于矿体顶板或两侧,破碎带附近高岭土化、绿泥石化较强,局部含断层泥。绿泥石化、绿帘石化是分布最广的蚀变,通常发育在破碎带的两侧或暗色矿物较多的二长片麻岩与斜长片麻岩中,其形成很可能与暗色矿物自蚀变作用有关。作为明显的找矿标志,钾长石在石英-钾长石脉中呈红色,中粒半自形结构;钾硅化蚀变岩中呈褐(砖)红色,以细粒结构为主,原岩成分很难辩认,但残存弱片麻理依稀可见,有时含有交代残留的岩块或黑云母等暗色矿物。两者野外与镜下并没有发现明显的穿切关系,从成分和晶体结构上亦无明显的区别。硅化多呈细脉状、网脉状及浸染状,与之伴生的黄铁矿颗粒细,自形程度低。硅化的石英有多种产状,形成的时间和温度区间跨度均较大,石英脉常穿插先成蚀变体或包裹棱角状的钾长石,或浸染状分布于岩石中,多数石英形成总体上晚于钾化。钾硅化蚀变带外侧绿泥石、绿帘石多分布在暗色矿物附近,为角闪石、黑云母等的蚀变产物,局部保留了矿物假象,少量为长石蚀变的产物(主要为绿帘石)。并且在周围产出黄铁矿、磁铁矿、赤铁矿等金属矿物。绢云母沿长石边缘、裂隙或解理呈网状、脉状分布,主要交代斜长石,偶尔交代原生钾长石;强烈时可完全变为绢云母集合体,并保留斜长石板状外形的假象。碳酸盐化分布广泛,碳酸盐矿物呈集合体状弥漫于蚀变岩石中或者呈细脉状切穿原生矿物。哈达门沟金矿总体上来说可以划分为两个明显的蚀变带:近矿的钾长石化、硅化蚀变带,以及远离矿体的绿泥/帘石化、绢云母化蚀变带,再向外过渡为未发生蚀变的岩石。
钾长石化、硅化蚀变带:钾长石化、硅化蚀变岩往往与石英脉矿体直接接触,宽度0.5 ~3米。蚀变带的产出形式直接受大型断裂或其分支断裂的控制。钾化、硅化蚀变带内的原岩矿物已基本完全被蚀变矿物置换。蚀变形成的矿物主要有微斜长石、石英、黑云母,同时广泛伴生黄铁矿。黄铁矿在岩石中呈浸染状分布,伴生的金多是自然金。
绿泥/帘石化、绢云母化蚀变带:分布在钾化、硅化蚀变带的外侧,宏观上表现为围岩呈暗灰绿色。主要的蚀变矿物为绿泥石、绢云母、石英、绿帘石,其次有方解石,金红石,黑云母等,保留原岩的结构特征和残余矿物。
两个蚀变带虽然在共生矿物组合、岩石的结构上差异较大,但它们在空间上都围绕着含金石英脉体构成蚀变晕。且内部蚀变带从不越过外部蚀变带而与未蚀变围岩直接接触,因此两种蚀变带是同一流体递进变质作用的结果。
本区金矿脉以红色的钾长石化蚀变围岩、钾长石化蚀变碎裂岩直接成矿为特征,与冀北地区东坪金矿床相似,而华北克拉通北缘其他金矿床钾长石化早且不成矿、晚期形成黄铁绢英岩型金矿化,存在明显的差别。导致这种差别的主要原因是含金流体性质不同,哈达门沟和东坪金矿床含金流体偏碱性,弱氧化状态,而其他金矿床的则偏酸性,弱还原状态。
通过野外地质调查及镜下观察可以看出,矿化大致顺序为,含金钾长石脉(正长岩脉)首先沿先存裂隙贯入,随后经受挤压作用,钾长石破碎,引张,粗晶黄铁矿-石英脉贯入,接着石英脉破碎,多金属硫化物-石英细脉又贯入早期石英大脉带中,最后可见碳酸盐化。本区成矿复杂,为多期成矿。综合矿床产出的地质特征、矿石类型、矿石组构、矿石物质组成及矿物组合特点可以划分为四个阶段:(1)钾长石-硫化物-氧化物阶段,以广泛发育钾长石化,钾长石既有结晶形成的,又有交代形成的,钾长石中黄铁矿一般为星点状、浸染状,严重碎裂处黄铁矿化强烈,且钾长石发生粘土化,绢云母化,主要矿物组合包括钾长石、石英、赤铁矿、磁铁矿、黄铁矿等;(2)黄铁矿-石英阶段,石英呈烟灰色,细脉状,将钾长石分割成孤岛状,也有石英脉沿着钾长石化蚀变岩或钾长石脉中的张性断裂或裂隙充填形成石英脉或石英-钾长石脉,石英脉主要形成于蚀变岩中心,其中常含有变质岩或早期钾化蚀变岩的张性角砾,说明石英脉晚于钾长石化蚀变岩的形成;(3)石英-多金属硫化物-(硫酸盐)阶段,石英主要呈乳白色,块状,脉状穿插钾长石,使矿脉形成红白分明的角砾状构造,网脉状构造,他形黄铁矿、黄铜矿、方铅矿等呈浸染状,稠密浸染状,有时见重晶石伴生在方铅矿附近;(4)石英-碳酸盐阶段,以出现团块状和不规则脉状方解石及自形晶石英为特征,碳酸盐脉常常切穿前3个成矿阶段的产物,其中黄铁矿颗粒粗大,主要呈立方体自形,晶纹发育。局部可见铜蓝,孔雀石、白铅矿和赤铁矿等氧化矿物。
⑨ 主要矿床类型地质特征
1.Zn-Cu型矿床
Zn-Cu型矿床是最古老的火山岩型块状硫化物矿床,如西格陵兰Isua矿床所赋存的表壳岩石年龄在37亿年以上(Appel,1979)。这类矿床分布广、数量多,如加拿大地盾7个构造省中有5个产出该类型矿床。
主要产地有:Abitibi绿岩带的Noranda地区、Matagami地区及Timmins地区。Superior省Confederation Lake地区、Manitouwadge地区及Sturgeon Lake地区。北美元古宙成矿区有曼尼托巴省Churchill地区,亚利桑那州Jerome地区及威斯康星中部地区的火山岩带。芬诺斯堪的亚地盾有芬兰北部的黄铁矿带及南部的Aijala-Orijarri成矿区,瑞典北部的Skellefte成矿区及南部的Bergslagen成矿区。中国华北地台有红透山等成矿区。
Zn-Cu型矿床富含Zn,Cu,只含微量Pb,一般伴生Au和Ag,在富Zn的硫化物中相对富Ag,在富Cu的矿石中则富Au。
该类型矿床容矿火山岩系成分变化范围广泛,从基性玄武质岩石为主到酸性流纹质火山岩占主导地位的情况都有可能出现。但无论火山岩系成因如何,这些火山熔岩具有连续沉积的特点,整个厚度可达1.1多万米。在这些含矿火山岩系之下的基底,一般是由镁铁质构成的稳定地块,主要为玄武质成分,它们很可能由于沿深部断裂产生的裂隙喷发作用形成的。与成矿区火山岩共生的沉积岩是未成熟的硬砂岩和火山碎屑岩,以及化学沉积岩(如燧石岩、含铁建造各种相)。从含矿火山岩系和矿床沉积的构造环境看,可以见到铁镁质到长英质的不同成分火山岩在空间上共生,并且明显属于两个或更多构造旋回的产物,这代表一种大规模优地槽火山作用的特征,属于大地构造旋回最初期阶段的产物,矿床则明显产出在经受了同构造变形的深坳陷盆地中。
代表性矿床的研究表明,Zn-Cu型块状硫化物矿床的地质剖面如下:最顶部为层状硫化物含铁建造,向下为块状黄铁矿和块状闪锌矿,再向下是条带状黄铜矿,最下部为网脉状矿石和枕状熔岩边缘的细网脉状矿石。含矿岩层的顶板常为燧石层或沉积岩层,它们是火山活动中断的标志,此时也正是硫化物沉积时期。含矿层底板则为蚀变的火山岩系,矿化蚀变筒就产在此处。块状硫化物矿体内部各矿层之间,以及与上、下盘岩层之间,地质体彼此为截然的接触界线。
Zn-Cu型矿床另一个重要的地质特征是,由于强烈的爆破作用,使块状硫化物矿体破碎,并在矿体附近或矿体顶部形成角砾状矿石或角砾岩。这些角砾一般呈现明显棱角状,表明是在块状硫化物矿体固结成脆性体后形成的碎屑。
图1-10为Abitibi带Noranda成矿区火山沉积旋回与成矿关系图。Spence和de Rosen-Sqence(1975)把Noranda地区火山沉积地层大致分为5个带,每一个带代表一次重要的长英质火山活动幕,每两幕之间为镁铁质火山活动时期。Noranda-Benoit杂岩体中心部分的层状岩石由65%左右的镁铁质火山岩和35%的长英质火山岩组成,在火山岩带内,块状硫化物矿床与长英质火山岩空间关系极为密切。大多数矿床,包括Millenbach-Norbec地区的所有矿床,都出现在长英质火山活动的第三条带内,West MacDonald和Delbridge矿床则出现在长英质火山活动的第四条带内。还有一个富黄铁矿矿床——Mobrun,出现在第五条带内(图1-10)。第三条带约为3000m厚,至少由3个大的长英质单元组成(图1-10),长英质单元间为一层镁铁质熔岩流层序。
图1-18通过日本Shikoku成矿区Besshi矿床的横剖面图(据Sumitomo矿业公司,1970)
大多数矿床由两种类型的矿石组成,即块状和条带状硫化物矿石。此外,一些矿床局部有富铜的构造加厚带。块状矿石由黄铁矿、黄铜矿、闪锌矿、斑铜矿和少量磁铁矿组成,脉石矿物为石英和方解石。而条带状矿石由黄铁矿、少量黄铜矿和闪锌矿组成,脉石矿物为石英、碳酸盐、钠长石、绿泥石和少量绿帘石、角闪石和电气石。硫化物和脉石矿物的含量近于相等。条带状矿石和块状矿石呈相互过渡关系。硫化物局部发生重新活化进入断层和断裂中而形成含磁黄铁矿的富铜矿石,除此而外,磁黄铁矿在这类矿床的其他地方很少出现。
⑩ 其它类型矿床的地质特征
除上述主要的10类矿床外,燕山地区尚发育小规模的变质热液成因脉型金矿、铅锌矿、斑岩型金矿、古砾岩型金矿、火山-次火山岩型银矿、脉型铜矿及火山热液型铜矿。已有资料表明,这些类型矿化一般仅形成小型矿床、矿点或矿化点。
变质热液成因脉型金矿、铅锌矿分布于太古宙、古元古代中深变质岩内,顺片理或早期岩脉呈脉状、透镜状产出,如半壁山金矿、业家坟铅锌矿点。矿化蚀变有绿泥石化、硅化及少量绢云母化、钾化。矿脉规模较小,矿石品位一般较低。半壁山—苗杖子金矿带矿石矿物以黄铁矿、毒矿为主,有别于其他类型金矿。
斑岩型金矿化呈面状分布于燕山期中酸性侵入体中心,如楼上金矿、对面沟金铜矿点。含矿围岩以闪长质、花岗闪长质中浅成侵入岩为主。矿化以浸染状、细脉浸染状、网脉状为主,分布于岩体蚀变中心。矿区范围内近矿围岩蚀变较强,以绿泥石化、硅化、绢云母化为主,蚀变呈面型分布于岩体中心(图2-15)。蚀变强度与矿化强度、裂隙发育程度呈正相关关系。
图2-15二道沟金矿田楼上斑岩型金矿化与蚀变分带分布图(据二道沟金矿地测科资料修编,1988)
Fig.2-15Sketch map illustrating the distribution of porphyry-type gold metallogenesis andalterational zonation of Ergou gold deposit
1—白垩纪流纹岩;2—白垩纪闪长斑岩;3—绿泥石化带,Au丰度:0.3×10-6~0.5×10-6;4—绿泥石化带,Au丰度:0.5×10-6~0.7×10-6;5—强绿泥石化带,Au丰度>7×10-6
古砾岩型金矿化主要分布于冀东青龙朱杖子古元古代含金变质砾岩系内,冀东石门一带中元古代长城群底部砾岩内也发育金矿化。但经过多年的努力,均未在寻找古砾岩型金矿方面取得突破性进展。1988~1989年,吴珍汉与何文军在朱杖子—双山子一带选三条横切全区的剖面垂直于岩层走向系统取样,分析岩石金丰度。结果表明,朱杖子群变质砾岩、条带状含铁建造中金含量很低,最高仅10×10-9;只在一些片岩中含金≥1g/t,这与吕梁期变质热液型金矿化的叠加有关。这些结果基本否定了燕山地区兰德型金矿床的找矿前景。
火山-次火山岩型银矿主要产于白垩纪早期中酸性火山-次火山岩内,如围场西北部的满汉土—小扣花营银矿、烟筒山银矿点。其矿石特点、蚀变特点与火山-次火山岩型金矿类似,仅以含银高而金品位低有别于同类金矿床。
脉型铜矿或分布于中生代侵入岩中,或分布于中深变质岩中。矿体呈脉状、透镜状分布于断裂或变质岩片理中,矿物组合以黄铁矿、黄铜矿、辉铜矿为主,含少量闪锌矿、方铅矿及不同量石英。围岩蚀变以绿泥石化、硅化、绢云母化为主,蚀变较弱,如东荒峪铜矿(图2-16)、小会河铜矿点等。
图2-16洒河桥铜矿平面(a)与剖面(b)地质图(据韩庆云,1992)
Fig.2-16Geological map and cross section of Saheqiao copper deposit
a、b图中:1—太古宙磁铁石英岩、片麻岩、斜长角闪岩;2—铜矿体;3—断层破碎带;4—钻孔
火山热液型铜矿主要分布于中元古代长城群早期大红峪组中基性海底火山-次火山岩中,如翟庄铜矿、将军关铜矿点等。蚀变以高岭石化、硅化、方解石化、重晶石化等中低温—低温热液蚀变为主,黄铜矿、辉铜矿等呈网脉状、星散状、浸染状及不规则状分布于蚀变火山岩中。矿石品位低,一般无工业开采价值。