怎么判断水文地质现象
1. 工程地质条件和水文地质条件怎么分析
工程地质条件分析来:
工程地质条件自是指与工程建设有关的地质条件总和,它包括土和岩石的工程性质、地质构造、地貌、水文地质、地质作用、自然地质现象和天然建筑材料等几个方面。
主要通过以下几点对不同地区进行具体分析:
1、对工程场地稳定性与适宜性分析、评价。
2、对工程场地环境工程地质条件评价。在评价场地自然条件的同时,还应预测工程与场地的相互影响及可能引发的工程地质问题。
3、为设计提供地质参数。
4、根据场地地质条件,为设计提供工程措施意见。
水文地质条件分析:
水文地质指自然界中地下水的各种变化和运动的现象。水文地质学是研究地下水的科学。它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。
因此根据分析地点具体特征根据以上要素进行分析。
2. 地质工程中水文地质现象有哪些
水文地质,地质学分支学科,指自然界中地下水的各种变化和运动的现象。水文地质学是研究地下水的科学。它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。随着科学的发展和生产建设的需要,水文地质学又分为区域水文地质学、地下水动力学、水文地球化学、供水水文地质学、矿床水文地质学、土壤改良水文地质学等分支学科。近年来,水文地质学与地热、地震、环境地质等方面的研究相互渗透,又形成了若干新领域。《水文地质学》是地质工程专业一门必修的专业基础课。课程的主要任务是培养大家从水文循环的基本原理出发,获得水文地质学的基础知识和基本研究方法,能初步运用所学知识解决工程地质工作中与地下水有关的问题,要求大家掌握地下水形成、分布和运移规律,地下水的动态与均衡以及水化学相关问题;了解该领域研究状况及与其他学科的关系。为今后从事与地下水有关的实际工作或科学研究打下基础。
《水文地质学》是地质学的一个分支,是研究地下水(Groundwater)的一门学科,它是对地质环境中地下水的发生、运动及其水化学特性上的研究。水文地质学研究的是:地下水在与岩石圈、地幔、水圈、大气圈、生物圈和人类活动相互作用下,其水量与水质在时间和空间上的变化,以及对各圈层产生的影响,从而服务于人与自然相互协调的可持续发展。
3. 水文与水文地质的区别
二者有交集,水文的范围大一些
水文的对象仅仅是所有关于水的,形成包括水位、流量版、雨量、水质权、地下水、蒸发、泥沙等项目齐全、布局比较合理的水文站网。包含部分水文地质的内容。
而水文地质是为地质工程服务的一门学科,水文地质学是地质学的一个分支,是研究地下水(Groundwater)的一门学科,它是对地质环境中地下水的发生、运动及其水化学特性上的研究。主要研究与岩石圈、水圈、大气圈、生物圈以及人类活动相互作用下地下水水量和水质的时空变化规律,并研究如何运用这些规律去兴利除害,为人类服务。
水文,指自然界中水的变化、运动等的各种现象。现在一般指研究自然界水的时空分布、变化规律的一门边缘学科。
水文地质学是研究地下水的科学。它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。随着科学的发展和生产建设的需要,水文地质学又分为区域水文地质学、地下水动力学、水文地球化学、供水水文地质学、矿床水文地质学、土壤改良水文地质学等分支学科。
4. 地貌和水文地质有哪些鉴别标志
①地质方面
保留在最新沉积物中的地层错开,是鉴别活断层的最可靠依据。一般地说,只要见到第四纪中、晚期的沉积物被错断,无论是新断层或老断层的复活,均可判定该断层的活动性。需注意与地表滑坡产生的地层错断的区别。
活断层的断层带(面)一般都由松散的破碎物质所组成,而非复活老断层的破碎带均有不同程度的胶结;所以松散、未胶结的断层破碎带,也可作为鉴别活断层的地质特征。
伴随有强烈地震发生的活断层,当强震过程中沿断裂带常出现地震断层陡坎和地裂缝,是鉴别活断层的霞要依据。非构造的地裂缝一般无一定的方向性。
②地貌方面
活断层分布地段往往是两种截然不同的地貌单元直线相接的部位,其一侧为断陷区。而另一侧为隆起区。由于在近期地质时期内断块的长期活动,高耸区和低洼的平原、盆地分化幅度很大。地貌上的突然变化及沉积物厚度的显著差别是活动性断裂存在的重要标志。
走滑型的活断层,常使通过它的河流、沟谷方向发生明显的变化;当一系列的河谷向一个方向同步移错时,即可作为确定活断层位置和错动性质的佐证。根据水系移错的距离和堆积物的绝对年龄,即可推算该活断层的错动速率。山脊、山谷、阶地和洪积扇等的错开,也是鉴别走滑型活断层的标志。
近期断块的差异升降运动,可使同一级夷平面分离解体,高程相差数百米,以至上千米。为数不少的活动断裂在地貌上为深切的直线形河谷,当断层两盘相对地升降,则两岸阶地的高度有差别,同一级阶地的高程在断层两侧明显不同。由于阶地形成的时代较夷平面新,所以在鉴定活断层时更为可靠。
此外,在活动断裂带上滑坡、崩塌和泥石流等工程动力地质现象常呈线形密集分布
5. 水文地质条件分析
依据水文地质的调查分析,主要分析是否有井泉露头,水位、补给的源头是内什么?含水层的厚容度和岩性?区域水文地质的特征如何?地质资料的分析注意地层岩性的特点和导水性、渗透性、保温性、热导率等指标,基本判断该区断裂的分布和走向,可能赋存地下水的地质条件和特征。
6. 工程地质条件和水文地质条件怎么分析
工程地质条件分抄析:
工程袭地质条件是指与工程建设有关的地质条件总和,它包括土和岩石的工程性质、地质构造、地貌、水文地质、地质作用、自然地质现象和天然建筑材料等几个方面。
主要通过以下几点对不同地区进行具体分析:
1、对工程场地稳定性与适宜性分析、评价。
2、对工程场地环境工程地质条件评价。在评价场地自然条件的同时,还应预测工程与场地的相互影响及可能引发的工程地质问题。
3、为设计提供地质参数。
4、根据场地地质条件,为设计提供工程措施意见。
水文地质条件分析:
水文地质指自然界中地下水的各种变化和运动的现象。水文地质学是研究地下水的科学。它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。
因此根据分析地点具体特征根据以上要素进行分析。
7. 水文地质特征
5.3.1 井田水文地质特征
井田位于车轴山向斜的东南翼,从区域水文地质条件分析,整个车轴山向斜位于开平煤田的西北部,自成一独立的隐伏向斜,向斜上部被松散的巨厚第四系冲积层覆盖,车54、车60钻孔以北为厚度小于180m的宽缓平台,向南逐渐增厚,到南部边缘厚度达到650m。第四系底部卵砾石层埋深105~155m,厚约10~25m。该含水层水量充沛,构成各煤系含水层的补给水源。石炭-二叠纪煤系含水层位于第四纪冲积层之下,地下水主要赋存于砂岩裂隙之中。下伏中奥陶统灰岩,裂隙、岩溶发育,含水丰富。
5.3.1.1 矿井含水层概述
表5.4为东欢坨井田含水层的主要分布。
表5.4 东欢坨矿区含水层特征表
据含水层的赋存特征,井田存在着三大含水系统:第四纪冲积层孔隙承压含水层、石炭-二叠纪砂岩裂隙承压含水层和中奥陶统灰岩岩溶裂隙承压含水层。其特征分述如下:
(1)第四纪冲积层孔隙承压含水层(VII)第四纪冲积层覆盖于含煤地层之上,全区分布,不整合于古生代地层之上,北薄南厚,较均匀地渐变。第四系全为松散沉积物,此孔隙含水层水量充沛,含水性强,但变化较大。
(2)石炭-二叠纪砂岩裂隙承压含水层(VI~II)石炭-二叠纪煤系含水层以倾伏向斜的形式伏于新生代松散层之下,地下水主要储存于泥质或硅质胶结的厚层中、粗砂岩的裂隙之中。
(3)中奥陶世灰岩岩溶裂隙承压含水层(I)奥陶纪灰岩含水层呈平行不整合于含煤地层之下,通常在第四系底部卵砾石层与之直接接触地区,岩溶比较发育,在顶部的裂隙和溶洞中多有砂、砾石和粘土质充填。其中12-2煤底板含水层组是以奥灰水和底卵水为水源的强富水性含水层,主要包括:12-2煤~14-1煤强含水层组(IVa)、14-1煤~K3强含水层组(III)和奥陶纪石灰岩含水层
(I),其中石炭-二叠纪砂岩裂隙承压含水层中12-2煤~14-1煤强含水层组为12-2煤底板直接充水含水层。
(1)12-2煤~14-1煤强含水层(IVa)
本段厚约40m,岩性以细砂岩为主,粉砂岩次之,夹中砂岩。顶部有一层4~10m厚粉砂岩或泥岩弱透水段,12下煤位于该段中部。含水细砂岩和粉砂岩位于12下煤层顶底10~15m范围内,其区域特点是透水性强。由于水源补给程度差异,在-500水平中央采区和西南采区浅部属强含水段,东南采区属中等含水段。强含水部位单位涌水量为1L/s·m,中等含水部位单位涌水量为0.57L/s·m。-230水平井底车场南北两端单位涌水量为0.7~0.9L/s·m,渗透系数为0.079~9.610m/d。水质类型为HCO3-CaNa型或HCO3-CaMg型,水温17℃。通过疏水钻孔的疏放分析,认为该含水层水可疏降。静水位标高:1958年为+20.89m(车42孔),目前本含水层水位标高为-21~-160m左右。
(2)14-1煤~K3强含水层(III)本段厚约50m,岩性以粉砂岩为主,与细砂岩、泥岩互层;K3灰岩为该段顶板,平均厚4m,质纯,未见岩溶。在地层浅部据老风井掘进与东观29、东观37孔钻探揭露,K3在其顶面形成空腔,有黄泥残积充填,应为溶蚀作用和煤系风化产物。东观38孔在-560m标高见此层,顶面并无黄泥,但K3底10m段落内为强含水部位。抽水试验揭露单位涌水量为1.1L/s·m,与老风井马头门探水与涌水条件相似。K3顶、底板是出水部位,而且本段与上段含水层水基本一致(即无隔水地层),本段其余地层弱透水。水质类型为HCO3-CaMg型,水温18.5~19.5℃。
(3)奥陶系灰岩含水层(I)此段不整合于含煤地层下。本区揭露此层的有12个钻孔,除车59、车43两钻孔揭露较厚(97.38m和73.26m)外,其他钻孔一般揭露厚度多小于10m,但其厚度被推测为大于400m。通常第四系底部卵砾石层与之直接接触的地区,岩溶比较发育,在顶部的裂隙和溶洞中多有粘土质和砂、砾石充填。渗透系数为3.405~10.385m/d,单位涌水量为0.799~1.794L/s·m,水温19.5℃,水质类型为HCO3-CaMg型。本层含水性较强,是一良好的供水层位,但对矿井深部的开采存在很大威胁。1958年的静水位标高为+22.26m(车43孔),目前本含水层水位标高为-16m左右。
5.3.1.2 矿井隔水层概述
本区弱或极弱透水性地层或密集为层系或独立成层。撇开构造因素,仅就岩性区分,自上而下有:
(1)A层及其附近铁铝质粘土岩
A层以上发育为3~4层,层间距为4~20m,层厚度为3~8m;A层以下80m段距内发育4~5层,层厚小于2m。A层以上段落及以下段落的粘土岩均为弱透水层。
(2)煤5~煤12-2层间沉凝灰岩,各类泥岩,高岭土质砂岩
沉凝灰岩和高岭土质砂岩分布在煤8、煤9近旁以及煤12-1~煤12-2之间,遇水膨胀、裂隙弥合,是极弱透水层。层厚由2~28m不等。各类泥岩层薄,主要赋存在煤8以上与煤12-2近旁,构成煤层直接顶底板。
上述类别岩石连同煤层本身构成了水源不足的层间承压水顶底板。这种含、隔水层密集相间的层系结构形成了垂向径流纤弱的整体阻水效应。因此,煤5以上和煤12-2以下可以水源为背景,分为缺乏垂向联系的两大含水层组。
(3)G层铝土质粘土岩
其厚度随着奥灰剥蚀面起伏变化,大都小于10m。位于煤层基底的G层铝土质粘土岩是稳定的区域隔水层。该层是阻止奥灰水侵入煤系的第一道屏障;复结构的14煤及其粉砂岩与泥岩互层则是第二道屏障。
根据对矿井水文地质条件的综合分析,12-2煤底板主要隔水层为G层铝土质粘土岩。
5.3.2 断层导水性
东欢坨矿区在建井期间共发现106条断层。此外,通过三维地震勘探发现8条断层,其中有4条断到奥陶系在岩。实践证明:矿区绝大多数断层导水性较差,甚至不导水。但在北一,通过对由三维地震勘探给出的断层F3'、F5'进行井下钻探,表明它们导水,水量充足,且与12-2煤底板含水层及5煤顶板含水层有十分密切的水力联系。由于工程限制,对由其他三维地震发现的断层并未做钻探,但并不排除这些断层的导水可能性。
5.3.3 矿井充水条件
5.3.3.1 矿井的充水水源
(1)大气降水、地表水
大气降水、地表水均是井田内地下水的主要补给来源,它们分别通过基岩裸露区及风化带渗入补给,并顺层径流。但在此地区受地形及基岩裂隙发育程度的控制,补给量有限。
大气降水:本区属大陆性季风气候,每年降水多集中在6~9月份,其他时间降水很少。大气降雨通过下渗补给第四系底卵石含水层,通过顺层和垂向补给其他含水层。根据冲积层水文地质剖面图及有关资料,冲积层内含有3个岩性以粘土、亚粘土为主的隔水层,这3层隔水层,沉积比较稳定,隔水性能较强,阻隔了大气降水的向下补给,下渗补给量较小。因此,大气降雨对下部含水层及矿井涌水量不会造成明显影响。
地表水:井田范围内无地表水系存在,仅有两条排水渠。一条向东排至猪笼河,另一条向西排至泥河。两条河流均远离矿区,故地表水系对矿井涌水量无影响。
另外,本区内第四系松散地层中第三隔水层厚达10~25m,即使有采空塌陷,也不致使粘土层断开,阻隔了大气降水和潜水的向下补给。
因此大气降水、地表水和潜水对矿井涌水量影响甚小。
(2)含水层水
井田内的三大含水系统———第四纪冲积层孔隙承压含水层,石炭、二叠纪砂岩裂隙承压含水层和中奥陶纪灰岩岩溶裂隙承压含水层。
(3)老空水
在建井、水平延伸、新区域施工及最上方煤层回采中,充水水源主要为含水层水。而在下方煤层回采中,老空水就成为了主要充水水源。
在本矿井生产过程中,由于工作面的布置、顶底板的岩性特征及涌水等因素,在采空区或废巷有可能存在不同形式的积水。一旦施工工程接近、揭露或冒落带达到这些积水,便可涌入井巷,发生老空区突水事故。老空区突水具有来势猛、破坏性大的特点,往往是瞬间大量积水溃入工作面,形成灾难性事故。
本矿井4个主要可采煤层,其间距为8~12m,属煤层群开采。下一煤层开采时,其导水裂隙带远远大于煤层间距,这样当上方采空区或老巷道存有积水、动水时,这些积水、动水会顺裂隙进入工作面,成为突水水源,若水中再夹杂煤渣、岩碴形成煤矸泥,对下方工作面威胁更大。
基于以上原因,同时受地质条件所限,仅在中央及北一两个采区内回采,所以生产阶段主要是存在老空水的威胁,防治水工作也主要是对老空水的探放。如:2192下风道在掘进及回采前对上方2182上采空区积水进行探放,共疏放积水1728m3;2118工作面在掘进及回采前对上方2196采空区及老巷道进行探放,前后共放出积水及动水4.3万m3;另外2192上、2094、2116等工作面在掘进及回采前均进行了探放,证明存在老空水。由于采取了超前的探放水工作,十几年来未因老空水隐患出现水害事故。
老空水是长期积存起来的,多为酸性水,有较强的腐蚀性,对矿山设备危害甚大。老空区突水时,水势猛,破坏性大,如与其他水源无联系,则突水可急剧减弱。通过确定充水水源,有利于更有效地为防治水提供资料。
5.3.3.2 矿井充水通道
通过近十年的生产实践,东欢坨井田范围内充水通道主要有以下3种方式:
(1)直接揭露含水层
根据开采煤层与含水层的关系,可分为直接充水水源和间接充水水源。从目前矿井的开采区域看,直接充水水源为A0~A、A~5煤顶、12煤~14煤含水层组。
在煤矿生产中,有些工程必须穿越含水层。当巷道直接揭露这些含水层后,含水层水将会进入矿井。如本矿-500水平轨道中石门及-690水平轨道中石门,按设计其由A0~A含水层,穿越A下80m含水层、5煤顶含水层直到12-1煤。这样当巷道揭露含水层时,均发生了涌水,其中5煤顶含水层最大出水点达到10.26m3/min。
(2)断裂带导水
本井田构造发育。通过建井及生产阶段来看,大部分断层未与含水层导通或不导水,但是有些断层则表现导水或揭露时未导水,但由于扰动影响成为导水断层。如2182上工作面在风道掘进时遇一条落差为2m的F138正断层,未出水,但回采至该断层时,又发生了突水,水量0.55m3/min;-230水平北二顶板绕道利用管棚技术顺利通过F2(落差35m)断层组,一年半后发生了迟到突水,最大涌水量3.0m3/min,并伴随有大量的黄泥、卵砾石等物,判断为导通冲积层水。
(3)采矿造成的裂隙通道
巷道掘进和工作面回采时,都会对原有围岩产生影响,当产生的裂隙导通含水层或其他水源时,这些水也会顺采动裂隙进入矿井。大部分回采工作面出水均属此种通道。
8. 地灾评估中怎样判断水文地质条件
结合该区域的水文地质图及现场踏勘调查来论述,地灾报告中水文地质条件部分的论述比较简单!
9. 水文地质观测
1.冲洗液消耗量的观测
图3-8 冲洗液循环装置及消耗量观测示意图
1—钻孔;—导水槽;3—沉淀池;4—贮水池;5—标尺;6—隔水壁;7—工作开始时的水位;8—工作结束时的水位;9—加冲洗液用的量器;10—泥浆泵的吸水管
钻孔冲洗液消耗量及性质的突然变化,通常说明所揭露地层的渗透性和涌(漏)水量发生了变化,也可能是揭露了新的含水层(带)。因此在钻进过程中需随时观测冲洗液消耗量。一般做法是:下钻前、提钻后分别观测泥浆槽水位标尺(图3-8),即可求得本回次进尺段内冲洗液的消耗量(V)或进尺1m时的冲洗液消耗量。计算式为:
V=(V1+V2)-V3 (3-3)
式中:V为回次进尺段内冲洗液消耗量(m3);V1为钻进前泥浆槽内冲洗液体积(m3);V2为钻进过程中加入泥浆槽中的冲洗液体积(m3);V3为提钻后泥浆槽内冲洗液的体积(m3)。停钻时则可用孔内液面下降值计算地层的漏失量。
如果钻进中冲洗液大量消耗,可能是揭露到透水性很强的含水层、透水通道或遇到透水性很强的干岩层。如果钻进中冲洗液循环量增多,则说明新揭露的含水层(带)的水头至少高于该含水层(带)以至孔口。
2.含水层水位观测
地下水位是重点观测项目,一般在每次下钻前和提钻后立即测量,停钻期间要每隔1~4小时观测一次,以系统掌握孔内水位的变化情况,干钻时可直接发现地下水。用冲洗液钻进时则可据孔内水位的突然变化,发现和确定含水层。发现含水层后,应停钻测定其初见水位和稳定水位。潜水的初见水位与稳定水位基本一致,承压水的稳定水位则高于初见水位。钻孔穿过多个含水层时,要分层止水,分层观测水位。
一般来说,当观测中相邻三次所测得的水位差不大于2mm,且无系统上升或下降趋势时,即为稳定水位。第四系潜水含水层,测定初见水位后,还应继续揭露1~2m。承压含水层,亦须揭穿隔水顶板,再揭露1~2m含水层后,才能测定稳定水位。在坚硬裂隙或岩溶含水层中,主要观测风化壳水、构造含水带及层状裂隙或岩溶含水层的初见水位和稳定水位。观测时亦须深入含水层数米,并对上部含水层进行止水。
为了准确测定含水层的水位和其他参数,水文地质钻探应尽量采用不用冲洗液的钻进方法,或用清水钻进。如果采用泥浆钻进,在观测稳定水位之前,需认真洗井以消除其影响。
3.钻孔涌水现象观测
孔口涌水,表明钻孔揭露了承压水头高于地面的自流承压含水层。此时,应立即停钻,记录钻进深度,并接上套管或装上带压力表的
当f<5m时,
专门水文地质学
当f>5m时,
专门水文地质学
式中:Q为钻孔涌水量(L/s);f为自流水涌(喷)水高度(dm);d为孔口管内径(dm)。测量f的同时,最好能进行涌水试验,进行三次水位降深,测定3个稳定水位及所对应的涌水量。
4.水温观测
当钻进揭露不同含水层时,要分别测定其水温。对巨厚含水层,要分上、中、下三段,分别测定地下水温度,并记录孔深及水温计的放入深度。测量水温时,应同时观测气温。
5.孔内现象观测
钻进中对孔内发生并能分析判断水文地质问题的现象,都应予以观测和记录。例如,钻具自动陷落(掉钻),通常说明遇到了溶洞或巨大裂隙等。钻孔孔壁坍塌、缩径、涌砂等现象,通常说明揭露到了岩层破碎带或砂层,应描述其现象,记录其起止深度。
6.取水(气)样
为评价地下水水质,应取水样及气体样。一般可在测定含水层稳定水位之后采取。水(气)样采取及送检的要求,参见有关规范。
10. 水文地质条件一般是指什么
通常把与地下水来有关的问源题称为水文地质问题,把与地下水有关的地质条件称为水文地质条件。
水文地质指自然界中地下水的各种变化和运动的现象。水文地质学是研究地下水的科学。它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。随着科学的发展和生产建设的需要,水文地质学又分为区域水文地质学、地下水动力学、水文地球化学、供水水文地质学、矿床水文地质学、土壤改良水文地质学等分支学科。近年来,水文地质学与地热、地震、环境地质等方面的研究相互渗透,又形成了若干新领域。