地质勘察破碎带怎么描述
❶ 三峡库区地质灾害勘察物探技术方法应用
李洪涛孙党生杨勤海杨进平
(中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】本文简要叙述了在三峡库区地质灾害勘察中经常使用的物探技术方法以及一些典型的工程实例,以求为今后的工作带来一定示范效应,进一步为地质灾害勘察提供先进有效的测试手段。
【关键词】三峡库区地质灾害勘察物探技术方法
1前言
从1997年至2004年,中国地质调查局水文地质工程地质技术方法研究所承担了三峡库区移民迁建新址重大地质灾害防治研究与论证综合地球物理勘查,奉节三马山小区物探勘察,巴东黄土坡滑坡、万州官塘口滑坡物探勘察,重庆14区县库岸调查等一批应用研究课题及物探勘察任务。先后在三峡库区的巴东、巫山、奉节、万州及丰都、石柱等地进行了大量的综合地球物理勘察。本文为地球物理勘探技术方法在三峡库区地质灾害防治工程中的应用实践经验总结和体会,以求为今后的工作带来一定示范效应,进一步为地质灾害勘察提供先进有效的测试手段。
2地球物理勘探技术方法
2.1浅层高分辨率地震勘探
2.1.1工作技术方法
(1)展开排列法
考虑到库区地形地质条件的复杂性,在奉节和巫山两地,在布置地震剖面之前,作为一种重要的试验方法,都采用了展开排列法。其作用是了解测区地震波波组中各种波的时序排列关系,进行震相分析,从而确定数据采集的仪器参数和观测系统,采取合适的激发与接收措施,进行地层介质速度参数的估算。展开排列法观测系统采用0m、10m、20m、30m、40m、50m等不同偏移距,道距2m或3m。
(2)共深度点多次水平叠加法(CDP)
CDP水平叠加法是在不同激发点和接收点上采集来自相同反射点的反射波,在得到的多张地震记录中抽出界面上共反射点道集,经过速度扫描、动静校正之后,进行叠加处理,以时间剖面的形式给出地质界面及构造信息,这种方法可以提高信噪比,对压制干扰波有显著的作用。CDP剖面观测系统中的偏移距的选择,是根据面波、声波等干扰波与目的层反射波的关系确定,分别采用30m、40m和69m。道距采用2m、3m和5m。水平叠加次数大部分为6次,部分用3次。
(3)地震高密度映像法
高密度映像技术采用单次激发、单次接收等偏移距信号采集,其工作模式与水域中声纳法类似,故又称为陆地声纳法。采集的信号经幅度压缩、彩色调制,以彩色映像的方式显示。高密度映像法的偏移距用2m,点距1m。
2.1.2野外数据采集设备
地震勘探采用北京水电物探研究所的SWS—1A型多功能面波仪与瑞典ABEM公司MARK6轻便多道地震仪。接收检波器用38HZ高灵敏数字检波器配CDP轻便覆盖电缆。根据探测目的层的深度,以及测区施工条件,分别采用锤击与炸药爆破两种震源。锤击震源锤重24磅,锤垫厚20mm。为增加有效信号,压制随机干扰,采用垂直叠加,叠加次数一般为5次。炸药震源一般在炮孔中激发,孔深1~2m,药量100~200g。
2.1.3资料数据处理
CDP剖面资料的数据处理采用CSP.3.3地震数据处理系统。针对本区地形坡度大且起伏剧烈的特点,在叠前和叠后均作了地形校正。处理内容还包括增益控制、噪音和干扰波切除、滤波、速度分析、动校正与水平叠加等,最终输出含有地形线的CDP水平迭加双程反射波时间剖面图,成果地质解释图是在AutoCAD14.0下完成的。处理流程如图1。
图1浅层地震数据处理流程图
2.2面波勘探
采用瞬态面波(瑞雷波)勘探。在地表用震源竖向激震时,一般会产生直达纵波、折射纵波、反射纵波和瑞雷波以及各种转换波。理论分析和实验表明,所有这些波中,瑞雷波的能量最强,约占67%。瑞雷波是一种沿地表传播的表面波,其传播的波阵面为一个圆柱体,传播的深度约为一个波长。利用瑞雷波的频散特性,即不同波长的瑞雷波传播特征反映不同深度地质体的特征,进行地质介质结构的探测。
2.2.1仪器设备
面波勘探采用北京水电物探研究所的SWS—1A型多功能面波仪,接收检波器采用4Hz低频检波器,面波剖面采用12道排列,道距1m,点距5m,偏移距分别为0m、5m、10m、15m和20m。
2.2.2资料处理
面波剖面采用 FKSWSA面波处理系统,通过多道三维傅里叶变换,在时间—空间(T—X)域和频率—波数(F—K)域内进行速度和波数(波长)滤波,消除非面波信号,有效地提取面波信息,绘制面波频散曲线,进行面波资料的反演解释。
FKSWSA面波处理系统的特点是可以进行拟合处理,即设定的地层结构参数与计算的地层参数,通过相关系数判断,确定最佳地层结构反演结果。
2.3地震层析成像(CT)
地震层析成像和其他科学技术领域的成像技术类似,是一种边界投影反演方法。从地震波的运动学与动力学特征出发,地震层析可分为射线层析和波动方程层析两类。它们分别测定地震波的走时、振幅、相位、周期等信息变化,反演地质介质三维速度结构或衰减特性,并以图像表示其结果。
地震 CT数据采集采用井间与井地结合的方式。井地方式是在两孔之间沿地面上激发弹性波,孔中接收;井间方式是在一孔内激发,另一孔内接收。接收点距2m和1m,炮距2m或视井中条件确定,构成上下交叉的观测系统,以保证射线覆盖测试区域,提高成像精度。
2.3.1仪器
SWS—1A多功能面波仪或 MARK6轻便多道地震仪。
接收采用串联式气囊检波器与井壁耦合。
采用爆炸震源,电雷管激发。
2.3.2数据处理
数据处理采用CST for Windows地震层析成像系统。每个成像区域均按2m×2m单元剖分,每个单元块上的射线节点密度为10个×10个。成果以波速等值线色谱图展示,图像输出是通过Winsurf6.04实现的。处理流程如图2。
图2地震层析成像数据处理流程
2.4EH—4电导率成像
EH—4电导率成像方法属部分可控源与天然场相结合的一种大地电磁测试法。不同于直流电法,它不是通过延长电缆和加大极距来增加勘探深度,而是在测点上,通过其变频获得深度信息。EH—4在奉节县宝塔坪三万塘地面塌陷坑调查中,在坑底布置了一条南北向剖面,点距5m,电偶极距15m,与剖面方向一致。在塌陷坑南侧地表布置了一条剖面,点距5m,电偶极距10m。
2.4.1仪器设备
EH—4电导率成像系统是由美国 GEOMETRLCS和EMI公司联合生产。是目前国际上较为先进的一种电磁法勘探仪器。
2.4.2EH—4的资料处理
包括现场数据处理和后续处理两大部分。现场数据处理主要是一维分析,用于检查野外采集的数据质量和调整参数。后续处理包括数据分析、一维数据处理和显示及拟二维处理。数据分析软件用于识别噪声源,估计和调整发射机的信号电平,分析数据采集质量。一维数据处理和显示是在经过数据分析后得到新的功率谱后的资料再处理,可删除噪声严重的数据以减少发散,增加信号的相关度。二维处理是采用EMAP法进行拟二维反演,有效地消除静态效应,构造电阻率断面图,在现场给出解释结果灰度图,通过计算机二维反演,进行彩色成图。
2.5声波测井技术
声波测井是以测定岩、矿的声波速度和幅度为基础,在划分基岩岩性、风化破碎程度,确定破碎带位置、基岩与覆盖层分界面以及在覆盖层、基岩内确定低速层等方面是一种较为有效的方法。
单孔全波列声波测试是采用一发双收探管,发射—接收源距50cm,间距30cm。在钻孔内(裸孔)沿井壁发射、接收声波信息,测井时将探管下至井底,按一定点距向上测试,由计算机完成全波列数据采集与数据存储,室内通过回放和资料处理拾取纵、横波,在全波列采集波形中根据波形干涉点、幅度、频谱分析,确定纵横、波初至走时,计算纵波、横波速度绘制成果图。
测试使用的仪器为SSJ—4D全波列声波测井仪(中国地质调查局水文地质工程地质技术方法研究所)。
井下探头分采用干孔贴壁式和水耦合两种类型。
3应用成果分析
3.1滑崩堆积体
滑崩堆积体是一种多成因、多期次的松散堆积体。其大部分是在构造和重力卸荷及岩溶作用下形成的滑坡体、崩塌体、泥石流堆积体和岩溶塌陷堆积体。地球物理勘探的目的是了解堆积体厚度及深部结构特征,采用的主要工作方法是展开排列法、CDP剖面与面波法。
3.1.1巫山新城址净坛路—祥云路—集仙路深部结构特征
该区由于地形起伏较大,加上冲沟人工回填等因素,给地震探测带来了很大困难。图3(剖面F)反映了净坛路—祥云路—集仙路方向的深部结构特征。可以看出完整基岩埋深达40~50m,而在祥云路至集仙路之间形成深达30m的深槽。图4(剖面 H)横切头道沟,冲沟形态明显。在时间剖面上,凡是在冲沟部位,由于切割、风化呈多同相轴形态,反映冲沟堆积物的复杂性。探测结果明显反映了堆积体的顺层特征。
3.1.2滑崩堆积体精细结构特征
为了进一步提示滑崩堆积体精细结构特征,采用了面波探测来了解浅部的地质结构。图5列出典型的频散曲线及其地质解释结果,可以看到面波勘探能够很好地提供浅部地层细节及其速度分布资料。结果表明,滑崩堆积体内部可划分为3层:
图3巫山新址净坛路—集仙路(剖面F)浅层地震勘探结果
第一层:0~3.15m,为含砾石粘土层,横波速度330~470m/s。
第二层:3~8m,为碎石夹土层,横波速度470~770m/s。
第三层:8~16m,为破碎岩层,横波速度770~970m/s。
3.1.3成果解释
滑崩堆积体埋深约40m,但是祥云路至集仙路之间存在深达70m的凹槽。滑崩堆积体底面明显顺岩层方向,倾角达30°。在滑崩堆积体中,可细分为3层,其波速不超过1000m/s,说明其岩体完整性较差。
3.2 滑坡
滑坡勘查采用的技术方法主要是 CDP剖面法,勘查对象有巴东县新城区黄土坡滑坡、巫山秀峰寺滑坡、重庆市万州区关塘口滑坡、万州区长江大桥—上沱口段库岸滑坡等。本文仅对其中一部分有代表性的成果分述如下。
3.2.1巴东县新城区黄土坡滑坡
(1)地震时间剖面波组特征
巴东黄土坡滑坡共做了9条剖面,本文列举2条剖面予以分析。从图6(D剖面)、图7(C剖面)中的时间剖面可以看出均存在一至二组反射波同相轴,其中T1波组较稳定,时间在30~60ms左右,其深度为30~51m,这一层可以认为是第四系滑坡堆积体与下伏基岩的分界面,T2波组时间在50~90ms左右,其深度为52~76m,这一层可认为是基岩风化岩层与完整基岩的分界面。从图6(D剖面)及图7(C剖面)可见均未发现有大的断层形迹的显示,但裂隙(节理)较发育,形成岩体破碎,从反射波的特征来看,形成了杂乱弱反射或波组的错断标志。
图4巫山新址祥云路(剖面H)浅层地震勘探结果
图5巫山新址净坛路—集仙路面波勘探结果
图6巴东黄土坡滑坡(D剖面)浅层地震勘探时间剖面
图7巴东黄土坡滑坡(C1、C2剖面)浅层地震勘探时间剖面
(2)地质解释
巴东黄土坡滑坡地震勘探结果基本查明了工作区内第四系松散堆积体的厚度及空间分布范围、滑坡堆积体的厚度及分布范围。推断地质解释图直观反映了基岩埋深及起伏形态,其埋藏深度分布范围一般在50~90m左右。查明了工作区内基岩软弱结构面的异常分布带及位置,共解释推断基岩破碎带及裂隙发育带共计21处。
3.2.2巫山秀峰寺滑坡
(1)地震时间剖面的波组特征
巫山秀峰寺滑坡共做了8条浅层地震剖面,本文列出其中典型的地震剖面1条见图8,从时间剖面可以看出,均存在一至二组反射波同相轴,其中一组比较稳定,时间在50ms左右(消除地形影响后)。这一层可以认为是滑坡堆积体与下伏基岩的分界面,其深度一般为30m左右。对一些不同结构特征的界面,如风化岩体也有所反映。时间一般为75ms左右,推断为完整基岩与风化岩体或碎块石层的分界面。另外,在图8中,CDP点120~140反射波同相轴向下凹陷甚至尖灭,结合现场地质情况,这一位置为一古寺庙所处位置,在地震反射波中出现这一现象,可能是由于古代工程人工开挖造成地层波阻抗界面差异所致。
图8巫山秀峰寺 D3浅层地震勘探结果
(2)地质解释
巫山秀峰寺滑坡所完成的8条浅层地震剖面,基本查明了滑坡堆积体的厚度和空间形态,推断地质图直观反映了基岩的形态和覆盖层的厚度变化。除基岩面之外,CDP剖面上还有一些同相轴,它们都是地震波地质信息的真实反映,如D3线所反映的同相轴不连续现象与旧寺庙位置相吻合。秀峰寺滑坡的8条剖面展示了秀峰寺滑坡堆积体厚度约在25~35m之间。
3.2.3重庆万州区长江大桥——上沱口段库岸滑坡勘查
(1)地震剖面的波组特征
万州长江大桥上沱口段库岸滑坡勘查共做了5条CDP浅地震剖面。图9、图10是其中两条典型剖面,从图7、图8可见地震反射波的波组特征较明显,一般延续1~2个相位,从波的相位、能量、波形、连续性等方面来对比,其中T1波组为第四系滑坡堆积层与下伏基岩(风化层)的分界面,该层反射波的连续性和相位特征是分析判断崩滑堆积层厚度变化的主要依据。T2反射层推断为基岩内部的反射,是推断基岩埋深及起伏形态的主要依据,它反映了基岩风化壳及软弱岩层的岩性横向的变化特征。
(2)地质解释
长江大桥上沱口段库岸滑坡所完成的5条浅层地震剖面,基本查明了滑坡堆积体的厚度和空间形态。推断地质图直观反映第四系崩滑堆积层的厚度及分布范围,崩滑堆积层平均厚度为3.5~9m。基本确定了工区范围内的基岩风化壳的厚度,基岩风化壳平均厚度为14~17m左右。确定了基岩埋深及起伏形态。对工区内基岩结构面的异常分布及结构特征也作出了相应的地质推断与解释,共解释推断基岩破碎带及裂隙发育带共计11处。
3.2.4重庆万州区关塘口滑坡群和巴东县新城址滑坡体声波测井
重庆万州关塘口滑坡群、巴东县新城址滑坡体进行声波测井勘探,旨在结合地质调查,评估划分岩性、完整性,确定滑带、破碎带位置。
图9万州长江大桥—上沱口段库岸(塌岸)防护工程C—C′浅层地震勘查成果
图10万州长江大桥—上沱口段库岸(塌岸)防护工程D—D′浅层地震勘查成果
万州关塘口滑坡群总计对13口钻孔进行了观测,巴东黄土坡滑坡对12口钻孔进行了观测,图11为关塘口 ZK3典型的声(波)速—孔深曲线,它是由原始记录声波波列及其提取出的声时时差—孔深曲线和计算后绘出的声速—孔深曲线。由此,可对基岩及上覆层的界线明确地做出划分,同时还可看出:基岩部分声速在3500m/s以上,裂隙发育带声速有所低;上部覆盖层可分为平均声速1800m/s、2200m/s两层,其速度变化说明块石与土的含量、块石岩性、地层结构均有不同程度的变化。图12为声波测试曲线图与钻孔柱状图的对比图,20.5~24m之间曲线频率低、声波幅度小,为岩体疏松的反映。钻孔20.5~24m表明完整岩体内部存在裂隙破碎带(见图12)。图13为巴东ZK1典型的声(波)速—孔深曲线,66.0~67.5m、77.5~84.5m两段波速值明显增高到3800m/s,认为已进入基岩,其间所夹68.0~77.0m段,从变面积图像看接收波形频率变低,速度变低,认为是一层软弱夹层,并在后期治理工程中得到了验证。
图11官塘口滑坡勘察ZK3声波测井成果图
图12ZK7声波测试曲线图与钻孔柱状图的对比图
图13巴东黄土坡ZK1孔声波测井成果图
万州关塘口滑坡群的13口钻井声波测试结果统计出不同地层岩性的声速平均值如表1、表2。
表1关塘口滑坡群主要岩性波速
表2黄土坡滑坡主要地层岩性波速
根据测井资料、钻孔资料分析推断关塘口滑坡存在一个以上的滑带。依据测试成果,本次推断解释的滑带,其位置为上部覆盖层与下伏基岩的岩性分界部位。从测试钻孔整体分布位置分析,滑坡体的前后缘较浅,前缘埋深为20m,后缘埋深为30m,滑坡体的中间部位埋深在55m位置。
声波测井在划分基岩岩性、风化破碎程度、确定破碎带位置、基岩与覆盖层分界面以及在覆盖层、基岩内确定低速层等方面是一种较为有效的方法。
3.3岩溶与洞穴
3.3.1岩溶塌陷
奉节县宝塔坪小区赵家梁子西侧三万塘沟底缓坡处,于1997年5月30日下午2:30分发生塌陷,形成长短轴20~25m,深约20m的塌陷坑。剖面呈漏斗形,体积约6000~7000m3,东北侧地面裂缝离新迁移民房不足4m。塌陷引起社会各界,特别是县委各级领导的高度重视。为进一步查明塌陷坑的深度及延伸发育情况,课题组进行了专门的调研,并运用了先进的EH—4电导率成像系统、高分辨地震勘探、高密度电阻率法、音频大地电场法及井间地震层析成像等综合物探。
(1)EH—4电导率成像
图14为塌陷坑底 EH—4勘测剖面。
图14奉节宝塔坪塌陷坑底电法勘探剖面
从图中可以看出,完整基岩界面自坑底向下深约55m,加上坑底至地表的距离,塌陷坑底界面距地表深度约70m,同时该剖面还反映了塌陷坑南北两侧基岩风化破碎程度的差异,北侧粘土层覆盖层厚,基岩风化破碎强烈,南侧有一破碎基岩段,底部边界距地表约55m,其下可能为岩溶发育通道。此解释结果与地震 B剖面结果是吻合的。
(2)高分辨率地震勘探
图15反映了沿宝塔坪塌陷冲沟的深部结构特征。剖面起自塌陷坑,测线长约200m,近南北向。该区地质结构可划分为4层:
第一层:埋深0~40m,以块碎石夹粘土层为主。
第二层:埋深40~70mm,为破碎松动的岩体。
第三层:埋深70~100mm,为较完整的岩体。
第四层:埋深100m以下,为完整岩体。
另外从顺冲沟作了两条近东西向的横切剖面 B、C(图16、图17)。探测结果表明其地层结构与图15所揭示的类似,但是,在塌陷坑南侧反射界面呈现向上弯曲的拱状,类似绕射波的特点,且局部不连续,推断可能为岩溶异常点。其连线方向与冲沟方向一致。发育深度 B为55~60m,C剖面为60~65m。
(3)地震波 CT剖面
为了进一步查明塌陷坑的延伸与发育情况,有针对性地布置了3条地震 CT剖面,根据地震CT成像剖面图的波速图像特征、波速等值线分布结合钻孔资料综合分析如下(见图18)。
图15奉节宝塔坪 A线浅层地震勘探结果
图16奉节宝塔坪B线浅层地震勘探结果
图17奉节宝塔坪 C线浅层地震勘探结果
图18奉节宝塔坪浅震1线钻孔 CT成像图
a.整个工作区纵波速度分布较低,均在0.8~3.8km/s之间。其上部(50~60m)碎块石土的波速分布在0.8~1.6km/s之间,基岩部分的波速仅为2.0~3.8km/s,即为钻孔所揭露的破碎岩体段。
b.CT成像的速度分布呈现不均一状,说明工作区基岩部分的节理裂隙发育,岩体破碎。上部碎块石土堆积形态不一,结构复杂。
c.由图18可以看到一系列由 NW向 SE倾的界面特征,推测为地层产状或岩性接触面。这一点与浅震B、C剖面(图16、图17)解释结果相一致。
综上所述,宝塔坪赵家梁子塌陷坑附近,在CT剖面所处位置,基岩部分未发现较大的溶洞。但是高分辨地震与音频大地电场显示的结果都表明,在塌陷坑的下游方向,顺沟发育有一SN向构造破碎异常带,形成地下水通道,对地层介质起到溶蚀、迁移作用,其深度在50~60m。3.3.2 溶洞
为配合“重庆巫山新城地质灾害防治与利用示范研究”专题中有关浅部岩溶发育状况研究,在巫山新城周家包统建房基础作了三对地震波CT。图19为巫山县周家包ZB5—ZB6钻孔CT成像图。其速度分布在0.71~3.40km/s之间,与完整灰岩相比偏低,浅部岩溶极为发育。310m高程以下岩体相对完整,但其波速依然不高,推断解释为裂隙或小溶洞较多,尤其是ZB5—ZB6剖面的底部有一直径3m左右的红色区域,推断为溶洞。从ZB5孔310m高程至ZB6孔280m高程有6个串珠状分布的相对独立闭合的红色区域推断为受构造影响形成的溶洞。
图19巫山县周家包ZB5—ZB6钻孔CT成像图
4结束语
地质灾害受天然和人为的多种复杂因素影响和控制,其分布、形成、发生、发展和变化都十分复杂,特别是在三峡库区,地质地理条件复杂、地质灾害繁多、分布广、发生频繁。单纯借助传统地质技术方法已不能完成勘查、监测、预报和防治的任务,新技术方法是改善常规地质勘查方法、实现地质工作现代化的有力武器,是地质工作取得新进展和突破的有力手段。在此次三峡库区移民迁建的整个过程中,由于地质问题的复杂性,给移民迁建带来了巨大的压力,也为勘查新技术的应用提供了一个广阔的用武之地。
在库区地质灾害勘查防治与合理开发利用的全过程中,地球物理勘查得到了较为广泛的应用。尤其在地质灾害调查中,勘查新技术的应用无论从涉及的地质灾害类型、选择的方法种类及其适宜性和投入的工作都是前所未有的,所取得的成果也是多方面的、突出的,历年来我所采用先进的CT层析成像、浅层地震探测、面波勘探、高密度映像、声波探测、EH—4等方法,对三峡库区岩溶分布规律、塌陷坑、滑坡体结构、人防工程分布等进行了示范研究,为地质灾害的预防提供了科学的依据,具有重要的实用价值与指导意义。然而由于物探方法理论基础所决定的地质解释多解性的局限,以及三峡库区复杂的地质条件、恶劣的工作环境,某些物探工作成果中往往不免存在一些差强人意之处。这要求我们以锲而不舍的精神,通过合理有效地利用地球物理勘探新技术(包括根据不同的地质条件和目的,正确地选择物探方法及其最佳组合形式)对现有物探方法的工作布置方式、数据采集和解释处理方法提出改进,以适应三峡库区特殊的工作环境。
❷ 岩土工程到底是搞什么的赚头和桥梁比起怎么样通常在哪种地方工作拜托各位大神
概述 由于国民经济的发展和路网完善的需求,高速公路逐步进入山区。高速公路由于其线形指标高,工程艰巨,投资巨大,对自然环境的破坏也非常严重。随着环境保护理念的日益深入人心,对于山区高速公路的勘察设计、施工运营等方面的环保要求也越来越高。山区公路环境载体主要是自然环境,也是地质环境。山区一般地形地质条件复杂,地质环境脆弱,地质灾害多发,高速公路的建设不可避免的要切坡、填沟、打洞(隧道),对地质环境造成严重破坏,处理不好还会诱发和加剧各种地质灾害,增加公路建设投资,影响工期,甚至给运营阶段带来严重的安全隐患。因此山区高速公路的环保主要是地质环境的保护和地质灾害的防治。 要建设一条兼顾交通、环保、生态等方面要求的高标准的山区高速公路,应该重视和加强地质工作。地质工作应贯穿于设计、施工和运营的全过程。对地质现象和规律的认识(岩土工程勘察工作)是由面到线、由线到点、由表及里、由粗到细、由宏观到微观,逐步深入的,根据不同阶段应采取不同的方法和手段。 2 勘察设计阶段 地质条件是客观存在的,山区高速公路在自然地质环境中穿行,并对地质环境进行改造,应该认识地质规律,尊重地质规律,在设计中充分考虑地质因素,遵循地质原则,从源头上尽量减少山区高速公路对自然环境的破坏,并且为施工和运营提供良好的条件。 2.1工可阶段――贯彻地质选线的原则 山区公路地质选线主要受到地形和不良地质现象的制约,主要的不良地质现象有滑坡、泥石流、岩崩、岩溶、岩堆(坡积层)、软弱土、膨胀土、湿陷性黄土、冻土、水害、采空区以及强震区(高地应力)等。本阶段应尽可能详细地收集区域构造地质、岩石地层、水文地质、工程地质、地震地质、环境地质等方面的资料,利用遥感资料(卫片和航片),编制中比例尺(1:5万或1:10万)工程地质图和地质灾害(不良地质现象)分布图,图上标注大的地质构造(主要是断层)、重大的地质病害体,分析区域性的地质灾害发生条件,进行初步的地质灾害评估,配合路线方案设计,进行必要的现场踏勘和重点路段的调查,反复对比,优选出工程地质条件最好、地质灾害最少、工程建设对地质环境的不利影响最小的路线走廊带,真正贯彻地质选线的原则。对于滑坡、崩塌、岩堆、泥石流、岩溶、软土、泥沼等严重不良地质地段和沙漠、多年冻土等特殊地区,一般情况下路线应设法绕避。 2.2初设阶段――突出重大地质病害对路线方案的制约 确定路线方案前应对沿线地质构造带、断层、岩石的层理情况、地质病害的分布及范围等,通过对遥感地质判释资料以及不同勘测阶段的勘探、调查资料的分析,研究路线通过方案并不断优化。对地质较为复杂地段还应注意在设线后诱发并加剧地质病害的可能性,谨慎的确定路线的线位和采取的工程措施。地质技术人员应配合路线设计师作好地质咨询工作,可以沿初步拟定的路线线位,进行全线踏勘,对重点工点进行地质调查,得出初拟线位沿线的基本工程地质情况,评估路线方案的可行性,发现重大不良地质地段或预测工后会出现难以治理的地质病害的路段要及时反馈信息,以便尽快调整路线线位。基本确定路线方案后,及时委托有资质的单位进行建设用地地质灾害危险性评估工作,并进行大比例尺(1:1万)的地质遥感解译及地质灾害调查和工程地质调绘工作,编制1:1万工程地质图和路线区域地质病害现状图。图件的重点是地质灾害和重要工点的工程地质条件,要有针对性,要突出重点,不可以拿1:5万地质图放大。现在委托地质部门做的图件,有些不能称为工程地质图,只能称为基本地质图(工程地质分区太笼统、工程地质条件的论述太简略)。地质灾害评估工作不能够代替1:1万工程地质图的编制,但二者可结合进行,以节约时间和经费。 很多地质灾害(滑坡、泥石流等)由于植被覆盖、后期人工改造以及观察角度和范围有限等原因,在现场难以判断。通过遥感资料(如航片)可以从宏观上观察全貌,合理的解译,有利于对此类不良地质体的正确认识。 当工作中发现仍有重大的地质病害存在或有潜在的重大地质病害时,必须及时调整线位。对于重大的地质病害应尽量绕避,实在无法绕避的要考虑工程措施的可能性与可靠性,尽量在路线的平纵面优化上下功夫(采用分离式路基、用桥隧构造物通过、从滑坡体上部通过、半路半桥等),避免高填深挖,以减少对地质环境的破坏,提高工程措施的可靠性和安全度。对地质病害应以防为主,以治为辅,能避当避,即使增加工程造价也是值得的。 以安徽省徽杭高速公路为例,该路全长约80km,有四分之三路段位于山区,由于勘测时间较早,对山区高速公路特点认识不足,以投资为主要控制因素,其中有一半左右的路段基本沿区域性的三阳断裂带布设。受构造影响,岩体风化破碎严重,并且沿线分布有雄村滑坡、朱村滑坡等规模较大的不良地质体。施工开挖后,出现大量的不稳定边坡,甚至诱发了部分滑坡。对于部分地质病害路段及时调整线位,进行了避让,而更多的病害段只能采取治理措施,结果造价大幅攀升,严重影响了工期,并且治理效果也难以预测。 必要时应增加技术设计阶段,对重大地质病害路段进行深入勘察,确定路线可行性。 2.3施工图设计阶段――详查工点地质条件 通过初步设计阶段的各种地质工作,已经基本查明路沿线的地质条件,但是工作深度和广度还不够。本阶段应详查工点地质(桥位、隧道、深路堑、高填路堤、陡坡路堤、支挡构造物),进行重要工点1:2000地质测绘。采用调查、测绘、槽探、坑探、钻探、物探等综合勘察手段。查明场地岩土体组成、性质、分布以及风化层、不良地质、特殊性岩土等工程地质条件在路线纵横方向的变化。以前对于桥位和隧道等构造物工点地质勘察较为重视,但是对于深路堑和陡路堤、斜坡路堤、支挡构造物等路基方面的工点也必须加强勘察,特别是高边坡和不良地质体的勘察和预测。另外对于筑路材料料场和弃土场的勘察一定要重视,以前山区公路曾出现过取土、弃土场所不合理,乱挖乱弃,破坏环境,导致水土流失的事例。 除了详细的地质勘察工作之外,还要贯彻综合设计原则,在路线设计的各个阶段,对工程地质条件要有充分的了解,保证路线方案的科学性。对地质资料要充分利用,桥位、隧道、路线各有一套地质资料,但彼此经常脱节。比如当桥隧相连时,隧道勘察发现有不良地质现象,桥梁设计人员却不知道,还把桥台置于其上。因此加强各专业之间的交流沟通,互相学习。从事路线、隧道、桥梁设计的人员要尽量多地掌握一些基本的地质知识,以有利于对地质资料的合理使用。 3 施工阶段――遵循信息化施工、补充勘察、动态设计原则 由于地质条件的复杂性和勘察周期的制约,有些复杂场地(岩溶、破碎带、岩性纵横向差异大的地区)或地形困难场地(陡坡、鱼塘等)在设计阶段难以布置充分的勘察工作量,无法查清场地详细工程地质条件。在施工期间,可以进行补充勘察,如对岩溶发育区或岩性差异大的场地逐桩钻探,对原进场困难场地通过施工便道进场钻探。施工中发现新的地质问题也要补充勘察。应该把施工期间的勘察工作视作设计期间勘察工作的重要补充。 另外本阶段应遵循信息化施工(施工中监测)、动态设计的原则。隧道的超前预报、边坡的动态监测都是施工阶段必须要进行的工作。施工单位一定要配备过硬的地质技术人员,及时发现问题,不要等到地质病害已经发生才去治理,要有前瞻性、预见性,发现边坡、隧道等有失稳的趋势之后要立即反馈业主和设计单位,并及时采取合适的加固措施,避免边坡、隧洞大面积失稳。应该认识到,设计阶段的勘察工作对地质现象和地质规律的认识往往是不全面的,甚至是错误的,据此进行的设计只能称为预设计。在边坡或隧道断面开挖以后,很多问题才会发现,此时应有岩土工程技术人员在现场,对照原有的勘察设计方案,发现新的问题之后通过合理工序及时调整设计方案。等到问题已经发生才去采取措施,既多花了钱,又耽误了工期。 目前施工单位的岩土工程技术人员也是极为缺乏的,有时由于不合理的施工方法导致或加剧了地质病害的发生和发展(如在破碎岩体上放大炮、自下而上开挖边坡等) 施工期间的岩土工程监理工作目前还较为薄弱的,有丰富理论知识和实践经验的岩土监理工程师极为缺乏,使施工期间的地质病害预防工作远远达不到要求。 4 运营阶段――加强敏感点监测 山区高速公路运营期间也要高度重视地质工作。因为有些地质灾害的发生是一个长期的过程,应力释放或边坡的蠕变有些需要长达几年乃至十几年的时间,一次性治理有时并不能保证长治久安。因此对于一些在施工中出现病害的路段或重要工点要建立数据库,进行变形、位移和地下水的动态监测,定期巡查,建立防灾和预警系统,在雨季或洪水季节要加强对敏感点的监测。通过长期观测记录,还可以更深入的认识地质规律,分析地质病害的发生发展机理,预测发展趋势,发现有不利的趋势要及时采取措施。 5 山区公路建设地质工作中存在的问题 5.1前期阶段 工可阶段对地质工作不够重视,地质遥感工作不做或精度不够,不能够贯彻地质选线的原则,导致选定的路线走廊带中地质病害多,处理难度大,给后期工作带来极大难度。 初步设计阶段,由于路线方案调整较大,而工期紧张,因此很多勘察工作量作废,路线地质精度不够,部分工点缺少地质资料,给设计工作带来隐患,也使得施工图设计阶段路线方案有时发生较大调整。 施工图设计阶段不做或漏做重要工点的1:2000地质测绘,或虽做了但精度不够;对一些地质病害研究不深,导致对一些重要工点的勘察深度不够;对于路线地质调查深度不够,导致一些地质敏感点遗漏,在施工中出现地质病害。构造物勘察相对较细,而路基方面的勘察则往往较粗略。 目前的山区公路工程勘察还存在许多有待改进的地方。由于现在很多项目的勘察设计工期都非常紧张,如何在很短的时间内达到尽可能高的勘察精度,的确是一个难题。为抢时间,现在地质勘察工作很大一部分外委出去,全线人员设备上了很多,但在施工中仍会暴露出很多地质问题。这一方面是由于地质现象的隐蔽性和地质科学的复杂性,难以全面深入地认识地质现象,另一方面也是由于从事岩土工程的技术人员本身能力有限所致。岩土工程在一定程度上属于经验学科,技术人员的经验非常重要。外委的勘察单位一定要过硬,对于其提供的地质资料要进行审核,去伪存真,对于不能够满足规范和设计要求的坚决返工。在其外业和内业阶段要进行监督,多沟通。外行业的地勘队伍往往对公路工程的特点及公路勘察规范了解不够,不能够有针对性的进行勘察,资料经常不能满足设计要求。另外由于工期紧,技术准备不足,勘察手段不合理,经常导致勘察深度不足,如隧道勘探未采用双管单动钻进,无法判断RQD,钻探工艺和技术不过硬,岩石取心率低,钻孔水文地质试验数据不足,对边坡勘察无法判断滑动面,无法取得可信的各种力学参数,物探手段与其他勘探手段的互相校核精度不够等,甚至有个别单位编造资料应付设计。所以不仅要看投入了多少人力物力,还要看投入人员技术水平、职业技能和职业道德素质如何,拟定的勘察方案是否合理,对地质现象的认识是否科学。在实践中,由于技术人员水平参差不齐,经常会出现错判、漏判地质病害的现象。因此加强公路岩土工程从业人员的技术水平是非常紧迫的事情。 5.2施工阶段 地质技术力量薄弱,岩土工程监测和监理不力,施工工序和方法不对,导致地质病害的加剧,甚至诱发地质病害。对工程地质特点认识不足,不能够及时预测和反馈地质病害,只能被动地等待地质病害的发生。 5.3运营阶段 地质工作目前还基本上是空白,无法保证山区高速公路的安全顺畅。 6 正确认识地质工作的重要性和特殊性 由于岩土体的组成物质差异,更重要的是在岩土体内部分布有大量的不连续界面,把完整的岩土体分割成许多块体,总体为非均质体,在应力的传递上非常复杂,因此岩土工程属于非线性科学。现有的岩石力学、土力学、岩体力学等均难以准确的描述岩土体实际的力学本构关系。地质灾害的发生除了其本身的因素外,还受到许多外界的因素影响,十分复杂。因此,对于岩土工程的分析计算只能是半定量的,在很大程度上受分析者经验的制约。对于已经存在的滑坡、崩塌、泥石流等地质病害,其周界相对清楚,各种勘察设计技术规范较完备,认识起来相对容易。最难的是对于现状稳定的高边坡,预测其人工开挖后的稳定性。对于其地质构造的分析,地质-力学模型的建立,稳定计算分析都十分困难。勘察深度难以保证,稳定性计算方法不够科学,边坡设计时也有其不合理之处,如一般都只给出最终的边坡坡率和边界,各种边坡加固设计也是针对最终边坡的,各种分析计算也是以最终边坡为约束条件的。这样即使地质条件清楚,分析计算合理,设计稳妥,施工严格遵循规范和设计要求,也往往会出现难以预料的地质病害。其中一个重要原因是未对开挖过程中的各种边坡条件进行分析计算,虽然按最终边坡条件计算是稳定的,但不能够保证任意开挖条件下边坡都是稳定的。因此对于从事边坡设计的岩土工程师而言,应该对于边坡开挖过程中的多种控制性断面稳定性进行计算,提供合理的开挖步骤和各种稳定的开挖断面,并对不稳定的中间边坡提出临时性的工程加固措施,以保证边坡的稳定开挖。 7 展望 技术进步是山区高速公路成功修筑的重要保证。现在采用三维数模,可以很快的得出路线平纵面模型,任意切割纵横断面,发现问题之后可以很快的调整线位并重新进行分析,大大提高了工作效率。相信随着3S技术的发展,今后三维数模会和三维地学模型、岩土工程专家分析系统结合起来,对于重要工点通过现场地质工作,建立地质-力学模型,通过专家分析系统,可以任意模拟边坡开挖后的形状及物理力学状态的变化,迅速分析其稳定性,进行针对性的设计。甚至还可以对边坡等地质病害通过互联网进行远程会诊,聚集各方面力量以解决问题。 8 结语 地质环境保护和地质灾害防治是山区高速公路建设成败的关键,为此必须重视地质工作。(1)业主要认识到,前期的地质工作一定要认真细致,勘察设计阶段多花些钱和时间,尽量详细地查明地质条件,避免地质隐患,对于施工来说会节约大量的投资和工期。(2)设计阶段的地质勘察工作必须加强,要达到必要的深度。(3)施工单位要加强地质技术力量,业主单位也要增加地质技术人员,岩土工程监理工作要加强。(4)运营阶段的岩土工程监测工作必须重视。(5)单纯依靠前期地质工作对地质客观规律和地质环境的认识是不够的,在设计施工运营的全过程中要不断的加强地质工作。(6)由于地质条件的复杂性,虽然进行了前期地质勘察工作,在施工和运营中出现地质病害也是正常的。(7)设计阶段深入细致的地质工作可以确保施工时不出现大的地质病害,施工阶段的细致的地质工作可以确保运营期间不出现大的地质病害。(8)公路勘察设计、施工、建设及运营管理单位一般岩土工程技术力量相对薄弱,应加强人才培养,适应山区高等级公路建设的需要。 山区高速公路的修建对勘察、设计、施工、监理、管理等各个环节和部门都提出了更高的要求,大家要加强学习,真正重视问题的严重性。可以说,山区高速公路的修建,岩土工程是关键,地质病害是控制性因素。 参考资料: http://ke..com/view/507169.html
❸ 主要建筑物地区的工程地质勘察工作
在1955年初步设计阶段第二期工程地质勘察的同时,也布置了为论证三门峡水利枢纽主要建筑物地段,技术设计阶段的工程地质工作(如勘探竖井、水平探硐及灌浆试验),以便进一步了解混凝土重力坝建基高程处,及左右两岸坝肩接触部分的闪长玢岩的裂隙程度、风化厚度、岩石物理力学性质、地下水向基坑的渗入量,以及设计帷幕灌浆时的孔排孔距等。
1956年为了进一步确定在已选定的下坝线方案上建坝的问题,需要详细地研究基岩顶板高程、构造和第四纪沉积层以及分布在本地段的各种基岩物理力学性能,因而补打了13个钻孔。
此外,为了进一步核定混凝土重力坝坝内式电站与坝后式电站两种比较方案,在正常高水位360m时的工程地质条件,1957年3月三门峡水电站设计总地质师B.Й.萨维里耶夫提出了下列的主要勘探任务:
1.进行比例尺1:1000地质测绘,对主要建筑物布置的范围内,闪长玢岩中所有的破碎带及裂隙密集带进行了解,并进一步说明其透水性和地下水的承压性,以及破碎带灌浆的可能性和必要性,以提高基础岩石的质量。
2.进一步确定闪长玢岩的顶板所在高程。
3.根据地质勘探资料,进一步确定闪长玢岩表面风化带的厚度,以及坝基风化岩石开挖的深度。
4.为了设计最好的排水系统(在灌浆帷幕的后面),对溢流坝段和厂房坝段基础闪长玢岩裂隙做详细说明,以便根据对裂隙的观测资料,拟定出排水钻孔的方向和所需要的数量。
5.为了设计溢流坝段的护坦,应在溢流坝至张公岛间的地段内,进行对闪长玢岩完整性的研究。换句话说也就是要研究闪长玢岩中裂隙的大小,它们在水平及垂直方向上的分布情况,以及该地段内的构造破碎带和裂隙密集带的详细性质。
6.进一步明确主要建筑物基础岩石的物理力学性质,特别是河床地段闪长玢岩以下的软弱岩石(煤层和炭质页岩)的特性。
7.进一步明确区内地表水和地下水的化学成分及其侵蚀性,以便选择水泥的成分和标号,并确定左、右两岸地下水的流向,预测该地段内水库形成后,其地下水流的方向及其水质变化情况。
8.为了解决坝址区的施工用水和生活用水,于1957年4月对坝址下游右岸的老鸦沟及左岸的寨后沟先后布置了6个钻孔,寻找奥陶纪马家沟组石灰岩中的岩溶裂隙水,首先在69号孔中发现了有水,因孔径太小,然后分别在右岸的74号孔与左岸的231号孔中共取得60L/s的水量,这些水量只能满足第一期的施工用水。因此,于1957年9月在右岸8号孔附近补打了373号孔,又取得70L/s的水量。(Ⅱ-23)两处水量为130L/s,可满足施工用水。但由于水中含硫酸根离子较高,不适宜生活用水,故三门峡工程局在七里沟口修建了一、二级沉沙池,采用黄河水,经处理后作为生活用水,这样三门峡坝址区的施工场地各个方面的用水都得到了完全的满足。
经过上述一系列的技术设计阶段的工程地质勘察工作,在地质测绘及勘察资料综合分析的基础上,对主要结构物地基的工程地质条件,又做了进一步的论证,特别是基础中的断层及构造破碎带在水平、垂直方向上的变化,向深部的延伸,以及透水性方面,又做了进一步的阐明。但是对这些破碎带是否伸延到下煤系岩层中去,以及破碎带与断层生成后,在第三纪及第四纪年代内是否活动过,今后结构物遭到了地震作用,基础下的断层及构造破碎带是否会活动,而危及结构物的安全等等问题,都没有给予明确的答案。这个问题的回答,在三门峡主要结构物技术设计中,具有重大的实际意义。为了解决此问题,1958年2月三门峡水电站设计总地质师B.И.萨维里耶夫提出了为进一步查明坝址区地质构造的任务书。地质总队根据任务书的要求,1958年2~5月,经过两个多月的勘探工作,这一问题已基本上得到了解决(Ⅱ-7)。
根据中华人民共和国国务院批准的混凝土重力坝坝后式电站方案,正常高水位350m,大坝在以后可能加高到360m,也就是说按360m正常高水位设计,350m高程施工。根据这一设计方案的要求,在结束技术设计工程地质勘察工作之前还需要补充下列工作,这些工作中有一少部分是属于施工详图阶段的。
1.在右岸从坝轴线至混凝土拌和楼场地(在此地段300m高程上,设计有通往水利枢纽安装场地的铁路专用线),需进行比例尺1:500的工程地质测绘。根据上述测绘资料,必须阐明岸边的稳定性,及下铁路线在施工过程中,边坡稳定性的保证措施,和采取保证通往安装场地的铁路专用线行车安全措施的必要性。
2.在混凝土非溢流坝左岸接头地段,进行1:500的工程地质测绘,根据测绘资料编制地质剖面,进一步确定该地段内石炭-二叠纪煤系岩层的厚度、成分和产状要素,闪长玢岩表层裂隙性及风化深度,以及阐明左岸接头部位稳定设计措施的必要性。
3.在混凝土非溢流坝右岸接头地段,根据1:2000地质测绘资料,编制出精确的地质剖面,其目的是进一步确定黄土层以下闪长玢岩的埋藏深度,以及该地段内基坑开挖所需完成的土石方工程量。
4.为了进一步确定1、16、18号断层在黄河河床部分的位置及断距,必须在拟定的地质剖面图A—A线上补打钻孔6个。
5.为编制出准确的坝轴线、隔墙轴线、机组轴线,以及溢流坝轴线上的地质剖面图,还需补打11个钻孔。
6.进一步确定在河床内冲刷深坑部位的大坝河床地段闪长玢岩的顶板及冲积层的厚度、成分,需补充打4个钻孔。
7.为了防止大坝基础构造破碎带的渗漏和帷幕灌浆时的孔距与孔排距离的设计需要,从1956年4月到1958年8月,其间还进行了4个地段的灌浆试验工作。
上述工作除了个别水上钻孔,由于洪水到来没有进行钻探外,绝大部分已于1958年9月完成,资料亦已于1958年9月底前送交设计部门。
根据1952年到1958年所取得的一系列的地质资料,用来编制三门峡水利枢纽的技术设计,已基本上满足了设计要求(Ⅱ-2、Ⅱ-3、Ⅱ-8)。
1952~1958年主要建筑物地区的工作量及勘探程度,详见表3及图7。
表3 黄河三门峡水利枢纽主要建筑物地段1952~1958年间各个勘察阶段的探工作项目及完成工作量总表
续表
❹ 地勘探孔中,图中的r,c,等各代表什么意思
工程地质物探与勘探的任务,主要有以下各项: (一)详细研究建筑场地的岩性及地质结构。研究个地层的性质、厚度、纵向和横向变化,进行地层划分并确定其接触关系;基岩的风化深度及风化岩石性质,划分风化带研究岩层的产状、裂隙发育程度及随深度的变化;褶皱、断裂、破碎带以及其它地质结构现象的空间分布、变化的特点。提供岩石右钻性和岩体强度、结构面发育等定量指针。 (二)查明水文地质条件。了解含水层和隔水层的分布厚度、性质及其变化,地下水位(水头)等。 (三)研究地貌及物理地质现象。查明各种地貌形态,如河谷阶地、洪积扇、斜坡的位置和结构等。研究各种物理地质现象,如岩溶的规模及发育深度,滑坡的范围、滑动面位置、动态等。 (四)取样及提供野外试验条件。从勘探工程中采取岩土样及水样,供室内试验及分析鉴定用。在勘探工程中可作各种野外试验,如岩土力学性质试验、地应力量测、水文地质试验等。 (五)其它项目。如利用勘探工程布置地下水及各种工程动力地质现象的长期观测,进行井下摄影及井下电视、灌浆等工程处理。 物探可以说是一种间接的勘探工作,它可以简便而迅速地探测地下地质情况,与测绘工作相配合尤为适宜,又可为勘探工作的布置指出方向。物探成果亦须由勘探工作来证实。勘探工作包括钻探和坑探两种,能较可靠地了解地下地质情况,万其是坑探工程,勘探人呐可以直接在其中观察测量;但是它耗费人力和资金较多,周期也长,因此使用时应具经济观点。布置钻探和坑探工程,要以测绘和物探工作为基础。考虑到物探和勘探各自的优缺点,在布置工作时应综合运用,互为补充。 一个工程在不同的勘察阶段,物探 和勘探往往是配合测绘工作的,而应较多地采用物探手段,钻探和坑探主要用来验证物探成果和取得基准剖面。随着勘察程度的提高,为了深入研究各种工程地质问题,以进行确切的分析、评价,钻探和坑探工程将愈来愈被广泛地采用,成为主要的勘察手段,而物探工作则作为勘探工程的辅助手段。本章重点论述物探和勘察在工程地质勘察中的适用条件,所要解决的主要问题,统计局萧要求。心肝及勘探工作的布置、设计及施工顺序等问题。 工程地质物探 物探的全称为地球物理勘探,它是以专门仪器来探测地表层各种地质体的物理场,从而进行地层划分,判定地质构造、水文地质条件及各种物理地质现象的一种勘探方法。 由于地质体具有不同的物理性质(导电性、弹性、磁性、密度、放射性等)和物理状态(含水率、裂隙性、固结程度等),就为利用物探方法研究各种不同的地质体和地质现象提供了物理前提。所探测的地质体各部分之间以及该地质体与周围地质体之间的物理性质和物理前提。所探测的地质体各部分之间以及该地质体与周围地质体之间的物理性质和物理状态差异愈大,使用这种方法就愈能获得比较满意的结果。 需要指出的是,物探方法虽能简便而迅速地探测地下地质情况,但由于它经常受到非探测对象的影响和干扰,心肝及仪器测量精度的不够,其所得判断和解释的结果往往较为粗略,且有多解性。所以,在物探工作之后,还常须用钻探或坑探来验证,以获得确切的地质成果。物探工作的方法有电法勘探、地震勘探、重力勘探、磁法勘探、核子勘探以及地球物理测井等,在工程地质勘察中运用最普遍的是电法和地震勘探。 一、电法勘探在工程地质勘察中的应用 将各个电测 点所得地质资料边成剖面,即为物探地质剖面,它如同利用钻孔资料所墨守成规的剖面(图3—3) 环形电测深法是利用对称四极装置改变其方向,测量同一点的视电阻率。它可用来确定各向异性很明显的地质介质,职陡立岩层的走向、断层破碎带与含水裂隙带的延伸和岩溶发育的主导方向,以及它随深度的变化情况等。图3—4是利用环形电测深法所测得的裂隙主导走向为N10°W(椭圆长轴所指方向)。这个方向在不同极呓(即不同深度上)都是稳定的。 但是,钻探方法也有它一定的缺点,主要是:一般难于进行直接观察;一些有重大工程地质意义的软弱层(破碎泥化夹层、风化夹层等)和构造破碎带,往往不易取得岩心,以致达不到地质要求。为了克服上述缺点,近十余年来发民兵了钻孔摄影技术和钻孔电视以及便于地质人员能直接下井观测的大口径钻孔,使用效果良好。 二、工程地质钻探的特殊要求 工程地制裁钻探是为工程建筑物的设计、施工服务的,它多具综合目的,因而在钻进方法、钻孔结构、钻进进程中的观测编录等方面均有特殊要求。 工程地质钻探 对岩心采取率要求校高,一般岩层不能低于80%;对工程建筑物至关生要的软弱夹层和断层破碎带也不能低于60%,但往往不易取得岩心。为保证获较高的岩心采取率,针对不同的勘探对象应采用相尖的钻进方法。如在软弱地层或断层破碎带中钻进时,要昼养活冲洗液或用干钻,降低钻速,缩短钻程,最好采用双层岩心管。近年来,黄河水利委员会在水浪底水利枢纽勘察中,革新钻具,采用套钻和化学树脂胶合的措施,几乎可以100%地采取泥化夹层和断层破碎带的岩心。在土层中钻进时,以采取干钻为宜,并应适当缩短钻程。 为了保证准确地测定地下水位和水文地质试验工作的正常运行,必须按含水层的位置和试验工作的要求,确定孔身结构及外电进方法。对不同的含水层要换径并分层止水,加以隔离。含水层愈多,换径和分层止水的次数就愈多。一般的工程地质钻孔终孔直径为91MM,根据换 径次数及位置,即可确定孔身结构。。若在基岩面以一的砂卵石层中作抽水试验干钻,不允许使用泥浆加回孔壁的办法。一般钻孔要直,不能发生弯曲;孔壁要求光滑规则,同一孔径段应大小一对敌。这些要求在钻探操作工艺上给予满足。 钻孔水文地质观测,是工程地质钻探的一项重要工作,藉以了解岩层透水性的变化,发现含水层和得知其近似水位并掌握各含水层之间的水力联系等。在外钻进过程中应按水文地质钻探的要求,做好孔中水位测量,测定冲洗液消耗量及外电孔涌水量、测量水温等工作。在工程地质钻探中,为了研究岩土的物理力学性质,经常要采取岩土槔。坚硬岩石的取样可利用岩心,但其中的软弱夹层和断层破碎带取样时,必须采取特殊措施。为了取得质量可靠的原状土样,则必须配备专门的取土器,燕应注意取样方法和操作工序,以尽量使土倦不受或少受扰动。为达到上述的特殊要求,钻探人员应严格按规定操作,不能盲目追求进尺。 三、工程地质钻探常用的钻探方法和设备 自然地质条件是复杂的,各种钻探方法和设备都有一定的使用条件,选择钻探方法和设备时,应视钻探的目的和地质条件而定。目前,工程地质勘探中常用的钻探方法、钻具及其使用条件和优缺点列于表3—2中。 由表列可知:钻探方法可分为冲击钻探、回转钻探、冲击回转钻探和振动钻探等四种。在工程地质勘探中主要采用冲击钻探和回转钻探:按动力来源又可将它们分为人力的和机械的两种。机械回转钻探钻进效率高,孔深大,又能采取岩心,所以在工程地质勘探中使用最为广泛。目前,国内外正在大力革新钻探技术,逐步朝着全液压驱动、仪表控制、勘探与测试相结合的方向发展。近年来,法国生产的FORACO-V。P。R。H钻机可称得上是钻探技术革新的代表,它兼具振动、冲击、回转钻进,又可作静力和动力触探试验,操作全由仪表控制,由机械手拧卸钻具,钻进效率高,适用于工程地质勘探。 为了研究工程土体的物理力学性质在工程地质勘察中,应结合勘探工作采取原状土样。但是在钻孔中采取原状土样时受到很多因素影响,其中主要的是取土器的结构和取土实用。下面介绍几种常用的取土器。 1、限制球阀式取土器在取土过程中,进入取土器内的液体、气体将球顶起排出;当取土停止时,由于球上部弹簧的作用将球压回原阀座位置,以起封闭作用,。这种球阀装置密封可靠,但要选择适当的弹簧强度,调节到适当的压力。球的直径与排水孔的直径要互相适应,以便于水、气、泥排出。 2、上提橡皮垫活阀式取土器土样进入取土筒时,取土器内的水、气、泥由活阀上部排排出,。上提钻杆时,橡皮垫封闭活门,即可取上土样。 3、回转压入式取土器有两层管,外管回转(带有合金钻头或螺旋),内管压入。内管一般球阀式取土器类似,上部是球阀封闭。这种取土器适用于深层取土。 4、水压活塞式取土器活塞式取土器的下口一下处于封闭状态,在贯入土时,取土筒下压使土样进入,活塞静止,土样上部不随任何压力,也不受钻孔内冲洗液的影响。这种取土器是借助于水泵的压力推动活塞使取土筒进入土层。在取土器下入孔底时,一个活塞将取土器下口封闭;压土时,上部活塞带动取土筒下压而采得原状土样,如图3—13所示。 以上四种取土器适用于采取粘性土的原状土样。采取砂类土和饱水软粘土是很困难的,要使用特制的取土器。近年来,我国水电勘察部门研制了厚壁管靴长筒上提 活阀式取土器,反旋活阀分节取土器和真空活塞取砂器等,采取地下水位惟下的原状砂类土和软粘土样,效果较好。原状土样的采取方法主要有三种: (1)击入法:适用于较硬的土层中取样,又可分为孔外及孔内的轻锤多击法和重锤少击法。实践证明,孔内的重锤少击法取样效果好,效率高而土样扰动小。 (2)压入法:适用于较软的土层中取样,又可分为连续压入和断续压入法。连续压入法是借助活塞油压筒或钢绳滑轮组合装置,将取土器一次快速均匀地压入土中,土样的扰动较小,当采用连续压入法无法将取土器压入土层时,则可采用断续压入法。 (3)振动法:当振动钻进进,可利用振动器的振动作用将取土器压入土中。 这种方法对土样的边缘部分扰动较大。易受振动液化的土层不适用。为了保证土样的质量,除了对取土器和取土方法进行选择外,还应注意钻探方法、钻、孔结构、清除孔内残土、操作方法、和土样封存及运输等各顶问题。 四、工程地质勘探钻孔类型及其适用条件 钻孔的类型指的是钻孔的角度及其方向。钻孔的角度即是钻机的立轴钻杆与地平线的夹角,也叫做钻孔倾角。按照钻孔倾角及其变化情况,可将钻孔分为铅直孔、斜孔、水平孔和定各孔四种。在进行工程地质勘探时,窨采用何种角度及方向的钻孔,需视钻孔的具体任务及地形地质条件而定。为了能取得尽可能多的地质资料,又节省钻探工作量钻进方向最好与不同岩性接触面或断层面垂直,但是在实际上往往不易达到,一般要求基夹角不中于20°。 (一) 直孔 倾角90°。在工程地质钻探中此类孔最常用,适于查明岩浆岩的岩性岩相、岩石风化壳、基岩面以第四纪覆盖层厚度及性质、缓倾角的沉积及断裂等。作压水试验的钻孔一般都采用铅直孔。 (二) 斜孔 倾角小于90°,且应定出倾斜的方向。当沉积岩层倾角较大(﹥60°),或陡倾的断层破碎带,常以与岩层或断层倾向相反的方向斜向钻进。在水利水电工程地质勘探中,常用斜孔探查河床下的地质结构。尤其是在河床不很宽而水流湍急的峡谷中 ,可在两岸以斜孔向河底交叉钻进,既可较好地控制河床下的地质结构,又可以养活或避免河中布孔进行水上钻探的困难。但是斜孔钻进技术要求较高,常易发生孔身偏斜,而使地质解释工作产生误差,在软硬相间的岩层中钻进,此现象尤为严重。 (三) 水平孔 倾角多为0° 。一般在坑探工程中布置,可作为平硐、石门的延续,用以查明河底地质结构、进行岩体应力量测、超前探水和排水。在河谷斜坡地段用以探查岸坡地制裁结构及卸葆裂隙,效果也较好。 (四) 定向孔 采用一些技术措施,可使钻孔随着深度的变化有规律地弯曲,进行定向钻进,如岩层上缓下陡进,或在一个孔中控制多个定向分枝孔,共同钻探同一目的层,或在一个孔中控制多个定向分枝孔,共同钻探同一目的层。定向钻进的技术措施比较复杂。近年来,国内外广泛采用在一个孔位上钻多个不同方向的定向斜孔的布置方案,效果极佳。 五、大口径钻进和小口径(金刚石钻头)钻进在工程地质勘探中的应用 (一)大口径钻进 工程地制裁勘探钻孔的孔径,大多数是168MM开孔,91MM终孔,这样的孔身结构能够满足一般的勘探、试验要求。但是在特殊情况下,譬如为了探查坝基软弱夹层和强透水带的位置及展布方向、断层破碎带和缓倾角裂隙的产大辩论和特征,以及为了检查基础的灌浆质量和混凝土的浇筑情况,就需按照工程地质的要求,打一些大口每项钻孔,以工程技术人员进入孔中直接观察和测量。。 大口径钻孔主要在水电工程地质勘探中采用。我国于1963年在丹江口坝直址打成了第一口大口每径钻孔;之后,葛洲坝、小浪底、偏窗子、三峡等水利枢纽工程中相继采用,均取得 很好的勘探效果。面且承担了大坝基础处理等任务。 由于大口径钻孔能够让勘探人员直接进入其中观测和取样,准确地搜集到第一性地质资料,因而避免了用一般勘探耗费大量进尺而未能搞清某些地质现象和问题的弊病。它也代替了施工复杂的竖井工程,而且由于无爆破震动,可以保持岩层的天然状态。 大口径钻探方法有冲击钻进和回转钻进,在工程地质勘探中主要使用后者,其孔径分别1150、1050、950和750MM,孔深 30—60M,可以取得财心。钻具是在现有设备基础上改装的,主要包括钻头、岩心管、取粉管、钻杆等。除钻具外,还应配备吊笼、绞国及潜水泵等必要的设备。 大口径钻进的工作情况如图3—18所示。 (二) 小口径(金刚石钻头)钻进 近年来,我国在工程地制裁勘探中逐渐推广小口径的金刚石钻进。这种钻进有很多优点:能钻进极硬的岩石,使用寿命长,钻进效率高,岩心采取率高,且岩心完整度好;孔径均匀,孔壁光滑,钻弯曲度小;钻进时平稳,设备的磨损小,能量消耗少;重量轻,搬运方便等。金刚石钻具主要包括金刚石钻头、金刚石扩也器、岩心卡簧及金刚石钻进用岩心管。金刚石钻头目前生产有直径76、66、46、36MM等几种规格,较一般的钻头要小得多,故称之为“小口径”。这种钻头是将金刚石颗粒镶嵌在钻头唇部,利用金刚石的硬度磨削岩石钻入地层。金刚石钻进一般均使用双层岩心管。从小泵送来的冲洗液,经内、外管之间的间隙而到达孔底,可减少对岩心的冲刷影响。 采用小口径(金刚石钻头)钻进,在操作上必须注意的是:在任何情况下都不允许无水钻进否则发生高热会烧毁金刚石,用过钢粒钻进的孔,不能再下入金刚石钻头,因孔底遗留钢粒,在冲击振动时会使金刚石损坏;若镶嵌的金刚石颗粒掉落孔底,应即打捞,否则会使整个金刚石钻头遭到损坏;钻进中若迂软弱夹层及裂隙发育的地层,应特别注意降低压力及转速。由于在砾石层、砾岩及硬脆破碎地层中钻进时,冲击振动很大,对金刚石的包镶金属磨耗很快,故一般不采用金刚石钻进。 金刚石钻进虽有很多优点,可是它的孔径过小,有能作现场水文地质试验。 六、声波测井在工程地质钻探中的应用墀测井是一种地球物理勘探技术,它的物理基础是研究与岩石性质密切相关的声振动沿钻井的传播特征。它具有快速,轻便的优点。近十余年来在国内外逐渐推广应用,我取得了较好的效果。 声波测井可充分利用已有的钻孔,结合地质调查,了解基岩风化壳的厚度、物征,进行分带,查明深部地层的岩性特征,进行地层划分,确定软弱夹层的层位、深度和厚度;寻找岩溶洞穴和断层破碎带;研究岩石的某些物理力学性质,进行工程岩体分类等。与其它测井方法密切配合,还可怜全部或部分代替岩心钻探,开展无岩心钻进。总之,声波测井在工程地质钻探中的应用是多方面的。 目前所应用的声波测井方法主要有以下三种:一是根据墀传播速度研究地质体性质的墀速度测井;二是根据墀振幅的衰减反映岩层性质的墀幅度测井;三是利用墀在井壁上的反向我了解井壁结构情况的专长波电视测井。其中应用最多的是声速测井。 声速测井的装置如图3—19所示,为单发射双接收型的。两个接收器R1、R2的距离为L。沿井壁的滑行波到达两个接收器的时间差为△t,具有 L △t = —— V2 △t表示声波通过厚度为L的一段岩层所需的时间,习惯上把它换算为通过一米岩层所需的时间(叫做旅行时间),单位为μs/m。由时差△t即可求出声波在岩层中的传播速度V(m/s): V=-106/△t 三峡水利枢纽坝基为前震旦纪的石英闪长岩和闪云斜长花岗岩,经大量声波测并工作后获得的各风化带纵波速度值列于中。 由于没风化带内,岩石组织结构、矿物万分和风化程度不同的岩石所占比例及分布,状况不同,因而不但波速不同,而且声速曲线的形态也不相同。剧风化带的波速值跳跃范围不大,曲线形态以不规则的方形锯齿为主。强内化带中,当坚硬和半坚硬岩石碎块与疏松相互掺杂时,波速值跳跃范围大而密,曲线形态为紧密排弄的长尖刺状锯齿。微风化带的声速曲线摆动幅度较小。四川某坝基48号孔的综合柱状;图,可以用来说明应用声波测勘查断层破碎带的效果。从声波曲线的整个背景值来看,代表二叠纪斑状玄武岩的V为3700-4400m/s,V为2300m/s. 但在标高390m附近,却出现了一个明显的低值异常,V、Vs分加紧为2150和1350m/s,几乎相当于政党值的一半。进行幅度观测时,声波能量吸收衰减强烈,振幅大大下降。经分析,该处是断慨角砾岩,岩体十分破碎。 七、钻孔设计书的编制、钻孔观测编录及资料整理 (一)、钻探工作耗费资金较大,应尽可能使每一个钻孔都发挥综合效益,取得较多的资料。为此,工程地质人员除了编制整个工程地质勘探设计外,还应逐个编制钻孔设计书,以保证钻探工作达到预期的目的。 钻孔设计书的内容要点应包括: 1、钻孔附近的地形、地质概况及钻孔的目的。钻孔的目的一定要充分说明,使施钻人员和观测、编录人员明确该孔的意义及钻进中应注意的问题,这对于保证钻进、观测和编录工作的质量,都是至关重要的。 2、钻孔的类型、深度及孔身结构。应根据已掌握的资料,绘制钻孔设计柱状剖面图,说明将要迂到的地层岩性、地质构造及水文地质情况等,据以确定钻进方法、钻孔类型、孔深、孔和终孔直径,以及换径深度、钻进速度及固壁方法等。 3、工程地质要求。包括岩心采取率、取样、试验、观测、止水及编录等各方面的要求。编录的项目及应取得的成果资料有:钻孔柱状剖面、岩心素描(或照相)、钻进观测、试验记忆录图表及水文地质日志等。 4、说明钻探结束后对钻孔的外理意见,留作长期观测抑或封孔。 (二) 孔的观测与编录 为了全面、准确地反映钻探工程第一性地质资料,在钻进过程中必须认真、细致地做好观测与编录工作。 1、岩心观察、描述和编录 应对岩主进行鉴定,描述其颜色、矿物万分和颗粒成分、结构和构造,正确地定名,必要进取样进行岩矿鉴定。对疏松砂砾土秋粘性土,应观察其致密程度和稠度状态。确定节理裂隙的类型、延续性、蚀变充填情况、倾角 、间距等,进行裂隙统计。对风化岩石,应将岩心按风化程度进行分带和描述。必要时编制岩心素描及岩心拄状图。 通过对岩心的各种统计,可获得岩心采取率、岩心获得率和岩石质量指针等定量指针。岩心采取率是指所取岩心的总长度与本回次进尺的百分比。总矩度包括比较完整的岩心和破碎的碎块、碎屑及碎粉物质。 岩石质量指针(RQD)由D·U·迪你提出的,它是指在取出的岩心中,只计算长度大于10cm的柱状岩心长度,与本回次进飞的百分比。其计算和等级划分如图3—22所示。上述三项定量指针可反映岩石的坚硬和完整程度。岩石愈坚硬、完整,数值愈高;而愈软弱、破碎的岩石,则数值愈低。它们也与钻进的工艺和技术水平有关。 每回次取出的岩心应顺序排列,并按有关规定进行编号、装箱和保管。并应注明所取原状土样、岩样的数量及深度。 2、孔水文地质观测 注意并记录钻进过程中冲洗液消耗量的变化。发现地下水后,应测定其初见水位及稳定水位,确定含水层顶底板标高及厚度,测量水温,定深取水样以进行水质分析。 3、孔内情况 钻过过程中注意换层的深度、回水颜色变化、钻具陷落、孔壁坍塌、卡钻埋钻和涌砂现象等,结合岩心以判断孔内情况。如果孔壁坍塌及卡钻,岩心厂矿且采取率又低,就表明岩石裂孙发育觐上于构造破碎带中。 当钻进过程中,迂到严重风华蔌裂隙十分发育的岩层、断层破碎带、岩溶洞穴时,岩主采取率往往很低,甚至取不到岩心,给判断孔内情况带来困难。钻孔摄影和钻孔电视弥了这一缺陷,通过对孔壁的观察,可以对岩层的裂隙发育程度及方向、风化程度、断层破碎带、财溶洞穴和软弱泥化夹层等,取得较为清晰的照片或图像,给人以孔内直观的感觉。目前我国水电部门使用的SK——150型钻孔摄影仪和JZS—1型钻孔电视机,为提高工程地质勘探的质量和钻孔利用率,显示了独特的优越性。 二、坑探工程设计书的编制、观测与编录 (一)坑探工程设计书的编制及观测 坑探工程的设计是在工程地质勘探总体布置的基础上进行的。其主要内容包括:坑探工程附近的地形地质情况、坑探的目的、类型、掘进深度及其谁、施工条件、观测与编录内容、取样位置和成果要求等。 坑探工程的观察、描述内容,依其类型和目的不同,侧重点有所不同,侧重点有所不同,一般应有:第四系和基岩地层的时代、岩性、成分、结构构造、厚度、产状及接触关系;岩石的风化特点及风化壳分带;软弱夹层的岩性、厚度、产状破碎泥化情况;断裂、裂隙的组数、产状、性质、密度、宽度以及延展、空切情况;地下水渗水点位置、特点、涌水量大小;以及不育地制裁现象的描述等。 (二)坑探工程的编录 坑探工程的编录工作主要是绘制展视图。所谓展视图,就是沿坑探工程的壁、底面所编制的地质断面图,按一定的制图方法将三度空间的图形展开。用它表示的地质成果一目了然,故在生产上广为应用。 不同类型坑探工程展视图的编制方法和表示内容有所不同,它们的比例尺一般为1:25—— 1:100。现介绍如下: 1、试坑、浅井、竖井等铅直坑探工程展视图,一般采用四壁辐射展开法或四壁平等展开法。前者适用于试坑,后者适用于浅井和竖井。 2、探槽展视图一般只画底和一壁,有时也将两侧壁画出。如果槽长且方向、坡度有转析时,可分段画出,使壁与氏保持平行。 3、平硐展视图一般将五个面全部画出,其中硐顶分开单画,其余几个面相联展开。硐底坡度有变化时,要用高差曲线表示。第五节 工程地质勘探的布置 布置勘探工作的总要求是:以最少的勘探工作量取得尽可能多的地质资料。为此,要求工程地质人员必须明确勘探的目的和任务,做好勘探设计,将每个勘探工程都布置在关键部位。以发挥综合效益。
❺ 地质勘察绘图用什么软件
CAD制图辅助工具说明 2007.10.01
===================
CAD制图辅助工具是本人自主开发的一组CAD应用软件,其开发以及运行环境为:
Windows XP SP2 操作系统、AutoCAD 2002和Microsoft Office 2000。
CAD制图辅助工具是本人对2000年以来在AutoCAD及Microsoft Excel2000上二次开发工作的一个总结,内容涉及地质剖面图绘制、测绘展点、钻孔剖面图绘制、钻孔柱状图绘制、触探曲线绘制、表格绘制、渠线里程推算、测量放样计算等一系列水利水电工程测量中常用的制图辅助工具。
一、常见问题:
1.CAD启动后,如果该制图工具的菜单和工具栏不能正常加载或显示,请仔细检查本工具在AutoCAD中的支持文件搜索路径是否设置正确;
2.如图形未能绘制成功,请仔细检查数据录入中的数据是否正确或符合程序要求。安装目录内有相应的数据文件可供参考;
3.当运行数据录入程序无响应时,请先删除temp目录内所有的(临时数据)文件后再打开程序;
4.不能将数据文件与图形文件保存在同一目录内。
二、使用技巧:
1.在钻孔剖面图的数据录入中
a.“地层代号”数据栏中的地层代号如需用上下标表示,请用“!”表示下标,“^”表示上标,如:Q!4^2al表示4是下标、2al是上标;
b.“试验数据”数据栏中渗透系数如需用上标表示,请用“^”表示上标,如:K=1.39×10^-4表示-4是上标;
c.实际输入时,如上下标判别符号没有输入,程序仅将输入内容作字串处理,如输入K=1.39×10-4,则标注内容也是K=1.39×10-4;
d.如终孔水位为负值,程序将在图形中孔口线以上10cm处,标注水位高程及施测日期,否则在实际井深处标注水位高程及施测日期;
e.“其它界线”数据栏输入强、弱风化线下限井深和取样位置、终孔水位井深等,其中程序绘制强、弱风化线型符号,其它界线如泥化夹层等,将以辅助线的形式绘出供参考;
f.如要表示钻孔套管所下位置,在“钻孔结构”数据栏输入钻孔结构数据时在数据后面加字母g或G即可。其套管所在孔径将用虚线表示;
g.“岩性分类”栏即可输入中文也可输入代码。例如某段岩性为“粉砂质泥岩”",可在“岩性分类”一栏中输入“粉砂质泥岩”,也可输入其对应的代码编号“HW006”;
h.如果没有相应的花纹图案,可打开“Hwdata.txt”文件编辑相应的花纹代号来取代;
i.取样位置也可以输入起始井深值来表示,数值中间用“-”或“/”分隔,比如输入22.34-25.46或22.34/25.46。
2.钻孔剖面图绘制中的“地层代号”和“岩层界线”(砂卵砾石、泥质粉砂岩、粉砂质泥岩、砂岩、强风化等)是作为辅助线而设定的,不需用时关闭“Temp”图层即可。
三、历史更新:
2007.12.01
修正图切时弦线方向的多处显示错误。
2007.11.24
修正放样计算程序中变量错误导致的计算问题。
2007.11.11
修正剖面绘制中里程标注值及标注位置的问题。
2007.10.01
修正图切剖面时圆弧要素的显示,增加弦线方向。
2007.08.29
更新剖面数据录入模块。
2007.06.22
增加关闭、退出模块中数据未保存时的提示功能。
2007.06.20
增加任意目录打开、保存功能。
2007.06.19
更正另存为文件时的参数设置错误。
2007.06.18
修改状态栏显示的文件路径显示错误。
2007.06.01
修正保存数据时参数设置模块的错误。
2007.04.10
更新剖面数据录入模块,增加多文档操作功能。
2007.01.01
增加绘制柱状图破碎带和泥化夹层功能。
2007.01.01
增加绘制剖面图起始点间距功能。
2007.01.01
修改放样计算程序中的错误。
2006.07.11
修正在AutoCAD 2007中的运行错误,增强程序对04、05、06、07版的支持。
2006.07.07
增加读取多段线顶点坐标功能。
2006.07.05
修改剖面点高程累距查看程序。
2006.06.01
修正触探数据管理工具中数据显示错识。
2006.03.31
增加菜单文件编辑及刷新功能。
2006.03.28
修正钻孔柱状图中试验数据标注时的错误。增加数据自动复制、备份功能。
2006.03.22
增加清除程序运行时产生的临时文件功能。
2006.03.18
增加打开坐标一览表的功能。
2006.03.16
增加图切剖面时自动写入累距数据的功能(以当前日期数+时间秒数为数据文件名)。
2006.03.13
修正剖面数据录入中的小错误,增强了打开新数据格式的功能。
2006.03.04
修改图切剖面程序,增加量取圆弧、直线、多段线长度等功能。
2006.01.21
修正生成剖面及钻孔时临时数据文件所在目录为当前目录下的temp子目录内。这样有利于清除垃圾文件,便于查看程序运行的错误。
2006.01.13
用Inno Setup 5.15重新制作安装,可以选择安装各功能模块。并定名为“阿江CAD工具DIY版 2006.01.13 内核版本:0601001”。
2005.12.23
修正量取剖面方向和两相交线夹角的坐标距离显示方式。
2005.12.13
改进数据录入中打开及选择数据文件时的选择方式。
2005.11.28
修正加载《剖面数据管理》程序时的错误提示。
2005.10.04
修改《剖面数据管理》程序所产生的临时文件存放路径,将原来的存放目录C:\Windows\Temp改为当前目录的Temp子目录。
2005.10.03
修正图切剖面起点累距的输入方式和方向的显示问题。
2005.10.01
修正Z坐标归零时对不同坐标系的处理,修改选择对象时自动选择全部对象为手动选择所需对象。
2005.09.29
将世界坐标系转换与测量坐标系转换合并,修正旋转角为0时无法改变基准点坐标问题。
❻ 岩土工程到底是搞什么的赚头和桥梁比起怎么样通常在哪种地方工作
概述 由于国民经济的发展和路网完善的需求,高速公路逐步进入山区。高速公路由于其线形指标高,工程艰巨,投资巨大,对自然环境的破坏也非常严重。随着环境保护理念的日益深入人心,对于山区高速公路的勘察设计、施工运营等方面的环保要求也越来越高。山区公路环境载体主要是自然环境,也是地质环境。山区一般地形地质条件复杂,地质环境脆弱,地质灾害多发,高速公路的建设不可避免的要切坡、填沟、打洞(隧道),对地质环境造成严重破坏,处理不好还会诱发和加剧各种地质灾害,增加公路建设投资,影响工期,甚至给运营阶段带来严重的安全隐患。因此山区高速公路的环保主要是地质环境的保护和地质灾害的防治。 要建设一条兼顾交通、环保、生态等方面要求的高标准的山区高速公路,应该重视和加强地质工作。地质工作应贯穿于设计、施工和运营的全过程。对地质现象和规律的认识(岩土工程勘察工作)是由面到线、由线到点、由表及里、由粗到细、由宏观到微观,逐步深入的,根据不同阶段应采取不同的方法和手段。 2 勘察设计阶段 地质条件是客观存在的,山区高速公路在自然地质环境中穿行,并对地质环境进行改造,应该认识地质规律,尊重地质规律,在设计中充分考虑地质因素,遵循地质原则,从源头上尽量减少山区高速公路对自然环境的破坏,并且为施工和运营提供良好的条件。 2.1工可阶段――贯彻地质选线的原则 山区公路地质选线主要受到地形和不良地质现象的制约,主要的不良地质现象有滑坡、泥石流、岩崩、岩溶、岩堆(坡积层)、软弱土、膨胀土、湿陷性黄土、冻土、水害、采空区以及强震区(高地应力)等。本阶段应尽可能详细地收集区域构造地质、岩石地层、水文地质、工程地质、地震地质、环境地质等方面的资料,利用遥感资料(卫片和航片),编制中比例尺(1:5万或1:10万)工程地质图和地质灾害(不良地质现象)分布图,图上标注大的地质构造(主要是断层)、重大的地质病害体,分析区域性的地质灾害发生条件,进行初步的地质灾害评估,配合路线方案设计,进行必要的现场踏勘和重点路段的调查,反复对比,优选出工程地质条件最好、地质灾害最少、工程建设对地质环境的不利影响最小的路线走廊带,真正贯彻地质选线的原则。对于滑坡、崩塌、岩堆、泥石流、岩溶、软土、泥沼等严重不良地质地段和沙漠、多年冻土等特殊地区,一般情况下路线应设法绕避。 2.2初设阶段――突出重大地质病害对路线方案的制约 确定路线方案前应对沿线地质构造带、断层、岩石的层理情况、地质病害的分布及范围等,通过对遥感地质判释资料以及不同勘测阶段的勘探、调查资料的分析,研究路线通过方案并不断优化。对地质较为复杂地段还应注意在设线后诱发并加剧地质病害的可能性,谨慎的确定路线的线位和采取的工程措施。地质技术人员应配合路线设计师作好地质咨询工作,可以沿初步拟定的路线线位,进行全线踏勘,对重点工点进行地质调查,得出初拟线位沿线的基本工程地质情况,评估路线方案的可行性,发现重大不良地质地段或预测工后会出现难以治理的地质病害的路段要及时反馈信息,以便尽快调整路线线位。基本确定路线方案后,及时委托有资质的单位进行建设用地地质灾害危险性评估工作,并进行大比例尺(1:1万)的地质遥感解译及地质灾害调查和工程地质调绘工作,编制1:1万工程地质图和路线区域地质病害现状图。图件的重点是地质灾害和重要工点的工程地质条件,要有针对性,要突出重点,不可以拿1:5万地质图放大。现在委托地质部门做的图件,有些不能称为工程地质图,只能称为基本地质图(工程地质分区太笼统、工程地质条件的论述太简略)。地质灾害评估工作不能够代替1:1万工程地质图的编制,但二者可结合进行,以节约时间和经费。 很多地质灾害(滑坡、泥石流等)由于植被覆盖、后期人工改造以及观察角度和范围有限等原因,在现场难以判断。通过遥感资料(如航片)可以从宏观上观察全貌,合理的解译,有利于对此类不良地质体的正确认识。 当工作中发现仍有重大的地质病害存在或有潜在的重大地质病害时,必须及时调整线位。对于重大的地质病害应尽量绕避,实在无法绕避的要考虑工程措施的可能性与可靠性,尽量在路线的平纵面优化上下功夫(采用分离式路基、用桥隧构造物通过、从滑坡体上部通过、半路半桥等),避免高填深挖,以减少对地质环境的破坏,提高工程措施的可靠性和安全度。对地质病害应以防为主,以治为辅,能避当避,即使增加工程造价也是值得的。 以安徽省徽杭高速公路为例,该路全长约80km,有四分之三路段位于山区,由于勘测时间较早,对山区高速公路特点认识不足,以投资为主要控制因素,其中有一半左右的路段基本沿区域性的三阳断裂带布设。受构造影响,岩体风化破碎严重,并且沿线分布有雄村滑坡、朱村滑坡等规模较大的不良地质体。施工开挖后,出现大量的不稳定边坡,甚至诱发了部分滑坡。对于部分地质病害路段及时调整线位,进行了避让,而更多的病害段只能采取治理措施,结果造价大幅攀升,严重影响了工期,并且治理效果也难以预测。 必要时应增加技术设计阶段,对重大地质病害路段进行深入勘察,确定路线可行性。 2.3施工图设计阶段――详查工点地质条件 通过初步设计阶段的各种地质工作,已经基本查明路沿线的地质条件,但是工作深度和广度还不够。本阶段应详查工点地质(桥位、隧道、深路堑、高填路堤、陡坡路堤、支挡构造物),进行重要工点1:2000地质测绘。采用调查、测绘、槽探、坑探、钻探、物探等综合勘察手段。查明场地岩土体组成、性质、分布以及风化层、不良地质、特殊性岩土等工程地质条件在路线纵横方向的变化。以前对于桥位和隧道等构造物工点地质勘察较为重视,但是对于深路堑和陡路堤、斜坡路堤、支挡构造物等路基方面的工点也必须加强勘察,特别是高边坡和不良地质体的勘察和预测。另外对于筑路材料料场和弃土场的勘察一定要重视,以前山区公路曾出现过取土、弃土场所不合理,乱挖乱弃,破坏环境,导致水土流失的事例。 除了详细的地质勘察工作之外,还要贯彻综合设计原则,在路线设计的各个阶段,对工程地质条件要有充分的了解,保证路线方案的科学性。对地质资料要充分利用,桥位、隧道、路线各有一套地质资料,但彼此经常脱节。比如当桥隧相连时,隧道勘察发现有不良地质现象,桥梁设计人员却不知道,还把桥台置于其上。因此加强各专业之间的交流沟通,互相学习。从事路线、隧道、桥梁设计的人员要尽量多地掌握一些基本的地质知识,以有利于对地质资料的合理使用。 3 施工阶段――遵循信息化施工、补充勘察、动态设计原则 由于地质条件的复杂性和勘察周期的制约,有些复杂场地(岩溶、破碎带、岩性纵横向差异大的地区)或地形困难场地(陡坡、鱼塘等)在设计阶段难以布置充分的勘察工作量,无法查清场地详细工程地质条件。在施工期间,可以进行补充勘察,如对岩溶发育区或岩性差异大的场地逐桩钻探,对原进场困难场地通过施工便道进场钻探。施工中发现新的地质问题也要补充勘察。应该把施工期间的勘察工作视作设计期间勘察工作的重要补充。 另外本阶段应遵循信息化施工(施工中监测)、动态设计的原则。隧道的超前预报、边坡的动态监测都是施工阶段必须要进行的工作。施工单位一定要配备过硬的地质技术人员,及时发现问题,不要等到地质病害已经发生才去治理,要有前瞻性、预见性,发现边坡、隧道等有失稳的趋势之后要立即反馈业主和设计单位,并及时采取合适的加固措施,避免边坡、隧洞大面积失稳。应该认识到,设计阶段的勘察工作对地质现象和地质规律的认识往往是不全面的,甚至是错误的,据此进行的设计只能称为预设计。在边坡或隧道断面开挖以后,很多问题才会发现,此时应有岩土工程技术人员在现场,对照原有的勘察设计方案,发现新的问题之后通过合理工序及时调整设计方案。等到问题已经发生才去采取措施,既多花了钱,又耽误了工期。 目前施工单位的岩土工程技术人员也是极为缺乏的,有时由于不合理的施工方法导致或加剧了地质病害的发生和发展(如在破碎岩体上放大炮、自下而上开挖边坡等) 施工期间的岩土工程监理工作目前还较为薄弱的,有丰富理论知识和实践经验的岩土监理工程师极为缺乏,使施工期间的地质病害预防工作远远达不到要求。 4 运营阶段――加强敏感点监测 山区高速公路运营期间也要高度重视地质工作。因为有些地质灾害的发生是一个长期的过程,应力释放或边坡的蠕变有些需要长达几年乃至十几年的时间,一次性治理有时并不能保证长治久安。因此对于一些在施工中出现病害的路段或重要工点要建立数据库,进行变形、位移和地下水的动态监测,定期巡查,建立防灾和预警系统,在雨季或洪水季节要加强对敏感点的监测。通过长期观测记录,还可以更深入的认识地质规律,分析地质病害的发生发展机理,预测发展趋势,发现有不利的趋势要及时采取措施。 5 山区公路建设地质工作中存在的问题 5.1前期阶段 工可阶段对地质工作不够重视,地质遥感工作不做或精度不够,不能够贯彻地质选线的原则,导致选定的路线走廊带中地质病害多,处理难度大,给后期工作带来极大难度。 初步设计阶段,由于路线方案调整较大,而工期紧张,因此很多勘察工作量作废,路线地质精度不够,部分工点缺少地质资料,给设计工作带来隐患,也使得施工图设计阶段路线方案有时发生较大调整。 施工图设计阶段不做或漏做重要工点的1:2000地质测绘,或虽做了但精度不够;对一些地质病害研究不深,导致对一些重要工点的勘察深度不够;对于路线地质调查深度不够,导致一些地质敏感点遗漏,在施工中出现地质病害。构造物勘察相对较细,而路基方面的勘察则往往较粗略。 目前的山区公路工程勘察还存在许多有待改进的地方。由于现在很多项目的勘察设计工期都非常紧张,如何在很短的时间内达到尽可能高的勘察精度,的确是一个难题。为抢时间,现在地质勘察工作很大一部分外委出去,全线人员设备上了很多,但在施工中仍会暴露出很多地质问题。这一方面是由于地质现象的隐蔽性和地质科学的复杂性,难以全面深入地认识地质现象,另一方面也是由于从事岩土工程的技术人员本身能力有限所致。岩土工程在一定程度上属于经验学科,技术人员的经验非常重要。外委的勘察单位一定要过硬,对于其提供的地质资料要进行审核,去伪存真,对于不能够满足规范和设计要求的坚决返工。在其外业和内业阶段要进行监督,多沟通。外行业的地勘队伍往往对公路工程的特点及公路勘察规范了解不够,不能够有针对性的进行勘察,资料经常不能满足设计要求。另外由于工期紧,技术准备不足,勘察手段不合理,经常导致勘察深度不足,如隧道勘探未采用双管单动钻进,无法判断RQD,钻探工艺和技术不过硬,岩石取心率低,钻孔水文地质试验数据不足,对边坡勘察无法判断滑动面,无法取得可信的各种力学参数,物探手段与其他勘探手段的互相校核精度不够等,甚至有个别单位编造资料应付设计。所以不仅要看投入了多少人力物力,还要看投入人员技术水平、职业技能和职业道德素质如何,拟定的勘察方案是否合理,对地质现象的认识是否科学。在实践中,由于技术人员水平参差不齐,经常会出现错判、漏判地质病害的现象。因此加强公路岩土工程从业人员的技术水平是非常紧迫的事情。 5.2施工阶段 地质技术力量薄弱,岩土工程监测和监理不力,施工工序和方法不对,导致地质病害的加剧,甚至诱发地质病害。对工程地质特点认识不足,不能够及时预测和反馈地质病害,只能被动地等待地质病害的发生。 5.3运营阶段 地质工作目前还基本上是空白,无法保证山区高速公路的安全顺畅。 6 正确认识地质工作的重要性和特殊性 由于岩土体的组成物质差异,更重要的是在岩土体内部分布有大量的不连续界面,把完整的岩土体分割成许多块体,总体为非均质体,在应力的传递上非常复杂,因此岩土工程属于非线性科学。现有的岩石力学、土力学、岩体力学等均难以准确的描述岩土体实际的力学本构关系。地质灾害的发生除了其本身的因素外,还受到许多外界的因素影响,十分复杂。因此,对于岩土工程的分析计算只能是半定量的,在很大程度上受分析者经验的制约。对于已经存在的滑坡、崩塌、泥石流等地质病害,其周界相对清楚,各种勘察设计技术规范较完备,认识起来相对容易。最难的是对于现状稳定的高边坡,预测其人工开挖后的稳定性。对于其地质构造的分析,地质-力学模型的建立,稳定计算分析都十分困难。勘察深度难以保证,稳定性计算方法不够科学,边坡设计时也有其不合理之处,如一般都只给出最终的边坡坡率和边界,各种边坡加固设计也是针对最终边坡的,各种分析计算也是以最终边坡为约束条件的。这样即使地质条件清楚,分析计算合理,设计稳妥,施工严格遵循规范和设计要求,也往往会出现难以预料的地质病害。其中一个重要原因是未对开挖过程中的各种边坡条件进行分析计算,虽然按最终边坡条件计算是稳定的,但不能够保证任意开挖条件下边坡都是稳定的。因此对于从事边坡设计的岩土工程师而言,应该对于边坡开挖过程中的多种控制性断面稳定性进行计算,提供合理的开挖步骤和各种稳定的开挖断面,并对不稳定的中间边坡提出临时性的工程加固措施,以保证边坡的稳定开挖。 7 展望 技术进步是山区高速公路成功修筑的重要保证。现在采用三维数模,可以很快的得出路线平纵面模型,任意切割纵横断面,发现问题之后可以很快的调整线位并重新进行分析,大大提高了工作效率。相信随着3S技术的发展,今后三维数模会和三维地学模型、岩土工程专家分析系统结合起来,对于重要工点通过现场地质工作,建立地质-力学模型,通过专家分析系统,可以任意模拟边坡开挖后的形状及物理力学状态的变化,迅速分析其稳定性,进行针对性的设计。甚至还可以对边坡等地质病害通过互联网进行远程会诊,聚集各方面力量以解决问题。 8 结语 地质环境保护和地质灾害防治是山区高速公路建设成败的关键,为此必须重视地质工作。(1)业主要认识到,前期的地质工作一定要认真细致,勘察设计阶段多花些钱和时间,尽量详细地查明地质条件,避免地质隐患,对于施工来说会节约大量的投资和工期。(2)设计阶段的地质勘察工作必须加强,要达到必要的深度。(3)施工单位要加强地质技术力量,业主单位也要增加地质技术人员,岩土工程监理工作要加强。(4)运营阶段的岩土工程监测工作必须重视。(5)单纯依靠前期地质工作对地质客观规律和地质环境的认识是不够的,在设计施工运营的全过程中要不断的加强地质工作。(6)由于地质条件的复杂性,虽然进行了前期地质勘察工作,在施工和运营中出现地质病害也是正常的。(7)设计阶段深入细致的地质工作可以确保施工时不出现大的地质病害,施工阶段的细致的地质工作可以确保运营期间不出现大的地质病害。(8)公路勘察设计、施工、建设及运营管理单位一般岩土工程技术力量相对薄弱,应加强人才培养,适应山区高等级公路建设的需要。 山区高速公路的修建对勘察、设计、施工、监理、管理等各个环节和部门都提出了更高的要求,大家要加强学习,真正重视问题的严重性。可以说,山区高速公路的修建,岩土工程是关键,地质病害是控制性因素。 参考资料: http://ke..com/view/507169.html
麻烦采纳,谢谢!
❼ 岩土工程师干哪些工作,有什么能力要求
1 概述
由于国民经济的发展和路网完善的需求,高速公路逐步进入山区。高速公路由于其线形指标高,工程艰巨,投资巨大,对自然环境的破坏也非常严重。随着环境保护理念的日益深入人心,对于山区高速公路的勘察设计、施工运营等方面的环保要求也越来越高。山区公路环境载体主要是自然环境,也是地质环境。山区一般地形地质条件复杂,地质环境脆弱,地质灾害多发,高速公路的建设不可避免的要切坡、填沟、打洞(隧道),对地质环境造成严重破坏,处理不好还会诱发和加剧各种地质灾害,增加公路建设投资,影响工期,甚至给运营阶段带来严重的安全隐患。因此山区高速公路的环保主要是地质环境的保护和地质灾害的防治。
要建设一条兼顾交通、环保、生态等方面要求的高标准的山区高速公路,应该重视和加强地质工作。地质工作应贯穿于设计、施工和运营的全过程。对地质现象和规律的认识(岩土工程勘察工作)是由面到线、由线到点、由表及里、由粗到细、由宏观到微观,逐步深入的,根据不同阶段应采取不同的方法和手段。
2 勘察设计阶段
地质条件是客观存在的,山区高速公路在自然地质环境中穿行,并对地质环境进行改造,应该认识地质规律,尊重地质规律,在设计中充分考虑地质因素,遵循地质原则,从源头上尽量减少山区高速公路对自然环境的破坏,并且为施工和运营提供良好的条件。
2.1工可阶段――贯彻地质选线的原则
山区公路地质选线主要受到地形和不良地质现象的制约,主要的不良地质现象有滑坡、泥石流、岩崩、岩溶、岩堆(坡积层)、软弱土、膨胀土、湿陷性黄土、冻土、水害、采空区以及强震区(高地应力)等。本阶段应尽可能详细地收集区域构造地质、岩石地层、水文地质、工程地质、地震地质、环境地质等方面的资料,利用遥感资料(卫片和航片),编制中比例尺(1:5万或1:10万)工程地质图和地质灾害(不良地质现象)分布图,图上标注大的地质构造(主要是断层)、重大的地质病害体,分析区域性的地质灾害发生条件,进行初步的地质灾害评估,配合路线方案设计,进行必要的现场踏勘和重点路段的调查,反复对比,优选出工程地质条件最好、地质灾害最少、工程建设对地质环境的不利影响最小的路线走廊带,真正贯彻地质选线的原则。对于滑坡、崩塌、岩堆、泥石流、岩溶、软土、泥沼等严重不良地质地段和沙漠、多年冻土等特殊地区,一般情况下路线应设法绕避。
2.2初设阶段――突出重大地质病害对路线方案的制约
确定路线方案前应对沿线地质构造带、断层、岩石的层理情况、地质病害的分布及范围等,通过对遥感地质判释资料以及不同勘测阶段的勘探、调查资料的分析,研究路线通过方案并不断优化。对地质较为复杂地段还应注意在设线后诱发并加剧地质病害的可能性,谨慎的确定路线的线位和采取的工程措施。地质技术人员应配合路线设计师作好地质咨询工作,可以沿初步拟定的路线线位,进行全线踏勘,对重点工点进行地质调查,得出初拟线位沿线的基本工程地质情况,评估路线方案的可行性,发现重大不良地质地段或预测工后会出现难以治理的地质病害的路段要及时反馈信息,以便尽快调整路线线位。基本确定路线方案后,及时委托有资质的单位进行建设用地地质灾害危险性评估工作,并进行大比例尺(1:1万)的地质遥感解译及地质灾害调查和工程地质调绘工作,编制1:1万工程地质图和路线区域地质病害现状图。图件的重点是地质灾害和重要工点的工程地质条件,要有针对性,要突出重点,不可以拿1:5万地质图放大。现在委托地质部门做的图件,有些不能称为工程地质图,只能称为基本地质图(工程地质分区太笼统、工程地质条件的论述太简略)。地质灾害评估工作不能够代替1:1万工程地质图的编制,但二者可结合进行,以节约时间和经费。
很多地质灾害(滑坡、泥石流等)由于植被覆盖、后期人工改造以及观察角度和范围有限等原因,在现场难以判断。通过遥感资料(如航片)可以从宏观上观察全貌,合理的解译,有利于对此类不良地质体的正确认识。
当工作中发现仍有重大的地质病害存在或有潜在的重大地质病害时,必须及时调整线位。对于重大的地质病害应尽量绕避,实在无法绕避的要考虑工程措施的可能性与可靠性,尽量在路线的平纵面优化上下功夫(采用分离式路基、用桥隧构造物通过、从滑坡体上部通过、半路半桥等),避免高填深挖,以减少对地质环境的破坏,提高工程措施的可靠性和安全度。对地质病害应以防为主,以治为辅,能避当避,即使增加工程造价也是值得的。
以安徽省徽杭高速公路为例,该路全长约80km,有四分之三路段位于山区,由于勘测时间较早,对山区高速公路特点认识不足,以投资为主要控制因素,其中有一半左右的路段基本沿区域性的三阳断裂带布设。受构造影响,岩体风化破碎严重,并且沿线分布有雄村滑坡、朱村滑坡等规模较大的不良地质体。施工开挖后,出现大量的不稳定边坡,甚至诱发了部分滑坡。对于部分地质病害路段及时调整线位,进行了避让,而更多的病害段只能采取治理措施,结果造价大幅攀升,严重影响了工期,并且治理效果也难以预测。
必要时应增加技术设计阶段,对重大地质病害路段进行深入勘察,确定路线可行性。
2.3施工图设计阶段――详查工点地质条件
通过初步设计阶段的各种地质工作,已经基本查明路沿线的地质条件,但是工作深度和广度还不够。本阶段应详查工点地质(桥位、隧道、深路堑、高填路堤、陡坡路堤、支挡构造物),进行重要工点1:2000地质测绘。采用调查、测绘、槽探、坑探、钻探、物探等综合勘察手段。查明场地岩土体组成、性质、分布以及风化层、不良地质、特殊性岩土等工程地质条件在路线纵横方向的变化。以前对于桥位和隧道等构造物工点地质勘察较为重视,但是对于深路堑和陡路堤、斜坡路堤、支挡构造物等路基方面的工点也必须加强勘察,特别是高边坡和不良地质体的勘察和预测。另外对于筑路材料料场和弃土场的勘察一定要重视,以前山区公路曾出现过取土、弃土场所不合理,乱挖乱弃,破坏环境,导致水土流失的事例。
除了详细的地质勘察工作之外,还要贯彻综合设计原则,在路线设计的各个阶段,对工程地质条件要有充分的了解,保证路线方案的科学性。对地质资料要充分利用,桥位、隧道、路线各有一套地质资料,但彼此经常脱节。比如当桥隧相连时,隧道勘察发现有不良地质现象,桥梁设计人员却不知道,还把桥台置于其上。因此加强各专业之间的交流沟通,互相学习。从事路线、隧道、桥梁设计的人员要尽量多地掌握一些基本的地质知识,以有利于对地质资料的合理使用。
3 施工阶段――遵循信息化施工、补充勘察、动态设计原则
由于地质条件的复杂性和勘察周期的制约,有些复杂场地(岩溶、破碎带、岩性纵横向差异大的地区)或地形困难场地(陡坡、鱼塘等)在设计阶段难以布置充分的勘察工作量,无法查清场地详细工程地质条件。在施工期间,可以进行补充勘察,如对岩溶发育区或岩性差异大的场地逐桩钻探,对原进场困难场地通过施工便道进场钻探。施工中发现新的地质问题也要补充勘察。应该把施工期间的勘察工作视作设计期间勘察工作的重要补充。
另外本阶段应遵循信息化施工(施工中监测)、动态设计的原则。隧道的超前预报、边坡的动态监测都是施工阶段必须要进行的工作。施工单位一定要配备过硬的地质技术人员,及时发现问题,不要等到地质病害已经发生才去治理,要有前瞻性、预见性,发现边坡、隧道等有失稳的趋势之后要立即反馈业主和设计单位,并及时采取合适的加固措施,避免边坡、隧洞大面积失稳。应该认识到,设计阶段的勘察工作对地质现象和地质规律的认识往往是不全面的,甚至是错误的,据此进行的设计只能称为预设计。在边坡或隧道断面开挖以后,很多问题才会发现,此时应有岩土工程技术人员在现场,对照原有的勘察设计方案,发现新的问题之后通过合理工序及时调整设计方案。等到问题已经发生才去采取措施,既多花了钱,又耽误了工期。
目前施工单位的岩土工程技术人员也是极为缺乏的,有时由于不合理的施工方法导致或加剧了地质病害的发生和发展(如在破碎岩体上放大炮、自下而上开挖边坡等)
施工期间的岩土工程监理工作目前还较为薄弱的,有丰富理论知识和实践经验的岩土监理工程师极为缺乏,使施工期间的地质病害预防工作远远达不到要求。
4 运营阶段――加强敏感点监测
山区高速公路运营期间也要高度重视地质工作。因为有些地质灾害的发生是一个长期的过程,应力释放或边坡的蠕变有些需要长达几年乃至十几年的时间,一次性治理有时并不能保证长治久安。因此对于一些在施工中出现病害的路段或重要工点要建立数据库,进行变形、位移和地下水的动态监测,定期巡查,建立防灾和预警系统,在雨季或洪水季节要加强对敏感点的监测。通过长期观测记录,还可以更深入的认识地质规律,分析地质病害的发生发展机理,预测发展趋势,发现有不利的趋势要及时采取措施。
5 山区公路建设地质工作中存在的问题
5.1前期阶段
工可阶段对地质工作不够重视,地质遥感工作不做或精度不够,不能够贯彻地质选线的原则,导致选定的路线走廊带中地质病害多,处理难度大,给后期工作带来极大难度。
初步设计阶段,由于路线方案调整较大,而工期紧张,因此很多勘察工作量作废,路线地质精度不够,部分工点缺少地质资料,给设计工作带来隐患,也使得施工图设计阶段路线方案有时发生较大调整。
施工图设计阶段不做或漏做重要工点的1:2000地质测绘,或虽做了但精度不够;对一些地质病害研究不深,导致对一些重要工点的勘察深度不够;对于路线地质调查深度不够,导致一些地质敏感点遗漏,在施工中出现地质病害。构造物勘察相对较细,而路基方面的勘察则往往较粗略。
目前的山区公路工程勘察还存在许多有待改进的地方。由于现在很多项目的勘察设计工期都非常紧张,如何在很短的时间内达到尽可能高的勘察精度,的确是一个难题。为抢时间,现在地质勘察工作很大一部分外委出去,全线人员设备上了很多,但在施工中仍会暴露出很多地质问题。这一方面是由于地质现象的隐蔽性和地质科学的复杂性,难以全面深入地认识地质现象,另一方面也是由于从事岩土工程的技术人员本身能力有限所致。岩土工程在一定程度上属于经验学科,技术人员的经验非常重要。外委的勘察单位一定要过硬,对于其提供的地质资料要进行审核,去伪存真,对于不能够满足规范和设计要求的坚决返工。在其外业和内业阶段要进行监督,多沟通。外行业的地勘队伍往往对公路工程的特点及公路勘察规范了解不够,不能够有针对性的进行勘察,资料经常不能满足设计要求。另外由于工期紧,技术准备不足,勘察手段不合理,经常导致勘察深度不足,如隧道勘探未采用双管单动钻进,无法判断RQD,钻探工艺和技术不过硬,岩石取心率低,钻孔水文地质试验数据不足,对边坡勘察无法判断滑动面,无法取得可信的各种力学参数,物探手段与其他勘探手段的互相校核精度不够等,甚至有个别单位编造资料应付设计。所以不仅要看投入了多少人力物力,还要看投入人员技术水平、职业技能和职业道德素质如何,拟定的勘察方案是否合理,对地质现象的认识是否科学。在实践中,由于技术人员水平参差不齐,经常会出现错判、漏判地质病害的现象。因此加强公路岩土工程从业人员的技术水平是非常紧迫的事情。
5.2施工阶段
地质技术力量薄弱,岩土工程监测和监理不力,施工工序和方法不对,导致地质病害的加剧,甚至诱发地质病害。对工程地质特点认识不足,不能够及时预测和反馈地质病害,只能被动地等待地质病害的发生。
5.3运营阶段
地质工作目前还基本上是空白,无法保证山区高速公路的安全顺畅。
6 正确认识地质工作的重要性和特殊性
由于岩土体的组成物质差异,更重要的是在岩土体内部分布有大量的不连续界面,把完整的岩土体分割成许多块体,总体为非均质体,在应力的传递上非常复杂,因此岩土工程属于非线性科学。现有的岩石力学、土力学、岩体力学等均难以准确的描述岩土体实际的力学本构关系。地质灾害的发生除了其本身的因素外,还受到许多外界的因素影响,十分复杂。因此,对于岩土工程的分析计算只能是半定量的,在很大程度上受分析者经验的制约。对于已经存在的滑坡、崩塌、泥石流等地质病害,其周界相对清楚,各种勘察设计技术规范较完备,认识起来相对容易。最难的是对于现状稳定的高边坡,预测其人工开挖后的稳定性。对于其地质构造的分析,地质-力学模型的建立,稳定计算分析都十分困难。勘察深度难以保证,稳定性计算方法不够科学,边坡设计时也有其不合理之处,如一般都只给出最终的边坡坡率和边界,各种边坡加固设计也是针对最终边坡的,各种分析计算也是以最终边坡为约束条件的。这样即使地质条件清楚,分析计算合理,设计稳妥,施工严格遵循规范和设计要求,也往往会出现难以预料的地质病害。其中一个重要原因是未对开挖过程中的各种边坡条件进行分析计算,虽然按最终边坡条件计算是稳定的,但不能够保证任意开挖条件下边坡都是稳定的。因此对于从事边坡设计的岩土工程师而言,应该对于边坡开挖过程中的多种控制性断面稳定性进行计算,提供合理的开挖步骤和各种稳定的开挖断面,并对不稳定的中间边坡提出临时性的工程加固措施,以保证边坡的稳定开挖。
7 展望
技术进步是山区高速公路成功修筑的重要保证。现在采用三维数模,可以很快的得出路线平纵面模型,任意切割纵横断面,发现问题之后可以很快的调整线位并重新进行分析,大大提高了工作效率。相信随着3S技术的发展,今后三维数模会和三维地学模型、岩土工程专家分析系统结合起来,对于重要工点通过现场地质工作,建立地质-力学模型,通过专家分析系统,可以任意模拟边坡开挖后的形状及物理力学状态的变化,迅速分析其稳定性,进行针对性的设计。甚至还可以对边坡等地质病害通过互联网进行远程会诊,聚集各方面力量以解决问题。
8 结语
地质环境保护和地质灾害防治是山区高速公路建设成败的关键,为此必须重视地质工作。(1)业主要认识到,前期的地质工作一定要认真细致,勘察设计阶段多花些钱和时间,尽量详细地查明地质条件,避免地质隐患,对于施工来说会节约大量的投资和工期。(2)设计阶段的地质勘察工作必须加强,要达到必要的深度。(3)施工单位要加强地质技术力量,业主单位也要增加地质技术人员,岩土工程监理工作要加强。(4)运营阶段的岩土工程监测工作必须重视。(5)单纯依靠前期地质工作对地质客观规律和地质环境的认识是不够的,在设计施工运营的全过程中要不断的加强地质工作。(6)由于地质条件的复杂性,虽然进行了前期地质勘察工作,在施工和运营中出现地质病害也是正常的。(7)设计阶段深入细致的地质工作可以确保施工时不出现大的地质病害,施工阶段的细致的地质工作可以确保运营期间不出现大的地质病害。(8)公路勘察设计、施工、建设及运营管理单位一般岩土工程技术力量相对薄弱,应加强人才培养,适应山区高等级公路建设的需要。
山区高速公路的修建对勘察、设计、施工、监理、管理等各个环节和部门都提出了更高的要求,大家要加强学习,真正重视问题的严重性。可以说,山区高速公路的修建,岩土工程是关键,地质病害是控制性因素。