核废料地质深埋有什么问题
Ⅰ 地球污染最严重地区:看看苏联当年是怎样处理核废料
1、核废料的特性
从技术层面来看,核废料主要分为高放射性、中放射性、低放射性三类。高放射性核废料主要包括核燃料在发电后产生的乏燃料及其处理物。中低放射性核废料一般包括核电站的污染设备、检测设备、运行时的水化系统、交换树脂、废水废液和手套等劳保用品,占到了所有核废料的99%。中低放射性核废料危害较低;高放射性核废料则含有多种对人体危害极大的高放射性元素,例如只需10毫克钚就能致人毙命,这些高放射性元素的半衰期长达数万年到十万年不等。因此各种核废料处置方法是不一样的。
核废料所具有独特性质,使其在处理中非常麻烦:
①放射性: 核废料的放射性不能用一般的物理、化学和生物方法消除,只能靠放射性核素自身的衰变而减少。
②射线危害: 核废料放出的射线通过物质时,发生电离和激发作用,对生物体会引起辐射损伤。
③热能释放: 核废料中放射性核素通过衰变放出能量,当放射性核素含量较高时,释放的热能会导致核废料的 温度不断上升,甚至使溶液自行沸腾,固体自行熔融。
2、世界难题
过去几十年,如何处理核废料一直是核工业面临的一个悬而未解的难题。例如美国就已经在该问题上进行了长达20年的研究,并耗费了上百亿美元的支出。美国在1987年首次提出了在内华达州山脉中的深层地址结构中存放核废料的计划,但时至今日,该计划的实施仍然没有任何的进展。对于有"万年恶灵"之称的高放射性核废料,学界认为最为妥当的处置方法是地质深埋,但因其建造要求特殊、技术复杂,截至目前,在国际上并无一座成型的永久性放废库。
3、相关案例
美国:2013年3月22日,美国华盛顿州汉福德核禁区至少6个装有核废料的地下存储罐发生放射性和有毒废料泄漏。场区的177个储罐装有2亿升高放射性核废料,这些储罐早已超过20年的使用期,其中不少先前发生过泄漏,估计共泄漏378万升放射性液体。美国政府如今每年需要花费20亿美元清理该场区,这个数字占全美全部核清理预算总额的1/3。而要在该场区建设新的核废料处理工厂,预计耗资将超过123亿美元,至少到2019年才能投入使用。
前苏联:上世纪的冷战期间,原苏联出于成本等因素考虑,将核武器工厂产生的高放废料直接排入了附近的河流湖泊当中,造成了严重生态灾难。位于著名的原子能城车里雅宾斯克旁边的加腊苏湖曾经是野生动物的乐园,如今却因受到核废料污染变成了一潭死水,据俄罗斯环保专家称,该湖的生态环境在未来十几万年内都无法得到恢复。
1.送入太空 如果在太阳系游荡或向太阳坠落,核废料便很难对地球上的环境造成破坏。然而,如何将核废料送入太空还是一个难题。因为,使用火箭承载这种方式有时会遭遇发射的失败事故。
2.深度钻孔 深度钻孔需要将作废的核燃料棒包裹在密封的钢结构中,而后埋入地下数英里深的地方。其优势是可以在核反应堆就近地区进行钻孔,缩短高放核废料在处理前的运输距离。
3.海床下储存 海洋中大部分区域——海床都是由厚重的粘土构成,最适合吸收放射性衰变产物。然而,海床下储存需要在水下钻孔,有"墨西哥湾"漏油事故这一前车之鉴,貌似这种解决方案还要经受长时间的考验才能付诸实施。此外,在海洋内处理核废料的做法需要先修改国际协议。
4.埋入潜没区 将核废料埋入潜没区(潜没是指一个地板块受力下降到另一板块之下的过程)可以让作废的核燃料棒沿着地球构造板块的"传送带"移动并最终进入地幔层。然而,埋入潜没区这种处理方式也违背了一些国际条约。
5.冰冻处理 核废料的温度一般很高,将其装入钨球中投放到较为稳定的冰原上,钨球会随着周围冰的融化向下移动,上方的融冰则又再次凝固。不过,冰原会发生移动,导致放射性物质会像冰山一样在海洋中漂浮。
6.封入合成岩 将核废料埋入地下需要考虑如何防止核废料污染周围的土壤和水。合成岩可以吸收清水反应堆和钚核裂变产生的特定废物。它们是一种陶瓷制品,能够将核废料封入晶格内,用以模拟在地质构造上较为稳定的矿石。
7.使用液压笼 一旦渗入地下水,地下核废料储存设施将变得尤为危险。如果在核废料周围建造一个类似三维深沟的水笼,地下水便不会渗入放射性物质。未来的核废料处理装置应该做到防泄漏,而液压笼的作用则是防止地下水污染的情况发生。
在过去30余年的运行中,中国核工业系统积存了几万立方米的中、低放固体废物,以及目前每年会产生约150吨高放废料。另外,专家推测,中国核废料存储空间上的压力会在2030年前后出现,那时,仅核电站产生的高放射核废料,每年就将高达3200吨。
目前,中国已建有两座中低放射核废料处置库,并准备再建两座,但还没有一座高放射处置库。已建成两座中低放射核废料处置库,分别位于甘肃玉门和广东大亚湾附近的北龙。
中低放废物处理:北龙处置场等
北龙处置场占地近21公顷,设计总处置容量为8万立方米,距大亚湾核电站5公里,距岭澳核电站4公里,广东及邻近地区核电站产生的中低放固体废物,都会被送往这里永久处置。自1991年勘探选址到2001年11月第一次暂存大亚湾核电站的废旧核导向筒,共耗时10年。
作为一种较为简单的民用核处理设施,北龙处置场在约13万平方米的范围内,设计了70个处置单元,可以处置8万立方米的中低放废物。每个处置单元就是一个17米×17米×7米的立方体屏蔽箱,由钢筋混泥土浇筑而成。当一个处置单元内充满废物货包之后,水泥浆将填充废物包之间的间隙,以求固定废物包,同时也起到增强屏蔽的作用。随后处置单元会被钢筋混凝土封顶。即使发生地震,它也是一个完整的水泥块,不会轻易破裂。
西北处置厂位于地表之下,距离地表有10-20米;北龙处置场建于地表之上,形成一个方盒子样子的封闭处。这个封闭处土埋之后形成山包,上面将种上植被,进行绿化。这两个中低放处置场,附近还要设置几十平方公里的安全屏障。
一个中低放处置场,一般需要与外界300-500年的隔离期。
高放废物处理:戈壁深处的"北山一号"
无论是北龙处置场或是西北处置场,都只能收贮核电站内产生的"软废物"。
2005年上半年,国防科工委专门开了一个处置高放射物质研讨会,着手进行中长期核废料处置规划,最后确定:中国将建设一座永久性高放射物质处置库,设计寿命10000年,容量要能储存100至200年间全中国产生的核废料,在满了之后就永久地封掉。即至少100年之后,大陆才会出现第二座永久性高放物处置库。根据中国核电发展规划,我国大约会在2015年至2020年左右,确定永久性高放射核废料处置库的库址。
为避免对环境造成不良影响,高放射性核废料必须经过严格的处理过程。这些核废料首先要被制成玻璃化的固体,然后被装入可屏蔽辐射的金属罐中,最后将这些金属罐放入位于地下500-1000米的处置库内。由于核废料的半衰期从数万年到10万年不等,在选择处置库时必须确保其地质条件能够保障处置库至少能在10万年内安全。
甘肃敦煌北山是一直以来传闻中的大陆首座地下核废料处置库,代号"北山一号"。不过它的准确名称是"高放废物地质处置库甘肃北山预选区"。这里位于敦煌莫高窟东南约25公里,是一片与海南省面积相当的戈壁滩,人烟非常稀少,整个地区人口不到1.2万人,可以说除了沙砾和枯黄的骆驼草以外,寂寞得连回声都没有。北山经济发展较为落后,周围没有什么矿产资源,建设核废料库对经济发展影响较小。这里气候条件也很理想,全年降雨量只有70毫米,而蒸发量却达3000毫米,因此地下水位很低,也就减少了放射性元素随地下水扩散的危险。北山还拥有便利的交通运输条件,库址距离铁路只有七八十公里。此外北山的地质条件非常优越,这里地处地壳运动稳定区,库址所在地有着完整的花岗岩体,而花岗岩是对付辐射的最好的'防护服'。国际原子能机构的专家们在北山进行考察之后称,北山是世界上最理想的核废料库址之一。
高放核废料处置场建设迫在眉睫
由于在核废料处置库建成之前,所有的高放射性核废料只能暂存在核电站的硼水池里。如果我们不能及时建成核废料处置库,中国核工业将面临着核废料无处存放的境地。
在这方面,美国曾有过惨痛的教训。美国原计划在1998年建成高放射性核废料处置库,但由于技术难度过高,尽管美国政府投入了大量财力、人力进行研究,最终还是不得不将建成时间延长至2010年。这一结果直接导致了美国40多个核电站储存核废料的水池全部爆满,造成了巨大经济损失并使核电站业主状告美国能源部。
我国的高放射性核废料处置库计划在2030-2040年建成,可以说已经相当紧迫。同时,高放射性核废料处置库又是一项耗资巨大的工程,以美国为例,其尤卡山核废料处置库工程预算达962亿美元。根据中国核电未来规模,中国高放射性核废料处置库将耗资数百亿人民币,容量足以容纳中国核工业未来产生的所有高放射性核废料。我们的处置库将把核废料永远地禁锢在地下深处。
Ⅱ 核电站用过的核废料是怎么处理的
核废料之处理方法
当地点,因而常因核废料的处理问题引起了纷争,究竟核废料应该如何处理呢
大致分为了以下三种方法:
1.玻璃固化法
玻璃固化法是将废料混入玻璃材料中作成一固化之产物,如同英Harvest 计画中
研究的.这种玻璃固化法废料是在圆柱状容器内制成,在英国现行的容器尺寸为
高3米,直径约半米.依目前的核能计画,约需 72000 个此类容器.(注二)
2.储存法
核废料掩埋法其实就像把食物放进仓库里一样,只不过他需要更精密的防护措
施.核能发电是利用核燃料分裂的热,产生蒸汽,推动发电器风扇发电.而核分
裂已减弱的燃料便必须丢弃,称为「核废料」.核废料因仍存在辐射,所以必须经
过一连串严密的手续,像是送去减容中心,减少废料的体积……等.而各核电厂
都自备燃料池可储存40年的时间,时间到了,便必须送去储存厂,大约10年
辐射已降低至无害,可像一般垃圾处理.(注三)
3.海洋掩埋法
所谓的海洋掩埋法就是......「深海投掷法」故名思义就是将核废料永久弃置於深海
底的意思,也就是海洋掩埋法.利用水泥固化法将核废料储存在钢筒内,经过数
年的暂时储放〈目前台湾存放在兰屿〉,等核废料中的放射性降的最低后,再投
掷到深海或数千公尺海沟中,作永久性储存.(注四)
A.核废料可否埋存於海底
具有高度放射性的废料是核能应用上无法避免的产物.一法是将这些废料存置於
深海底部,但须先将此项海床存置方法对环境的冲击及潜在的影响做一完整的
评估.高度放射性废料的产生是核能应用上无法避免的结果.在照过燃料元件再
处理过程中,将未曾用尽的铀及钸收回,以供再次使用;而在此过程中将产生
一些「高阶废料」这包括分离出来的分裂产物,一些没有被收回的铀和钸,其他
的锕系元素,以及一些活化产物.目前此类废料是以液体状态储存於适当的封闭
容器内.虽然在短时间(数十年)内此种储存方式颇合适,但现在理论是如欲做
长期存置,则应先将废料予以固化.目前的人造容器的寿命还不能长至可供长半
3/5
核废料之处理方法
衰期的废料在其内完全衰变.因此必须藉核转变先将放射性废料变成伤害性较低
之物质,再将之销毁移除(在此种作法曾经研究过但结果并不理想).另一方法
是先固化废料,再加以「处置」.「处置」的意义为将废料置放於某处而不再收回.
对於处置固化高阶废料的场所,曾有三种不同的建议:(1)深洋底(2)洋
底地表下(3)陆地下的地质岩层.关於这些建议,我们必须仔细审查研究,以
便将来作决定时有足够的资料,而能作出最佳的选择.英国国家放射防护委员会
最近对在深洋底的处置废料,所造成放射性的可能后果作了一番评估.在报告中
提出某些方面仍需要更多的资料与研究.在英国国家放射防护委员会的报告中,
主要是设计一种模式以研究积存於海洋底层的放射性物质如何回到人体,特别
是如何经由食物链导致人体感染.此项评估尽可能做得切合实际.在数据不族时
尽可能作较保守的假设,如此得到的结果会比较安全.其结果乃以个人之剂量或
一群人口的集体剂量表示出来.放射性废料的处置需要连续不断的作业,而上述
评估系针对核能发电总量为1.2×107(百万瓦一年)所产生的高阶废料的处理问
题.这大约是从现在到西元2000年全球核能发电厂攒生的总废料,我们估计届
时核能发电量为2.5×106百万瓦.尽管近年来在能量需求上的减少,可能使电力
的生产不能达此数,但数值上并不会因此而改变太多.再进一步假设废料中各种
同位素的含量系比照轻水反应器的废料比例.在西元2000年以内这是一种合理
的假设,因为届时即使有其他形式的热中子反应器,甚至是快滋生反应器的使
用,均将不会影响废料产量的数量级,也不致大量产生迄今仍为虑及的核种.
Ⅲ 核废料处理是各个核能发电国家的一大问题,日本是如何做的
日本不顾国际社会的谴责,甚至像海水中排放核废料。这也引发了周边海域的核污染问题。然而一般像解决核废料这种事情都是采用在无人区域进行深层次掩埋。然而由于日本它并不是一个无人区非常多的国家,而且它的土地面积非常的狭小,所以像海洋排放核废料是最方便的方式,但是这也给周边国家的海洋安全造成了很大的隐患。
当然日本的核电站设施在福岛核电站泄漏以前可以说是非常安全的,但是由于大地震的缘故,使得福岛核电站泄漏也引起了国际社会的强烈关注,在日本这样一个多地震多海啸的国家,是否应该建立这么多的核电站设施,是一个非常值得思考的问题。
Ⅳ 如何识别土地里面是否埋着核废料
核废料有放射性,一般用相关的检测仪检测放射含量即可识别。
核废料按放射性活度及危害大小,分为高、中、低三种。我国对放射性固体废物实行分类处置,即中低放固体废物实行区域近地表处置,而高放固体废物与α放射性固体废物实行集中的深层地质处置。根据世界核学会的数据,核废料中97%是中低放废物,只有3%是高放废物。
就流程而言,核电站乏燃料卸出后,要先存放在电站内的专门水池中冷却、降低辐射。不同的是,由于乏燃料中仍有部分未燃烧的铀和钚,我国同法国、日本等国选择对乏燃料进行后处理,可用的核素返回核电站,而后处理产生的高放废物,则要运至高放废物处置场,按照1万年不出问题的标准“入土为安”,因此,深层地质处置场是高放废物的最终归宿。
Ⅳ 关于核废料辐射的问题
从绝对安全的角度考虑,还是远离。虽然核废料理论上经过处理后辐射强度大大降低,如果深埋的话应该没有问题,但是你不知道他们到底是如何具体处理的,保险起见,还是远离。
Ⅵ 核电站的核废料都是怎么处理的处理不好会有什么危害
地球是我们人类赖以生存的家园,在这颗星球上,不管是低等动物,还是高智慧的人类都离不开资源的需求。只不过动物的需求相对较简单,而人类由于形成了文明,所以更注重能源的需求。为了减小大气的污染,近年来核电、水电、太阳能、风电等新型清洁能源得到了飞速发展,其中核电是争议比较大的能源。而如何处理掉这些废料,就成了很多科学家头疼的问题。
由于该地区没有地震、没有海啸、基本没有自然灾害,回填之后也完全不需要人力管理,这个核废料处置库的设计寿命10万年。世界上其他国家,包括我国也都在建设永久性核废料处置库。这样处理之后的核废料,唯一需要担心的就是人类的好奇心。即使这些核废料在地底10万年也不会泄露,但是如果这些设施被不知道多少年后的人类发现了,好奇心会让他们想要打开它,这也是很自然的事情。就像金字塔是设计给古埃及法老们永久休息之地。但是我们打开了它们,因为我们很好奇。而打开核废料处置库,将释放辐射到未来的文明中。我们该如何警示这些几千年甚至几万年后的文明,让他们知道好奇心会害死猫呢?什么时候我们才能真正安全的处理核废料问题,而不仅仅是将它们掩埋留给子孙去解决呢?
Ⅶ 地质构造对煤层倾角和煤层深埋的影响是什么
煤在埋藏、复形成及其后的变化制中,由于地质构造运动的影响,煤层的倾角和煤层的埋深会有一定的变化。聚煤盆地在沉降的过程中会继续不断接受沉积物,使得煤的埋深增大。如果盆地所在区域发生构造抬升,那么煤层就会随之抬升,如果表面存在风化和剥蚀甚至会使煤层出露地表。构造运动可以使原始的水平产状的煤层发生倾没或者翘倾,形成倾斜煤层。如果煤层所在地区发生褶皱运动,会使煤层发生褶皱变形。断层的存在会使煤层失去完整性和连续性。
Ⅷ 核废料的深埋指的是多少米
目前,核废料的处理,国际上通常采用海洋和陆地两种方法处理核废料。一般是先经过冷却、干式储存,然后再将装有核废料的金属罐投入选定海域4000米以下的海底,或深埋于建在地下厚厚岩石层里的核废料处理库中。美国、俄罗斯、加拿大、澳大利亚等一些国家因幅员辽阔,荒原广袤,一般采用陆地深埋法。为了保证核废料得到安全处理,各国在投放时要接受国际监督。
Ⅸ 核废料的处理有哪些难题
LZ的这几个问题非常难回答,但有一点是肯定的,这个世界上没有100%的“安全”可言。关于大陆的核废料暂存场所,在下暂时没找到您的这个答案从何而来,但是您所说的第二条“一个在深圳盐田区近海某山坳”这个说法是绝对站不住脚的,尤其是作为大亚湾的核废料暂存场所更是不可能。从技术上讲,大部分被掩埋的物质应该被称为“使用过的核燃料”,即所谓的“乏燃料”。在核燃料被运抵反应堆后,新燃料放在最外层。反应堆被封闭后一般能连续运行一至两年。然后反应堆被重新打开,移除最内层的(也是最旧的)核燃料,并将其余燃料依次向内层移动,最后填充新燃料。一组燃料在反应堆内会经历3次这种循环,总共3至6年的时间。这些被移出的燃料组含有高放射性的裂变产物,并将产生数十千瓦热辐射,因此往往都被保存在由钢筋混凝土建造的乏燃料贮存池中,并由非常纯净的冷却水负责降温。这些元素的半衰期只有几年。一段时间后,这些燃料组就被转移到钢制套桶中,在那里干燥,充入惰性气体,然后被封闭。这些套筒最后被装入巨大的混凝土储存桶中,靠自然的空气循环带走燃料释放的微小热量。不过,乏燃料中的锕系元素很让各方头疼。当铀原子吸收一个中子但没有发生裂变时,就产生了锕系元素。这些物质的半衰期可达数十万年。在乏燃料中,约有95.6%的燃料未参与反应。剩余部分中,有3.4%是裂变反应产物,1%是钚这类半衰期较长的锕系元素。国际原子能机构数据显示,一座装机容量1000兆瓦的反应堆,每年产生大约33吨核废料。在储存桶中存放时间越长,核废料衰变比例就会越大。一旦因核废料热辐射过高而造成附近的地下水沸腾,产生的蒸汽就会使岩石碎裂,导致核废料扩散。填埋场的选址必须选择远离人群居住地,埋藏较深,无浅层地下水的地方,这样可以最大限度地避免核废料因自身高温或衰变反应而造成容器破裂进而对水体造成污染。至于事故发生的可能性,只能说目前我们对核处理还处于极为初级的阶段,我们运用核能的时间还远不及核废料的半衰期长,目前关于核废料的填埋依然是走一步看一步……满意请采纳