怎么从水文地质看地下水流向
❶ 自然电场法在确定地下水流向方面的应用
大家知道,由渗透作用引起的过滤电场其方向与地下水流向有关。在地下水埋藏不深、流速大、地形较为平缓的条件下,应用自然电场法可以确定地下水的流向。野外观测方法常采用环形观测法,即在一测点上,用两个不极化电极沿直径二倍于地下水埋深的圆周,在不同方位上进行电位差的测定,然后将观测结果绘成电位差方位图。正常情况下,在地下水流向方位上测得的电位差值最大,在与其垂直的方向上,电位差值应为零,见图3⁃1⁃9所示的“8”字形电位差方位曲线。在自然条件下,由于地下水运动的不均匀性,观测结果多为椭圆形,其长轴方向便为地下水运动的轴向;再根据所观测得的电位差极性确定地下水运动方向,即运动方向是由负电位指向正电位。
图3⁃1⁃9 环形观测布置及“8”字形电位差方位曲线
图3⁃1⁃10为河南荥阳地区利用自然电场法了解区域性地下水流向的实测结果,根据观测结果,确定地下水运动方向是从西南流向东北。为了与水文地质资料对比,图上还绘出了地下水等水位线。两者对比可见,其反映的流向是一致的。另外,在图的西北部,即黄河附近,在两个测点上所反映的方向是南东一北西。这表明地下水与地表黄河水存在有补给关系,根据两者水位资料对比,地下水位高于黄河水位,因此,确定该区是地下水补给黄河水,如图中所示的指向。
图3⁃1⁃10 河南荥阳地区潜水流向图
1—铁路;2—村庄;3—电位差方位曲线;4—等水位线
关于用自然电场法找油气的问题,国外于20世纪70年代就有人开展过这方面的试验研究(Pirson SJ,1980)。国内自20世纪80年代以来,在某些油气田上也相继进行了不少试验研究工作(王一新等,1983)。试验结果表明,在多处含油气构造上均能观测到自然电位的负异常。由此认为用自然电场法可检测地质构造的含油气性。但其产生机理及异常区分问题,尚有待进行深入研究。
❷ 地下水流向原则
根据水流流向的原则,地下水流向应该是从水位高处向地处流,从图中可以看出,乙处海拔最高,因此地下水的水位也较高,因此由乙流向甲丙.
故选C.
❸ 有人能断出地下水的具体走向和位置,凭的是什么
当然是最准确的是靠地下水等水位线,通过水文地质调查,获得区域的水文地质调查点的地下水位标高,再把相同标高的点,用平滑曲线相连,类似等高线。
地下水流向总是垂直于等水位线的,所以你需要做垂线。
进而得到水力坡度。
❹ 地质概况和地下水分布
8.5.5.1 地质构造
祁连山区是地质构造强烈上升带,地势高,是中、下游盆地松散碎屑物质的来源区。平原区的构造-地貌盆地呈南北两排展布。南部的张掖、酒泉盆地地势较高,海拔1300~1700m,有大型洪积扇分布。盆地南缘与祁连山山区之间多为断层相接,压性断裂与祁连山麓中新生代褶皱一起构成阻水屏障。古近系或白垩系构成盆地基底,其上沉积了数百米乃至千余米厚的洪积-冲积相第四系松散物,其间赋存丰富的地下水。
北部金塔-花海子盆地,地势较低,海拔1100~1450m,盆地边缘分布大断裂,基底为古近系。与南部盆地比较,北部第四系沉积厚度较小,一般小于400m,受到基底断块升降运动的控制。
额济纳盆地内发育的NE、NW及NNE向断裂构造,将其分割成规模不等的棋盘格式地块,凹陷与隆起相间分布,盆地中心地带地势低洼,地面海拔890~910m。第四纪以来,区域地壳比较稳定,额济纳平原是缓慢隆起带内的沉降区,相对沉降幅度不大,而且沉降不均匀。
中新生代以来,祁连山继续强烈上升,进入了以强烈的差异性断块为主的构造运动发展时期,主要表现为地壳上升和相对沉降,走廊盆地相对下降,在上升和沉降过渡带形成一系列的褶皱和断裂。一系列NE、NW向大断裂和沿断裂所产生的断块差异,将黑河流域分割成规模不等的构造-地貌单元,这种断块的差异性升降,形成了祁连山及众多小型山间盆地、走廊南北串珠状盆地及北部山区,中游为张掖盆地和酒泉盆地(称为南部盆地),下游为额济纳盆地(称为北部盆地)。
由于南部山地强烈上升,岩层受到风化剥蚀,为南部各盆地第四系沉积物的形成提供了丰富的物质来源。走廊盆地相对下降,又为第四系沉积物的沉积提供了良好的场所。因此南部盆地第四系发育,厚度较大(表8.8)。
表8.8 黑河流域第四系的分布与岩性特征
中部山地和北部山地上升幅度较小,相对稳定。北部盆地的第四系松散层沉积物主要来源于南部盆地,厚度较薄,沉积颗粒较细,磨圆分选性比较好。
黑河流域各盆地第四系松散层的基底,分别为下古生代以前的变质岩和火成岩组,侏罗系至上古生界碎屑岩组,古近系、白垩系以泥岩为主的细粒岩组。在大多数地区,其基底为古近系或白垩系。
8.5.5.2 地下水分布
受地质和地形地貌的控制,黑河流域不同地质单元的水文地质条件各异,气候、地貌和第四系地层的分布均具有明显的分带性,导致地下水赋存和分布也具有明显的分带特征。
根据流域地下水的赋存条件和水动力特征,流域地下水可分为基岩裂隙水、碎屑岩类裂隙-孔隙水和松散岩类孔隙水。
1)基岩裂隙水。受地质构造和区域气候的控制,流域周围的山区分布有基岩裂隙水。南部祁连山区构造裂隙发育,由于山区降水量大,基岩裂隙水比较丰富,矿化度较低;而在北部山区,由于降水量很小,基岩裂隙水贫乏,矿化度较高,对流域内各盆地地下水的补给意义不大。
在祁连山区基岩裂隙水主要分布于3800m以下的中高山区,含水层岩性为古生界至中新生界的浅变质岩和碎屑岩,受构造和裂隙发育程度的影响,各地段岩层的富水性极不均一,单泉流量0.01~12L/s,集中出露于裂隙发育的构造破碎带。在走廊北山(龙首山、合黎山和马鬃山)基岩裂隙水贫乏,仅在大断裂或局部变质岩和岩浆岩的强烈风化段存在矿化度较高的裂隙水,单井出水量一般小于10m3/d。
2)碎屑岩类裂隙-孔隙水。在祁连山区,碎屑岩类裂隙-孔隙水主要分布于上古生界至新生界地层,岩性主要为砂岩、砾岩、砂泥岩和泥岩。二叠系-侏罗系裂隙-孔隙水主要分布于中高山区,单泉流量0.01~0.2L/s,水质较差。白垩系-古近系裂隙-孔隙水主要分布于祁连山山前地带,富水性较差。下更新统裂隙-孔隙水主要分布于山前褶皱隆起带浅部,富水性较差。
在走廊北山,裂隙-孔隙水主要分布在侏罗系、白垩系和古近系砂砾岩、砂岩和泥岩中,孔隙、裂隙发育极不均匀,由于降水稀少,富水性差,单井出水量小于100m3/d。走廊北山同时也构成隔水层,阻隔中游盆地地下水侧向流入下游盆地。
3)松散岩类孔隙水。在祁连山区,孔隙水主要分布于山间断陷盆地,含水层岩性主要为泥质砂砾岩和砂砾卵石,含水层厚度在100m左右,地下水位埋深一般为1~8m,富水性较弱至中等。
在走廊北山,孔隙水主要分布于各冲沟沟谷中,呈股状不均匀分布,在中高山区的沟谷中,含水层厚度4~10m,岩性为第四系砾石和卵石,水位埋深1~2m,单井涌水量5~350m3/d。低山丘陵沟谷中,含水层厚度2~6m,岩性为第四系砾石和卵石,水量贫乏,单井涌水量小于100m3/d,水质较差。
流域各盆地多为冲洪积平原和细土平原,分布巨厚的第四系松散沉积物。中游盆地的第四系沉积物厚度最大可达1000m,向北厚度逐渐减小。下游北部盆地第四系沉积物厚度一般在50~500m,自南向北逐渐变薄。
中游盆地主要包括张掖盆地和酒泉东盆地。张掖盆地的南缘与祁连山北缘以断层接触(图8.8)。这种压性断裂带连同祁连山北麓中新生界褶皱一起构成阻水屏障,使祁连山区的地下径流很难直接进入盆地;北缘与走廊北山和东侧与大马营盆地均以断层接触,西侧与酒泉东盆地接壤,榆木山-高台隐伏隆起构成张掖盆地与酒泉东盆地的分界。
受构造和地貌的制约,盆地第四系含水层的分布在空间上变化很大,总的特点是自山前至盆地内部含水层的厚度逐渐变大,颗粒渐细,由岩性比较均匀且粒度较粗的单一潜水含水层逐渐变为砂层、黏性土层相间的潜水-承压水多层含水层。含水层的厚度以盆地中部为最大,可达500~1000m,向南、北两侧渐薄,递变为100~200m。根据地下水埋藏条件,张掖盆地南部地下水为单层结构潜水系统,北部为多层结构潜水-承压水系统。
图8.8 张掖盆地水文地质剖面图(据张光辉等,2005)
祁连山山前至冲洪积扇扇缘,主要为单一含水层结构的潜水系统。扇群带的地下水,受构造、地貌的控制,水位埋深变化大,总的趋势是自山前至盆地内部,地下水埋藏深度逐渐变浅,并在北部细土平原区出露泉水。山前洪积扇顶部地带,地下水埋深大于200m,最大达500m,含水层岩性主要为粗颗粒的砂砾卵石,渗透系数达100~400m/d;扇中地带,地下水埋深一般为50~100m,含水层岩性主要为砂砾石和中粗砂;扇缘地带,含水层颗粒逐渐变细,地下水位埋深逐渐变浅,一般仅为10~20m,在张掖-临泽一带,地下水以泉水形式溢出,含水层结构由单一潜水系统逐渐变为多层结构潜水-承压水系统。
在泉水溢出带以下的细土平原地带,含水层系统为多层结构的潜水-承压水系统,上部为潜水,下部为承压水,各含水层之间没有稳定的隔水层,存在一定的水力联系。含水层岩性主要以亚砂土、亚黏土和砂砾石互层为主,含水层单层厚度20~30m,上部第一承压含水层顶板埋深在10m左右,承压水头一般高于潜水位1~2m,并随着顶板埋深的增加而升高。
溢出带及细土平原区,地下水位埋深一般小于5m,在细土平原的沟壑和洼地,有成片泉水出露。在临泽的农场-小屯一带承压水井为自流井,地下水位高出地表0.3~3m。
在扇缘地带黑河河床附近,在140m深度以内黏性土层缺失,为单一岩性的含水层,隔断了细土平原北半部承压水区,而使张掖与临泽形成两个各自独立的承压水地段,如图8.9所示。
张掖盆地的富水性主要分布在黑河-梨园河洪积扇中下部,单井涌水量大于5000m3/d;祁连山前洪积扇群带和黑河沿岸,单井涌水量在3000~5000m3/d;细土平原,单井涌水量在1000~3000m3/d。
酒泉东盆地南部与祁连山区以断层接触,东侧与张掖盆地相接,西部以嘉峪关断裂和文珠山隆起为界,与酒泉西盆地接壤。酒泉东盆地地下水埋藏条件、含水层结构与张掖盆地基本相似,冲洪积扇缘以南为单层结构潜水系统,北部为细土平原多层结构潜水-承压水系统(图8.10)。
图8.9 明海—临泽-张掖水文地质剖面图(据钱云平等,2008)
图8.10 酒泉东盆地水文地质剖面图(据张光辉等,2005)
酒泉东盆地南部山前冲洪积扇带,分布着中、上更新统80~200m厚的卵砾石含水层,渗透系数为100~400m/d。在北部细土平原,含水层厚度仅50~100m,渗透系数为10~80m/d。盆地含水层的岩性自南向北,从西到东由卵石和砾石渐变为砂砾石、砂及粉砂,因而盆地南部、西部单一含水层透水性和富水性远比北部多层含水层大。细土平原多层含水层的岩性主要为砂砾石、中细砂、亚砂土和亚黏土,黏性土隔水顶板埋深10~15m。
在山前地带,地下水埋深一般较大,最大可达300m,单井涌水量大于5000m3/d,地下水矿化度一般小于1g/L,水化学类型大多为HCO3型水。在戈壁带前缘,地下水埋深变为10m左右;到细土平原带,地下水埋深一般小于5m,单井涌水量1000~3000m3/d,矿化度一般为1~3g/L,局部地区如盐池附近,矿化度大于3g/L,水化学类型大多为SO4·HCO3型或SO4型。
下游盆地包括鼎新盆地和额济纳盆地。鼎新盆地属金塔-花海子盆地的一个子盆地,为NW走向的狭长形断陷盆地,含水层为冲洪积卵砾石层,厚度100~160m。南部合梨山将鼎新盆地与张掖盆地分割,两者间水力联系微弱;北部由地湾东梁隐伏隆起和东西两端基岩残丘与下游额济纳盆地分隔,地湾东梁北缘-咸水井断裂为一活动断裂,使地湾东梁隆起。隆起南侧鼎新盆地地下水埋深较浅,一般为3~10m,而隆起北侧,额济纳盆地地下水埋深较大,一般大于30m,鼎新盆地的地下径流以地下跌水的形式进入额济纳盆地。鼎新盆地地下水包括潜水和承压水两种类型。在鼎新盆地的黑河两岸狭长地带,含水层岩性主要为粉细砂夹砾石为主。
额济纳盆地位于黑河流域北部,盆地南与甘肃省鼎新盆地相邻,西以马鬃山剥蚀山地东麓为限,东接巴丹吉林沙漠,北抵中蒙边境。额济纳盆地为中新生代断陷盆地,盆地第四系松散沉积物的厚度为50~500m,自南向北渐薄,盆地内部基底以侏罗系地层为主。在第四系松散沉积物内广泛分布有比较丰富的孔隙水,含水层主要为中下更新统松散沉积物。自南向北,含水层岩性颗粒逐渐变细,含水层层次增多,地下水位埋深变浅,富水性变差。盆地中部狼心山木吉湖北东向隆起带控制了盆地含水系统的分布和岩性特征。长征站-赛汉桃来-额济纳旗一带第四系厚度达200m,赛汉桃来沉降中心厚度超过300m;盆地东南部古日乃地区第四系厚度大于150m,中部含水层厚度较大。
在额济纳盆地,以长征站-木吉湖-梭梭头一带为界,以南主要为单一的潜水,向北及向东逐渐过渡为双层或多层含水层(潜水-承压水)系统。图8.11和图8.12分别为额济纳盆地南北向和东西向水文地质剖面图。可以看出,额济纳盆地南部为单一潜水含水层,含水层岩性主要为砂砾石或粗砂,厚度大于70m。向北至老西庙及木吉湖,含水层以中细砂为主。向北至赛汉桃来和额济纳旗,含水层为粉细砂或粉砂,至北端的居延海,含水层以粉砂和含泥粉细砂与黏土互层。盆地潜水埋深自南向北逐渐变浅,在盆地南部,狼心山以南,地下水埋深一般为10~30m,至老西庙、木吉湖一带由5~10m变为1~3m。在索果淖尔苏木以北,潜水位埋深一般3~5m,黑河沿岸为1~3m。
图8.11 额济纳旗盆地南北向地质剖面图(据钱云平等,2008)
北部居延海至中蒙边界一带,含水层组成以冲、洪积物为主,南部地区洪积和冲洪积物交叉堆积,岩性变化相对复杂,主要为砂、黏性土、黏土,基底为砂岩、泥质砂岩,含水性较差。由南向北,含水层厚度由大变小,富水程度由好变差。在古日乃湖区一带,含水层主要为中细砂和粉细砂。古日乃地下水埋深一般小于3m,在地势低洼处有泉水出露。
图8.12 额济纳旗盆地东西向水文地质剖面图(据张光辉等,2005)
在湖西新村、白墩东梁一带,为盆地冲洪积扇的顶部,地下水水量丰富,钻井涌水量大于3000m3/d;向北至赛汉桃来和额肯查干牧场,以及向东至古日乃,钻井涌水量1000~3000m3/d;向北至额济纳旗城关和古日乃以西,钻井涌水量较小,涌水量为100~1000m3/d。在盆地北部的八道桥和天鹅湖一带,钻井涌水量为10~100m3/d。
盆地承压水广泛分布在盆地的北部,在老西庙、闫家井及木吉湖、梭梭头一线以东和以北地区,相对隔水层主要由黏土、亚黏土组成,厚度为5~15m,分布稳定,埋深一般30~50m不等,含水层厚度一般为100~200m,含水层岩性在水平方向的变化与潜水一致,自南向北由砂砾石、粗砂、中细砂逐渐过渡到细砂、粉细砂。由南向北,亚黏土、亚砂土夹层增加,含水层厚度减小,含水层的富水性由强变弱。隔水层的分布在水平、垂直方向极不稳定,没有稳定的区域隔水层,潜水与承压水有一定的水力联系,存在着由下向上的越流补给。在黑河尾闾居延海一带,地势低洼,深层承压水水头最高可高出地面1m,有自流井。
黑河来水是下游盆地地下水的主要补给来源,在盆地南部,地表水渗漏补给地下水,地下水径流到长征站-木吉湖-梭梭头一带后,地下水流向多层含水层系统,自南向北流向居延海,并最终以蒸散发方式排泄。
❺ 地下水类型与水文地质分区
一、区域地下水系统划分
(一)地下水系统的基本特征
地下水系统与地表水、大气降水、包气带土壤水及人类活动有着密切的关系。河南省地下水系统,总体上主要受水文系统的控制,但在平原区及部分岩溶山区地下水系统与水文系统不完全一致。
河南省地下水系统,在垂向上划分为浅层地下水系统和深层地下水系统,各自具有明显的输入、输出、储存与调节功能。浅层地下水系统为开放型系统,它直接接受大气降水、地表水、灌溉回渗水等垂直入渗补给输入,通过潜水蒸发、人工开采、侧向径流等排泄输出,地下水水力性质属于潜水—微承压水,其与外部环境条件关系密切,环境条件的改变,直接影响着系统功能的变化,且反应迅速。深层地下水系统以半封闭为主,地下水水力性质为承压水。它不具备直接接受大气降水、地表水等垂直入渗补给输入的条件,在天然状态下,仅有微量侧向径流输入,并通过缓慢的径流和越流输出,在开采条件下,则变为以侧向径流与来自上部的微弱越流补给输入,以人工开采为主输出。
(二)地下水系统的划分原则
正确地进行地下水系统划分,有助于水资源的客观评价、综合开发和实行科学的优化管理。为了研究河南省地下水资源的形成,评价、管理和保护地下水资源,运用系统理论原理,以浅层地下水系统为主体,按以下原则进行地下水系统划分。
(1)地下水系统是各种组成要素的整体,是一个存在于一定环境之中的相对独立的整体,是补、径、排和水循环的统一体,进行地下水系统的划分,应考虑储水空间的完整性和水循环的连续性。
(2)地下水系统的地质、水文地质特征与含水介质场的结构,是系统的基础。进行地下水系统划分,应考虑其地质、水文地质特征与含水介质场的结构。
(3)地下水系统的环境条件与其各种要素之间,是相互联系、相互依存、相互作用和相互制约的关系,进行地下水系统划分应考虑系统的环境条件。
(4)浅层地下水系统属于开放型地下水系统,需考虑系统的动态性,深层地下水系统只反映平原区,山区不作详细研究。
(5)按照地下水系统、地下水亚系统两个层次进行划分。
(三)地下水系统的划分依据和边界条件
河南省在水文地质研究史上没有进行过全省范围的地下水系统划分。本次工作在研究前人成果的基础上,用系统论的分析方法,尝试对全省山区及平原区地下水系统进行划分。在各地下水亚系统,特别是山区亚系统内,常形成独立的、具有一定开发利用价值的岩溶地下水子系统,由于本次工作精度所限,不再进行单独的评价。综合考虑河南省地下水系统的介质场、动力场、化学场等特征及与水文系统的关系,各地下水系统、亚系统划分依据和边界条件的确定原则如下:
(1)地下水系统。从水文流域系统观点出发,以区域地质构造和沉积环境为基础进行地下水系统划分。山区以地表分水岭和区域地质构造为边界圈定范围,地表分水岭与地下分水岭大部分地区一致,局部地段受地质构造影响,二者不一致,其界线依地质构造情况确定;平原区按沉积环境及地下水趋势面圈定边界范围。地下水系统命名冠以地表水系名称。
(2)地下水亚系统。进行亚系统划分应考虑水循环和水动力特征,以次级分水岭、地质构造、含水层系统的结构组合类型及地下水流场特征确定亚系统边界,以较大的二级流域为单位划分亚区,太行山及桐柏、大别山区等,没有形成大的二级水系,按区域划分。以亚系统冠以地貌特征或河流名称和地下水类型命名。
(四)地下水系统的划分及特征
根据上述地下水系统划分原则,将河南省地下水划分为卫河地下水系统(I)、黄河地下水系统(Ⅱ)、淮河地下水系统(Ⅲ)、汉水地下水系统(Ⅳ),并依据其地质、地貌特点,将其分别划分出二、四、三、二个地下水亚系统。另外,信阳地区南部局部地段为大别山南坡,亦属汉水地下水系统,因面积小,未单独划分,暂归并于淮河地下水系统的大别桐柏地下水亚系统。现将各地下水系统、亚系统的水文地质特征分述如下:
(1)卫河地下水系统(I):
①太行山地下水亚系统(I1):位于太行山东麓、东南麓,为中低山地形,面积约4916km2。构造方向主要为SW—NE,含水岩层主要为下古生界碳酸盐岩,岩溶裂隙发育,富水性好,山前常有断裂及弱透水岩层阻水,形成大的岩溶水泉点。典型的岩溶大泉有九里山泉、百泉、小南海泉、珍珠泉等,每个岩溶水泉域都形成一个相对独立的地下水子系统。上游与山西晋城地区岩溶水沟通,焦作一带为岩溶水的集中排泄区。
按照泉域自北向南分为黑龙潭子系统(I1-1),珍珠泉子系统(I1-2)、小南海子系统(I1-3)、三门寺泉子系统(I1-4)、许家沟泉子系统(I1-5)、三门河子系统(I1﹣6)、百泉子系统(I1-7)和九里山泉子系统(I1-8)。
②卫河冲洪积平原地下水亚系统(I2):位于博爱、淇县、安阳一带,系卫河及其支流冲洪积作用形成,面积约5849km2。地形上包括各支流的山前冲洪积扇及其扇前洼地。地下水为孔隙潜水,水文地质条件差别较大,洪积扇的中上部含水层粒度较粗,富水性较好,扇体的下部及扇前地带颗粒细,富水性差。主要冲洪积扇有丹河冲洪积扇、峪河冲洪积扇、黄水河—百泉河冲洪积扇、沧河—淇河冲洪积扇、安阳河—漳河冲洪积扇等。地下水排泄,主要为开采,其次为蒸发排泄。
(2)黄河地下水系统(Ⅱ):
①宏农—青龙涧河地下水亚系统(Ⅱ1):含宏农涧及三门峡以西黄河小支流流域,面积约4624km2。东界为扣门山和三教地阻水断层,西界至省界,南界基本与地表分水岭一致,北界为黄河。水文地质条件较复杂,灵—陕盆地为孔隙水,沿黄河地带受三门峡水库水位变化影响较大,一级阶地及漫滩区有开发潜力,二、三级阶及塬区等大部分已超采。北部及东部低中山区为基岩裂隙水及岩溶水,基岩裂隙水富水性弱,无开发利用价值。三门峡东部及杜关背斜轴部地带岩溶地区相对富水,具有一定的供水意义,可进一步勘探。
②伊洛河地下水亚系统(Ⅱ2):含伊洛河流域及河口附近直接入黄的支流流域,面积约18630km2。本区大部分为基岩山区及黄土岗地区,地下水较贫乏,一般不具备供水意义。洛阳及偃师、宜阳、洛宁等地,沿洛河河谷地带,地下水补给条件好,水量较丰富,资源模数为(20~30)×104m3/(km2.a),是沿河城市供水的主要水源;其次是岩溶水,地下水资源相对较丰富,主要分布于嵩山北麓、崤山东段及熊耳山北坡等地,较大的泉点有圣水峪泉、仁村泉、龙门泉、妙水寺泉等,由于地下水开采及矿坑排水等原因,现大部分泉已干涸。
③沁蟒河地下水亚系统(Ⅱ3):含沁蟒河流域河南境内大部地区及西部黄河北岸直接入黄的小支流流域,面积约1609km2。中西部地下水主要向基岩裂隙水,富水性较弱;东北沁河及蟒河冲洪积扇地下水丰富,据沁北电厂勘探报告,沁河冲积扇地下水可采资源为3m3/s,加上冲洪积扇以上沁河河谷地带,地下水可采量可达6m3/s;东北部为岩溶分布,地下水亦较丰富,在济源多青附近,岩溶地下水通过封口断层补给第四系孔隙水。
④黄河冲洪积平原地下水亚系统(Ⅱ4):位于洛阳市吉利区以下,郑州黄河铁路桥以上为扇把,以下为扇形地,面积约44363km2。扇形地岩性由上游到下游、由主流带向两侧边缘,由粗变细。主流带岩性主要为细砂、中砂、粉砂,西北部及东南部边缘地带岩性主要为粘性土,基本无含水砂层,与邻区间形成弱透水或隔水的边界。地下水为潜力及微承压水。地下水总体流向为自西向东,由于受黄河影响,形成黄河北地下水流向为自西南向东北,黄河南地下水流向自西北向南东。根据地下水趋势面,将该亚系统划分为黄河北、黄河南及黄河影响带三个地下水子系统:黄河北子系统地下水开采量大,超采严重;黄河南子系统地下水基本处于采补平衡状态;黄河影响带子系统地下水补给条件优越,含水层富水性最好,补给模数可达20×104m3/(km2.a)左右,沿黄河地带尚有较大开发潜力。
(3)淮河地下水系统(Ⅲ):
①沙颍河上游地下水亚系统(Ⅲ1):位于嵩山以南,含嵩山北麓及箕山和外方山东段,面积约11890km2。地质构造线方向为近东西向,含水层分布与构造线方向一致。主要含水层为下元古界碳酸盐岩,局部河谷地带第四系含水层较好,其他基岩裂隙含水层富水性差。碳酸盐岩岩溶裂隙含水层主要分布在嵩山北坡、箕山南北两侧及外方山北麓,岩溶水径流方向主要为自西向东。主要岩溶大泉有超化泉、灰徐沟泉、告成泉、柏树咀泉、观音堂泉等,由于岩溶水开采量大,加上矿坑排水,现大部分泉点已干涸。第四系松散岩孔隙水主要分布在汝河河谷地带,郏县、汝州境内汝河河谷宽度大,含水层为砂、卵石层,富水性好,具开发价值。
②桐柏大别山地下水亚系统(Ⅲ2):含桐柏山南坡和大别山河南部分,面积约10785km2。地层主要为火成岩及变质岩,地下水主要为风化裂隙水,补给条件差,补给模数小于5×104m3/km2。含水层富水性弱,地下水未具开采价值,只能作为当地居民分散用水水源。
③淮河冲洪积平原地下水亚系统(Ⅲ3):分布在黄河冲洪积平原亚系统以南,含淮河平原及桐柏、大别山山前岗地,面积约37159km2。接触地带山区基岩透水性弱,岗地及平原区第四系松散层主要为粘性土,二者水力联系很弱,只在山前河谷出口处山区对平原区产生补给作用。本区水文地质条件差异较大,平原区地下水相对较丰富,地下水位埋藏浅,含水层富水性较好,目前开采强度不大,尚有开采潜力;岗地区地形起伏大,补给条件差,含水层薄,富水性弱,在岗间河谷地区含水层相对较好,地下水具有一定的开发价值。地下水排泄主要为蒸发及开采。
(4)汉水地下水系统(Ⅳ):
①伏牛山—桐柏山地下水亚系统(Ⅳ1):含伏牛山南坡、外方山西南段及桐柏山西坡,为一环形的中低山地形,面积约15584km2。地下水主要为基岩裂隙水,水文地质条件差,一般不具备开发利用价值。西部淅川一带发育下古生界碳酸盐岩,岩溶裂隙发育较好,地下水相对较丰富。碳酸盐岩的展布方向为北西—南东向,主要河谷发育方向为南北向,河谷地段为地下水的主要排泄区。
②南阳盆地地下水亚系统(Ⅳ2):含盆地内的河谷平原及周边岗地,面积约11598km2。岗地上部为粘性土,透水性差,地下水补给条件差,富水性弱;唐、白河河谷地带,含水层为砂砾石层,地下水的补给条件好,富水性强,是城市供水的主要水源。地下水径流方向总体上为自北向南,东西部岗地局部流向为向西或向东。地下水排泄,主要为开采排泄,其次为径流排泄。
二、含水层系统特征
按地下水的赋存条件和含水层组的特征划分为三种基本类型。
1.松散岩类孔隙含水岩组
主要分布在黄淮海冲积平原、山前倾斜平原和灵三、伊洛、南阳等盆地中,面积约12.0×104km2,地下水主要赋存在第四系、新第三系砂、砂砾、卵砾石层孔隙中。根据松散岩类含水层的岩性组合及埋藏条件,一般划分为浅层、中深层、深层三个含水层组。
(1)浅层含水层组(埋深<60m)。主要分布在黄淮海冲积平原、太行山前倾斜平原、南阳、伊洛、灵三盆地和淮河及其支流河谷地带,含水层主要为冲积、冲洪积砂、砂砾、卵砾石,结构松散,分选性好,普遍为二元结构,具有埋藏浅、厚度大、分布广而稳定、渗透性强、补给快、储存条件好、富水性好等特点,该含水层组一般为潜水,局部为微承压水。
①黄河冲积平原:主要是全新统形成的黄河大型冲积扇,冲积扇始于沁河口,向东北以卫河为界,向东南以贾鲁河—颍河为界。含水层为砂砾石、中粗砂、中细砂、细砂、粉细砂组成,永城南部有亚粘土孔隙裂隙含水层。含水层总的变化规律是向前缘和两翼颗粒变细,厚度较薄,层次增多,富水性减弱,矿化度增高。黄河南扶沟—杞县以西、黄河北濮阳—内黄的西南属黄河冲积扇中上部主流相,含水层以中粗砂含砾石、中细砂为主,厚度12~25m,顶板埋深5~20m,单位涌水量10~30m3/(h.m),渗透系数10~30m/d;内黄—濮阳东北、商丘—民权西南为泛流带相,泛道和边缘相相间呈条带状,含水层为中细砂、细砂和粉砂,厚10~15m,埋深10~20m,单位涌水量5~15m3/(h.m);商丘的东北部和范县—长垣一带属冲积扇的前缘相,含水层以粉细砂为主,厚度小于5m,埋深10~35m,单位涌水量小于3m3/(h·m)。地下水流向黄河南为西北—东南向,黄河北为西南—东北向。矿化度自西向东由小于0.5g/l过渡到2~5g/l,局部地段大于5g/l。
②淮河冲洪湖积平原:分布在漯河东南、确山以东、淮河以北至颍河,主要为中上更新统含水层。沙汝河平原上游,含水层为全新统—中更新统砂砾石,厚度10~44m,单位涌水量大于25m3/(h·m),河道带及中游河间地块,含水层厚度10~20m,西部为砂砾石,东部为中细砂,单位涌水量5~10m3/(h·m);平原区含水层主要是中上更新统冲洪湖积细砂、中细砂,局部含泥质和砾石,呈带状透镜状穿插,厚度8~25m,埋深10~40m,单位涌水量5~10m3/(h·m);山前岗地小河谷中有砂砾、碎石透镜体或宽条状含水层,单位涌水量为1~3m3/(h·m),大部为粘土裂隙水、风化壳接触带水,单位涌水量小于1m3/(h·m)。
③太行山前冲洪积倾斜平原:主要由安阳河、淇河、黄峪河、白涧河、沁河、蟒河等多期冲洪积扇群构成,含水层为上更新统和全新统砂砾石、中粗砂、砂,向前缘变细、变薄,埋深增大,富水性减弱,水质变差。倾斜平原上部为沿太行山前弧形带状岗地,宽10km,含水层厚10~20m,单位涌水量10~30m3/(h·m);倾斜平原中部含水层受河流冲积影响较大,古河道带含水层厚度大于10m,为砂砾石、中粗砂,厚5~10m,单位涌水量5~10m3/(h·m);前缘带具明显的河道带强富水的特征,含水层以中细砂为主,厚5~30m,单位涌水量10~30m3/(h·m),矿化度小于0.5g/l。
④灵三盆地:山前为坡洪积和河流冲积,具明显的分带性。河谷平原主要是全新统、上更新统砂砾石含水层,黄河滩地、I级阶地分布有全新统的粉细砂含水层,厚10~30m,埋深2~35m,单位涌水量5~10m3/(h·m),渗透系数10m/d左右;山前坡洪积高斜地,含水层分布不均,多呈槽带状、透镜状,厚度6~30m,埋深20~60m,单位涌水量1~5m3/(h.m),涧口洪积扇达10m3/(h·m)左右;黄土塬赋存有上层滞水,单位涌水量小于0.5m3/(h·m)。
⑤伊洛盆地:周边为黄土丘陵,裂隙发育,局部有砂砾石透镜体和多层钙核层,赋存有上层滞水。山前倾斜平原为中更新世冲洪积扇群构成,含水层厚度5~25m,埋深40~60m,单位涌水量5~10m3/(h·m);河谷平原含水层的变化规律是向两侧变细变薄,埋深变大,纵向的变化是由上游至下游由卵砾石、砂砾石变为砂含砾石、砂,厚度由薄变厚,含水层厚4~40m,单位涌水量30~100m3/(h·m),渗透系数20~33.6m/d,矿化度小于0.5g/l。
⑥南阳盆地:盆地周边岗地为中更新统冲洪积相极弱—弱富水的亚粘土、粘土裂隙含水层,局部有河流冲洪积条带状、透镜状砂、泥质砂砾石含水层,单位涌水量1~5m3/(h·m)左右;中部平原含水层由上更新统冲湖积砂、砂砾石、泥质砂砾石组成,厚度6~12m,埋深6~25m,单位涌水量4.3~8.0m3/(h·m),矿化度小于1.0g/l;沿唐、白河及主要支流呈带状分布的上更新统和全新统洪冲积砂、中细砂、砂砾石含水层,厚10~25m,顶板埋深20~30m,单位涌水量10~30m3/(h·m),具微承压性。
(2)中深层含水层组(埋深60~150m,局部达200m或小于60m)。该深度内主要是更新统含水层组。由于构造、古地理、气候及成因不同,各地沉积厚度和埋藏深度差别很大,黄河平原主要是中上更新统冲洪积—冲积砂层,淮河平原、南阳盆地、灵三和洛阳盆地等主要是中下更新统岩层。
①黄河冲积平原:主要以中上更新世古黄河冲洪积扇的形式展布,以黄河为轴部,始于沁河口向两翼、前缘含水层颗粒变细、厚度变薄至尖灭,埋深增大。北翼延津—内黄、南翼中牟—开封为冲积扇的中上部主流相,含水层顶板埋深40~100m,南翼局部达160m,可见3~4层中砂、中细砂,总厚度30~40m,局部大于40m,单位涌水量5~10m3/(h·m),局部大于10m3/(h·m);濮阳—长垣一带为冲积扇中下部,含水层顶板埋深50~100m,可见4~5层细砂、粉细砂,局部透镜状,总厚10~30m,单位涌水量1~5m3/(h·m);商丘和周口东部为冲积扇的下部边缘相,含水层民权以西为粉细砂,东部粉细砂呈薄层透镜体,较大面积为亚砂土、亚粘土,含水砂层厚度小于5m,顶板埋深120~160m,单位涌水量1.0m3/(h·m)左右;永城南部顶板埋深140~160m,含水层主要为细砂、中细砂,厚20m左右,单位涌水量2.68~6.74m3/(h·m)。
②淮河冲洪湖积平原:驻马店—沈丘的西部主要是中下更新统冲洪积、冰水和冲湖积含水层,而此线的东南和山前一带主要是下更新统和新第三系河湖相含水层。倾斜平原临颍—漯河—西平以西至襄县、叶县一带,中更新世冲洪积扇和下更新世冰水三角洲发育,含水层以砂卵砾石、中粗砂为主,厚度25~70m,埋深40~100m,单位涌水量10m3/(h·m)左右,临颍至项城以南、正阳至淮滨以北,含水层以中下更新统中细砂为主,局部含砾石或粉细砂,厚度10~30m,埋深60~150m,单位涌水量5~10m3/(h·m);商水、项城、沈丘南部含水层埋深大、厚度薄,以粉细砂为主,单位涌水量1~5m3/(h·m);淮南垄岗地区,中深含水层不发育,山间河谷和山前一带,含水层主要为下更新统冰水泥质卵砾石、砂砾石和第三系半胶结的砂、砂砾岩及砂砾层,含水层埋深40m 左右,总厚度50~100m,单位涌水量1~3m3/(h·m)左右。
③灵三盆地:黄河滩地、I、Ⅱ级阶地及主要支流的下游,下更新统在百米内可见30~50m 砂、砂砾石层,顶板埋深小于70m,单位涌水量5~10m3/(h·m);黄河Ⅲ级阶地和塬区,含水层粒细、层薄、埋深大,富水程度不均;山前一带为中下更新统冲洪—冰水沉积泥质砂、砂卵石含水层,局部半胶结,沿河道呈带状小面积分布,埋深小于100 m,单位涌水量小于5m3/(h·m)。
④伊洛盆地:除河谷外,大都为中上更新统黄土覆盖,含水层分布和富水性很不均匀,山前、洛阳以西和伊河东岸,含水层为弱富水的微胶结—半胶结砂、砂砾岩,局部夹泥灰岩,顶板埋深30~120m,厚度10~30m,单位涌水量1~4m3/(h·m);盆地东部在200m 深度内,可见30~50m 砂、砂卵石含水层,单位涌水量5~10m3/(h·m)。
⑤南阳盆地:下更新统为一套冰水冲湖沉积,受古地理条件的控制,山前盆地沉积厚度较薄,而中部沉积厚度大于350m。下更新统上部近盆地边缘主要是粗颗粒的含泥质砂砾石,顶板埋深30~80m,局部达百米,含水层2~3层,厚30~70m,到盆地中部则为中细砂、细砂乃至尖灭,由于盆地向中心的交互穿插叠加,可见3~4层含水层,厚度20m 左右,埋深50~80m,空间分布极不均匀;下更新统下部,含水层顶板埋深200m 左右,在350m 深度内可见2个含水层,由边部砂砾石向中部过渡为砂层,厚度50~80m,分布较稳定。盆地中部大致在白河、湍河及其汇流两侧10~25km 范围,单位涌水量5~10m3/(h·m),近盆地边缘单位涌水量为1~5m3/(h·m)。
(3)深层含水层组(埋深150~200m 以下至350m)。豫西黄土地区、各山前缓岗地区和淮河平原主要是第三系含水层,黄海平原和南阳盆地主要是下更新统或二者合之。济源至沁阳、内黄至濮阳、洛阳至岳滩、郑州、新郑至中牟及杞县、太康和南阳盆地的社旗一带,含水层为砂砾石、中细砂,厚40~100m,单位涌水量2~10m3/(h·m);开封东部、周口、灵三盆地、伊洛盆地西部,含水层不发育,一般为粉细砂和胶结的砂砾岩,单位涌水量1~5m3/(h·m)。
2.碳酸盐岩类裂隙岩溶含水岩组
碳酸盐岩类含水岩组是基岩山区最有供水意义的含水岩组,岩性主要为震旦系、中上寒武系、奥陶系的灰岩、白云质灰岩、泥质灰岩,分布在太行山、嵩箕山、淅川以南山地。一般沿层面和裂隙发育有溶洞、溶隙等,构成降水、地表水入渗的良好通道,是地下水径流、储存的有利场所。在当地侵蚀基准面以上,为透水不含水的缺水地段,而侵蚀基准面以下的溶洞或溶隙发育地带,有丰富的地下水,一般泉流量达3.6~60m3/h,中奥陶灰岩单位涌水量为27.22~36.14m3/(h·m),而上寒武、下奥陶系灰岩水量相对较小。在山前排泄地带的有利部位往往形成大泉,如辉县百泉、安阳珍珠泉、小南海泉、鹤壁许家沟泉等,流量都曾在1000m3/h以上,20世纪90年代以来基本断流。
碳酸盐岩夹碎屑岩含水岩组主要分布在焦作以西、嵩山南部、箕山东部,外方山东西两端和淅川以北等山地,由下寒武系和部分石炭系组成,富水性极不均一,下寒武系泉流量在32~314.7m3/h,其他7.6~20.7m3/h,单位涌水量1~10m3/(h·m)。
主要是二叠系、三叠系、侏罗系、白垩系、第三系和部分石炭系、震旦系,分布于王屋山、新渑山地、嵩山北麓、箕山西南、平顶山及太行山、大别山前和山间盆地等,含水层主要为砂砾岩和砂岩。受岩性、地质构造、补给条件等因素控制,其泉水流量有所差异,淅川县上寺泉流量达540m3/h,济源、渑池泉流量5.4~18m3/h,而宜阳、临汝、大别山北麓泉流量仅0.004~3.6m3/h,一般富水性较弱。
3.基岩裂隙含水岩组
系指变质岩和岩浆岩类裂隙含水岩组,分布在伏牛山、桐柏山、大别山区,由花岗岩、片麻岩、片岩、千枚岩、石英岩、白云岩、大理岩组成。地下水赋存在构造质碎带和风化裂隙中,其风化裂隙深度15~35m,局部达75m,泉点较多,泉流量一般为5.4~20m3/h,栾川三岔口泉最大流量达122.4m3/h。
❻ 怎么测水文地质剖面图
1 水文地质剖面图的布置宜垂直岩层走向或构造线方向,切过含水层最多的地段,平行于地下水流向布置,应尽量利用已有的勘探点和地下水露头;
2 水文地质剖面图应参照工程地质剖面图的一般内容进行编制。同时还应根据研的不同对象和目的,有选择的表示出需要的水文地质要素,如含水层的水位(水压)、透系数、富水性、矿化度等,并结合平面图标明水文地质分区的界线。
❼ 如何测量地下水流速流向
有两种方式:1、用仪器:地下水动态参数测量仪,地下水流速流向仪 2、详情请看http://xuewen.cnki.net/CJFD-KCKX198403011.html
❽ 水文地质学中水头该如何理解,地下水能从水头高的地方流向水头低的地方吗
水头指单位重量的液体所具有的机械能,包括位置水头、压强水头、流速水头,三者之和为总水头,位置水头与压强水头之和为测压管水头。
从而可知,水一定会从水头高的地方流向水头低的地方。
❾ 如何通过Google earth判断地下水流向
你牛逼了,地下水那么复杂的东西被你说的跟大神看风水似的,我只能说那是瞎猜。。。不过我们学过的比你们猜的靠谱点,你来点实际我给你猜吧,我是中国地质大学地下水专业的