水源点都有哪些地质
Ⅰ 水源地的选择
对于大、中、型集中供水水源地,就是选择取水地段的具体位置,对小型分散供水的水源地,则是选定水井布置的具体位置。水源地(水井)位置选择的正确与否,不仅关系到水源地建设的投资,而且关系到是否能保证水源地长期经济、安全地运转和避免产生各种不良的环境地质作用。
在选择集中式水源地的位置时,一般应考虑以下水文地质条件、技术和经济条件。
(1)水源地应尽可能选在含水层透水性好、厚度大、层数多、分布广的地段。如冲洪积扇的中、上部砾石带和轴部,冲积平原的古河床,厚度大、裂隙或岩溶发育的层状或似层状裂隙岩溶含水层,延续深远的断裂及其他脉状基岩含水带。
(2)为增加开采补给量,保证水源地的长期均衡开采,水源地应尽可能选择在能最大限度拦截区域地下径流的地段,或接近补给水源,能充分夺取各种补给量的地段。例如,在松散地层分布区,水源地应尽量靠近补给地下水的河流岸边;在基岩区,水源地常选在集水条件最好的区域性阻水界面的上游一侧;在岩溶区,最好选择在区域地下水径流的排泄区附近。
(3)在选择水源地时,应尽量远离原有的取水或排水点,减少互相干扰,避免新旧水源之间、工业和农业用水之间、供水和矿山排水之间产生矛盾。
(4)为保证水源地出水的质量,水源地应选择在不易引起水质污染及恶化的地段上。例如,远离城市或工矿排污区的上游,远离已被污染或天然水质不良的地表水体或含水层地段,避开易使水井淤塞、涌沙或水质长期混浊的流砂层或岩溶充填带等。为减少垂向污水渗入的可能性,最好把水源地选择在含水层上部有厚度较大的稳定隔水层分布的地方等。
(5)为了减少因开采地下水后引起的不良环境地质问题,水源地应选在不易引起地面沉降、塌陷、地裂缝、滑坡等有害地质作用的地段上。
(6)在选择水源地时,还应从经济、安全和扩建前景方面加以考虑。在满足水量、水质要求的前提下,为节省建设投资,水源地应尽可能靠近供水区,为降低取水成本,应选择在地下水浅埋或自流的地段(即就近就浅)。对河谷水源地,要考虑水井可能被淹没的问题;用人工开挖的大口径取水工程,则要考虑井壁的稳定性(安全问题),当有几个水源地方案可供比较选择时,还应考虑未来扩大开采的前景。
在实际工作中,应按以上原则全面分析考虑。若具体条件不能完全满足时,则应分出主次,尽量满足主要条件。上述原则对于山区基岩裂隙水小型水源地的选择(或单个取水井的井位),也基本上是适合的。但是,由于基岩地区地下水分布极不均匀,水井的布置主要决定于强含水裂隙带及强岩溶发育带的分布位置。此外,布井地段上游有无较大补给面积、地下水汇水条件及夺取开采补给量的条件,也是确定基岩区水井位置时必须考虑的因素。
Ⅱ 广东地下水源一般存在于地质的什么层
广州地下室也一般存在于地质的。表层
Ⅲ 与地下水有关的主要环境地质问题
调查结果表明,受柴达木盆地自然地理及水文地质条件制约,加之城市及工农牧业布局相对集中,各地产业结构不稳,人类工程活动或自然原因导致的与地下水有关的环境地质问题具有类型少、分布范围小、延续时间短的特点。有历史时期产生过而目前已消失的问题,也有目前存在并进一步加剧的问题,还有将来有可能产生的问题。归纳起来有4种类型,包括8个问题,第一类是因不合理开发利用地下水资源引起的地下水位持续下降(降落漏斗)、咸水入侵、水质咸化问题;第二类是因不合理利用地表水资源引起地下水补给源减少使地下水位下降导致的荒漠化(土地沙化)和湖泊萎缩问题,农灌区大水漫灌使地下水位上升导致的土壤次生盐渍化问题;第三类是因对水资源保护措施不当引起的地下水污染问题;第四类是因自然条件改变而潜在的地下水资源衰减问题。
一、区域降落漏斗
(一)诺木洪
盆地内的诺木洪农场形成过区域下降漏斗,现在已消失。该农场自1955年建立,1965年开始开采地下水浇灌农田,1980年开采井为35眼,灌溉季节实际开采量11.3272×104 m3/d,到1986年8月调查时为27眼、生活供水井4眼,共31眼,分散在农田和各大队队部所在地,灌溉季节实际开采量13.9283×104 m3/d,浇灌耕地1166.7hm2。1986年根据各开采井成井时静水位与开采15~20a的各开采井的静水位绘制农场地下水位降落漏斗,在开采区范围内形成东西两个椭圆形下降漏斗,东漏斗面积28.26km2,西漏斗面积34.53km2。其中心区静水位下降值前者1.28~3.25m,后者1.38~2.81m。农供水源地虽属季节性开采,在年内开采期为135d左右(小麦生长期),该区地下水径流量为16.1917×104 m3/d,径流量超过实际开采量的16.25%。农灌后期便是枯水期,补给量较小,农灌水回渗期已过。两个漏斗未连成一片,原因是降雨季节洪水大量入渗补给,使地下水得到一定量的补给。在冲洪积扇轴部地下水径流量较大,作为两个独立漏斗在此期间又得到地下水的补给。此间采补基本达到平衡,两个漏斗存在则是长期非季节性的。据1987~1997年地下水长观资料,两个降落漏斗一直存在。
通过2003年和2004年两次丰、枯水期全盆地的地下水位统测,对所取得的各地地下水资料进行对比分析,发现诺木洪农场区东、西两个区域降落漏斗中地下水基本得到恢复。西漏斗中心水位埋深原为10.35m(1982年),静水位下降2.35m,2005年调查时水位埋深为5.74m,比原来静水位上升2.26m。东漏斗中心附近一孔水位埋深原为16.37m(1982年),静水位下降0.03m,2004年调查时水位埋深为12.86m,比原来静水位上升3.48m。原因是随着青海省劳改局近几年农场的改制,农场大片耕地弃耕或外包给个体农户耕作;由于抽取地下水需要支付高额的电费,一般个体农户受经济条件限制,对地下水开采量也逐渐减少,多以地表水灌溉为主,地下水得到充分的河水入渗补给,水位得到恢复。据2003年调查,农场开采地下水量235.41×104 m3/a,其中农灌用水开采227.91×104m3/a,比1980年地下水开采量减少了1644.91×104 m3/a。
根据各地城镇和农业开采井调查,地下水开采量较大的还有格尔木市和德令哈市,其他地区开采量较小,均未超采,未形成区域降落漏斗。
(二)察尔汗
盐湖区液体矿产资源超采存在于柴达木盆地察尔汗盐湖地区。由于近年来各化工厂大规模开采晶间卤水,已形成区域降落漏斗。据察尔汗盐湖勘探资料,区域降落漏斗主要分布于察尔汗火车站以北的铁路两侧及以东地区,面积总计为500km2,总开采量达2.564×108 m3/a(图8-1)。
图8-1 察尔汗盐湖别勒滩区段卤水埋深等值线(2003年4月)
在停采后区域降落漏斗,边缘仍向外、向下扩展,中心有所上升。因补给量较难计算,仅能据此区域降落漏斗的观测资料认为:开采量已远超过允许开采量,基本属于疏干开采,对盐化工业带来了地下水位下降后抽水成本增高、采卤渠修建成本增高等困难。
二、咸水入侵———冷湖
柴达木盆地因开采程度低,只有在冷湖镇出现了咸水入侵的环境问题。原因是冷湖镇供水水源地布设不合理,个别开采井靠近咸水区。
冷湖镇水源地在冷湖北岸冲洪积扇约1.2km的潜水浅藏区,开采井共5眼,呈分散式同深开采并垂直地下水流向,1987年以前日开采量5920m3。据调查,开采时动水位11~13m,形成了下降漏斗,其半径956~1130m,漏斗已扩展到半咸水、咸水区,引起了咸水倒灌。据访问供水管理人员,称水质与水源地启用时比较有明显变咸趋势。该水源地地下水水质变咸后,于1989年在原水源地北又重新开辟新的水源地。
图8-2 柴达木盆地工程布置不合理造成咸水入侵平面示意图
图8-3 柴达木盆地工程布置不合理造成咸水入侵剖面示意图
据调查,由于青海省石油局20世纪90年代外迁,人口骤减,现人口2.08万人,年地下水开采量128.1×104 m3,开采量比以前减少近一半。经2002年、2003年和2004年在水源地取样分析,一些水井水质已变咸,水化学类型属SO4·Cl·(HCO3)-Ca·Mg型。由于现状开采量较小,并不是超采地下水引起的咸水入侵,而是因工程布置不合理造成的(图8-2、图8-3)。
三、水质咸化———格尔木
盆地水质咸化现象仅在格尔木河冲洪积扇戈壁带右翼发现,该区域内的浅埋潜水上、下段出现水质变异,在供水井上的表现只是孔深不同、过滤器的置放位置有差异。尽管孔位很近,水质却相差较大(表8-3)。1990年施工的西藏粮食局供水井(孔深66.42m),成井后因水质4项超标而废弃。在与原井相距10m处重新凿井一口,只把孔深加大到101.08m,水质却较佳。上、下段水质“分界”深度约80m。
水质咸化的主要原因是该地区地表或浅层普遍存在一层古盐壳。在开采过程中,由于管道漏水等原因将盐壳中的盐分溶滤到含水层中,导致水质咸化。20世纪80年代初该地区地下水位普遍上升,溶滤了古盐壳的盐分,也造成水质咸化;另外,1998年、1999年两年格尔木市农牧局为绿化城市于水源地上游营造了60亩防风林带,采用大水漫灌,使包气带盐分溶解并大量下渗而造成TDS等急剧升高。
表8-3 格尔木河冲洪积扇戈壁带右翼开采井水质垂向分异统计表
四、荒漠化(沙漠化)
柴达木盆地是我国著名的地质历史时期形成的荒漠盆地,土地辽阔,可有效利用的土地面积却十分有限。柴达木盆地荒漠化以原生和次生盐渍化、风蚀和风积沙漠化为主,水蚀荒漠化次之。根据2004年遥感解译资料,对盆地平原区沙漠化现状进行阐述。
柴达木盆地平原区沙漠化面积大,分布较集中,沙漠化程度差异较大。地表景观以戈壁、风蚀洼地、风蚀残丘、风积新月形沙丘、梁窝状沙丘、风积沙地、沙被等为主。柴达木盆地沙漠化土地面积达75736.9km2,占平原区总面积的54%(表8-4);其中轻度沙漠化土地面积为5885.3km2,占沙漠化土地总面积的8%;中度沙漠化土地面积为7045.9km2,占沙漠化土地总面积的9%;重度沙漠化土地面积为62805.7km2,占沙漠化土地总面积的83%。自从1960年盆地大规模开荒和修筑公路、铁路、矿产资源开发及大规模开采地下水以来,绿洲带地下水位下降,植被退化,沙漠化面积迅速扩大,沙化加剧,严重威胁工农业生产和当地居民生活,制约着当地经济的发展。都兰地区北部大面积农田被风沙覆盖,青年农场的耕地有2/3被风沙覆盖,被迫弃耕;香日德农场北部沙害严重,沙丘堆积高度已达数米,农田已被风沙覆盖,被迫改为林地,成为防护林带。
五、湖泊萎缩———西台吉乃尔湖、托素湖
托素诺尔又名托素湖,位于柴达木盆地北缘德令哈市西南,为典型的内陆盐湖。呈边长约20km的等边三角形,面积192.8km2,平均水深3.5m,最深达25.70m。主要接受其北部的姊妹湖———库尔雷克湖水补给,以蒸发方式排泄,湖水面积不断减小;湖水中TDS不断升高,1961年北岸为14.4g/L、南岸为15.25g/L,1984年为35.74g/L,属Cl·SO4-Na·Mg型。
西台吉乃尔湖位于东台吉乃尔湖西侧,水深0.4m。主要接受台吉乃尔河水和平原区地下水的补给,以蒸发方式排泄,TDS 310~330g/L,属Cl-Na型。湖底沉积石盐。遥感解译证实,湖泊严重萎缩,湖泊面积1976年时334.20km2,1990年为168.17km2,2000年变为43.37km2,占原湖水面积的13%。经过25年,湖水面积减小了290.83km2。
在苏干湖流域,利用1990年TM数据和2000年ETM数据进行了影像对照,其结果是:2000年全流域湖泊水域11.73km2,其中苏干湖水域面积为10.28km2;流域内有绿洲及沼泽湿地79.36km2,主要分布于苏干湖东的大哈勒腾河下游冲积扇前缘;流域内现代冰川面积36.50km2,沙漠面积210.15km2。较1990年相比,水域面积减少了4.24%,现代冰川减少了27.71%,绿洲、沼泽湿地减少了6.36%,沙漠扩大了14.32%(图8-4)。
表8-4 柴达木盆地荒漠化土地统计表
大哈勒腾河自出山口至尾闾湖区与地下水几经转化,湖泊及地下水主要受大哈勒腾河补给,并维系着环湖地区的生态环境;大哈勒腾河因接受冰川消融水的补给而较为稳定。若冰川面积大幅减少或于上游向流域外引水,必将使本区绿洲生态用水和湖泊生态用水减少,导致绿洲、沼泽湿地面积减少,湖泊日趋消亡,最后将引起该流域生态环境全面恶化。
图8-4 苏干湖流域主要生态环境要素不同时相影像对比结果
六、盐渍化
(一)柴达木盆地盐渍化现状
据2004年遥感解译资料,柴达木盆地土地盐渍化以原生盐渍化为主,次生盐渍化次之;盐渍化土地总面积达35810.8km2,占平原区总面积的25%。其中原生盐渍化土地面积为35468.3km2(表8-5),占盐渍化土地总面积的99%;主要分布于湖盆中心的环湖地带,地表以盐壳、盐霜、盐斑为主,多为荒漠盐渍区,荒漠草原盐渍区次之。
表8-5 柴达木盆地原生盐渍化土地统计表
柴达木盆地次生盐渍化土地面积为342.5km2(表8-6),占盐渍化总面积的1%;主要分布于格尔木、诺木洪、郭勒木德乡和香日德等农耕区;地表以盐霜为主,盐斑次之,多属荒漠草原盐渍土区,其分布范围主要受季节影响和人类活动控制。次生盐渍化程度因地而异,格尔木、德令哈地区农耕区盐渍化程度高,宗巴地区农耕区盐渍化程度相对较低。
表8-6 柴达木盆地次生盐渍化土地统计表
(二)盐渍化原因
柴达木盆地盐渍化的产生既有自然原因,又有人为原因。原生盐渍化完全受到自然因素控制,柴达木盆地气候属于典型干旱极干旱型,蒸降比高达40∶1,在历史时期严酷的荒漠气候及强烈的蒸发作用,使盆地平原区地下水浅埋带盐分在近地表大量积累,形成大面积的原生盐渍化。
次生盐渍化主要受控于人类活动。柴达木盆地因降水稀少,无灌溉就无农业,在地下水水位埋深较浅的农业区,发展自流渠灌后,因采用大水漫灌、只灌不排等不合理的灌溉方式,致使地下水位上升到小于蒸发临界值,日积月累盐渍化程度逐年加剧,土壤含盐量不断增加,形成次生盐渍化土地。
七、地下水污染
柴达木盆地城镇中“三废”以直排为主,尤其是工业与生活污水主要是向地表河流、排污渠及池塘等地表水体中排放,造成部分城市浅层地下水污染。目前由于地下水淡水分布区高污染的工矿企业少,污水排量不大,地下水中污染成分简单,污染程度不是很高,范围不是很广。经此次调查,发现少部分地点有Pb、油及挥发性酚的污染。Pb仅在大柴旦镇地下水中超标,其含量为0.275mg/L,为硼酸厂排放的废液造成的;油及挥发性酚污染多集中于格尔木市与花土沟镇,这与当地的石化工业有极大关系(表8-7、表8-8)。
随着城市的发展,“三废”排放量将会增大,应对该问题重视。
(一)格尔木市地下水污染
格尔木市是盆地南缘一座新兴的现代工业城市,位于戈壁带与绿洲带交界处,现有常住人口20.36万人;是海西蒙古族藏族自治州国民经济生产总值增长最快的城市,同时也是柴达木水资源利用最多的城市。据调查,每天城市用水为10×104 m3/d,生产、生活污水排放量达2.33×104 m3/d。这些污水仅沿市区主要街道铺设的下水管道排向格尔木东河、西河。无排污设施地方的污水则就地排放,造成市区地下水污染。格尔木地下水污染是在1984年格尔木河东地区首次发现,污染因子为总硬度、TDS、氯化物,污染面积1.47km2;1989年达8.37km2。此外还出现了油类和酚类污染,其中以格尔木东水源地上段水质恶化较快,TDS、硫酸根超标1倍多,氯离子超标3.5倍。格尔木市污水处理厂虽然已建成,但生活污水、工业废水排放设施滞后,地下水污染问题仍然存在。
表8-7 柴达木盆地油含量≥0.05mg/L地下水取样点
表8-8 柴达木盆地挥发性酚含量>0.002mg/L地下水取样点
地下水污染中最严重的是油类污染,其污染源主要为格拉(格尔木—拉萨)输油管线。该输油管线于20世纪80年代建成,沿格尔木河岸铺设,区内长度约150km,有三个加压泵站。由于输油管线年久失修、管线漏油和泵站废油排放,先污染地表水,河水入渗地下又污染了地下水。据2003年4月监测资料表明,格尔木冲洪积扇地下水石油含量为0.13~0.89mg/L,样品检出率100%(图8-5)。与2002年相比,石油类污染有所减轻,污染范围仍与上年相同。油类污染减轻的主要原因是输油管线的改造和加压泵站废油排放量减少。
图8-5 格尔木市东水源地地下水石油类含量历时曲线图
(二)盆地其余地区地下水污染
盆地中矿产资源开发正处在起步阶段。除格尔木市和德令哈市外,其他城镇人口不多;工矿企业零散,生活、生产废水排放量不大。由于缺少多数城镇地下水水质背景资料,因而难以确定水质污染程度。作为地下水污染源几乎每个城镇均存在,污水、工业废水则是就地排放。除格尔木市建有污水处理厂外,其他各城镇均未建有污水处理设施。
花土沟镇。该区主要污染物为采油厂排放污水,主要污染指标以油类为主。据2003年调查,每天污水排放量达1348.18m3/d,这些污水未经任何有效处理就地排放渗入山前戈壁带。
锡铁山工业废水。该区污染源主要是铅锌矿区洗矿污水、矿山开采时产生的污水和火电厂排放的废水。污水排放量为5.771×104 m3/a、52.22×104 m3/a和78.43×104 m3/a,总排放量达136.42×104 m3/a。废水一般径流1~1.5km后全部入渗地下,造成地下水污染。废水中含有大量铅、锌、汞、镉和砷等有害物质成分。若不实施污水处理,将会对察尔汗盐湖造成污染。
都兰县。都兰县城周围有7个选矿厂,其中铅锌选矿厂3个,铁矿厂4个,有两个位于夏日哈河上游,5个位于察汗乌苏河上游。这些选矿厂均为乡办或个体经营,设施简陋,生产工艺低下,选矿所用废水未经处理就地排放。都兰县城和夏日哈镇均处在污染源下游地段,有关部门应高度重视。
格尔木市大格勒乡位于都兰县和格尔木市管辖交界处,其上游大、小五龙沟属都兰县辖区。20世纪90年代末由于在五龙沟内发现金矿(岩金),曾一度大量开采矿石,黄金堆浸采用氰化物。在小五龙沟谷南侧山坡处,有面积达0.3km2的氰化物废液沉淀池。沉淀池下部未进行任何有效防渗措施,地表为粉砂土,以下为漂卵砾石,对地下水构成极大的潜在威胁。污染源尚在,应引起有关部门重视。
八、地下水资源衰减
(一)工程拦蓄使地下水补给量减少
柴达木盆地水资源的形成与分布是以山区水资源在平原区的重复转化为其基本特征。德令哈市怀头他拉水库建在巴罗根河出山口处,截获了河流的全部水量,并将河水引入渠道;除水库坝下少量渗漏和渠道渗漏外,在洪水期也没有多少河水可渗入地下,因而该区地下水资源大幅减少。
渠道引水导致地下水资源贫化在盆地内各灌区也较为普遍。盆地各冲洪积扇的地下水资源主要依靠河水渗漏补给,当河水引入渠后大部分或全部河水在渠道中运行,其渗漏量远远小于天然河道的下渗量。据调查,香日德农场1眼井,成井时(1974年8月31日)水位埋深77.27m,1987年6月1日实测水位埋深为100.33m,2003年8月实测水位为111.08m,每年下降1.17m。
(二)因自然条件改变而潜在的地下水资源衰减问题
在柴达木盆地的高山区广泛分布有现代冰川,总面积有1358.46km2,冰川储量1135×108 m3,冰川年融化水量9.18×108 m3,占整个柴达木盆地河川径流补给总量的20%,成为柴达木盆地哈勒腾河、鱼卡河、塔塔棱河、那陵格勒河、格尔木河、香日德河、巴音郭勒河等主要河流的最初水源和径流的重要补给来源。
受全球气温持续升高的影响,盆地平原区多年平均气温总体呈上升趋势,并以0.0155~0.062℃/a的比率上升。山区多年平均气温同样会不断上升,气候逐渐变暖,本区冰川萎缩趋势加剧。如祁连山区的喀克图蒙克冰川,最高海拔为5696m,1993年时冰川面积为44.5km2,至2001年时冰川面积降为40.9km2;8年来减少3.6km2,平均每年减少0.45km2,萎缩率为1.01%(图8-6)。气温持续上升,高寒区的冰川大量消融,短期内增加河流径流量,增加对地下水的入渗补给量;当冰川萎缩到一定程度后,受冰川融水补给的上述河流流量变小,对其下游地下水的补给量减少而使地下水资源衰减。
图8-6 塔塔棱北山冰川萎缩1976年与2001年冰川面积比较
Ⅳ 水文地质描述有哪些
区域地质条件:地层、构造,水文地质条件:可分三部分叙述,一是水源,而是通道,三是突水点。也就是说地下水的补给、径流及排泄条件等,描述时要有数据对你的观点进行支持等等,仅供参考。
Ⅳ 水源地类型划分
在2007年国家环境保护总局发布的《饮用水水源保护区划分技术规范》(以下简称《规范》)中定义了地下水饮用水水源地划分技术规范,在该规范中使用了水质点运移时间来作为划分保护区的技术标准,具体方法是:以抽水井为中心,水质点迁移100天的距离作为一级保护区;一级保护区以外,水质点运移1000天的距离作为二级保护区;水源地所在流域的补给区和径流区作为准保护区。若以距离作为划分标准,则需根据不同方法进行保护区半径计算。大型水源地通常都推荐使用数值模型法划分保护区。中型水源地可以根据研究区水文地质条件的研究水平和复杂程度选择参考大型或小型地下水水源保护区划分方法进行。
在《规范》中是将地下水型水源地按照埋藏条件划分为潜水型和承压型,按照含水层介质分为孔隙水型、裂隙水型、岩溶水型,按照开采规模分作大型、中型和小型,对其组合后进行保护区的划分。但是事实上地下水型水源地还可以按照抽水井分布密度分为分散式和集中式,按照赋存地点分为山前冲洪积扇补给区型、地下水溢出带型、傍河型、平原地区型、沿海地区型,水源地的划分并不只是规范中列出的分类,《规范》中只是列出了可能常见的比较宽泛的分类,对进一步细化的水源地分类没有做更多地考虑,没有考虑到随着水源地分类的不同可能使用的保护区划分方法会有所变化,相同的方法不一定适用于所有的水源地,因此,需要有针对性地对水源地做进一步分类并筛选出适合各水源地的保护区划分方法,这样所选择的方法就具有针对性可以比较好的契合该水源地自身的实际情况。首先我们可以对地下水型水源地进行进一步的详细描述来如实详尽地描述水源地类型,从而对水源地有更全面的分类和认识。
要对地下水型水源地进行保护区划分,首先要对水源地进行详细的分类以确定每个类别所使用的保护区划分方法。水源地的分类可以依据地下水类型、含水层类型及地下水开采条件等依次分为如下几种类型(图5.1)。
其中小型水源地定义为日开采量小于1×104m3,中型水源地定义为日开采量大于1×104m3小于5×104m3,大型水源地定义为大于5×104m3。
按照图5.1所示可以通过几种不同的分类方法将地下水型饮用水水源地进行分类,然后根据上述分类结果可以进行进一步的组合,最多可以组合至180种水源地分类属性,从而更加详细地描述地下水型水源地的特点,为保护区的划分提供更详细、更优化的选择,例如,大型傍河孔隙水潜水型水源地反映出该水源地赋存水量大,补给源以河水为主,含水层介质为孔隙介质,地下水埋深较浅等,与规范中提到的分类相比更能反映实际的水源地情况。
图5.1 地下水型水源地分类图
对地下水型水源地进行详细的分类定义之后,可以针对每一类别进行特定的保护区方法归类。本书选择按照图5.1 地下水型水源地分类中所分类进行组合,例如,小型平原孔隙潜水型水源地,小型平原孔隙承压水型水源地,小型傍河孔隙潜水型水源地,大型山前冲洪积扇孔隙潜水型水源地等,并针对不同的组合分类结果进行相对应的保护区划分工作,从而为今后的具体工作提供详细的指导。
Ⅵ 水源保护区划分范围怎么分
以取水点来划分。
饮用水水源地保护区的划定:
一级保护区:以取水点起上游1000米,下游100米的水域及其河岸两侧纵深各200米的陆域。
二级保护区:从一级保护区上界起止溯2500米及其河岸两侧纵深各200米的陆域。
准保护区:从二级保护区上界起止溯5000米的水域及其河岸两侧纵深各200米的陆域。
若水源地所在水功能区为单一功能的饮用水功能区,将饮用水功能区全部水域划为水源保护区;
若水源地所在水功能区是以饮用为主导功能的多功能型水功能区,将取水口上游2~3km至下游100m的河道水域划为水源保护区,但不超过水源地所在水功能区的上边界;
河网地区和感潮河段的水源地,其下游保护区范围可根据水流状况适当扩大;
有堤防河道保护区宽度为河道堤防之间的区域;
无堤防河道保护区宽度为河道设防洪水位所能淹没的陆域,未定设防洪水位的河道可按河流5年或10年一遇洪水位划定;
如水功能区未划及对岸,则保护区水域宽度以水功能区在河流中的边界为准。
水源保护区,是指国家对某些特别重要的水体加以特殊保护而划定的区域。1984年的《中华人民共和国水污染防治法》第12条规定,县级以上的人民政府可以将下述水体划为水源保护区:生活饮用水水源地、风景名胜区水体、重要渔业水体和其他有特殊经济文化价值的水体。 其中,饮用水水源地保护区包括饮用水地表水源保护区和饮用水地下水源保护区。
水源保护区是指国家对某些特别重要的水体加以特殊保护而划定的区域。1984年的《中华人民共和国水污染防治法》第12条规定,县级以上的人民政府可以将下述水体划为水源保护区:生活饮用水水源地、风景名胜区水体、重要渔业水体和其他有特殊经济文化价值的水体。对水源保护区要实行特别的管理措施,以使保护区内的水质符合规定用途的水质标准。
划分方法
我国水源保护区等级的划分依据为对取水水源水质影响程度大小,将水源保护区划分为水源一级、二级保护区。
结合当地水质、污染物排放情况将位于地下水口上游及周围直接影响取水水质(保证病原菌、硝酸盐达标)的地区可划分为水源一级保护区。
将一级水源保护区意外的影响补给水源水质,保证其他地下水水质指标的一定区域划分为二级保护区。
地下水与地表水
地下水——有机物和微生物污染较少,而离子则溶解较多,通常硬度较高,蒸馏烧水时易结水垢;有时锰氟离子超标,不能满足生产生活用水需求。
地表水——较地下水有机物和微生物污染较多,如果该地属石灰岩地区,其地表水往往也有较大的硬度,如四川的德阳、绵阳、广元、阿坝等地区。
原水与净水
原水——通常是指水处理设备的进水,如常用的城市自来水、城郊地下水、野外地表水等,常以TDS值(水中溶解性总固体含量)检测其水质,中国城市自来水TDS值通常为100~400ppm。
净水——原水经过水处理设施处理后即称之为净水。
纯净水与蒸馏水
纯净水——原水经过反渗透和杀菌装置等成套水处理设施后,除去了原水中绝大部分无机盐离子、微生物和有机物杂质,可以直接生饮的纯水。
蒸馏水——以蒸馏方式制备的纯水,通常不用于饮用。
纯化水和注射用水
纯化水——医药行业用纯水,电导率要求<2μs/cm。
注射用水——纯化水经多效蒸馏、超滤法再次提纯去除热原后可以配制注射剂的水。
自由水和结合水
自由水——又称体相水,滞留水。指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。水在细胞中以自由水与束缚水(结合水)两种状态存在,由于存在状态不同,其特性也不同。自由水占总含水量的比例越大,使原生质的粘度越小,且呈溶胶状态,代谢也愈旺盛。
结合水——是水在生物体和细胞内的存在状态之一,是吸附和结合在有机固体物质上的水,主要是依靠氢键与蛋白质的极性基(羧基和氨基)相结合形成的水胶体。
参考资料:网络-水源保护区
Ⅶ 水源工程都包括哪些
不同水源有不同的水源工程,对于地表水源,水源工程通常有:筑坝蓄高上游水位内,容建引水的取水口,如果不是重力自流,还得建水源泵站,设置防污染的设施,对于多泥沙河流还要建冲沙闸等。
如合建的岸边式取水构筑物有:进水闸、进水室、吸水室、进水孔、格栅、格网、泵房、阀门井等。对于分建式还有引桥工程。
Ⅷ 国家首批优质水源地都有哪些
信阳新县香山水库 九龙潭
Ⅸ 农夫山泉四大水源地分别在哪里
农夫山泉四大水源地如下:
1.浙江千岛湖(新安江水库):位于浙江省杭州市淳安县境内,小部分连接建德市西北,是为建新安江水电站拦蓄新安江下游而成的人工湖,1955年始建,1960年建成。千岛湖水在中国大江大湖中位居优质水之首,为国家一级水体,不经任何处理即达饮用水标准,被誉为“天下第一秀水”。
2.长白山天然矿泉水靖宇水源保护区:靖宇火山矿泉群地处长白山系龙岗山脉北段东坡,位于吉林省靖宇县西南部,是长白山天然矿泉水靖宇水源保护区和长白山天然林保护工程的重要组成部分。公园内的矿泉群多为低矿化的重碳酸镁钙型含偏硅酸矿泉水,矿泉分布集中,储量丰富,流量稳定,水质优良。
3.丹江口:丹江口,位于中国中南地区湖北省、汉江中上游,有“中国水都”之称,是国家旅游名片、中国优秀旅游城市。丹江口市水资源状况总的来说自产水少,过境水多,容水量大。
4.万绿湖(新丰江水库):万绿湖是华南地区第一大湖,又名新丰江水库,是华南最大的生态旅游名胜,因四季皆绿,处处皆绿而得名。大坝筑在河源市城郊。坝址以上控制集水面积5740平方公里。1958年7月破土动工,1969年建成。
(9)水源点都有哪些地质扩展阅读:
1.农夫山泉瓶身上注明了水的来源,有的是山泉水,有的是深层湖水。
2.农夫山泉选取了无污染水源,除去水中含有的极少的杂质,水中保留着钾、钙、钠、镁、偏硅酸等矿元素。
3.农夫山泉水质干净,极少有杂质,保留了最原始的清冽甘甜的口感,水质不硬,很受欢迎。