当前位置:首页 » 地理信息 » 地理信息系统综述

地理信息系统综述

发布时间: 2021-03-12 09:38:17

❶ 土地信息系统研究综述

周磊

(中国石油大学(华东)地球资源与信息学院,东营,)

摘要:本文介绍了国内外土地信息技术的研究现状,将国外和国内的土地信息系统发展过程清晰地分为几个阶段,对未来土地信息系统学科的发展趋势及面临的学科前沿问题进行探讨,并从哲学角度进行归纳总结,同时提出了未来土地信息系统建设的思路。

关键词:土地信息系统;发展趋势;学科前沿

土地信息系统是土地规划和管理定量化、科学化以及对土地信息进行快速查询、分析和更新的技术手段和方法,并为决策提供辅助支持[1]。随着国土资源部门信息化进程的加快,各级国土资源部门正在把土地信息系统的建设列为部门信息化建设的重点,将土地信息系统的建设列入国土资源部门电子政务建设当中,目的是提高国土资源部门的土地管理效率,更好地实现国土资源的监管和对公众的信息服务。

1 国内外土地信息技术的研究现状

20 世纪是高新技术产生和发展的历史时期,也是土地信息系统产生和发展的历史时期。全世界土地信息系统的发展历程,可以分为以下几个阶段:50年代是土地信息系统的准备时期,60年代是土地信息系统的产生时期,70年代是土地信息系统的形成时期,80年代是土地信息系统的示范时期,90年代是土地信息系统的发展时期[2]。我国和其他发展中国家的土地信息系统发展相对落后,许多行政管理机构和科研院所正在土地信息系统方面做大量的研究和开发工作。

信息技术的迅猛发展对人类社会的进步产生了巨大的推动作用,对LIS的发展也产生了深远影响。新技术已经极大地改善了土地有关信息的采集、处理、存储和发布。新的测量和填图技术,如GPS和遥感技术,可以快速采集大量的土地信息,计算机和Internet技术的发展,已解决了处理、存储和发布大量土地信息的技术问题。采用上述新技术,各种来源的土地信息,都可以被整合在一个LIS 系统内,便于对系统的土地信息采集、处理、存储和发布进行有效的管理,以满足多用户对土地信息的适时需求。

这些技术进步包括:①数字摄影测量技术、高分辨率遥感技术及 GPS 技术,极大地提高了土地有关的数据采集精度和速度;②计算机技术仍然在快速发展,对于大量的土地数据存储和分析处理产生了积极的影响;③GIS 和空间数据库管理技术的发展,极大地改善了土地信息的提取、分析和管理方式;④WEB GIS 技术的发展及宽带网络系统的建立,使全球范围内大量的土地数据交换成为可能,同时改变了土地信息的发布方式和服务模式。

在这些技术进步的影响下,芬兰、荷兰和希腊等发达国家在已有的 LIS 系统基础上,相继完成了国家级土地信息的数字化建设,实现土地信息的计算机化管理,建立了面向社会不同用户的基于 Internet 技术的土地信息发布和信息服务平台。使 LIS 能更好地服务于各种级别的土地利用规划和经济的可持续发展,并对土地市场的发展产生了推动作用。

芬兰国家土地测量署(NLS)选用 Small World GIS 软件作为系统的开发工具,设计开发了新系统(JAKO),这个系统把属性数据和(矢量格式)地图数据存储在同一个无缝关系型数据库中,具有多用户同时更新数据的功能。JAKO采用“超文本用户界面”,而且Internet服务功能优越,NLS 以外的用户可以通过 Internet,按照地块标示号进行土地信息查询。

荷兰地籍署分别于1997年和1999年完成全国地籍图的数字化工作和大比例尺地形底图的数字化以后,将数据分别存储在4个大型的数据库中,用 Intranet 查询和更新数据库,通过终端仿真技术查询数据库。目前终端仿真技术的信息查询服务已经过时,地籍署正在努力开发能够提供更好的 Internet 在线服务的新系统。

希腊政府建立了一个客户端/服务器的网络系统,PC机用户可以不必装专业的GIS软件就能查询地图数据。数据库采用分布式管理,包括空间和非空间数据。

20世纪90年代以来,我国的土地信息系统发展较快,以深圳市和常州市为代表的地市级土地信息系统建设取得了可喜的成绩,实现了无纸管理土地信息数据,产生了较好的社会效益。中国地质大学中地信息公司开发的国土管理信息系统,主要包括城镇地籍管理系统,土地利用数据库系统,土地利用规划管理系统,土地监察管理系统,建设用地管理系统,农村地籍管理系统,土地利用动态监测系统,土地交易管理系统,土地发布系统,城镇土地定级估价系统,基本农田保护系统等一系列信息系统。此外还有一些其他公司开发的软件也取得了较好的研究成果[3][4]

2 未来土地信息系统的发展趋势

2.1 未来土地信息系统将成为国家空间数据基础设施建设的重要组成部分

土地信息系统现代化建设需要较高的投入。据估算,在东欧国家100 万个地块的信息化建设,需要投入1 亿美元。所以在推动信息化建设过程中,必须精心策划,并与其他有关大型计划综合考虑。1994年美国总统发布国家空间数据基础设施(NSDI)建设行政命令以来,发达国家在国家基础地理信息数据建设相关的技术及政策方面,已有较大的动作。LIS 作为国家基础性地学数据信息系统,其发展应和 NSDI 建设紧密结合起来。美国、加拿大、荷兰和澳大利亚的土地信息系统建设已经作为 NSDI 建设的重要组成部分,在技术开发和相关的政策条例上综合考虑[2]

土地信息系统像“数字城市”、“数字地球”等信息基础设施一样,运用基于互联网的地理信息系统技术,形成信息查询、监控、决策支持等多种功能的数字系统[5]。土地信息系统将是信息化建设和社会经济、资源环境可持续发展的重要武器。

2.2 土地信息系统将会获得更新的数据源

任何一门学科走向成熟必然要与其他相关学科的部分理论与技术成果相整合,利用相关学科的理论与技术成果改善本学科的研究条件,补充完善本学科的理论与技术。土地信息系统学科是计算机科学与技术的延续,又是计算机技术同测绘科学与技术相结合的产物。随着测绘科学与技术的发展需求,宇航空间技术以及电子技术提供了可能的技术条件,产生了遥感技术与全球定位技术,这两门技术都为土地信息系统提供数据源,与这两

门技术的结合是土地信息系统学科发展的必然。随着土地信息系统学科的发展,这种结合直至融合将会越来越紧密,发展趋势越来越明显。这种融合不仅表现在硬件上,出现了集遥感图像采集、全球精确定位、无线数据通讯与数据处理于一体的掌上电脑设备;而且表现在各系统运行机理上相互渗透、有机融合,这种运行机理的渗透与融合又为设备超小型化创造了条件。土地信息系统的研究要顺应土地信息系统的这种发展趋势,要在这些相关学科的结合点上寻求研究主攻方向,加速与深化这种融合,以推动土地信息系统学科的发展[6][7][8][9]

Google Earth 软件是美国 Google 公司于2005年6月推出的一款全球卫星地图集成软件。它是一种可视化的假彩色全球地图,其图像数据为卫星影像与航拍的数据整合,全球地貌影像的有效分辨率至少为100m,通常为30m (如中国大陆)。Google Earth 图件具有较高的分辨率,数据更新也非常迅速,若用地形图为地图,将截取的 Google Earth 影像叠合到地形图上面,对照发现地类的变化,可以完成土地变更调查,更新土地信息数据库。随着 Google Earth 软件的迅速发展,遥感影像分辨率的不断提高,相信土地信息系统的发展将会与之结合。土地信息系统采用 Google Earth 影像作为一部分数据来源,不仅极大地节省了购买遥感图像的成本,而且可以很及时地发现地类的变化,高效的更新数据库具有很好的时效性。

2.3 土地信息系统呈现多样化工具化的发展趋势

数据库技术是任何信息系统的技术基础,土地信息系统也不例外。土地信息系统是存储与处理以时空为基本框架的各种数据的复杂系统,这一信息系统对于数据库管理功能要求较高,不但数据量极其巨大,数据种类繁多;而且数据关联十分复杂,这里既有空间拓扑的复杂关联关系,又有复杂的时间拓扑的关联关系[10][11]。面向对象的思想以及实施面向对象思想的各种计算机软件技术是当代计算机科学与技术的一个重要成果,而关系代数的创立又为关系型数据库的建立奠定了坚实的理论基础。实施面向对象思想进行关系型数据库管理既为复杂数据类型的数据库管理技术带来了先进科学的数据管理理论,同时又有新的挑战。这种挑战就在于如何实现一部分数据变更时,所有变更的数据随之意志变更。用面向对象的思想将地理信息系统的时空数据与属性数据统一纳入关系型数据库管理之下,实现两种数据的一体化管理,这是土地信息系统发展的一个趋势[12][13][14]

土地信息系统经过多年的发展,已不是一个简单的功能软件,而发展成为一种软件开发平台。现代信息技术和网络技术的发展,使土地信息系统的建设基于Internert的在线信息发布平台,这使土地信息有了更高的透明度,信息共享程度更好。随着社会信息化进程的深入,土地信息系统应用日益普及,系统向着多样化、工具化的方向发展的趋势日益明显。为适应社会这种功能与性能多样化的需求,土地信息系统软件或软件平台呈现多样化的局面[15][16][17][18]。系统软件已经逐渐成为工具,走上市场。系统软件规范化、标准化是软件工具化的前提。除此,土地信息系统也正向着智能化的方向发展。

2.4 土地信息系统建设要更多地服务于自然资源和社会经济发展规划

传统的LIS主要用于社会经济领域,近年来,由于对环境问题和社会可持续发展的关注,对LIS土地信息服务提出了全新的要求。党的十六届五中全会提出了建设社会主义新农村的历史任务,其主要内容就是“生产发展、生活富裕、乡风文明、村落整洁、管理民主”[19][20]。在这“十一五”规划阶段,为适应社会发展的要求,土地信息系统的建设必须能够更好地服务于自然资源和社会经济发展规划,使土地信息的管理迈入更加智能化的阶段。

3 土地信息系统面临的几个学科前沿问题

3.1 土地信息系统建立过程中的数据质量问题

数据是信息的载体,数据对土地信息系统(LIS)来说是至关重要的,数据质量的好坏是土地信息系统成败的关键,信息系统对数据进行处理就是为了得到数据中包含的信息。数据库(包括空间数据和非空间数据)是土地信息系统最基本、最重要的组成部分,也是投资比较大的部分,数据质量的好坏直接影响系统的功能和应用。地学信息数据往往带有不确定性,造成地学信息数据不确定性有多方面的原因[21],测量尺度或测量精度的不同是其中一个原因,二维空间中线状地物的长度随测量尺度的不同,其测量结果就不同,三维空间中面状地物的表面积随测量尺度的不同,其测量结果也不同。地球这样一个不规则的表面又为地学信息数据不确定性增加了一个难以控制的因素。多因素干扰的所谓“病态”遥感数据也是实际地学信息数据不确定性的一个原因,因为遥感数据越来越成为地学信息数据的重要来源。地学信息数据往往没有真值[22],分数维的思想为解决这种数据不确定性问题带来了一条思路,但还有大量的理论与实际问题需要解决。

3.2 土地信息系统开发标准化问题

没有数据的标准化与系统开发的规范化就没有信息的社会化。信息数据与信息系统的标准化研究始终是信息科学与技术的前沿问题[23],制定数据标准是实现数据共享的前提。欧美各国对空间数据标准的研究和制定比较早,随着我国土地信息产业的迅速发展,制定一系列土地空间数据评价标准显得日益重要,为此必须制定一系列有关标准和规程,如土地信息系统中名词术语标准、图形与影像数据采集技术规程、数据交换格式标准、数据精度和质量标准、土地数据的分类与代码。

3.3 时空数据模型以及数据的压缩和更新淘汰问题

数据结构设置是一个信息系统软件程序设计的灵魂。空间拓扑关系的表达、时间维数据的参与又引出时间拓扑问题,如何表达时间拓扑信息增加了系统数据结构的复杂程度,将关系复杂的时空数据与门类复杂的属性数据统一用关系型数据结构表达又增加了问题的复杂程度。由于数据收集手段的改进,地学信息数据在成几何级数的速度增长,而计算机数据存储空间却以算术级数在增加,势必有一天数据存储空间容纳不下巨额的地学信息数据[24]。需要研究地学信息空间数据压缩技术,其中包括网格格式数据的无损压缩与有损压缩、矢量格式的数据压缩等。

3.4 土地信息数据的信息挖掘问题

土地空间数据隐含着大量的资源、环境和社会经济信息,如何从浩繁的数据中将这些深层的信息“挖掘”出来又是土地信息系统学科需要研究解决的问题。将空间信息挖掘出来更好的创造社会效益,需要“挖掘者”不但具有驾驭土地信息系统空间分析功能的能力,而且更需要具有较深的经济地理、资源环境等方面的专业知识[25]

研究土地信息系统的发展趋势以及学科前沿,可以将这些问题归结为三个方面,即地球信息的哲学问题、地球信息机理问题以及地球信息工程问题。地球信息的哲学问题揭示地球信息本身的属性以及人们对地理世界的认知规律;地球信息机理问题寻求地学信息科学与技术的发展方向;地球信息工程问题则从整体上解决土地信息技术的集成、整合问题。

总之,土地信息系统的建设要从土地管理的实处起步,从远处规划,着眼于土地管理的未来,要对国家土地管理的发展和系统建设的新技术、新动向有预见,使土地信息系统建设周期与土地管理未来发展相吻合。

参考文献

[1]方世明,邹炫等.土地信息系统的研究现状与发展动态[J].计算机工程,2003,29 (20):1~3

[2]刘聚海,袁国华.国外土地信息系统概况[EB/OL].http://www.cqvip.com

[3]黄仲衡.土地信息系统的回顾与前瞻[J].中国测绘,2002,(2):43~44

[4]郑顺义,曾学贵.基于知识工程的土地信息系统研究[J].中国土地科学,2000,14 (3)

[5]伊凡.解读数字城市[J].城建科学,2006,(5):5~8

[6]杨廉.“3S”技术在土地利用总体规划修编中的应用[J].国土资源导刊,2006,(1):61~63

[7]任伟.土地整理工程规划设计及“3S”技术应用[J].国土资源导刊,2006,(2):53~54

[8]王淑芬,介长春.GIS 在国土资源规划与管理中的应用[J].河南国土资源,2005,(9):46~47

[9]厉伟,但承龙,孙文华.城市化进程中土地持续利用评价指标体系研究[J].中国土地科学,2004.10,18 (5):26~31

[10]潘瑜春,钟耳顺,梁军.空间数据库技术在土地信息系统中的应用[J].计算机应用,2002,22 (5):67~69

[11]饶江静.如何建立土地信息系统[J].石河子科技,2002,(3):24~25

[12]范斌方.图文一体化土地信息系统设计的若干技术考虑[J].浙江测绘,2003,(1):19~20

[13]严泰来,吴平.带时间维土地信息系统的时空数据管理[J].中国土地科学,2002.11,16 (6):11~18

[14]刘仁义,刘南.动态土地信息系统时空过程及时空数据存储[J].中国图像图形学报,2002.4,7 (4):388~393

[15]杨连安,贾媛媛.网络化土地信息系统的初步设计实现[J].水土保持通,2002.10,22 (5):42~50

[16]张立亭,祝国瑞等.基于 WebGIS 的土地信息发布技术[J].华东地质学院学报,2003,26 (4):379~382

[17]韩琼.基于 WebGIS 的土地信息系统与社会化服务[J].测绘通报,2003,(5):61~63

[18]杨瑾,袁堪省,杨联安.基于 Intranet 的土地信息系统设计[J].西北大学学报(自然科学版),2002,32 (2):199~202

[19]董艳华.社会主义新农村建设要突出“七新”[N].河南农业,2006,(4)

[20]夏瑛光,黄金华.社会主义新农村建设的必要性及基本思路[N].河南农业,2006,(4)

[21]许玉英.土地信息系统建立过程中的数据质量问题[J].现代测绘,2006,29 (3):33~35

[22]陆红生,韩桐魁.关于土地科学学科建设若干问题的探讨[J].中国土地科学,2002,16 (4):10~13

[23]黄德霖,鲍家伟.浅谈土地信息系统标准化问题[EB/OL].http://www.cqvip.com

[24]鲁孟.建设城市土地信息系统需要解决的主要问题[J].黑龙江国土资源,2003

[25]严泰来,张晓冬,王晓娜.关于土地信息系统数据库信息挖掘问题的思考[J].信息化论坛,2003,(3):8~10

❷ GIS的概述

全名地理信息系统。GIS是解决空间问题的工具、方法和技术;从学科的角度,GIS是在地回理学、地图学、测量学和答计算机科学等学科基础上发展起来的一门学科,具有独立的学科体系; 从功能上,GIS具有空间数据的获取、存储、现示、编辑、处理、分析、输出和应用等功能;从系统学的角度,GIS具有一定结构和功能,是一个完整的系统。

❸ 地理信息系统概论的目录

第1章导论
第1节地理信息系统基本概念
一、数据与信息
二、地理信息与地理信息系统
第2节地理信息系统的基本构成
一、系统硬件
二、系统软件
三、空间数据
四、应用人员
五、应用模型
第3节地理信息系统的功能简介
一、基本功能
二、应用功能
第4节地理信息系统的发展概况
一、发展概况
二、基础理论
复习思考题
第2章地理信息系统的数据结构
第1节地理空间及其表达
一、地理空间的概念
二、空间实体的表达
第2节地理空间数据及其特征
一、GIS空间数据的分类
二、空间数据的基本特征
三、空间数据的拓扑关系
四、空间数据的计算机表示
第3节空间数据结构的类型
一、矢量数据结构
二、栅格数据结构
三、曲面数据结构
第4节空间数据结构的建立
一、系统功能与数据源间的关系
二、空间数据的分类与编码
三、矢量数据的输入与编辑
四、栅格数据的输入
五、曲面数据的输入
复习思考题
第3章空间数据处理
第1节空间数据的变换
一、几何纠正
二、地图投影及其转换
第2节空间数据结构的转换
一、由矢量向栅格的转换
二、由栅格向矢量的转换
第3节多元空间数据的融合
一、遥感与GIS数据的融合
二、不同格式数据的融合
第4节空间数据的压缩与重分类
一、空间数据的压缩
二、空间数据的重分类
第5节空间数据的内插方法
一、点的内插
二、区域的内插
第6节空间拓扑关系的编辑
一、多边形连接编辑
二、节点连接编辑
复习思考题
第4章地理信息系统空间数据库
第1节空间数据库概述
一、空间数据库的概念
二、空间数据库的设计
三、空间数据库的实现和维护
第2节空间数据库概念模型设计
一、语义数据模型
二、面向对象的数据模型
第3节空间数据库逻辑模型设计
一、关系数据模型
二、逻辑模型设计
第4节空间数据库的物理设计
一、空间数据库的物理设计概念
二、空间数据库的物理设计步骤
第5节空间数据查询
一、空间关系查询类型
二、属性数据查询
三、空间属性联合查询
四、空间查询语言
第6节空间数据库索引
一、范围索引
二、格网空间索引
三、四叉树空间索引
第7节空间元数据
一、元数据及其作用
二、元数据实例
第8节空间数据库引擎
一、空间数据库引擎概述
二、空间数据库引擎的工作原理
第9节空间时态数据库
一、空间时态数据库概述
二、时空一体化数据模型
复习思考题
第5章空间分析的原理与方法
第1节数字地形模型分析
一、地形因子的计算
二、地形剖面线计算
三、DEM的通视分析
第2节空间叠合分析
一、空间叠合分析的概念
二、基于矢量数据的叠合分析
三、基于栅格数据的叠合分析
第3节空间邻近度分析
一、空间缓冲区分析
二、Voronoi多边形分析
第4节空间网络分析
一、网络图论的基本概念
二、计算最短路径的Dijkstra算法
复习思考题
第6章地理信息系统的应用模型
第1节GIS应用模型概述
一、GIs应用模型的分类
二、GIS应用模型的构建
第2节土地定级估价模型
一、技术路线
二、土地定级估价模型
三、应用实例
第3节适宜性分析模型
一、一般形式
二、应用实例
第4节发展预测模型
一、一般介绍
二、应用实例
第5节区位选择模型
一、数据准备阶段
二、综合影响评价阶段
三、区位选择分析阶段
第6节交通规划模型
一、交通发生量预测模型
二、出行分布预测模型
三、交通量最优分配规划
第7节地球科学模拟模型
一、确定土壤侵蚀的数值分析模型
二、设计土壤侵蚀数据处理流程
三、土壤侵蚀图的输出
复习思考题
第7章地理信息系统的设计与评价
第1节应用型GIS设计概述
一、系统设计的目的
二、系统设计的模式
三、系统设计的流程
第2节地理信息系统的设计
一、系统分析
二、系统设计
三、系统实施
四、系统运行和维护
第3节地理信息的标准化
一、地理信息标准化的内容
二、地理信息标准化的制定
第4节地理信息系统的评价
复习思考题
第8章地理信息系统产品的输出设计
第1节地理信息系统产品的输出形式
一、地理信息系统产品及其类型
二、网络地图和数字地球
第2节地理信息系统图形输出系统设计
一、图形坐标系与颜色模型
二、输出的几何变换
三、地形图与专题地图的输出组织形式
第3节地理信息系统的可视化与虚拟现实
一、三维空间制图模型
二、数字高程模型的构造
三、虚拟现实的设计与实现
复习思考题
附录
参考文献
……

❹ 地理信息系统专业与计算机技术关系大吗

大。
地理信息系统是地理科学、信息科学及计算机科学等的交叉学科,是一门新版兴的学科,在社会、经济建权设中有着非常广泛的应用。北京大学于1990年开始在地理类本科生课程中开设地理信息系统概论,并定为必修科目,1998年正式设立地理信息系统本科专业,是我国最早开设这一专业的院校之一,为社会培养了大批的高层次人才。
在地理信息系统本科专业的课程设置中,地理信息系统概论是一门骨干必修基础课,也是学生第一门地理信息系统专业课程。目前,地理信息系统概论已经是北京大学地球与空间科学学院的及环境科学学院的本科必修课程,同时也是众多相关院系的选修课程。这门课程的基础定位是:使学生掌握正确的专业基本概念和基础认识,掌握地理信息系统的基本框架结构,了解地理信息系统的应用及发展状况,从而为其后续专业及相关的学习和研究指引正确方向、打好坚实基础。

❺ 综述地理信息系统的空间分析功能

GIS空间分析的内涵极为丰富,包括空间查询、空间量测、叠置分析、缓冲区分析、网络内分析容、空间统计分类等多个方面。G1S 空间分析技术方法包括以下两大类:
(1)空间基本分析
基于空间图形数据的分析计算,即基于图的分析。该分析功能与GIS 其他功能模块有紧密联系,技术发展也比较成熟。主要有空间信息量算、缓冲区分析、空间拓扑叠置分析、网络分析、复合分析、邻近分析及空间联结、空间统计分析等。
(2)空间模拟分析
也称为专业型空间分析。该技术解决应用领域对空间数据处理与输出的特殊要求,空间实体和关系通过专业模型得到简化和抽象,而系统则通过模型进行分析操作。目前G1S 在该领域的研究相对落后,尚未形成一个统一的结构体系。

❻ 运用地理信息系统新技术进行滑坡稳定性三维评价和滑动过程模拟研究

译自 Environment Geo1ogy,2003(43):503~512。

Mowen Xie1Tetsuro Esaki1Guoyun Zhou1Yasuhiro Mitani1

张晓娟2译 罗靖筠2校 朱汝烈2复校

1Environmental System Institute,Kyushu University,Hakozaki 6-10-1,Higashi Ku,Fukuoka,Japan;2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)

【摘要】本文在传统的边坡稳定性三维分析模型的基础上,提出了一个全新的基于GIS的边坡稳定性三维栅格分析模型。在这个模型中,假定初始滑动面就是椭球底面,采用蒙特卡洛(Monte-Carlo)随机模拟方法,在求取最小安全系数法的同时,确定出最危险滑动面。运用GIS栅格模型和GIS数据模拟滑坡滑动过程时,滑坡体将沿主滑方向滑动,直到其安全系数上升到1为止。所有的计算均可通过一个称为三维边坡地理信息系统(3DSLOPGIS)的计算程序来完成,该程序主要利用GIS的空间数据处理分析功能。

【关键词】确定性模型地理信息系统(GIS)蒙特卡洛(Monte-Carlo)模拟滑动模拟三维边坡稳定性

1引言

滑坡不稳定性和风险评价不但已成为地学家和工程专家们感兴趣的主要课题,同时也成了世界各地政府部门和管理者关注的焦点。据统计世界上每年约有600人葬身于滑坡灾害中。在许多发展中国家,自然灾害所带来的经济损失,占总国民生产总值的1%~2%。

近年来,由于地理信息系统具有强大的空间数据处理功能,被广泛运用于自然灾害评价领域。GIS是由硬件和软件组成的系统,它可以实现数据采集、输入、操作、转换、可视化、组合、质疑、分析、建模和输出等过程。GIS对空间数据具有强大的分析和处理功能。同时,基于GIS的地质技术分析模型,可以简便而有效地分析滑坡稳定性。目前它已经被广泛地用于土木工程和地质工程中,进行边坡稳定性的分析。

我们通常认为一个传统的模型无论是对均质滑坡还是非均质滑动都是适用的。稳定性指数是被广泛应用的、基于岩土工程模型和物理力学参数的安全系数。安全系数的计算需要几何数据、剪切强度数据及孔隙水压力数据,正确的结果取决于可靠的数据和恰当的模型。尽管输入的数据会较大程度地影响安全系数,但一个可靠的确定性模型对于取得可靠结果则更为重要。确定性计算可在GIS系统内执行,也可利用其他程序完成。若使用其他程序计算,则GIS只作为一个空间数据库用来存储、显示、更新输入数据。此方法主要优点是利用外部模型计算可以节约时间;而其缺陷是对从外部模型获得的数据进行转化时较为复杂。因为每一个程序都有其自己的数据格式和数据结构,数据转换成为一个主要的问题。有些程序的输入模块只允许人工输入数据。只有当这些程序所默认的数据格式都是 ASCII码时,数据转换才可直接进行。运用外部模型的另一个缺点是计算结果通常不是按GIS的空间分布模式来表达,而是以点或线的形式表述的。因此,改变这种计算结果的表达形式也是个主要的问题。

用来计算安全系数稳定性模型的边坡是二维或三维的。因为一个地区包括很多边坡,而且必须分别对每个边坡做分析,所以利用这些模型计算安全系数的空间分布非常花费时间。要克服数据转换的困难,可以利用GIS内部确定性计算模型来实现。然而这一方法也有缺点,那就是由于应用复杂算法、迭代过程及在常规二维 GIS中的三维体积等复杂局限性,使得只有简单的模型能较容易实现。当前,只有基于GIS的无限边坡模型能分别计算出每个像元的安全系数。研究表明,只有当越来越多的成熟的三维模型和GIS系统得到使用后,才能彻底解决这类问题。

从近来对 GIS用于边坡稳定性分析的调查中发现,大部分研究者潜心于运用统计学方法来确定边坡破坏与影响因素之间的关系。尽管GIS能对区域数据进行了准备和处理,但是只有极少量的研究者运用了GIS的集成功能和边坡稳定性的确定性模型。

即使在很短的距离范围内,边坡破坏在空间上都有其不同的几何结构。因而,运用三维模型分析边坡稳定性是合理的。从20世纪70年代中期以来,三维稳定性模型的发展和运用日益受到关注。在地质力学的著作中提到了几个三维分析方法。

上面提到的大部分方法都用到了柱状图法。这些方法将柱体之间的作用力,或者说作为三维安全系数计算的假定前提,都忽略不计。因为所有与斜坡相关的GIS数据都可转成栅格数据,所以这些基于三维模型的柱体,就可能借助于使用GIS栅格数据用来进行三维稳定性的计算。然而,长期以来大家习惯采用人尽皆知的“一维模型”——“无限斜坡”模型,来描述滑动面与地面平行的长期天然边坡的潜在危险性。这样的模型仅仅可以用于浅层斜坡失稳分析和一些存在深层滑坡的区域性研究。

由于算法复杂、步骤重复和三维数据在二维GIS中难于表达,早期的文献中并没有提及三维确定模型的应用。为了克服 GIS数据的外部转换和GIS内部算法复杂等困难,此次研究中,在GIS软件组件(a GIS component)中使用了Visual Basic程序。三维因子的计算和滑动过程的模拟由计算机内的三维边坡地理信息系统(3-DSLOPGIS)的计算程序完成。在这个系统中,GIS组件(ESRI公司生产的MapObjects2.1)可以完成所需的GIS功能,就像普通的GIS软件一样,它可以有效的管理和分析所有与滑动相关的数据。所有用来计算三维斜坡安全系数的数据都采用GIS的数据格式(例如矢量和栅格数据层),因此,没必要在GIS数据格式和其他程序的数据格式之间进行数据转换;同时,复杂算法和三维问题的交互程序也可以理想的实现。

在此次研究中,将基于GIS栅格数据和基于柱状图的三维边坡稳定性分析模型相结合(Hovland,1977),演绎了一个新的基于GIS栅格的三维确定性分析模型。

运用蒙特卡洛随机模拟方法求最小安全系数值,从而确定临界滑动条件。假定基本滑动面是一椭球体的较低部分,临界滑动则受不同地层受力情况和不连续界面状况的影响而变化。客观事物的这种变化引出最小三维安全系数。

如果滑坡的三维安全系数小于1,滑坡就有滑动的危险,那么评估滑坡灾害的规模和影响范围是非常重要的。因此,在此研究中,采用基于GIS三维栅格数据模型和GIS栅格数据来模拟滑坡滑动过程的目的,就是评估滑坡危险性和预测其影响范围。

2基于GIS的三维模型

利用GIS的空间分析功能,所有与三维安全系数计算有关的输入数据(如高程、倾向、坡度、地下水、地层、滑动面和力学参数等)都有其对应的栅格元,而所有与斜坡相关的数据都是栅格化的。当这些数据输入到确定的边坡稳定性模型中时,就可计算出一个安全系数值。下面在Hovland模型的基础上,详细介绍基于GIS的三维模型。在这个模型中,考虑了孔隙地下水压力,所有输入数据都能简单地转换成栅格数据。

图1是具有潜在滑动面的滑体的三维几何示意图。滑坡的稳定性与地质岩层、地貌、地质力学参数和水动力条件有关。

图1边坡坍塌三维景观

图2所示是土壤(或岩石)小柱状研究体物质的离散性。所有与滑坡相关的数据都可用如图2所示的柱状三维可视图来表示。假定每一个柱体单元的垂面均为无摩擦面(柱体单元的垂面不受其他边界影响,或其影响可忽略不计),三维安全系数可用公式(1)表示:

地质灾害调查与监测技术方法论文集

式中:F3-D为三维斜坡安全系数,W为一个柱体的重量,A为滑动面面积,c为内聚力,φ为内摩擦角,θ为滑动面的角度,而J、I为在斜坡破坏范围栅格内的行列数和柱体数。如果没有GIS,则基于柱体模型的三维安全系数的计算将是冗长且耗时的工作,数据的更新和增加也极其不便。然而,在GIS中,通过运用GIS空间数据处理与分析功能,整个研究区的边坡稳定性相关数据可用如图3所示的矢量图层来描述;而对于每一层,则可通过GIS空间数据处理与分析功能得到栅格数据,其像元大小可根据精度需要而定。

图2滑动面和三维棚格柱状图

现在,将斜坡破坏划分为基于栅格数据的柱体。参考图2,诸如地表、地层、地下水、裂缝和滑动面之类的空间数据均可从栅格数据层中得到。因为与斜坡相关的数据量非常大,所以不能高效的管理所有的栅格数据集。因此,在三维边坡地理信息系统中,有一个专门储存这些栅格数据的点数据库,其中,有一个属性表用来链接所有与滑动相关的数据。每个栅格柱状图的中心点设置点类型,其他区域则设置与滑坡相关的一些数据(例如地面高程、地层和裂缝的高程、地下水、滑动面的深度等等)。表1所示即是属性表的一个实例。

图3边坡稳定性分析GIS图层

表1点数据库的实例描述

另一方面,为了控制滑坡边界和有效管理空间数据并进行分析,滑坡的边界线被定义为多边形类型文件。

基于这种点数据库,公式1可以改成基于GIS的方程。这里所有的阻力和滑力都是沿着滑动方向的,而不必如 Hovland的模型所用的Y轴方向。在本研究中,假定斜坡区域的主要倾斜方向为可能滑动方向。根据图4,滑动表面面积可由公式(2)得到。

地质灾害调查与监测技术方法论文集

从图4推导出如下公式:

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

接着,x和y轴的倾角推导如下:

地质灾害调查与监测技术方法论文集

记α=cellsize/cosθxz和b=cellsize/cosθyz,则一个栅格柱状图的滑动面面积为:

地质灾害调查与监测技术方法论文集

滑坡范围主滑动方向的倾角计算公式如下:

地质灾害调查与监测技术方法论文集

至此,三维边坡水平滑动方向安全系数可以用下面的公式计算:

地质灾害调查与监测技术方法论文集

图4三维安全因子推导公式的一个栅格柱状图

这里,对于每个栅格,Zji,zji分别为地表高程和滑动面高程,uji为在滑动面上的孔隙水压力,而 γ′为单位重量。

为了检验基于栅格的GIS三维稳定分析模型,我们运用这个模型做了一个实例计算。实例问题为一个均质的粘土滑坡,具有球形滑动面,其他各种参数如图5所示。在图5中,c为内聚力,φ为摩擦角,R为瞬时摩擦力,γ为土的单位重量。运用封闭式(closed-form)算法得出三维安全系数为1.402。运用CLARA模型算得安全系数为1.422。同样的问题运用三维边坡模型算得三维安全系数范围为1.386到1.472,它取决于用于被分离的边坡柱体的数量。

图5实例问题验证

运用基于GIS栅格的三维稳定分析模型(图5),并将格网尺寸定为0.5m时,算得三维安全系数为1.386;而当格网尺寸为0.6m时,算得安全系数为1.388。很明显,与封闭式算法相比,基于栅格模型的GIS可有效的用于三维边坡稳定性评估。

3确定临界滑动表面和蒙特卡洛模拟

滑动面只能通过岩土工程调查来确定,由于地质调查的费用比较昂贵,因此滑动面通常是很难确定的。因此,边坡稳定性评价对临界滑动面的确定是非常重要的。

为了判定三维临界滑动情况,利用蒙特卡洛随机模拟方法来计算三维安全系数最小值。假定最初的滑动面是一个椭球体的较低部分,边坡表面则根据不同地层受力情况和不连续界面条件而改变。最终得到危险滑动面,同时可得到相关三维安全系数的最小值。

4椭圆坐标转换

假定最初的滑动面是一椭球体的较低部分,椭球体的倾斜方向设置为与研究区主要的倾斜方向一致;将椭圆的倾角基本上设定得与研究区起伏变化的倾角接近。其主倾向为α,主倾角为β,它们是由边坡破坏区域主要栅格像元的值确定的。假定倾向和倾角属正常分布,则将主倾向α和倾角β代入分布模型中:

地质灾害调查与监测技术方法论文集

运用公式(10)和(11)完成坐标转换。图6显示了坐标转换过程。

图6坐标转换过程

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

式中:x、y、z为全球大地坐标,

为当地坐标,x0、y0、z0为椭球体中心点坐标。

5 Z值的确定和滑动面的倾斜度

滑动面上“B”点的Z值是根据直线 AB和椭圆,由公式(12)计算的结果确定的(见图7)。

地质灾害调查与监测技术方法论文集

对于每个栅格像元,滑动面的倾向和倾角可通过下面的公式计算得出,像元(j,i)的倾角可以通过图8中点1~4的Z值来确定。点1~4的值由公式(13)(14)(15)算出,滑动面的倾向和倾角由公式(16)算出。

图7确定滑动面上的Z值

图8滑动倾角的计算

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

这里,Z(j,i)为像元(j,i)的Z值,θ为倾角,β0是相对于X轴的倾向。在GIS中,倾向是与 Y轴之间的夹角。因此,当最高点是点3时,倾向是90-β0;当最高点是点4时,倾向是90+β0;当最高点是点2时,倾向是270-β0;当最高点是点1时,倾向是270+β0。

6随机模拟

为了确定临界滑动面,蒙特卡洛模拟通常用于为三维边坡稳定性分析选择变量。这些变量是椭球体的中心点、几何参数和倾角。椭球体的中心点作为研究区的中心点需要首先确定,然后在一个确定的范围内随机选择。

椭球体的几何参数a、b、c是由用户在一定范围内随机设定的,确定范围如公式(17):

地质灾害调查与监测技术方法论文集

假定a,b,c都均匀分布,则蒙特卡洛模拟的随机变量由公式(18)和(19)来算出。

在[0,1]范围内平均分布的随机变量可通过全等乘积方法得出:

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

式中:ri为在[0,1]范围内平均分布的随机变量。在[a,b]范围内平均分布的随机变量可由公式(19)计算得出。

地质灾害调查与监测技术方法论文集

式中:xi为在[a,b]范围内平均分布的随机变量。

椭球体的倾角设定为平均分布的一个随机变量。平均分布范围为主倾角及其在一个确定的波动范围之内变化的变量。

7 计算三维安全系数最小值的过程

整个研究区(或边坡破坏范围)可以被均分为若干小矩形栅网,如同基于栅格的GIS一样。关于基于栅格的三维边坡稳定性分析的数值计算,所有的计算过程都可以通过前面提到的Visual Basic(利用GIS组件)来完成。这个软件叫三维边坡地理信息系统,是运用 Visual Basic 6.0和ESRI公司生产的MapObjects 2.1开发的。MapObjects作为GIS的一个组件,用来对GIS数据进行组织和空间分析。计算三维安全系数的过程如图9所示。

图9三维安全因子最小值计算过程

在这个过程中,数据模块的功能用来获得所有与边坡相关的地质、地貌、水动力学数据和地质力学参数;随机变量参数模块用来随机选择蒙特卡洛模拟的实验滑动面;三维边坡稳定性模块可用于计算三维安全系数;而危险滑动面及其安全系数可以通过一些实验计算得出。在图9中可以看到,关于GIS空间分析功能的所有模块可以通过GIS组件来实现。因为一个GIS组件是在三维边坡地理信息系统系统中完成的,所以可以有效地计算三维安全系数;同时利用与边坡相关的GIS数据,所有的相关数据和结果可以在三维边坡地理信息系统系统中实现可视化。

实例剖面如图10所示。在这个实例中考虑的因素有:4个地层、地下水和破坏面;其物理和力学参数如表2所示。

表2研究实例的物理和地质力学参数

图10断层面研究实例

图11计算次数与最小三维安全因子实验

为确定临界滑动面,对蒙特卡洛随机计算次数进行了实验,总共计算次数达到了1000次。每次实验计算的三维安全系数最小值的结果如图11所示。图中明确显示在实验计算了300次后,得到的安全系数最小值。这300次实验的结果见图12,这些计算结果差别不太大,其最小值为1.34,最大值是1.68。这个临界滑动的研究程序是建立在最小安全系数的计算基础之上的。而最小安全系数的计算结果取决于参数的随机选择。有关这一临界滑动实例的三维可视图见图13。通过三维模型与二维模型结果的比较,用Janbu法确定临界滑动面时,使用的是图10所示的二维模型和表2所列的参数,通过这种二维模型计算出的安全系数为1.18,这要比用三维模型计算出结果的极小值(1.346)略小一点。

图12三维安全因子分布曲线

8滑坡滑动过程模拟

基于GIS栅格三维边坡稳定性分析模型和GIS栅格数据,对滑坡滑动过程进行了模拟,直到三维安全系数大于1为止。滑动方向按滑动面的主滑方向确定。图14中展示了由滑动面确定的八个滑动方向。例如,若滑面方向的倾角在22.5°~67.5°之间,则滑坡将要滑动的方向恰在该图的右上方(即“5”方向)。

图13临界滑动面三维展视图

图14滑动面的滑动主倾向

图15滑坡滑动过程模拟流程方框图

滑坡滑动过程的模拟流程见图15。首先,要计算滑坡初始状态时的三维安全系数,以确定其滑动的可能性。若其安全系数小于1,则接着进行下一步滑动过程模拟。先沿着由滑面主倾向确定的滑动方向移动滑坡多边形;接着,在新的滑坡多边形范围内,分步(每一步等于一个栅格大小)计算每一个栅格的DEM和滑动的变化,并再次计算下一步滑动的新滑动方向。并在新的DEM数据和滑动多边形范围的基础上,计算出新的三维安全系数。如果三维安全系数仍然小于1,则进行以下的新滑动步骤模拟。

在这种滑动模拟模型中,假定滑动面内摩擦角不改变,但除了在初始三维边坡安全系数的计算过程之外,假定滑动面没有内聚力(即内聚力为零)。

仍然用同样的实例(如图5所示),用不同的两种动力学参数进行滑坡滑动过程模拟:

情况1:c=4kN/m2,φ=110,y=23kN/m3

情况2∶c=6kN/m2,φ=10.5°,γ=23kN/m3

第一种情况下,初始边坡安全系数为0.82,在进行7步滑动之后,滑坡体开始趋于稳定,其安全系数是1.04。部分滑动步骤剖面及三维视图变化如图16所示。在此图中,DEM的改变及滑坡体移动过程一目了然。运用三维边坡地理信息系统,也可将可视滑动过程表现为GIS地图和剖面图的形式。滑坡体沿水平方向的最终滑动距离为3.0m。

图16不同滑动阶段的地表和剖面三维视图

第二种情况下,滑坡体将一直向下滑动到平坦地区,水平方向滑动距离为14m。滑坡体最后停止滑动位置的三维展视图如图17所示。

图17滑坡体最后停止位置

9讨论和结论

在三维边坡稳定性柱状分析模型的基础上,开发了一个全新的基于GIS栅格的三维确定性模型,并且通过一个问题实例证实了其正确性。在三维边坡稳定性分析模型中,假定其初始滑面为一椭球面;其三维临界滑面,是利用蒙特卡洛随机模拟求取最小三维安全系数而确定的。基于GIS的栅格三维模型,滑坡滑动过程模拟用于判断滑坡灾害和预测滑动距离。已开发了作为计算程序软件的三维边坡地理信息系统,它足以完成一切有关三维边坡问题的计算,其中的GIS组件用于实现GIS的空间分析功能和有效数据的管理。因其具有空间分析、数据管理和与边坡相关的综合数据的GIS可视化等优点,所以三维边坡稳定性问题已经比较易于研究。自打全新的基于GIS栅格三维边坡稳定性分析模型问世,就为惯于使用传统数学方法研究边坡稳定性的工作者拓展了一个新的研究领域和数据库方法。

❼ 地理信息系统在塔北油气勘探和评价中的应用

安精文陈新刚李新华

(西北石油局规划设计研究院,乌鲁木齐830011)

摘要作者阐述了利用地理信息系统(GIS)建立塔北综合地学信息系统的技术方法。系统分别建立了地理信息属性库和图库,并通过链接将二者联系起来,实现了图形与数据库的统一。系统可支持各类绘图设备、数字化仪、扫描仪,为生产提供了极大的方便。工作站系统与微机系统的局域网络的建成,大大推动了各项工作的顺利进行,已成为生产、科研中不可缺少的工具。目前已广泛投入了生产应用。

关键词地理信息系统数据视图图层数据库管理系统

随着塔北油气勘查工作的不断发展,地理信息日益复杂,处理各种与环境、地理密切相关的信息,已成为必不可少的繁杂而又重要的工作。因此,迫切需要把地图、图像、属性数据互相结合起来,对信息资源进行快速处理。通过GIS技术,融地理、信息管理、计算机科学和应用于一体,建立塔北综合地学信息系统,并与地震解释的应用软件链接,形成具有地质专业特色的地理信息管理系统,这一系统已成为塔北油气勘探管理及决策的重要手段。

1技术原理

塔北地区积累了十分丰富的地质、地球物理、地球化学资料。我们针对各个具体的用户视图进行了综合、汇总,根据关系数据库模型有关理论,设计了数据视图,即概念模型(图1)。

为了充分发挥现有设备的作用,在上述概念模型基础上,将SPARC STATION 2设为GIS主控平台,完成数据库的建库及程序的研制工作,将微机作为应用平台,完成数据的准备及图件的录入工作,整个系统通过局域网络实现。

考虑到数据库系统的完整性、一致性、可恢复性、安全性及有效性,将概念模型转化为具体数据库管理系统(DBMS)要求的数据模型,对此我们进行了逻辑设计。这一步实质是进行模型转化,即将原始的概念模型转化为具体的DBMS所能接受的数据模型,并用数据定义语言DDL定义它,从而得到模式。INFO子系统是GIS系统的一个DBMS,它可以描述关系模型系统。另外,针对不同的地质要求,对区域重力背景、布格重力异常、航磁、大地构造区划、地理背景及不同时代沉积相、沉积环境等分别建立图库,这些图库均在INFO管理下,可以通过功能指令在AML语言控制下,方便地执行复杂的空间分析,地图编制以及其它数据管理功能。

在INFO的图层设计(表1)中,我们将图上的各种地理特征抽象为点、线、面,它们的特征以颜色、符号及注释来区分,并由图例、图符、描述性文本来解释。为了有效地管理数据和空间数据中的标识码,属性数据由DBMS进行存贮和管理,空间数据通过GIS软件进行存贮和管理。

在上述图层基础上,我们可以进行地理分析,基本的方法和过程如下:

图1系统设计原理Fig.1Principle of System Designing

确定地理分析的目标和标准。目标就是用户用地理数据去回答或解决的问题,标准就是解决的方式和达到的程度。

准备空间操作的数据。目前,信息库中已有大量的图层及数据,但根据需要仍需作必要的数据准备,如度量单位、比例尺、坐标系统的变化等。

执行空间操作命令:空间操作命令可根据使用目标去选择相应的菜单,并给定相应的参数。

执行表分析。表分析是最常用的方法,因为在表数据中,既定量又定位,远远超过传统的地理数据的意义和作用,根据一定的数据模型和评价原理,可以得出新的结果和结论。

表1常用图层Table1Common Map layers

评价结果。由上述表分析结果,按照开始确定的目标和标准进行评价,检查是否符合,若不符合,则从第3步重做。

完善分析结果。如果上面的评价结果基本符合要求,仅是个别地方需要加工,则进行局部修改,直到满意为止。

绘制最终成果图件。根据评价生成的图层,设计图件中使用的点、线、面状符号库,并通过指令控制直接绘制成果图件或形成数据文件输出。

2应用效果

GIS应用系统提供了综合分析及综合信息提取的各类计算方法,如复合叠加、区域合并、区域剪裁、区域生成、区域条件提取等,实现了测线底图的图形文件输出功能,其中包括LANDMARK地震解释软件和AUTOCAD应用软件接口,为地质制图提供了数据基础。该系统的实现大大提高了工作效率及成图的精度,系统地提供大量的数据和图层信息,为领导的正确决策提供了依据,也为进一步研究提供良好的基础。系统在拉依苏、雅东、永丰庄、大尤都斯、亚松迪、雅西、雅肯及桑南工区投入了广泛使用,应用范围主要有数据处理,辅助分析,工作部署及图件生成。

LANDMARK地震解释工作站可以完成合成记录的制作,它需要测井、钻井、地质数据等多种信息,查找起来比较繁琐。GIS为此提供了软件接口,可以直接输出各类信息,并提供了指定井段数据提取、数据插值、数据排序等多种数据预处理程序,为合成地震记录的制作以及岩性解释、储层描述、油藏模拟提供测井、钻井、测试地质等数据。系统提供了合成地震记录的开发应用接口,通过这些数据集可以很方便地制作分层地震记录。

GIS应用系统使得一个数字化的空间数据库中不同数据集之间(以及从这些数据中提取的特征之间)的空间的及统计的相关关系的查明更为简便。在实际应用中,通过数据库可对钻井地质分层进行纵向对比、横向对比以及指定深度范围内分层数据的提取。表2和表3列出了纵向对比和横向对比的部分数据。在这些数据的基础上,可以应用统计软件对数据进行图形分析。

表2N1j岩性按大类分类统计横向对比Table2Transverse Comparison According to Statistics of N1j Lithology Clasiification

表3沙22井岩性按大类分类统计纵向对比Table3Vertical Comparison According to Statistics of S22 Lithology C assification

3结束语

塔北地理信息系统的建成,为应用人员提供了全面的数据基础,扭转了各类地质资料缺乏科学管理的局面,在生产、科研中取得了明显的经济效益。GIS系统提供的空间分析功能为地质、物化探等各类专业人员充分发挥经验和专家意识作用,以及领导决策提供了工具,为油气评价系统的建立奠定了坚实的基础。

参考文献

[1]冯玉才.数据库系统基础.武汉:华中理工大学出版社,1989.315~370

GIS application in petroleum and gas exploration in northern Tarim basin and its evaluation

An JingwenChen XingangLi Xinhua

(Academy of Planning and Designing, Northwest Bureau of Petroleum Geology,Ürümqi 830011)

Abstract:In this article,the technology of building up an integrated Northern Tarim geo-sctence in formation system with the common geographic information system is explained in detail.In this system,two main libraries,the geographic information property library and the image library,are linked with each other,and thus make the images and database uniform.This system can support most kinds of recent plotters, digitizing equipments and scanners. Since the LAN of Northwest Bureau of Petroleum(NWBP)has built up,which enlarges the use of this system,the system has made great convenience to all the users of the NWBP LAN.

Key words:Geographic Information SystemViews of DataLayers of MapDatabase Management System

❽ 如何利用地理信息系统对步行大中型公共服务设施进行评价

错的来,配电网地理信息系统源属性信息包含对用户配电数据采集、数据集结、配电信息交互处理、故障诊断、故障处理、以及实时监控(包括遥控、运行统计、报警、报表打印)等。 配电网地理信息系统的数据库包括两个部分: 属性数据库和空间数据库。属性数据库用于存储各种电力设备的属性信息, 如编号、名称、类型、数量 等, 空间数据库则用于存储各种电力设备的空间信息, 如经度、纬度、海拔高度等。只有将属性信息和空间信息有机结 合, 才能 达 到生动直观的效果, 才能清晰的反映电网复杂的拓扑结构, 而这正是配电网地理信息系统的优 势所在。因此, 在对数据库进行设计时, 除了考虑效率高、冗余低、一致性等要求外, 合理设计属性数据库和空间数据库的关联是一个关键问题。

❾ 计算机网络在地理信息系统中的应用

地理信息系统是地理科学、信息科学及计算机科学等的交叉学科,是一门新兴的学科,在社会、经济建设中有着非常广泛的应用。北京大学于1990年开始在地理类本科生课程中开设地理信息系统概论,并定为必修科目,1998年正式设立地理信息系统本科专业,是我国最早开设这一专业的院校之一,为社会培养了大批的高层次人才。
在地理信息系统本科专业的课程设置中,地理信息系统概论是一门骨干必修基础课,也是学生第一门地理信息系统专业课程。目前,地理信息系统概论已经是北京大学地球与空间科学学院的及环境科学学院的本科必修课程,同时也是众多相关院系的选修课程。这门课程的基础定位是:使学生掌握正确的专业基本概念和基础认识,掌握地理信息系统的基本框架结构,了解地理信息系统的应用及发展状况,从而为其后续专业及相关的学习和研究指引正确方向、打好坚实基础。

课程的指导思想 Top
地理信息系统是一门综合性的应用学科,它对于学生的地理科学及信息科学、计算机科学基础要求比较高。同时,地理信息系统目前发展非常迅速,应用越来越广泛,因而尽管本课程是一门基础课程,其内容的更新速度确实非常迅速的。结合这些特点,基于课程目的和课程定位,本课程建设的基本指导思想是:
1、坚持理论与实践相结合。本课程作为本科生的入门课程,对相关的基础概念、基础知识及基本原理需要进行充分、翔实的讲解,使学生牢固的予以掌握。同时,为了改变学生在基础课程中容易“死记硬背”的问题,突出地理信息系统的应用特点,在课堂教学中引用大量应用实例;本课程还设置了专门的实习课,并安排了专门的实习课教师,布置了具体的实习作业,以使学生能够掌握常见的应用系统的使用和操作,并提高学生的实际动手解决问题的能力。
2、坚持基础理论体系与最新进展相结合。本课程讲授地理信息系统的完整的理论体系与框架,以便为学生的后续学习研究打好基础。同时,考虑到学科的快速发展,在基础理论的基础上,增加了地理信息科学与数字地球、地理信息系统与社会、地理信息系统标准、地理信息系统工程的章节,以使学生对学科的最前沿发展有所了解、有所掌握。
3、坚持个性化教育的原则。地理信息系统是一个交叉学科,需要的专业背景知识较多,包括地理科学、信息科学及计算机科学等,同时其应用方向又非常广泛。针对这个特点,我们在教材编制中涵括了常见的基础知识,如部分计算机及网络常识、地图学的基本原理等,并在课程中对基础知识有欠缺的同学进行有针对性的辅导。同时,在安排专题讲座及课程实习时,也不是千篇一律,而是针对学生的专业方向进行了相应的安排。
4、积极运用新型的教学手段。针对课程中的重点与难点,本课程积极采用文字、图片、视频、动画等新型教学手段,以提高课程的趣味性,提高学生的参与程度,帮助学生进行理解和记忆。由于地理信息系统本身就是软件系统,因而课堂教学讲授中还采用了现场操作、现场演示的教学方法,并大力鼓励学生走上讲台进行操作,大大提高了学生的参与程度。

主要教学内容 Top

本课程教学的主要内容包括四个主要模块:
模块一:基本概念和理论
要点1:概述
地理信息系统的基本概念:信息、数据、地理数据、地理信息;地理信息系统及其重要类型;地理信息功能概述;地理信息系统的研究内容;地理信息系统发展简史
要点2:从现实世界到比特世界
对现实世界的地理认知:认知与认知模型;现实世界的抽象:现实世界-概念世界-地理空间世界-纬度世界-项目世界;比特世界
要点3:空间数据模型
空间数据模型基本概念;场模型;要素模型;基于要素的空间关系分析;网络结构模型;时空模型;三维模型
要点4:空间参照系与地图投影(本部分系针对非地理专业学生设置,不是正式授课内容)
地球椭球体;坐标系;地图投影基本问题;高斯-克吕格投影;地形图的分幅与编号
要点5:GIS中数据
数据涵义与类型;数据的测量尺度:命名量-次序量-间隔量-比率量;地理信息系统数据质量:数据质量来源与控制;空间数据元数据:元数据的基本概念-元数据的应用-元数据的获取-元数据的存储与功能实现。
模块二:地理信息系统的框架与功能
要点1:空间数据获取与处理
地图数字化:概述-地图数据类型-数字化仪数字化-扫描矢量化及常用算法;空间数据录入后处理:坐标变化-图形拼结-拓扑生成。
要点2:空间数据管理
空间数据库:空间数据库-GIS内部数据结构;栅格数据及其编码:栅格数据结构-决定栅格单元代码的方式-编码方法;矢量数据结构及其编码:矢量数据结构-编码方法;矢量与栅格结构的比较与转换算法;空间索引机制;空间信息查询:基于属性特征的查询-基于空间关系和属性特征的查询(SQL)-空间扩展SQL查询语言(GSQL)。
要点3:空间分析
空间查询与量算;空间变换;再分类;缓冲区分析;叠加分析;网络分析;空间插值;空间统计分类分析
要点4:数字地形模型(DTM)与地形分析
DEM与DTM;DEM的主要表示方法:规则网格模型-等高线模型-TIN模型-层次模型;DEM模型的相互转换:不规则点生成TIN-网格DEM转成TIN;等高线转为格网DEM-利用格网DEM提取等高线-TIN转为格网DEM;DEM建立:DEM数据采集方法-数字摄影测量-DEM数据质量控制;DEM的分析与应用:格网DEM应用-TIN分析应用。
要点5:空间建模与空间决策支持
空间分析过程及其模型;空间决策支持模型:空间分析决策的复杂性,基本理论与方法-空间决策系统-空间决策的模型管理;专家系统:专家系统的基本组成、知识处理与系统实例;数据仓库与空间数据挖掘:数据仓库-数据挖掘-空间数据挖掘;GIS空间分析与空间动态建模:GIS与空间动态模型的结合方式-元胞自动机简介-元胞自动机模拟林火蔓延模型-元胞自动机的局限性;空间相互作用与位置(分配模型):空间优化模型的定义与分类-静态离散空间优化模型的数学表达(线性规划)。
要点6:空间数据表现与地图制度
地理信息系统数据表现与地图学:数学法则-符号-制图综合;地图的符号;专题信息表现:分类与内容-表现方法-表现手段;专题地图设计:图幅基本轮廓设计-区域范围的确定-专题地图数学基础的设计-图面设计;制图综合:概念-影响因素-基本方法;地理信息的可视化:基本概念-地学可视化类型-虚拟地理环境

模块三:地理信息系统应用
要点1:3S集成技术
遥感简介;GPS简介;GIS/RS的集成及具体技术;GIS/GPS的集成及具体技术;GIS/RS/GPS的集成。
要点2:网络地理信息系统
网络的基本概念;分布式地理信息系统:分布式系统和C/S模型-网络地理信息系统的组合方式-网络地理信息系统的概念设计;WebGIS:简介与实现技术。
要点3:地理信息系统应用实例
城市规划、建设管理;农业气候区划;大气污染监测管理;道路交通管理;地震灾害和损失估算;地貌研究;医疗卫生;军事应用。
要点4:地理信息系统应用项目组织与管理
地理信息系统应用项目简介:模式与分类-开发方式;应用项目策略规划;应用项目合同;应用项目软硬件规划;子项目划分与管理;项目预算;人员管理;开发与数据管理;项目控制与评估;软件研制与开发质量管理:ISO9000-CMM模型。
要点5:地理信息系统软件工程技术
软件工程简介;GIS领域的体系结构与构件;GIS需求分析;数据管理设计;界面设计;GIS设计模式;使用CASE工具。
模块四:地理信息系统的前沿问题与发展趋势
要点1:地理信息系统标准
地理信息系统标准简介;ISO/TC211;OpenGIS。
要点2:地理信息系统与社会
GIS的社会化;GIS的社会化的相关问题:产业-政策-法律-教育与评估认证;社会对GIS发展的影响。
要点3:地球信息科学和数字地球
地球信息科学的概念与研究内容;数字地球的产生背景与概念;数字地球核心技术综述;国家信息基础设施和国家空间数据基础设施。

课程特色 Top
地理信息系统概论课程的的主要特色是:
1、坚持理论与实践相结合。本课程作为本科生的入门课程,对相关的基础概念、基础知识及基本原理需要进行充分、翔实的讲解,使学生牢固的予以掌握。同时,为了改变学生在基础课程中容易“死记硬背”的问题,突出地理信息系统的应用特点,在课堂教学中引用大量应用实例;本课程还设置了专门的实习课,并安排了专门的实习课教师,布置了具体的实习作业,以使学生能够掌握常见的应用系统的使用和操作,并提高学生的实际动手解决问题的能力。
2、坚持基础理论体系与最新进展相结合。本课程讲授地理信息系统的完整的理论体系与框架,以便为学生的后续学习研究打好基础。同时,考虑到学科的快速发展,在基础理论的基础上,增加了地理信息科学与数字地球、地理信息系统与社会、地理信息系统标准、地理信息系统工程的章节,以使学生对学科的最前沿发展有所了解、有所掌握。
3、坚持个性化教育的原则。地理信息系统是一个交叉学科,需要的专业背景知识较多,包括地理科学、信息科学及计算机科学等,同时其应用方向又非常广泛。针对这个特点,我们在教材编制中涵括了常见的基础知识,如部分计算机及网络常识、地图学的基本原理等,并在课程中对基础知识有欠缺的同学进行有针对性的辅导。同时,在安排专题讲座及课程实习时,也不是千篇一律,而是针对学生的专业方向进行了相应的安排。
4、注重提高学生的实践动手能力。考虑到地理信息系统学科的应用特色,本课程非常注重提高学生实际的动手能力。在授课现场增加了提问,实际操作等内容,并通过课程作业、实习、综合作业的方式要求学生实际动手解决问题。这最终又加强了学生对基础知识的掌握。
5、积极运用新型的教学手段。针对课程中的重点与难点,本课程积极采用文字、图片、视频、动画等新型教学手段,以提高课程的趣味性,提高学生的参与程度,帮助学生进行理解和记忆。由于地理信息系统本身就是软件系统,因而课堂教学讲授中还采用了现场操作、现场演示的教学方法,并大力鼓励学生走上讲台进行操作,大大提高了学生的参与程度。

教学方式 Top
在地理信息系统概论的教学中,教学组非常注重学生的主动思考,主动学习,并大力强调学生的动手实践。
1、本课程的基本教学方式是课堂讲授。

在课堂讲授过程中,授课老师采用了多媒体等新型的教学手段提高教学内容的趣味性,帮助学生形象地理解教学内容,并采用提问、讨论等方式调动学生的积极性,吸引学生主动参与,启发学生认真思考。在讲授部分内容时,还由学生在老师指导下负责现场操作,并进行同步交流,提高了学生地参与程度。
2、有针对性的课下作业。

本课程的课下作业分为三个类型:1)基本概念、基本理论方面的课下作业,适用于所有学生。2)针对学生的专业背景设置的作业。由于学习本课程的学生来自多个专业,基于他们未来的学习方向,设置了部分有针对性的作业内容,启发他们在专业方向上的深入思考。3)综合作业。每人必须完成的一个大作业,学生依据自己的兴趣选取方向,阅读文献,最终提交读书报告和相应的上机实习成果。

本课程的这些作业在加强学生对基础知识掌握的同时,进一步启发学生进行深入思考,并需要在思考的同时进行相应的动手实践。使学生的知识和能力水平得到同步的提高。
3、实习教学是教学的重要一环。
本课程开设有每周一次的上机实习。实习内容包括:1)适用于所有学生的操作实习,主要是针对基本问题的操作实践。用以巩固教学内容。2)适用于所有学生的实习作业。由实习指导教师布置,在指定的时间和环境中完成,以提高学生的综合性的动手能力,加深对教学内容的理解。3)期末大作业。结合课程教学的综合作业,在综合阅读的基础上进行上机实习,要求有一定的思考深度和综合应用程度。
同时,在每个教学周期中,教学组会组织一至两次现场参观。参观的单位是本行业的核心应用单位,如国家基础地理中心等。在参观中还组织学生与参观单位人员进行交流。
通过实习教学,可以帮助学生提高直观认识,巩固所学的知识,并提高孳生的实际动手能力。
4、鼓励学生参与科研。本授课组承担了大量的科研项目,在教学过程中,鼓励学生组成学习小组以模拟的方式参与科研项目,即在其能力范围内,在教师的指导下与真正的项目组承担同样的任务,从而大大提高了学生学习的主动性。在完成后,将学生的研究成果与真正的项目成果进行对比分析,形成互相启发,教学互长的局面。实践证明,部分学生取得的成果相当出色,获得了公开发表和奖励。
5、提供网络交流平台辅助教学。教学组开设了网络平台,供学生之间或学生和老师之间进行在线或离线交流,以提高教学的互动性。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864