当前位置:首页 » 年级地理 » 人教版七年级下册数学721用坐标表示地理位置

人教版七年级下册数学721用坐标表示地理位置

发布时间: 2021-03-14 02:25:23

『壹』 用坐标表示地理位置的步骤

你好,亲.
用经纬网,以赤道为横坐标,零度经线(本初子午线)为纵坐标展开.地球仪就是这么做的.
望采纳,谢谢.

『贰』 七年级下册人教版数学平面直角坐标系问题

如下图所示,根据平方和根号不小于0的特点,等式小于等于0当且仅当两项都等于0时成立。第二小题主要注意M点的纵坐标是负的,计算面积时记得换号,第三题主要利用坐标计算三角形面积。

『叁』 用坐标表示地理位置 地理坐标怎么表示

(1)选择一个适当的参照点为原点建立直角坐标系,并确定x轴、y轴的正方向;

(2)根据具体问题确定适当的比例尺在坐标轴上标出长度单位;

(3)在坐标平面内画出这些点,并写出各点的坐标和各个地点的名称。

地理坐标是用纬度、经度表示地面点位置的球面坐标。地理坐标系以地轴为极轴,所有通过地球南北极的平面均称为子午面。

地理坐标,就是用经纬度表示地面点位的球面坐标。在大地测量学中,对于地理坐标系统中的经纬度有三种提法:天文经纬度、大地经纬度和地心经纬度。

(3)人教版七年级下册数学721用坐标表示地理位置扩展阅读:

一、地理坐标定义:

子午面与地球椭球面的交线,称为经线或子午线。国际上统一规定以通过英国伦敦格林威治天文台的经线为起始经线(0°),也叫本初子午线。

从起始经线开始,向东、西各以180°计算,向东称东经,向西称西经。所有通过地轴的平面,都和地球表面相交而成为(椭)圆,这就是经线圈,每个经线圈都包括两条相差180度的经线。所有经线都在两极交会,呈南北方向,长度也彼此相等。经差1°在赤道上的纬线长约111km。

所有垂直于地轴的平面与地球椭球面的交线,称为纬线。赤道纬度为零,赤道以北为北纬,以南为南纬,向北向南各分90°。纬度不同的纬线长度不相等。经差1°的纬线弧长为111cosB(km),式中B为纬度。

经纬线相互交织构成经纬网,以经度、纬度表示地面上点的位置的球面坐标称为地理坐标。例如:我国首都北京位于北纬40度和东经116度的交点附近,昆明位于北纬25度和东经103度的交点附近。

由地球椭球体上任一点引一垂直于该点地平线的直线,其与赤道面相交所构成的夹角称为地理纬度。任一点所在经线圈与起始经线圈间的夹角称为该点的地理经度。

地球上或地图上的点位表示为M(L,B)。在地图上以内图廓和经纬网(或分度带)形式表示。在大于1∶10万地形图上,地理坐标网以图廓形式表现,图廓四角注记经纬度数值,内外图廓间绘有分度带。

在小比例尺地图上和小于1∶20万地形图上,一般都直接绘有地理坐标网,并注有相应的经纬度数值,以此确定地区或地面点的地理位置。

二、分类:

(1)天文坐标系

天文坐标系是以铅垂线为基准、以大地水准面为基准面建立的坐标系,它以天文经纬度(λ,ψ)表示地面点在大地水准面上的位置。

其中天文经度λ是观测点天顶子午面与格林尼治天顶子午面间的二面角,地球上定义为本初子午面与观测点之间的二面角;天文纬度ψ定义为铅垂线与赤道平面间的夹角。

(2)大地坐标系

大地坐标系是以椭球面法线为基准线,以参考椭球面为基准面建立的坐标系,它以大地坐标(L,B,h)表示地面点在参考椭球面上的位置。

其中大地经度L为参考椭球面上某点的大地子午面与本初子午面间的二面角,大地纬度B为参考椭球面上某点的法线与赤道平面的夹角,北纬为正,南纬为负。

为h为大地高,即从观测点沿椭球法线方向到椭球面的距离。我国目前常用坐标系为1954北京坐标系、1980国家大地坐标系以及2000国家大地坐标系(CGCS2000)。

(3)地心坐标系

地心坐标系是地固坐标系的一种,是指以总地球椭球为基准、原点与质心重合的坐标系,它与地球体固连在一起,与地球同步运动。

它以(L,B)来表示点的位置,其中L为地心经度,与大地经度一致;B为地心纬度,指参考椭球面上观测点与椭球质心或中心连线与赤道面之间的夹角。

『肆』 人教版七年级下册数学所有定义

1.1 数字与字母的乘积,这样的代数式叫做单项式。
几个单项似的和叫做多项式。
一个单项式中,所有字母的指数和叫做这个单向式的次数。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
1.3 同敌数幂相乘,底数不变,指数相加。
1.4幂的乘方,底数不变,指数相乘。
积的乘方等于每个因数成方的积。
1.4同底数幂相除,底数不变,指数相减。
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。

2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

对顶角相等

2.2
同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角

内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。

同旁内角定义

同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。

两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。

【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。

【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。

3.2
有效数字
一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。

4.1
☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.

第五章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。

三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

三角形的三条高交于一点.
三角形的三内角平分线交于一点.
三角形一内角平分线和另外两顶点处的外角平分线交于一点.

等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
(3)等边三角形的各角都相等,并且都等于60°。

.直角三角形(简称RT三角形):
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;

全等三角形
(1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。

(3)全等三角形的判定
组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到

4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

第七章
轴对称
如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。 对称轴:折痕所在的这条直线叫做对称轴。
性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
(3)中心对称图形一定是轴对称图形,而轴对称图形不一定是中心对称图形。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864