地理学高斯
① 有关于德国数学家高斯的电影吗
关于德国数学家高斯的电影是:《测量世界》,是2012年上映的德国电影,由导演Detlev Buck执导,主演是弗洛里安·大卫·弗里茨,Albrecht Schuch,大卫·克劳斯。
《测量世界》主人公是18世纪末德国的两位古怪天才,分别是博物学家洪堡与数学家高斯,用着各自的方式在进行着“测量世界”,直到最后两人的生活才有了交集。
影片基于同名原著畅销书改编,很精妙地选取了高斯和亚历山大洪堡二人的人生碎片并将其精巧地拼接而成。影片在镜头运用和剪辑上也是别出心裁,各种意象的引申和象征不仅是主人公命运的写照,也是将两人本无甚关联的命运暗中连结的纽带。
从表达方式上看来,影片试图将这些细节尽量处理地整体化和戏剧化。虽然能够感受到其中的努力与诚意,但整体上这些故事还是显得过于松散,也导致情节和人物诠释上略显生硬,未能触及更深的精神内涵。
(1)地理学高斯扩展阅读
高斯,一个从小学起就进驻于数学老师课堂神话中的人物,是成就难以计数而诸多光环加身的数学王子。洪堡,对于我们是更遥远而陌生的人物,但却是自然地理学的鼻祖,神秘美洲的解谜人。
他们二人如何在各自的人生轨迹上用不同的方法实现认知世界的壮举,如何在险恶的世界中存活而不改初心,则是《测量世界》要呈现给我们的,一段关于这些伟大的探索者们的冒险之旅。
② 高斯一生有什么成就
高斯,德国数学家、天文学家、物理学家。1777年生于德意志一个贫苦农民家庭。
高斯是数学史上少有的天才。很多人都认为伟大的科学家和才子都出自书香门第,家里人可以对他的智力进行较早的开发。可是,高斯的出身却正好推翻了这一论断。高斯的祖父是一个朴实的德国农民,父亲也以种果树为生,母亲则是一个穷石匠的女儿。由于家贫,他的母亲在34岁时才做新娘,而他父亲这时已经40岁了。父亲根本就没有指望他能读书长学问,也根本不可能对他进行早期教育。幸运的是,高斯有一个聪明的舅舅,他是一位心灵手巧的织绸能手,虽然文化不高,但知道许多故事。这位舅舅也十分喜欢高斯,常常通过给他讲故事来教育他。
高斯的父亲整天忙于自己的事,根本没有时间照顾小高斯。只要高斯不哭,他就专心算自己的账。而小高斯则经常在旁边一声不响地看父亲算账。有一次,还在牙牙学语的高斯像往常一样聚精会神地看父亲算账。父亲一边算,一边直摇头,算来算去也算不出一个结果来,过了好久,才自言自语地报出一个结果。父亲紧缩的眉头终于舒展了,点上一支烟,深深地吸了一口,一边准备把答案写下来。可是小高斯在一旁却用小手敲击着桌子,不停地摇头,向父亲示意这个结果是不正确的,然后自己从小嘴中慢慢地说出了一个数字。父亲感到十分惊异,儿子还不会说话,怎么会报数呢?他突然灵感一现,莫不是高斯说的是自己所计算的正确答案。于是,父亲抱着好奇的心理,重新进行演算,答案竟然真的和高斯说的一样,高斯对了!
父亲高兴极了,逢人便夸自己的儿子还不会说话就会做数学了。此后,高斯的父亲发现高斯具有良好的天赋,于是决定全家省吃俭用送他去读书。
1795年10月,高斯远离家乡来到他渴望已久的哥廷根大学深造。很快,那里丰富的数学藏书深深地吸引了他。
在哥廷根大学的第一年,高斯就用代数方法解决了两千多年来对正几边形用直尺和圆规几何作图的世界性难题。同时,他还证明了单用圆规和直尺根本不可能作出正七边形、正九边形、正十一边形、正十三边形和正十四边形。也就是说,高斯用一般性的方法归纳证明哪些正多边形可以用直尺和圆规做出来,哪些做不出来。他的这种思想已经超越他所在时代的方法论水平,具有很高的创意。少年高斯的这一数学思想,将数学的方法论研究带入了一个新领域。有一天,高斯带着他正十七边形可以用几何作图的代数证明去找哥廷根大学的数学教授卡斯特请教。高斯说明来意后,卡斯特先是大吃一惊,然后哈哈大笑起来。他根本不相信一个19岁的少年能解决这道两千多年来的数学难题。
为了让卡斯特对他的证明感兴趣,高斯换了一个说法:“卡斯特教授,我曾经解出过一道十七次方的代数方程。”
“年轻人,别开玩笑了。科学是神圣的,容不得半点虚假。”卡斯特一脸严肃地说。
“但这是真的。教授,我把这个十七次方程化简成了一个低次方程。”高斯冷静地答道。
“噢,那好吧,让我看看你的‘杰作’吧!”卡斯特略带怀疑、甚至嘲讽的口气说道,把高斯的手稿接了过去。
不看则罢,看了之后,卡斯特大吃一惊:这个少年太神奇了,其中的运算推理极其严密,看不出半点漏洞。卡斯特马上让高斯把证明过程重新整理,然后由他推荐到一家著名数学杂志上去发表。高斯小小的年纪就引起了世界数学界的注意,他自己也对这个发现十分得意。他在日记中写道:“这是多么干净利索、周密漂亮!我死以后,要在墓碑上镌刻一个正十七边形,以纪念我在少年时代最伟大的发现!”
高斯是数学领域继欧几里德、牛顿、欧拉以后最伟大的数学家,有人称之为“数学之王”。
③ 用通俗的方法讲解高斯投影和中央子午线
中央子午线" 英文对照
central meridian;
"中央子午线" 在工具书中的解释
1、又称“中央经线”。位于投影带中央的子午线。中央经线一般为直线,其他经线分布在它的两侧呈弧线。高斯投影带的中央子午线即为一条直线,其长度不变。在六度带中,它的经度为L=6°×n—3°,n为六度带的带号。(参看高斯投影分带)。在其他小比例尺地图投影中,中央经线也为直线,多通过所表示的主要地区。
"中央子午线" 在学术文献中的解释
1、每一个投影带的中间一条子午线称为中央子午线,其经度为6°n-3°(n为中央子午线的编号).而3°带的中央子午线经度,则是按经3°为一带,其经度是3°n(n为3°带的编号)
文献来源
2、高斯投影是设想将截面为椭圆的一个圆柱面横套在旋转椭球外面(图A)并与旋转椭球面上某一条子午线(NOS)相切同时使圆柱的轴位于赤道面内并通过椭球中心相切的子午线称为中央子午线.然后将中央子午线附近的旋转椭球面上的点、线投影到横圆柱面上如将旋转椭球面上的M点投影到横圆柱面上得m点再顺着中央子午线将圆柱面剪开展成平面如图B所示这个平面称为高斯投影平面
===============================================================
1 前言
在地球物理勘察中,常常要提供测区、有利成矿区的面积,常用到面积量算。在小范围内的测量中,通常我们都是先测出区域边界点的平面坐标,再按封闭的区域计算面积,而在大面积的勘察中,这样计算面积就不合适了,因为,测量上是以参考椭球面作为地球的参考面的,表现在该面上的地面图形是曲面上的图形,由于地球半径很大,当测区面积较小时,可以把参考椭球面上的曲面当水平面看待,采用水平投影的方法即可,但测区面积较大时,曲面就不能当成平面看待了。
2 高斯投影的概念
高斯投影又称横轴椭圆柱等角投影,是德国测量学家高斯于1825~1830年首先提出的。实际上,直到1912年,由德国另一位测量学家克吕格推导出实用的坐标投影公式后,这种投影才得到推广,所以该投影又称高斯-克吕格投影。高斯投影就是设想一个横椭园柱面作为投影面的分带正形投影。如图所示,使椭圆柱的轴通过旋转椭圆体中心且与旋转椭圆体的长轴重合(即与赤道面重合),同时使椭圆柱面与旋转椭圆体投影带的中央子午线相切,在保持等角条件下,用数学的方法,将旋转椭圆体投影带上的点、线投影到横椭圆柱面上。如旋转椭圆体面上的A点投影到椭圆柱面上为a点,赤道面与椭圆柱面的交线EE为赤道的投影。 投影后,依过极点的母线(平行于椭圆柱轴的椭圆柱面上的直线)将椭圆柱面切开,并展成平面M,如图所示,该平面叫高斯投影平面。
高斯投影有以下三条规律:
(1)旋转椭球体面上两极间经差相等的投影带的子午线,除中央子午线投影后长度不变且为直线外,其余子午线投影后为凹向中央子午线的曲线,并以中央子午线为对称轴,其长度大于投影前长度,且离中央子午线愈远变形愈大,因此投影带上的线段除位于中央子午线上者外,其投影后长度均较实地长度增长。据推算,离中央子午线300公里时投影长度变形为1/900,而且由一点出发各方向的变形是成比例的。
(2)投影后的纬圈除赤道为直线外,其余均为凸向赤道的曲线,并以赤道为对称轴。
(3)经线与纬圈投影以后仍然保持正交。中央子午线与赤道投影后,变成互相垂直的直线。
3 高斯投影对面积测量的影响
高斯投影对面积测量的影响主要是通过对长度的影响引起的,我们进行地面测量实际上就是对大地椭球进行测量,根据高斯投影的概念我们知道,将椭球面投影到高斯平面上会产生一定的误差,误差的形成主要有两个方面的原因:
(1)远离中央子午线引起的误差
高斯投影对测区面积测量的影响与测区到中央子午线的距离有关,离中央子午线越远误差就越大,我们以纬度为35°,离中央子午线不同的距离,经差纬差都是1′的区块为例,其在椭球面上的面积是2813026.48m2,在高斯平面上因远离中央子午线有不同的面积,如下表
纬差 10′ 30′ 1° 2° 3°
面积(m2) 2813044.16 2813175.69 2813613.67 2815356.60 2818257.47
面积比 1.000006285 1.000053 1.000209 1.000828 1.00186
表中面积比为高斯平面上面积与椭球面上面积的比,由表中可以看出,离中央子午线越远面积增大得越多。
(2)投影面高程引起的误差
将椭球面投影到不同高度的椭圆柱面上引起的误差也是不同的,投影面高程越高误差也越大,我们选择椭球面上四个点,经纬度分别为 (111°00′30〃, 35°00′00〃),(110°59′30〃, 35°00′00〃),(110°59′30〃, 35°01′00〃),(111°00′30〃 ,35°01′00〃),通过计算我们得出其在椭球面上的面积为2813026.48m2
下表列举了不同投影面高程对面积的影响
投影面高程 100m 200m 500m 1000m 2000m 5000m
面积(m2) 2813114.62 2813202.76 2813467.2 2813907.95 2814789.57 2817435.25
面积比 1.00003133 1.00006267 1.00015667 1.00031335 1.00062676 1.00156727
表中面积比为高斯面上面积与椭球面上面积的比。通过研究我们得出结论:远离中央子午线、投影面高程使面积增大。
注:以上各表均采用武汉中地信息工程有限公司研制的mapgis地理信息系统进行计算。
4 正确计算测区面积的方法
(1)如果采用高斯投影的方法来计算面积,要根据本区的平均海拔高程选择合适的投影面高程,选择三度带或更小的分带来进行投影,若遇投影变形较大影响到测量精度时,还可以采用独立坐标系统的任意带投影,这样就减小了投影面高程和中央子午线对面积的影响。
(2)采用其它投影方式如亚尔勃斯等积圆锥投影,这种投影是按等面积条件,将地球上的经纬线投影到剖于地球某两条平行圈的圆锥面上,沿一条母线将圆锥面展开成平面。选用这种投影可以保证投影面面积与椭球面面积相等。当然通常只在计算面积时选用这种投影,其它测量工作还可以用高斯投影来进行。
(3)我们在探矿权测量中引入了区块的概念,即将矿区分成若干很小的区块,比如经差纬差都是15〃的小区块,因为在相同纬度上,相同每一个小区块的面积是相等的,这样我们只要直接计算出一条经线上每隔15〃一个小区块在地球椭球面上的面积,再计算出不同纬度区块的数量就可以计算出矿区的面积了。
④ 高斯的主要成就
18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 三角形全等定理 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 天体运动论 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。当时24岁的高斯得悉后只花了几个星期,通过以前的三次观测数据,用他的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。尽管两年前高斯就因证明了代数基本定理获得博士学位,同年出版了他的经典著作《算术研究》,但还是谷神星的轨道使他一举名震科坛。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。 数学上的成就 高斯发明了最小二乘法原理。高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 地理测量 高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复 活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。 为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。 高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。 日光反射仪 出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。 磁强计 19世纪30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。。。
⑤ 简述高斯以及欧拉和几个重要数学家的成就
高斯:德国著名数学家、物理学家、天文学家、大地测量学家。
贡献:1.18岁的高专斯发现属了质数分布定理和最小二乘法。(高斯分布)
2.第一本著名的著作《数论》,成为数论继续发展的重要基础。导出了三角形全等定理的概念。
(三角形全等定理)
3.高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。(天体运动论)
4.在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。(地理测量)
欧拉:瑞士数学家和物理学家。
贡献:1.欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律。
2.他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。
3.他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人。
4.在数论里他引入了欧拉函数。
5.他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声。
6.在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数:
7.在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系。
⑥ 高斯平面直角坐标与地理坐标有何区别
你好
工程测量学上,地理坐标系是一个空间上的坐标系,是表示地面店在旋版转椭球面上的位置,权用大地经度L和大地纬度B表示。
但是在局部测量中,最好在平面上进行,所以又了高斯平面直角坐标,,就是先把地球按经度分成带(从首子午线开始,一般是6度带),然后每个带向平面上投影,得到了一条一条类似椭圆的投影带。在每个投影带上,以赤道为y轴,中央子午线为x轴,建立的坐标系就是高斯平面直角坐标
希望对你有帮助
⑦ 高斯的期望的共轭先验分布是不是gamma分布
共轭在数学、物理、化学、地理等学科中都有出现。 本意:两头牛背上的架子称为轭,轭使两头牛同步行走。共轭即为按一定的规律相配的一对。通俗点说就是孪生。在物理中一般描述是以某轴为对称的两个物体。
⑧ 双高斯结构的介绍
1817年,才华洋溢的德国数学家、测量地理学、同时也是天文学家Carl Friedrich Gauβ(1777-1855),为了版解决哥廷根天文台观测权望远镜的像差问题(当时他担任哥廷根天文台的观测天文学者),构思出使用两片新月型镜片(meniscus-shaped)的组合,一片正一片负,这种组合就是高斯结构的起源。1888年,Alvan G. Clark更发现到用两对高斯结构「背对背」反方向组合后,也可以成为一种有用的镜头,这就是双高斯结构的概念开始(Double Gauβ)。
⑨ 高斯儿子的成就
历史贡献高斯分布 18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 三角形全等定理 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 天体运动论 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。当时24岁的高斯得悉后只花了几个星期,通过以前的三次观测数据,用他的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。尽管两年前高斯就因证明了代数基本定理获得博士学位,同年出版了他的经典著作《算术研究》,但还是谷神星的轨道使他一举名震科坛。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。 数学上的成就 高斯发明了最小二乘法原理。高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 地理测量 高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复 活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现
⑩ 高斯是怎么破解那道千古难题 方法及步骤
哪道
高斯分布
18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
三角形全等定理
高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。
天体运动论
高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。
地理测量
高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复 高斯
活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。 为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。 高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。
日光反射仪
出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。
磁强计
19世纪30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。 高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。他经常提醒他的同事,该同事的结论已经被自己很早的证 明,只是因为基础理论的不完备性而没有发表。批评者说他这样是因为极爱出风头。实际上高斯只是一部疯狂的打字机,将他的结果都记录起来。在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。一般认为,即使这20部笔记,也不是高斯全部的笔记。下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数字化并置于互联网上。 高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。