当前位置:首页 » 地质工程 » 地质灾害危岩体

地质灾害危岩体

发布时间: 2021-02-28 05:35:04

❶ 灾害体规模是什么意思

地质灾害,地质学专业术语,是指在自然或者人为因素的作用下形成的,对人类生命财产、环境造成破坏和损失的地质作用(现象)。如崩塌、滑坡、泥石流、地裂缝、水土流失、土地沙漠化及沼泽化、土壤盐碱化,以及地震、火山、地热害等。
自然科学界的定义
简称地灾。以地质动力活动或地质环境异常变化为主要成因的自然灾害。在地球内动力、外动力或人为地质动力作用下,地球发生异常能量释放、物质运动、岩土体变形位移以及环境异常变化等,危害人类生命财产、生活与经济活动或破坏人类赖以生存与发展的资源、环境的现象或过程。不良地质现象通常叫做地质灾害,是指自然地质作用和人类活动造成的恶化地质环境,降低了环境质量,直接或间接危害人类安全,并给社会和经济建设造成损失的地质事件。地质灾害是指,在自然或者人为因素的作用下形成的,对人类生命财产、环境造成破坏和损失的地质作用(现象)。如崩塌、滑坡、泥石流、地裂缝、地面沉降、地面塌陷、岩爆、坑道突水、突泥、突瓦斯、煤层自燃、黄土湿陷、岩土膨胀、砂土液化,土地冻融、水土流失、土地沙漠化及沼泽化、土壤盐碱化,以及地震、火山、地热害等。

地质灾害的背景
影响或控制地质灾害形成与发展的基础环境和总体条件。它与地质灾害形成条件既存在密切联系又有一定区别。地质灾害形成条件指的是造成地质灾害的直接因素;地质灾害背景指的是控制和影响地质灾害的更高层次的基础条件。地质灾害背景由两个系列组成:
①以地球动力活动为核心的自然背景;
②以人口、经济、社会发展水平为核心的社会经济背景。地质灾害背景虽然不能直接决定一个具体灾害事件的发生和发展,但从宏观上控制了一个地区一种或多种地质灾害的成灾程度和变化的总体趋势。因此研究地质灾害背景条件是进行地质灾害宏观评价的重要内容

我国相关法律法规中的界定
根据2003年11月19日国务院颁发的《地质灾害防治条例》(中华人民共和国国务院令第394号)规定,地质灾害,通常指由于地质作用引起的人民生命财产损失的灾害。地质灾害可划分为30多种类型。由降雨、融雪、地震等因素诱发的称为自然地质灾害,由工程开挖、堆载、爆破、弃土等引发的称为人为地质灾害。常见的地质灾害主要指危害人民生命和财产安全的崩塌、滑坡、泥石流、地面塌陷、地裂缝、地面沉降等六种与地质作用有关的灾害。

基本定义
地质灾害是指由于自然或人为作用,多数情况下是二者协同作用引起的,在地球表层比较强烈地破坏人类生命财产和生存环境的岩土体移动事件。地质灾害在成因上具备自然演化和人为诱发的双重性,它既是自然灾害的组成部分,同时也属于人为灾害的范畴。在某种意义上,地质灾害已经是一个具有社会属性的问题,已经成为制约社会经崭发展和人民安居的重要因素。因此,地质灾害防治就不仅是指预防、躲避和工程治理,在高层次的社会意识上更表现为努力提高人类自身的素质,通过制定公共政策或政府立法约束公众的行为,自觉地保护地质环境,从而达到避免或减少地质灾害的目的。
地质灾害主要是指崩塌(即危岩体)、滑坡、泥石流、岩溶地而塌陷和地裂缝等,它们是比较公认的原地壳表层地质结构的剧烈变化而产生的,且通常被认为是突发性的。
地质环境灾害是指区域性地质生态环境变异引起的危害,如区域性地而沉降、海水人侵、干旱半干旱地区的荒漠化、石山地区的水土流失、石漠化和区域性地质构造沉降背景下平原或盆地地区的频繁洪灾等,这些问题通常都是由多种因素引起且缓慢发生的,地质界常称其为缓变性地质灾害。
当然,不能简单地把洪水归类于地质灾害。但长时期、大范围且爆发频繁的洪灾是与地质环境密切相关的,是人类社会工程经济活动或防洪治水方略与地质环境演变方向比较长期的不相适应的结果。利用考古资料恢复长江荆江河段近5000 a来洪水位的上升过程,发现近2000 a来是荆江洪水位相对荆北平原上升的主要时期,累计上升13.6 m,特别是近500 a来的洪水位上升的平均视速率达20~27 mm,/a。近500 a来的荆江走堤厦其堤基的决口破坏历史研究表明,在两岸干堤地基的渗漏、管涌、溃决、软上地基变形和崩岸等工程地质问题中,洪水期以北岸的管涌和渍决占绝对优势,干早期则以南岸的崩岸引人注意,这反映了荆江高水位与其地质环境已不相适应的关系。
从地球表层环境变化而言,地震灾害属于地质环境灾害范畴。固其发生的特殊性和危害巨大,地震灾害研究已自成一个体系论,作出未来灾害危障性预测,初步提出井论证不需治理、合方案的依据、布置与工程概算。
《住宅建筑规范》(GB50368-2005)规定,住宅选址时应考虑噪声、有害物质、电磁辐射和工程地质灾害、水文地质灾害等的不利影响。

基本特点
编辑
地质灾害勘查不同于一般建筑地基的岩土工程勘察,其特点至少包括如下几方面。
(1)重视区域地质环境条件的调查,井从区域因素中寻找地质灾害体的形成演化过程和主要作用因素。
(2)充分认识灾害体的地质结构,从其结构出发研究其稳定性,
(3)重视变形原因的分析,并把它与外界诱发因素相联系,研究主要诱发因素的作用特点与强度(灵敏度)。
(4)稳定性评价和防治工程设计参数有较大的不唯一性,霄表现为较强的离散性,应根据灾害个体的特点与作用因素综合确定,进行多状态的模拟计算。
(5)目前尚未研究出具有昔适性的稳定性计算方法(也许并不存在),现有的方法都有较多的假定条件。
(6)勘查阶段结束不等于勘查工作结束,后续的工作如监测或施工开挖常常能补充、修改勘查阶段的认识,甚至完全改变以前的结论。因此,地质灾害的勘查有者延续性特点,即使是非常认真详细的工作,也不能过于希望毕其功于一役。
(7)地质灾害勘查方法选择是强谰应用经验与技巧,寻求以最少的工作量和最低的投资,获得最佳的勘查效果,
(8)勘查工作量确定的最基本原则是能够查明地质体的形态结构特征和变形破坏的作用因襄t满足稳定性评价对有关参数的需求,而不拘于一般的勘察规程。在此前提下,勘查工作量越少越好,使用的勘查方法越少越好,勘查设备越简单越好,勘查周期越短越好。一般而言,勘查工作量依据地质灾害体的规模、复杂程度和勘查技术方法的效果综合确定。
(9)勘查队伍是实现勘查目标、选择合理勘查方法和优化勘查工作量的关键。从事地质灾害勘查的工作实体应在地质技术^才,勘查设备和室内分析试验等方面具备条件,井拥有相应的资质证书。

基本分类

主要分类方法
地质灾害的分类,有不同的角度与标准,十分复杂.就其成因而论,主要由自然变异导致的地质灾害称自然地质灾害;主要由人为作用诱发的地质灾害则称人为地质灾害。就地质环境或地质体变化的速度而言,可分突发性地质灾害与缓变性地质灾害两大类。前者如崩塌、滑坡、泥石流、地面塌陷、地裂缝,即习惯上的狭义地质灾害;后者如水土流失、土地沙漠化等,又称环境地质灾害。 根据地质灾害发生区的地理或地貌特征,可分山地地质灾害,如崩塌、滑坡、泥石流等,平原地质灾害,如地质沉降,如此等等。

主要类型介绍
滑坡:是指斜坡上的岩体由于某种原因在重力的作用下沿着一定的软弱面或软弱带整体向下滑动的现象。
崩塌:是指较陡的斜坡上的岩土体在重力的作用下突然脱离母体崩落、滚动堆积在坡脚的地质现象。
典型泥石流示意图
泥石流:是山区特有的一种自然现象。它是由于降水而形成的一种带大量泥沙、石块等固体物质条件的特殊洪流。识别:中游沟身长不对称,参差不齐;沟槽中构成跌水;形成多级阶地等。
地面塌陷:是指地表岩、土体在自然或人为因素作用下向下陷落,并在地面形成塌陷坑的自然现象。

❷  中国地质灾害概况

中国地质灾害种类繁多,除地震外,还有崩塌、滑坡、泥石流、地面沉降、地面塌陷、地裂缝、海水入侵、特殊岩土等多种类型。这些灾害分布广泛,活动频繁,危害严重。

据初步调查估计,自新中国成立以后到1994年底,全国共发生明显破坏作用的突发性地质灾害事件(地震除外)达4万多次;其中,一次死亡数十人以上或经济损失千万元以上的比较严重的灾害事件有几千次。各种地质灾害共造成几万人死亡,毁坏房屋达几千万间。此外,地质灾害还破坏铁路、公路和内河航运,破坏土地资源和农作物,每年造成的经济损失为几亿元到几十亿元。现对我国主要地质灾害分述如下。

一、崩塌、滑坡、泥石流灾害

崩塌、滑坡、泥石流是广泛发生在山地高原地区的地质灾害。它们形成条件和活动规律相近,区域分布密切共生,所以常称为崩滑流灾害。

中国是崩滑流灾害十分严重的国家。据初步调查,全国大约有中型以上灾害点3万余处,小型灾害点多达数十万甚至100多万处。1949~1994年的45年间,共发生破坏较大的灾害4200多次,造成重大损失的严重灾害事件至少有900次。

崩滑流灾害分布十分广泛。在全国32个省(市、自治区)中,除上海等个别省(市、自治区)外,均受到不同程度的危害。斜贯中国中部的辽、京、冀、晋、陕、甘、鄂、川、滇、黔地区,是灾害活动最强烈的地区;其中,川滇山地、鄂西山地、秦岭、黄土高原、燕山山地、辽东山地最严重。该带西部和西北部地区灾害活动较弱,主要分布在阿尔泰山、天山、祁连山和青藏高原的部分地区。东部和东南部地区,灾害活动主要分布在东南丘陵和台湾山地,除局部地区灾害严重外,灾害一般不强。

崩滑流灾害是危害最严重的地质灾害之一,其主要破坏作用有下列5个方面。

1.造成人员伤亡

1949~1990年,我国崩滑流灾害至少造成9595人死亡。在城镇、矿区等人口聚集地区暴发的崩滑流活动常造成一次死亡数百人的灾害事件。如:1980年6月3日凌晨,湖北远安县盐池磷矿崩塌,284人丧生;1983年3月7日,甘肃省东乡自治县洒勒山发生大型滑坡,三个村庄被摧毁,死亡237人,重伤27人;1989年7月10日,四川华蓥市溪口镇青龙嘴山发生滑坡后,因暴雨进一步形成泥石流,沿途村庄、工厂被掩埋,221人遇难。

2.破坏城镇、矿山、企业

全国受崩滑流严重侵扰的城市有59座,县城以下的城镇数百个。如重庆市共有体积大于500m3的滑坡129处,崩塌58处,解放以来多次发生活动,造成了严重损失;目前有66处滑坡处于活动或潜在不稳定状态,还有82处可能崩塌的危岩体,时刻威胁着城市的安全。一些城镇,如四川省松潘县、南坪县,云南省兰坪县及新疆库车县等因崩滑流灾害严重,不得不搬迁重建。许多建设在山区的工厂,特别是“三线”工厂,常遭到崩滑流灾害破坏,因此使一些工厂停产或搬迁。如第二汽车制造厂厂区内,共有崩塌、滑坡270处,总体积达750×104m3,十几年来,灾害频繁发生,造成严重损失。我国多数矿山不同程度地遭受崩滑流灾害的破坏或威胁,其中以抚顺西露天矿、四川攀钢蓝尖铁矿、华蓥山煤矿、甘肃白银露天矿等数十个矿山尤其严重。

3.破坏铁路、公路、航道,威胁交通安全

全国铁路沿线分布有大型泥石流沟1386条,危险性较大的大中型滑坡有1000多处,崩塌有近万处。22条铁路干线上,有9980km长的线路受到比较严重的危害或威胁。1949~1990年,因崩滑流灾害造成的较大行车事故180起,33个火车站被淤埋41次,毁坏大型桥梁27座,隧道6个,平均每年中断行车1100h,用于修复整治的工程费约1.5亿元。受害最严重的线路主要有宝成线、陇海线宝天段、成昆线、川黔线、湘黔线、东川线及鹰厦线等。

几乎所有的山区公路都不同程度地受到崩滑流灾害的破坏。如川藏公路沿线分布有泥石流沟1036条,滑坡419处,崩塌1525处,受害路段总长3176km。川滇、川陕、甘川、昆洛、成兰、滇黔等公路崩滑流灾害也十分严重。

大江大河两岸是崩滑流灾害的多发区,对内河航运造成严重威胁。如在长江中上游的重庆至宜宾之间的690km河段,发育有滑坡、崩塌和危岩体283处,总体积约15×108m3。金沙江下游的攀枝花至宜宾段,分布有崩塌、滑坡、泥石流935处,平均密度1.2处/km,总体积在35×108m3以上。几十年来,长江中上游两岸多次发生特大规模的崩塌、滑坡活动,给长江航运造成严重危害。如1985年6月12日发生的新滩滑坡,造成堵江停航12d。

4.破坏水利、水电工程

解放以来,我国有数百座水库和水电站遭受崩滑流灾害破坏。仅云南一省遭破坏的水库就有50余座,水电站有360余座。刘家峡水库自1968年蓄水后库岸不断崩塌,到1984年总崩塌量达1250×104m3以上,影响了库容。拟建中的长江三峡工程,库岸稳定性差,库区范围内发育有崩塌、滑坡214处,泥石流沟271条。在三斗坪至江津县的未来库岸地带,发育有5000m3以上的崩塌(危岩)、滑坡体392处,总体积28×108m3;其中,100×104m3以上的灾害体189处。全库岸崩塌(危岩)、滑坡体数量的平均线密度为0.14处/km,平均体积模数为91×104m3/km。如何防治这些灾害对水库工程建设和正常运行是水库建设和管理的重要问题之一。

5.影响资源开发,阻碍山区经济发展

为了使山区摆脱贫困面貌,需大力开发土地资源、矿产资源、水利资源等。然而在崩滑流活动区,这些经济活动受到严重阻碍。如四川省攀西地区(我国规划中的重要矿产基地),在大约6.6×104km2范围内,发育有体积50×104m3以上的滑坡或滑坡群200余个,为矿产资源开发造成了严重困难。

二、岩溶塌陷

我国岩溶塌陷灾害也十分严重。据初步调查,全国有岩溶塌陷2840处,塌陷坑约33200个,塌陷总面积为330km2

中国岩溶塌陷广泛发育在24个省(市、自治区),以桂、湘、黔、粤、冀、赣、滇等省(自治区)最严重。从地理分布看,主要分布在长白山—燕山—吕梁山—四川盆地—哀牢山以东区域。该区域内可划分为两大岩溶塌陷分布区:秦岭和淮河以北的北方岩溶塌陷分布区和以南的南方岩溶塌陷分布区。北方区岩溶塌陷主要分布在辽东半岛、伏牛山山麓及一些山间盆地。南方区岩溶塌陷主要分布在川东山地、云贵高原和幕阜山、九岭山、罗霄山、南岭及粤北山地。

岩溶塌陷的危害主要是破坏房屋、铁路、水坝、电站等工程设施和城市、矿山、企业环境。全国发生岩溶塌陷灾害的城市近70个,造成严重破坏的44个,主要有唐山、武汉、昆明、黄石、九江、水城、杭州、柳州等。受岩溶塌陷严重危害的大中型矿山有60多个,主要有湖南恩口煤矿、湖南水口山铅锌矿、湖北铜录山铜矿、广西泗顶山铅锌矿、广东凡口铅锌矿、山东莱芜铁矿等。近年全国铁路沿线发生岩溶塌陷375处,其中危害严重的有55处,受害线路60多段,主要分布在贵昆线、湘桂线以及京广线、沈大线、胶济线的部分线段。有30多个车站受到危害,主要有黄石、大冶、水城、昆明、泰安、瓦房店、柳州、玉林等。近40年来,因岩溶塌陷颠覆列车3次,中断行车达2000多小时。

三、地面沉降

(一)我国地面沉降区的分布

据专门勘查和区域地形变测量结果分析,目前我国发生地面沉降的城市大约有70个。其中,累计沉降量达2m以上的有上海、天津、台北、宜兰、嘉义等5个城市;1~2m的有西安、太原、沧州、苏州、无锡等5个城市;0.5~1.0m的有北京、保定、嘉兴、常州、衡水、阜阳等6个城市。

从区域分布看,地面沉降活动主要发生在我国东部地区,尤其以沿海城市和华北平原等地区最严重。在该区域内,发生地面沉降的城市或地区有的孤立存在,有的则密集成群或断续相连,形成广阔的地面沉降区(带)。主要有下列6个区(带)。

1.下辽河平原的沈阳—营口沉降区。

2.北部黄淮海平原的天津—沧州—衡水—德州—滨州—东营—潍坊沉降区。这是我国沉降范围最广,沉降幅度最大的地区。地面沉降与区域地下水位下降在空间和时间上同步发展。中心区主要在渤海海湾西岸的天津市区及其外围的宁河、安次、南堡、塘沽、静海、大港、黄骅、沧州一带;其次是冀中平原的衡水、冀县、枣强及其外围地区;再次是鲁北平原的德州—滨州—东营—潍坊地区。

3.南部黄淮海平原的徐州—商丘—开封—郑州地面沉降区。

4.长江三角洲的上海—苏州—无锡—常州—镇江—南通地面沉降区。

5.汾渭河谷平原的太原—侯马—运城—西安地面沉降带。

6.台湾山地边缘的宜兰—台北—台中—云林—嘉义—屏东地面沉降带。

(二)地面沉降的主要危害

1.破坏城市设施,妨碍城市建设

主要表现是:造成房屋和桥梁开裂、倾斜或倒塌;道路凹凸不平或开裂;地下管道错裂失效;码头及其它港口设施下沉或被水淹没;抽水井管上升,设备须不断更新等。例如:上海市外轮停靠的码头,原标高5.2m,1964年下沉到3.0m,高潮时被水淹没而无法装卸,耗资900多万元进行加高后方可使用;西安市排水管道屡遭破坏,每年花费100多万元进行维修、改建;上海苏州河原来每天运输吞吐量(100~120)×104t,60年代以后减少了一半;天津塘沽海门大桥,两端沉降差达135mm,引桥发生错裂,使这座跨度为64m的开启式提升桥不能按原设计提升,影响了海河航运。

表2-1我国部分城市地面沉降灾害情况简表

①抽水指抽取地下水,下同。

地面沉降还导致观测和测量标志失效,使河流水位、海洋潮位、地形高程失真,给城市规划和建设造成困难。

2.积水滞洪,水患和潮灾加剧

严重的地面沉降活动,把一些城市置于洪水和海潮威胁之下,具体表现如下。

(1)滞汛积水地面沉降城市普遍存在比较严重的滞汛积水问题,不仅影响城市交通和环境,而且常使地下室和低层建筑物在汛期被水侵没,造成比较严重的经济损失。例如:天津市1977年7月下旬因暴雨积水造成的直接经济损失达2亿元以上;苏州、无锡、常州三市在1986年和1988年因积水造成的物资损失达100多万元。

(2)洪水威胁发生地面沉降的城市一般地势低平,且大多沿河发展。地面沉降活动不仅使城市高程进一步降低,而且拦河堤坝等防洪设施因沉降而发生破坏。因此,一些城市御洪能力不断下降,出现严重的水患威胁。例如天津市海河干流两岸防洪堤,自1959年来普遍下沉1~2m,而且一些堤段因不均匀沉降出现许多裂缝,加上河道淤积影响,使海河泄洪能力由原来的1200m3/s降到400m3/s以下。遇到一般较大汛情,全市即处于高度戒备状态。如1990年汛期,海河泄洪130m3/s已显困难,如再遇1963年规模的特大洪水,将导致极其严重的损失。上海市区在20年代地面一般高程为4~5m,60年代后普遍降到3.5m以下,部分地区只有2m左右。伴随地面沉降活动,黄浦江、苏州河水位不断上升超过警戒水位的现象频繁发生,并多次出现黄浦江水倒灌,淹没市区的现象。为了确保城市安全,1956年开始沿江修建防汛墙,此后伴随地面沉降的发展,先后5次进行改建和加固,投资达4亿多元。目前,上海市区共建防汛墙224km,郊区建34km,外滩一带墙高已达2.3m,预计到2030年,还须再加高到2.7m左右才能防御黄浦江水。类似情况在其它一些地面沉降城市也普遍存在。

(3)潮灾加剧在滨海地区,地面沉降活动使陆地地面高程下降,海平面相对上升,导致海水侵袭和风暴潮灾害加剧。如天津塘沽地区,近几十年来相对海面上升50cm,而地面高程普遍下降到2m以下,局部降到平均海平面以下,最低处(塘沽河滨公园)为-3.3m。与此同时,滨岸防潮堤不但大幅度沉降,且发生局部开裂;许多防潮闸——耳闸、二道闸、海河闸、金钟闸等下沉0.4~2.6m。在这种情况下,天津沿海灾害性风暴潮日趋严重,其频度、强度和造成的损失均达到历史最高水平。如1985年8月2日和19日发生的风暴潮,使海水越过防潮堤闸涌入陆地,塘沽一些地区水深达1.3~2.0m,大量企业单位被淹,受灾居民1万多户,直接损失1.3亿元。近年来,宁波市沿甬江上溯的潮水也多次越过防潮堤闸,淹没沿岸码头、仓库、工厂和居民区,造成严重损失。上海以及长江三角洲地区风暴潮灾害也日益严重,不但潮位越来越高,而且高潮频次也不断增加,风暴潮造成的损失愈来愈大。1962年8月,7号台风袭击上海,吴淞口潮位高5.38m,苏州河口水位4.76m。在猛烈的潮水冲击下,防汛墙出现46处决口,半个市区进水,南京东路水深0.5m,直接损失达5亿元。

四、地裂缝灾害

我国地裂缝类型复杂,除伴随地震、滑坡、冻融以及特殊土的胀缩或湿陷活动产生的地裂缝外,主要是伴随构造蠕变活动而产生的构造地裂缝。

构造蠕变地裂缝的分布十分广泛,在华北和长江中下游地区尤其发育。在该区域中,地裂缝主要集中在汾渭盆地、太行山东麓平原、大别山东北麓平原地区,形成了三个规模巨大的地裂缝密集带。此外,在豫东、苏北以及鲁中南等地区,还有一些规模较小的地裂缝发育带(区)。

(一)汾渭盆地地裂缝带

自六盘山南麓的宝鸡,沿渭河向东经西安到风陵渡转向NE方向,沿汾河经临汾、太原到大同,发育有一个宽近100km、长近1000km的地裂缝带。该带沿汾渭盆地边缘断裂带内侧的第四纪沉积区延伸。各地区地裂缝的成因、活动方式等具有基本一致的特征。自60年代后期开始出现灾害性地裂缝,70年代中期以来活动加剧,使西安、大同、宝鸡以及周至、临潼、渭南、华县、蒲城、韩城、万荣、运城、绛县、临汾、洪洞、祁县、太谷、榆次等近50个市、县出现较严重的地裂缝灾害。

该地裂缝带自南向北可大致分为四个段落。

1.渭河盆地地裂缝

该区地裂缝分布在渭河两岸地区,以西安市地裂缝规模最大,危害最严重。此外,千阳、宝鸡、周至、武功、兴平、礼泉、三原、临潼、长安、渭南、蒲城、华县、华阴、大荔等20个县、市也发生不同规模的地裂缝。这些地裂缝给当地人民生活和工程建筑以及土地资源造成了不同程度的危害。如地处华山北麓的蓝田、华县、华阴,自1971年以来出现多处地裂缝,至今仍在发展。在华山半导体厂内,有两个以近EW向为主体,兼有SN向和NE向的地裂缝带。其长度分别为200m和250m;宽度分别为70m和100m,使刚刚建成投产和一些正在施工的车间、仓库等主要建筑物开裂,局部发生下沉达14.6cm,虽经多次加固处理,但始终不能摆脱地裂缝危害。在华山汽修厂亦有两条近EW走向的地裂缝带。其总宽200~300m,长约500m。在其影响范围内的5幢家属楼和其它建筑设施,相继发生大面积裂缝和变形,铁路路基也下陷变形;虽然每年耗费大量资金加固,但裂缝持续发展,防治效果不佳。陕西化肥厂于1972年建成,尚未投产,厂房即发生裂陷,下沉量达20~50cm,多次加固修理,仍未取得安全效果。

2.运城盆地和临汾盆地地裂缝

地裂缝分布在涑水河和汾河两岸的运城、夏县、合阳、韩城、万荣、闻喜、绛县、侯马、翼城、襄汾、临汾、洪洞等约20个县、市。这些地裂缝主要延伸方向为NEE、SN、NE、NW四组,单条长度为几十米到100m以上,宽度一般为0.4~0.2m,可见深度为0.2~0.3m。多条地裂缝常常组合成带,有时沿一个主导方向呈线状或串珠状延伸,构成长达几公里,甚至几十公里的地裂缝密集带;有时不同方向的地裂缝相互交叉,构成密集的地裂缝集中区。分布在工厂、村落、田野中的地裂缝,对房屋建筑和土地资源造成危害。例如1983年7月28日傍晚和29日早晨万荣县两次暴雨后,该县薛店村在29日9时30分地面开裂。地裂缝长1.5km;一般宽为1~2m,最宽达5.2m;一般深1.5~3.0m,最深达12m。大量积水顺缝一泄而光。裂缝所经之处,房屋开裂或倒塌,受损房屋300间(受害居民67户)。村内一口深223m、造价6万余元的机井也因而塌毁。1984年6月,绛县电厂地裂。地裂缝长50m,宽40cm。家属宿舍也随之开裂。运城东北的半坡乡,一条NE向延伸的地裂缝(长约9km,宽0.3~1.0m),造成数十间民房开裂,田地成为破碎的沟地。

3.太原盆地地裂缝

地裂缝主要发生在太原市南部的榆次县、太谷县、祁县等地。榆次县北部王湖至聂村一带,1982年出现4条近SN向的地裂缝,组成长约500m,宽约15m的地裂缝带,裂缝深2.5~3.0m,最深12m。处于地裂缝发育带内的省储备局仓库、地区变电所和部队等单位的办公楼、食堂、家属宿舍等建筑物出现大量裂缝,成为危房或者废弃。

4.大同盆地地裂缝

地裂缝主要发生在大同市,以市区西南边缘的大同机床厂一带最严重。地裂缝始见于1977年,发生在剧场街9号楼附近,长200m,使9号楼出现裂缝。80年代以后,地裂缝迅速发展,1986年延伸到1000m,1988年和1989年进一步发展到5000m,至今仍在活动。地裂缝走向NE57°,宽1~6cm。其南盘相对下滑,垂直相对位移2~5cm,最大18cm。地裂缝破坏带宽5~20m,所经之处,房屋墙体和过梁开裂,门窗变形,管道错动。机车厂8幢居民楼和食堂、学校等公用设施严重受损,受灾建筑面积29141m2,危害居民290户。除市区外,在北部天镇县的滹沱店、孙家店、顾家湾、宣家塔和阳高县的罗文皂以及大同市东南官道村等地,在1982~1984年前后亦发生不同规模的地裂缝,民房和田地受到破坏。

(二)太行山东麓倾斜平原地裂缝带

该地裂缝带始于1966年。该年3月在邯郸市电台和国棉一厂首先发生地裂缝活动。此后,不但在该市迅速发展,而且河北平原和豫北平原的许多地区相继发生日益严重的地裂缝活动,很快形成一个沿太行山东侧和东南侧倾斜平原延伸的地裂缝分布带。其北起保定,向南经石家庄、邢台、邯郸进入豫北的安阳、新乡、郑州一带以后,向西延伸,经洛阳达三门峡一带,与渭河盆地和运城盆地的地裂缝带相连,全长约800km。共有50多个县市发现400多处地裂缝。其中,河北省有39个县市、200多处,主要有易县、容城、涞水、保定、定县、博野、正定、藁城、束鹿、宁晋、新河、柏乡、临城、无极、南宫、邢台、南和、永年、邯郸、肥乡、广平、鸡泽、大名等;河南省约15个市县、100多处,主要有南乐、清丰、汤阴、浚县、辉县、获嘉、新安、渑池、三门峡、陕县、灵宝等。

分布在城镇和企业、矿山的地裂缝,对房屋和其它工程造成了严重危害。河北省邯郸市1963年发生地裂缝活动。1966年以后地裂缝迅速发展,在国棉一厂、电台、汽车修配厂及前郝村等地形成三条地裂缝。裂缝单条长度为185~700m,组合长度3~8km。地裂缝损坏楼房7处,平房数十间,错断管道2处,破坏围墙10堵,直接经济损失数百万元。发生在农村的大量地裂缝,除破坏民房、道路外,还对耕地和水利设施造成了不同程度的破坏。

(三)大别山北麓地裂缝带

1974年在大别山北麓的山前倾斜平原地区出现了大量地裂缝,主要分布在豫东南的固始、商城、淮滨、潢川、息县和皖西南的霍丘、颖上、寿县、六安、金寨、阜南等11个县市,其范围南北宽近100km,东西长约150km,可大致分为三个近EW向延伸的地裂缝密集带:北带从息县夏庄经淮滨县城、固始三河、霍丘周集至寿县;中带从潢川隆古、城关、桃林,经固始分水,至霍丘河口、列李集;南带从潢川仁和,经商城、金寨北部和固始、霍丘、往东延至六发县境内。每带宽15~20km,带内地裂缝密集,带间地裂缝比较稀少。单个地裂缝规模不等,长度一般在10~300m以上,宽10~50cm,个别达1m左右,深一般3~5m。

1976年唐山地震前后,大别山北麓地裂缝活动加剧,其范围几乎扩展到整个淮河流域和长江、黄河中下游地区。据不完全统计,在豫、皖、苏、鲁四个省中有152个县市出现了地裂缝,形成三个规模较大的地裂缝分布带:一是从大别山北麓的信阳、六安向东到南通、如东的EW向地裂缝分布带,其地裂缝除在潢川至寿县一带进一步发展外,在东部的马鞍山至如东一带也出现不少地裂缝;二是周口—阜阳—寿县和商丘—永城—蚌埠两个相近平行延伸的NW向地裂缝分布带;三是沂水—郯成—宿迁NNE向地裂缝分布带。

(四)其它地区的构造蠕变地裂缝

除上述三个大规模地裂缝带外,在其它地区还有一些零星的地裂缝或小规模地裂缝带。它们亦主要分布在华北的晋、冀、鲁、豫地区。如1988年在豫东平原上蔡县黄埠乡和太康县朱口乡发生的地裂缝活动,造成黄埠乡尚庄、杜庄等5个自然村,朱口乡的洼陈、二甲张等12个自然村的许多民房的墙体、门窗开裂0.5~6cm,当地群众惊恐不安。山东省淄博市南定玻璃厂和傅家、大徐家等地,自1985年以来,地裂缝活动持续发展,在玻璃厂厂区内形成一条近南北向延伸达300m以上的地裂缝,使主车间和其它一些工厂建筑、地面和墙体出现无数条2~30cm宽裂缝,工厂被迫搬迁;在傅家和大徐家,除上百户民房严重开裂外,田野、耕地之中亦出现多条延伸数百米的地裂缝。1989年,淄博市旦村水库的偏坝和附近地面亦发生开裂,使水库安全受到威胁。

五、海水入侵

海水入侵是由于滨海地区地下水动力条件发生严重变化,造成海水或高矿化咸水向大陆淡水含水层发生的入侵现象。海水入侵主要发生在城镇、矿山地区,通常是由于强烈开采或疏干地下水,使地下水水位持续大幅度下降形成的。其主要危害是破坏地下水水源,进而影响人民生活和工农业生产。

我国滨海地区发生明显海水入侵的地区主要有辽宁大连、河北秦皇岛、莱州湾和胶州湾沿岸、广西北海市等地。全国累计海水入侵面积在1000km2左右,最大入侵距离超过10km,最大入侵速率超过400m/a。

大连市海水入侵发生在1976年以后;到80年代末,海水入侵地区有12处,以大连泡、金县、南关镇、甘井子、营城子最严重,其次为革镇堡、大魏家、金纺、后盐村、周水子、牧城驿、龙眼井。入侵的累计面积为230km2,氯离子含量300~1000mg/L,最高超过7000mg/L。这些地区的地下水水源地遭到严重破坏,加剧了大连市水资源供需矛盾。

秦皇岛海水入侵发生在北戴河海滨区的枣园水源地,入侵面积24km2,氯离子含量500mg/L以上,水源地濒临报废。

山东省莱州湾、胶州湾沿海地区,是近年海水入侵灾害最严重的地区。截至1991年4月,累计海水入侵面积为431.2km2,地下咸水扩侵面积为299.5km2,累计730.7km2。主要发生在莱州市、龙口市、烟台市,其次为青岛市、胶州市、招远县,再次为蓬莱县、长岛县、牟平县、海阳县、胶南市等地。海水入侵活动使地下水资源遭受严重破坏,造成灾害区44.5万人无淡水使用。灾害区人民由于饮用劣质咸水,使身体受到严重危害,甲状腺肿、氟骨症、氟斑牙等地方病患者剧增,达40余万人。海水入侵还造成了土地资源严重退化,盐渍化发展,农业生产不断下降,粮食累计减产(30~45)×108kg。

其它地区还有一些小规模的海水入侵活动,虽然目前危害尚不严重,但存在不同程度的进一步发展的趋势。

六、膨胀土的胀缩灾害

膨胀土是一种胀缩能力极大的粘性土,对工程建筑具有很大的破坏性。它使房屋等建筑地基发生变形,进一步引起房屋沉陷开裂;对铁路、公路以及水利工程的危害也十分严重,导致路基变形,铁轨移动,大坝开裂等,破坏了运输安全和水利工程的正常运行。

我国膨胀土分布广泛,主要发育在云南、贵州、四川、广西、湖南、湖北、江苏、安徽、山东、河南、河北、山西、陕西等21个省(自治区)的205个县(市),其中以云南、广西、河北等地区尤为发育。如湖北省郧县县城,因丹江口水库蓄水而迁建,新城址膨胀土十分发育,严重受害房屋25.9×104m2,占全部房屋建筑的70%;其中,倒塌和被迫折毁房屋近10000m2。因破坏严重,县城被迫再次易地重建,造成直接经济损失2000多万元。类似灾害在湖北宜昌、贵阳、枝江、应城、孝感、云梦、新洲和广东省的广花盆地、东莞盆地、雷洲半岛,河南的平顶山市、南阳市,山西省泌水盆地,广西南宁,安徽合肥、泗县、蚌埠,云南蒙自、鸡街,四川成都,山东临沂、泗水,河北邯郸等地也有发生。

❸ 地质灾害防治设计中的几个问题

根据链子崖黄腊石地质灾害防治工作专家组在链子崖黄腊石地质灾害防治工作中的经验,对地质灾害防治设计工作提出如下建议。

链子崖、黄腊石地质灾害防治工作专家组,是国家科委牵头、中央各部委和湖北省人民政府参加组成的防治工作领导小组的技术参谋班子(著者任专家组长),主要任务是向领导小组提出咨询建议,进行技术把关。专家组自1989年4月成立以来,除日常工作外,召开过九次专家组会议,多次深入现场勘察,召开专门会议,审查工作计划,讨论重大技术问题,解决重大技术难关,提出重大技术建议,审查勘察、设计成果,做了大量工作,于1991年9月圆满地完成了任务。

链子崖和黄腊石地质灾害防治工作,不论就其规模、复杂性和难度,在国内外都是少有的。专家组在两年的工作中遇到了许多新的和难度极大的问题,经过反复的讨论,许多问题都取得了一致的认识,向领导小组提出了许多重大建议,有些问题是带有很大的风险的,风险再大也得决策,专家组均作出了向领导小组提出决策性的意见。这一节就是专家组活动中的指导思想、重大和风险问题的决策依据及有关的经验。

1.地质灾害防治是一项地质工程

开展任何一项工作,不管自觉还是不自觉地,都存在有一个指导这项工作的指导思想和观点。链子崖和黄腊石地质灾害防治工作从一开始就有一个明确的指导思想和对这项工作认识的基本观点。这个指导思想和基本观点就是,链子崖和黄腊石两处地质灾害防治是一项地质工程。地质灾害防治工程,从大的方面来说,是一项地质环境治理工程,从小的方面来说,是一项地质体改造工程,简单地说可以称为地质工程。这类工程不是土木工程,不是一般的建筑工程,而是一项地质工程。这项工程的目的是塑造一个安全稳定的新的地质环境,保障人民安居乐业,保障国民经济少受损失和国家经济建设顺利发展。要做到这一点,这项工程的建设必须紧紧地依靠地质,地质灾害勘察成果的水平将决定这项工程的建设水平,也可以说地质是地质工程的基础。这项地质体改造工程,从何处下手来作?要进行地质体改造,必须明确改造目的、改造对象、改造技术,这是非常关键的。如链子崖危岩体挖煤采空是变形产生的主要原因,我们就应该对采空区的应力条件、地质体强度进行改造;对黄腊石滑坡来说,滑坡体内的水是滑动的主要原因,那就应该改造滑坡体的水文地质条件和滑体的受力条件,这就叫做“对症下药”。换一句话说,地质灾害防治的地质体改造工作必须通过认真的勘测工作,查清地质灾害产生的原因、活动机制、灾害体的结构及其稳定条件,然后“对症下药”地给出防治方案,进行技术设计和施工,才能奏效,这是非常关键的一环,一定要明确这一点。

地质工程有其特殊性,特殊就特殊在它是以地质体结构为建筑材料,以地质体结构为建筑结构,以地质环境为赋存条件建筑环境的一项特殊的建筑工程。它不像土木工程已经有几百年的历史,有丰富的经验,有各种各样的规程、规范可做参考;这方面的经验是不多的,即使有了,因为地质体十分复杂,也不能生搬硬套。必须在查清地质体结构、地质灾害产生的原因、机制以及地质灾害体结构的基础上,进行科学的分析,作出防治方案,再根据结构作用功能进行结构设计,方能成功。在这个过程中,必须有地质人员参加,也可以说,应该以地质人员为主来进行更好些。对这种工程来说,设计人员包打天下肯定是要失败的。地质人员最有条件认识地质灾害产生的原因、机制和地质灾害体的结构,最有条件给出科学的防治方案,设计人员一般对地质灾害产生的原因、机制和灾害体的结构不容易搞清楚,给出的防治方案常常与地质实际不符,工程设计人员要想做好这项工作必须紧密地与地质人员合作,这个问题必须引起重视。

2.地质灾害防治的特殊性

地质灾害防治不同于一般的地质工程,它除了具有一般的地质工作的共同特性外,尚有其特殊性。其特殊性在于它是处于孕育成灾过程中,有的刚具有发生变形迹象,有的处于变形发展过程中,有的则处于成灾过程中;有的是初次发生,有的是灾体复活,其类型繁多,成因各异,阶段不同,状态不一。这些特点在链子崖危岩体和黄腊石滑坡中都存在,链子崖危岩体和黄腊石滑坡,这两者也存在很大的不同。链子崖危岩体系处于孕育滑坡过程中的变形阶段,或者说,系处于蠕滑变形阶段,尚未进入加速变形阶段,它也可能变形速率逐渐减小,最后不发生滑动,也可能变形速率逐渐加大,进入加速变形阶段,最后产生崩塌滑坡,形成大规模的地质灾害,造成巨大的经济损失,这在历史上多次重复发生过。黄腊石滑坡系古滑坡复活,在历史上是否重复发生过没有记载,但它是一个滑坡群,互相牵连,问题也十分复杂。

链子崖危岩体变形已经历了几百年的历史,黄腊石滑坡系1983年暴雨后地表开始出现裂缝,以后逐年发展。链子崖危岩体系位于基岩内、黄腊石滑坡系位于松散堆积层中。据现在已掌握的资料分析认为,链子崖危岩体系在挖煤采空区下沉变形诱发下,追踪构造裂隙产生的裂缝,其前缘“五万方”的险兆十分明显;黄腊石滑坡,据已有的资料判断,最可能是沿上滑面滑动,但还存在有一个沿潜伏的下滑动面滑动的可能性。各有各的特点,必须区别对待。

地质灾害防治不是像地基、边坡、隧道建筑那样的地质工程。地基、边坡、隧道建筑是在稳定的地质体上建筑地质工程,工程地质勘察的目的是查清现状的地质体组成成分、地质体结构,以及地质体赋存环境条件和地质体的物理力学性质资料,为地质工程结构设计提供基本资料。而地质灾害防治工程是对不稳定的地质体进行改造,变不稳定的地质体为稳定的地质体。这就提出,地质灾害勘察工作目的是查清地质灾害产生的原因、运动机制、稳定状况及地质灾害体的结构和水文地质、工程地质条件,为地质灾害防治提供基础资料。

地质灾害防治与一般的地质工程不同之处,在于它的研究工作内容是,通过地质体改造防治已经产生的或将要产生的地质灾害,这项工作中最重要的是查清地质灾害产生原因、运动机制、灾害体的结构及稳定性条件,这是制定正确的防治方案和取得防治效果的关键所在。在证论过程中对链子崖危岩体变形原因是有很大争论的,有的认为是剥蚀卸荷,地应力调整引起的;有的认为是崖脚强度不足产生倾倒变形;有的认为是挖煤采空区卸荷引起地面下沉造成的,等等。不同的产生原因就有不同的防治方案,如认为是崖边卸荷产生的,就提出了锚固为主的防治方案;认为是采空区引起的,则提出了承重抗滑键为主的防治方案。对此进行了反复论证,比较一致的意见是地下采空区是链子崖危岩体变形的主要原因,崖边卸荷是附加因素。据此,最后制定了承重抗滑键为主和崖边锚固为辅的综合治理方案。这就是有的放矢的原则。

防治决策必须考虑致灾可能性,成灾的经济损失和防治效益。上面论述了链子崖危岩体和黄腊石滑坡防治是一项地质工程,还应该承认链子崖危岩体和黄腊石滑坡防治是一项防灾工程,这也是地质灾害防治的特殊性,它不是一般的地质工程,而是一项防灾工程。防灾工程就有一个该防不该防的问题,该防不该防的标准是什么?主要是经济效益,即投资和收益的关系问题。一般认为灾害防治的效益可以取得1∶10,著者认为地质灾害防治的效益可以达到1∶20以上,据此著者认为根据我国目前经济实力,我国地质灾害该防不该防的投资和收益的比值界限定为1∶20为宜。根据这一指标,我们来看看链子崖危岩体和黄腊石滑坡该不该防治?在立项申请报告时著者曾估算过链子崖危岩体如果不防治,如果仅前缘“五万方”产生崩塌,不会造成堵江、碍航和断航灾害,没有必要进行防治;如果250万立方米变形体产生盐池河式崩塌破坏,崩塌体一旦入江将可能造成堵江、碍航,甚至出现断航的危险,如果产生这种情况,可能造成的经济损失约为50~60亿元人民币,如果进行防治,防治投资约为1亿元人民币左右,防治效益大约为1∶50~1∶60左右,显然是应该进行防治的,这是链子崖危岩体立项防治的主要依据。黄腊石滑坡防治的效益也是很大的,尤其是对保护巴东县城免于滑坡发生时产生的涌浪袭击具有重大意义。上述表明,除了经济因素外,社会意义也很重要,这两处地质灾害如果不防治,一旦发生灾害,将对人民生存和生活产生巨大的影响,甚至有可能引起社会动乱。显然,进行防治是完全应该的,合理的,这就是该不该防治的决策依据,在地质灾害防治时必须掌握这些特殊性。

3.不确定性问题的决策

一般来说,地质体是复杂的,地质灾害勘察和测试结果或多或少都存在有一些不确定性成分,这些不确定性成分有的是随机性的,有的是定向性的。随机性的可以采用数理统计分析方法作出判断;定向性的原则上不能简单地用数理统计分析的方法进行判断。不论情况如何,在利用这些资料时,不能就事论事,而应该进行综合分析,权衡利弊地进行。为此,就需要选择一种相应的方法进行判断,专家经验评判法或者称为德尔菲法就是适合的方法,在链子崖和黄腊石地质灾害防治方案论证中就利用了这种方法。这里存在一个影响程度大小问题,有的是对防治方案具有控制作用,有的是对技术设计有影响的。显然,对防治方案具有控制作用的权比对技术设计具有影响作用的权要大得多。这就是说,防治方案正确与否是防治工作成败的关键。因此,对防治方案具有控制作用的不确定性的地质因素的判断决策尤为重要,必须认真对待,绝不能凭想像简单从事。在链子崖和黄腊石地质灾害防治方案论证中各存在一个对防治方案具有控制作用,争议较大的问题,即链子崖危岩体是否存在整体滑动可能性和黄腊石滑坡是否存在深层滑动可能性问题,我们在解决这个问题中采用的判断决策方法是专家经验判断法,即德尔菲法。

黄腊石滑坡是否存在深层滑动问题比较易于解决,黄腊石滑坡在地质勘探中发现在松散滑坡体滑动面下面的基岩内还存在有一个断续分布的破裂面。有的专家认为这个面是构造成因的;有的专家认为这个破裂面是上部滑动的影响带;有的专家认为黄腊石滑坡复活有可能沿着这个面滑动;有的专家认为不可能沿着这个面滑动,但大多数专家认为近期不会沿着这个面滑动,在地下水长期作用下,破裂带物质软化,沿着这个面滑动的可能性还是存在的,监测资料亦有迹象表明,目前黄腊石滑坡活动系沿着浅层滑动面滑动。另一方面,考虑到长江三峡工程在不久的将来即将建成,三峡水库蓄水后水深和水面都将大大增大,黄腊石滑坡即使沿着深层破裂面滑动入江,也不会造成重大的地质灾害。据此,长江三峡链子崖、黄腊石地质灾害防治可行性研究阶段,专家组根据多数专家的意见,作出的结论是:黄腊石滑坡防治主要考虑浅层滑动面,在防治中不要扰动深层破裂带(包括防止地下水渗入)。

链子崖危岩体能否产生整体滑动问题争议比较大,多次召开专家组和专家组扩大会议进行论证。长江三峡链子崖、黄腊石地质灾害防治可行性研究阶段,专家组根据多数专家的意见作出的结论是:“危岩体山体开裂变形有多方面因素,其中以挖煤采空占重要地位。T8~T12缝段危岩体的变形破坏方式,预测以崩塌为主,但不能排除在特殊不利的情况下发生较大规模滑移(即整体滑动)的可能性,防治原则应当是既防崩又防滑,……”其根据有如下几点:

(1)T8~T12缝段后缘已经形成弧形拉裂缝;

(2)变形监测结果T8、T9及“五万立方米”地段变形量和变形速率大体相近;

(3)1988年安装监测点时工人听到在T8缝附近地下产生岩体破裂声,且闻到上溢的硫化氢气体;

(4)近年来,1#洞内渗水量增多,地表黄泥通过T8、T9淋滤带到1#洞内,证明T8和T9缝已与地下的1#洞连通;

(5)1#洞顶板及衬砌出现纵张裂缝;

(6)1#洞内观测到的顶板下沉变形与采空区范围相当;

(7)T8~T12包围的危岩体内部已经存在着缺陷(微破裂面),岩体已经受到损伤,在外界因素作用下,损伤会不断扩大,岩体强度将逐渐降低;

(8)中国科学院地质研究所三维有限元应力分析结果表明,采空区外到临空岩壁间的未采掘的煤体宽度如果大于120m时将不产生塑性化,如果小于70m时,则未开采部分煤体将产生塑性化,即出现流动变形现象,一旦进入加速流变阶段,即将导致产生大规模破坏。

(9)1#洞内变形监测结果表明,1991年以来,变形速率有加剧的迹象,这一现象必须引起高度重视。

(10)另据秭归县志记载:长江三峡链子崖崩塌存在有380~400年的周期,而链子崖危岩体目前也正处于此周期当中。

上述表明,T8~T12缝段产生大规模破坏的可能性是存在的,问题还在于产生大规模滑动破坏后能否成灾,灾害损失有多大。在三峡工程未建成前,产生大规模破坏时,产生碍航或断航的可能性是完全存在,造成的损失是十分巨大的。三峡水库蓄水后,如果产生大规模破坏时问题会怎么样?这也是必须认真考虑的。我们所指的大规模破坏或整个滑动系指250万立方米规模的崩塌,这是立项防治的主要对象。三峡水库的最高水位为175m,正常蓄水位为150m,枯水季节的低水位130m,河床标高约30m,且兵书宝剑峡峡谷出口处河谷狭窄。假设崩塌体入江后堆积坡角为40°,水库蓄水后流速很小,带走量很少。250万立方米危岩体如果产生类似于盐池河形式崩塌,假设崩塌体松胀系数为1.3,则松散堆积体积为325万立方米,如果崩塌入江,在河床堆积高度可能超过130~140m,三峡水库蓄水后,造成碍航,甚至断航的可能性依然存在,即大规模成灾的可能性依然存在。因此,在链子崖危岩体防治中必须考虑整体滑动的可能性,这就是长江三峡链子崖、黄腊石地质灾害防治可行性研究阶段专家组作出“链子崖危岩体整治不能排除整体滑动可能性”,且防治的主要对象为250万立方米的依据。

上述表明,在地质灾害防治工作中,对不确定性问题决策时,除应充分考虑地质现象外,还必须认真考虑成灾可能性及可能造成的损失状况,这是非常重要的,这也是地质灾害防治的特殊性所在。

4.防治技术适宜性问题

防治目标和防治方案确定以后,防治技术选择和设计将是防治效果和防治工程成败的关键。

危岩体和滑坡防治主要原理是改变危岩体和滑坡体内的应力状态和保持其强度,从理论上讲,常用的技术原理为削头、压脚、排水。从具体技术措施来讲,常用的有卸荷、支挡、锚固、地表排水、地下疏干等。这些技术使用得当,会收到很好的效果;如果使用不当,将会出现事与愿违的后果。在链子崖危岩体防治方案论证中,曾遇这样的问题:为了防止煤层采空区顶板继续下沉和煤层下沉引起链子崖危岩体整体滑动,在采空区设置承重抗滑键。承重的作用在于防止顶板继续下沉,导致残留煤柱继续破坏和强度继续降低;抗滑的作用在于防止残留煤柱破坏导致抗剪强度降低,引起链子岩危岩体整体滑动。这是链子崖危岩体防治方案中的一个重要组成部分,是一个正确的防治方案。但在设计中采取了承重抗滑键布置方向与原采煤巷道方向直交,这就是说,施工时将要把巷道洞间的煤柱(壁)再挖掉一部分,这样将使残留的煤柱面积进一步减小,使采空区残留煤柱的承重能力降低,有可能在施工过程中出现加速破坏的可能性,显然,这一技术设计选择是大有问题的。另一个例子是黄腊石滑坡防治方案中地面排水工程问题。黄腊石滑坡复活主要原因是大气降水渗入滑坡体内,导致地下水位升高,滑坡体重量增大,孔隙水压力增高,滑坡体失稳。很明显,解决黄腊石滑坡复活的主要技术,是采用排水为主,具体地说就是采取地表排水和地下疏干相结合的技术。有一种设想是,只做地表排水就行了,这里同样存在一个技术原理问题,地表排水的作用主要是排出大气降水在地表形成的地面径流。因此,在地表排水设计中必须包括地表整平,消除地面坑洼积水或设置支沟将洼地积水引出,防止或尽量减少大气降水向滑坡体内入渗,而入渗的水量远远小于滑坡体疏干排水的能力,这是有效的,可是在大气降水在地表形不成地表径流的情况下,地表排水就无效了。这时如果大气降水入渗量小于滑坡体的排水能力,也不至于引起地下水位上长,也不会有问题;如果大气降水入渗量大于滑坡体的排水能力,将会引起地下水位上升,滑坡体重量增大,孔隙水压力增高,也有导致滑坡复活的可能。因此,在选用地表排水为主的情况下,还必须配合采用地下疏干措施,在极为重要的地段还应该校核是否需要增加锚固措施,不能简单地把地表排水看成是万能的。上述表明,在进行危岩体和滑坡体防治技术选择中必须认真考虑各项防治技术的原理、适用范围、经济造价和施工难度,不能简单地拿来就用。

5.孕灾体稳定性评价问题

这是地质灾害防治中的重要问题之一,它是该防治和不该防治决策的重要依据之一。如果孕灾体是稳定的或趋向于稳定的,那就没有必要投资进行防治;如果是不稳定的,防治效益大于1∶20,那就有必要投资进行防治。如何评价孕灾体的稳定性?目前常用的方法是采用数理分析,有的采用确定性模型进行数学力学计算,有的采用不确定性模型进行概率分析。这种分析中存在着一个很大的不确定性问题,就是分析计算中的模型选择和参数取值。模型选择牵扯到地质灾害成因、机制和孕灾体的结构,这个问题必须在详细的地质研究基础上,加上经验判断给出。如何根据已取得的资料给出合理的分析计算模型,这里存在着很大的不确定性问题,在解决这个问题上经验是很重要的。例如链子崖危岩体的稳定性,许多人进行过计算分析,计算结果求得的安全系数有的高达3.7,有的达1.7,都是稳定的。实际上变形监测结果是,链子崖危岩体的变形与日俱增,不断地在发展,这表明计算结果是不符合实际的。其原因除了力学模型选择中存在着不确定因素外,还有一个重要因素,即参数选择问题,选用的参数多数来自于试验,部分地来自于经验。试验值的分散性是很大的,也就是说,取值中的不确定性是很大的;经验也存在着很大不确定性,这与一个人的工作实践经历有很大的关系,经验丰富的人给出的参数值可靠性就高一些,经验欠缺的人给出的参数值的可靠性就差一些。以参数c、φ值为例,给高一些,计算结果得到的稳定性系数就高一些;如果给低一些,计算得出的稳定性系数就低一些,究竟哪个对?很难说。显然,这个方法中的不确定性是很大的,用这个结果作依据决策该不该防治的理由是不充分的;用这个结果进行防治工程结构设计,是带有很大的危险性的。这不能作为科学的决策依据,那么这个问题该怎么解决?著者认为最最重要的,也是最科学的方法是地质分析方法。

地质分析的依据是什么?主要依据有两个方面的资料,一个是灾害体的外观形态特征,或者称为地貌特征;另一个是变形监测资料。这两者结合起来是最最科学的,最可靠的,仅仅形态特征资料有时也不一定靠得住。如山坡上出现一条裂缝,就说是滑坡引起的,实际上不一定,引起山坡产生变形的原因可以有很多,不一定都是滑坡。又如,山坡上常出现有马刀树,这也不一定就是滑坡,暴风也可以将树吹歪,然后再长直,而形成马刀形。外观形态特征分析绝不能简单地采用一、两个现象为依据,必须收集多方面资料进行综合判断,变形监测结果也是一样,其中也存在意外情况,在采用这方面资料之前必须剔除意外资料,否则,其结果也是靠不住的。在地质分析中,不管是外观形态特征资料也好,监测资料也好,必须认真地进行分析,首先要去伪存真,然后再进行去粗取精,这样才能得到科学的结论,这是非常重要的。

在稳定性判断中还有一个方面的资料应该充分利用,这就是历史资料。地质灾害的发生发展常常具有周期性的规律,地质灾害发生发展也存在着高低、急缓、起伏的过程,它和其他方面的自然作用一样,具有作用活动的周期性。如大气降水,有丰水年和枯水年。与丰水年相应地,则地质灾害发展就活跃;与枯水年相应地,地质灾害发展就减缓,甚至暂时休止,在这个时期变形监测结果可能是没有活动迹象,这一点是非常重要的。前面谈到过,秭归县志记载表明,长江三峡链子崖崩塌就有380~400年的周期,而从自然灾害发展规律来说,目前正处于自然灾害活跃时期。因此,链子崖危岩体变形近一个时期也比较明显,监测结果表明,变形也一直在发展;而链子崖崩塌现在也正处于380~400年的周期当中,我们在评价链子崖危岩体稳定性时充分考虑了这些因素,最后才作出链子崖危岩体必须进行防治的结论。上述结果表明,地质灾害稳定性评价必须充分采用地质分析和数理分析两个方面的方法进行,而其中最重要的是地质分析。地质分析中又可分为:地质地貌特征分析、变形监测分析和历史分析等三个方面。地质灾害稳定性评价必须采用地质地貌特征分析、变形监测分析、历史分析、数理分析和综合分析的办法才能得到可靠的结果。

6.安全系数选择问题

安全系数取值几乎可以说贯穿于整个地质灾害防治过程中。在判断地质灾害体是否稳定时,要采用安全系数;评价防治工程的可靠度要用安全系数表征;在结构设计时,进行作用力取值要采用安全系数;结构材料与构件强度取值要用安全系数,在施工工艺可靠性方面也要采用安全系数。这么多安全系数怎么取用?在这个问题上有时有些混乱。在链子崖和黄腊石地质灾害防治工作中由于各位专家采用的概念或所阐述的对象不同,在讨论中涉及安全系数时常常各持己见,这也是地质灾害防治与其他地质工程建筑的一个不同之处,在这里,著者再谈谈这个问题。

在判断地质灾害体是否稳定时科学的评价指标是稳定性系数η,但有一些工程设计人员常常也用安全系数来表述,这也是无可非议的。安全系数除包含有稳定性因素外,还包含很多环境因素和社会因素,对地质灾害评价来说,还是用稳定性系数表示为好。稳定性系数取值也存在着很大的不确定性,上面曾谈到链子崖危岩体不少人对其稳定性系数进行过分析,得到的结果相差很大,其原因在于两方面:一是计算模型选择上;另一方面在于力学参数选取上,这两方面都存在有不确定性。由此决定着在评价地质灾害体稳定性时,稳定性系数指标取值就受这两方面因素的控制。稳定性系数取值大小主要决定于计算模型选择的可靠性和力学参数取值的可靠性上,这两方面取值的可靠性,很大程度上决定于进行取值的专家的科学技术水平,也可以说是经验水平。一般来说,比较有经验的专家也只能有80%~90%的把握,即各自的可靠度最低也不能低于1.1~1.2。

地质灾害的稳定性系数应该是力学模型的可靠度与力学参数的可靠度的乘积,由此看来,科学的稳定性系数η应该是1.1×1.1~1.2×1.2,即为1.21~1.44,不应该低于此值,具体取值时还要考虑防治工程的重要性和取值人的实践经验水平。

在评价防治工程的可靠度时用安全系数K表示是正确的。一般来说,这个安全系数K系由三个部分组成,即作用力取值安全系数K1,材料与构件强度取值安全系数K2及施工工艺安全系数K3组成,即K=K1×K2×K3。其中作用力安全系数K1影响因素与稳定性系数η相当,即可在1.21~1.44之间取值。材料与构件强度取值安全系数K2与材料和构件使用方法关系极大,如材料为单一的钢材,安全系数可取1.05~1.1;钢筋混凝土构件安全系数可取1.50~1.65;混凝土结构构件安全系数可在1.6~2.5之间取值。地质灾害防治中所采用的构件和材料一般多为钢筋混凝土构件,故安全系数一般取在1.5~1.65之间。施工工艺安全系数与施工方法技术水平有很大关系,这个系数是很难琢磨的,大体上在1.2~1.5之间。由此决定,防治工程安全系数K变化于1.21×1.5×1.2=2.2至1.44×1.65×1.5=3.65之间。链子崖危岩体防治可行性论证中作用力的安全系数选用中参照了各种规程规范和工程实例,选用值为1.35,这是比较合适的,其地方面的安全系数将在初步设计中进一步论证。

安全系数是极为复杂的,影响因素是变化多端的,不仅受地质因素影响,结构材料因素影响,施工工艺影响,还有环境因素影响。环境影响因素绝不可忽视,其中最主要的则为地下水的水质和大气化学成分及温度的影响,对这些因素的影响必须进行科学的论证。安全系数取低了,防治的安全度不足而蕴藏着隐患;安全系数取高了,造价太高,则又可能蕴藏着浪费,这个问题必须认真论证。

在结束本章论述时,简要归纳一下,在地质灾害防治设计中必须遵守的基本观点,这些基本观点有:

地质灾害是威胁人类生活和生存,造成资源和财产损失的地质事件。地质灾害防治是一项地质工程,它又与一般的土木工程和地质工程不同,它具有很大的特殊性。其特殊性在于地质灾害防治工程是通过地质改造手段将已经产生破坏或即将产生破坏的不稳定性的地质灾害体进行改造,达到稳定的和安全的地质环境,保障人类生存和美好的生活,简单地说是一项防灾工程。具体地来讲,地质灾害防治对象是已经产生破坏和即将产生破坏而处于不稳定的地质体,对其进行防治工作中最最重要的是必须查清地质灾害产生的原因,活动机制和灾害体的结构。在此基础上才能作出正确的防治方案和防治工程结构设计,地质灾害防治必须与经济效益挂钩,这是决策该不该立项防治的关键,也是防治投资额度决策的依据。一般来说,根据我国目前经济实力,防治投资效益取1∶20作为立项防治依据为宜,稳定性分析和安全系数选取是地质灾害防治中的两个重要技术问题。稳定性分析必须以地质分析为基础,参照数理分析,历史分析进行综合判断。安全系数选取必须全面地分析地质的、结构的、施工工艺、环境条件、社会效益等方面的因素综合分析选定。地质灾害防治是一项巨型的系统工程,必须认真对待,只准成功,不能失败,一旦失败,其后果是极为严重的。

❹ 地质灾害防治措施

崩塌灾害防治的工程措施:

1、拦挡:对中、小型崩塌可修筑遮挡建筑物或拦截建筑物。拦截建筑物有落石平台、落石槽、拦石堤或拦石墙等,遮挡建筑物有明洞、棚洞等。

2、支撑与坡面防护:支撑是指对悬于上方、可能拉断坠落的悬臂状或拱桥状等危岩采用墩、柱、墙或其组合形式支撑加固,以达到治理危岩的目的。对危险块体连片分布,并存在软弱夹层或软弱结构面的危岩区,首先清除部分松动块体,修建条石护壁支撑墙保护斜坡坡面。

3、锚固:板状、柱状和倒锥状危岩体极易发生崩塌错落,利用预应力锚杆(索)可对其进行加固处理,防止崩塌的发生。锚固措施可使临空面附近的岩体裂缝宽度减小,提高岩体的完整性。

4、灌浆加固:固结灌浆可增强岩石完整性和岩体强度。一般先进行锚固,再逐段灌浆加固。

5、疏干岸坡与排水防渗:通过修建地表排水系统,将降雨产生的径流拦截汇集,利用排水沟排出坡外。对于滑坡体中的地下水,可利用排水孔将地下水排出,从而减小孔隙水压力、减低地下水对滑坡岩土体的软化作用。

滑坡灾害防治的工程措施

1、排除地表水和地下水:滑坡滑动多与地表水或地下水活动有关。因此在滑坡防治中往往要设法排除地表水和地下水,避免地表水渗入滑体,减少地表水对滑坡岩土体的冲蚀和地下水对滑体的浮托,提高滑带土的抗剪强度和滑坡的整体稳定性。

2、减重与加载:通过削方减载或填方加载方式来改变滑体的力学平衡条件,也可以达到治理滑坡的目的。但这种措施只有在滑坡的抗滑地段加载,主滑地段或牵引地段减重才有效果。

泥石流灾害防治的工程措施

1、跨越工程:在泥石流沟上方修筑桥梁、涵洞跨越避险工程,使泥石流有排泄通道,又能保证道路的畅通。

2、穿越工程:在泥石流下方修筑隧道、明硐和渡槽的穿越工程,使泥石流从上方排泄,下方交通不受影响。这是通过泥石流地区的又一种主要工程形式,对于隧道、明洞和渡槽设计的选择,总的原则是因地制宜。

3、防护工程:对泥石流地区的桥梁、隧道、路基及重要工程设施修筑护坡、挡墙、顺坝和丁坝等防护工程,从而抵御泥石流的冲刷、冲击、侧蚀和淤埋等危害。

4、排导工程:修筑导流堤、急流槽、束流堤等排导工程,改善泥石流流势、增大桥梁等建筑物的排泄能力。

5、拦挡工程:修筑拦砂坝、固床坝、储淤场、支挡工程、截洪工程等拦挡工程,控制泥石流的固体物质和雨洪径流,削弱泥石流的流量、下泄量和能量,以减缓泥石流的冲刷、撞击和淤埋等危害。

(4)地质灾害危岩体扩展阅读:

诱发地质灾害的因素主要有:

1、采掘矿产资源不规范,预留矿柱少,造成采空坍塌,山体开裂,继而发生滑坡。

2、开挖边坡:指修建公路、依山建房等建设中,形成人工高陡边坡,造成滑坡。

3、山区水库与渠道渗漏,增加了浸润和软化作用导致滑坡泥石流发生。

4、其它破坏土质环境的活动如采石放炮,堆填加载、乱砍乱伐,也是导致发生地质灾害的致灾作用。

❺ 链子崖危岩体防治工程效果评价

王洪德金枭豪

(中国地质调查局水文地质工程地质技术方法研究所,河北保定,)

【摘要】长江三峡链子崖危岩体防治工程1995年开工,1999年8月竣工。危岩体经过施工阶段和竣工后的应力重新调整,岩体逐渐趋于新的稳定,且危岩体安全度有了很大提高,防治工程效果日渐显著。本文通过对链子崖危岩体防治前后监测资料分析、对比,评价危岩体的稳定性,预测危岩体变形趋势,并对工程治理效果作出初步评价。

【关键词】链子崖危岩体防治工程效果评价

1概述

1.1地质概况

长江三峡链子崖危岩体位于湖北省秭归县屈原镇(原新滩镇)境内,与黄崖老崩塌体、新滩滑坡区及其他隐患区共同组成长江西陵峡崩滑隐患区。链子崖危岩体北端危岩高耸百米以上,俯视长江。总体呈近南北向分布,与长江呈60°~700角斜交,南高北低,北宽南窄,崖顶向北西倾斜,坡角20°~30°,分布高程由南500m降至北临江180m。危岩体由下二叠统栖霞组灰岩夹数层薄层灰岩、页岩组成,其下为厚1.6~4.2m的马鞍山组煤层。危岩体内发育有30多条宽、大裂缝。山体被切割成3个大小不等的危岩区,Ⅰ区为T0—T6缝段;Ⅱ区为T7缝段;Ⅲ区为T8—T12缝段。

1.2工程概况

链子崖危岩体防治工程于1994年10月开始,整个体系主要由 T0—T12缝段地表排水工程、T8—T12缝段煤硐承重阻滑键工程、“五万方”及“七千方”锚索工程、猴子岭防冲拦石坝工程等组成。防治的重点为T8—T12缝段(250万 m2)危岩。两大主体工程——承重阻滑键工程和锚索工程于1995年5月开始,分别于1997年8月、1999年8月竣工,标志着危岩体防治工程施工部分于1999年8月结束,而后全面转入防治工程效果监测阶段。

1.3监测系统概况

链子崖危岩体监测系统从20世纪70年代起逐步建立,到防治工程结束时,形成了监测手段多样、数据采集及处理自动化的立体监测系统,包括:

(1)岩体表面绝对位移监测点(大地形变)30个;

(2)裂缝相对位移自动监测点26处39点;

(3)水平孔多点位移计自动监测点3处11点;

(4)预应力锚索测力计监测点9个;

(5)承重阻滑键岩体应力监测点41点;

(6)岩体深部位移监测(钻孔倾斜仪)5处;

(7)中心处理机房1处,可24小时随时采集、处理监测数据。目前,上述监测设备均正常运行。

图1链子崖危岩体裂缝分布及承重阻滑工程布置图

1.承重阻滑键;2.地表裂缝;3.平硐入口;4.深部位移监测钻孔

2 工程施工前危岩体变形状况

2.1T8—T9缝段

据1978~1994年监测资料,危岩体治理前,崖顶岩体朝 NW向蠕动,即大体上顺岩层倾向运动。其中东部朝N17°W水平位移1.2mm/a,下沉0.9mm/a;地表中、西部则向NW向水平位移0.7~2.5mm/a,下沉0.4~0.9mm/a;崖下T9缝南侧岩体向NNE位移,水平位移为2.3mm/a(见表1)。

表1链子崖 T8—T9缝段岩体治理前年平均位移量表

2.2T9—T11缝段

长期以来,T9—T11缝段岩块以不均一的蠕动朝 NNW—NNE方向运动,据1978~1994年绝对位移监测资料:东部崖顶向 NNW向位移,速率为1.4~1.7mm/a,下沉0.5~0.8mm/a;中西部崖顶岩体向N22°~29°W位移,速率为1.6~1.9mm/a,下沉0.6~0.7mm/a;东部崖下岩体向近N方向位移,速率为1.8~2.0mm/a(见表2)。

表2链子崖 T9—T11缝段岩体治理前年平均位移量表

2.3“七千方”滑体

“七千方”表层滑移体长期以来一直顺倾向以R402为滑面向NW向滑移。据S7点监测资料,该滑体1995年以前,顺R402软层朝N30°~45°W累进位移34.36mm,速率为4.9mm/a,滑移角30°,与岩层产状基本一致(岩层倾角27°~35°)。

2.4“五万方”岩体

崖顶 G上点自1978~1995年朝 N20°W位移,速率为1.5mm/a,下沉0.7mm/a,F/H=1/0.47。表明“五万方”在治理以前的变形特征为顺岩层倾向蠕滑并伴随下沉。

2.5雷劈石滑体

1978~1995年底,雷劈石滑体朝NW方向位移,速率为1.6~2.0mm/a(T801和T802点)。

可以看出:工程施工前,T8—T12缝段崖上岩体及“七千方”滑体、“雷劈石”滑体主要以NW向顺层滑移变形为主,崖下岩体则朝近N向长江方向位移。

3工程施工后危岩体变形状况

3.1T8—T9缝段

根据1997~2003年监测资料(见表3),危岩体治理后,T8—T9缝段岩体崖顶东部水平位移量由治理前2.5mm/a减小为2003年2.0mm/a(T81点),下沉量由治理前0.9mm/a减小为2003年0.4mm/a(T81点);西部水平位移量由治理前0.7~1.8mm/a减小为2003年0.6~1.1mm/a,下沉量由治理前0~0.4mm/a减小为2003年0~0.2mm/a(T82、T83点);变形方向由治理前NW变为NE方向;崖下T9缝南侧岩体由NNE转向SW方向位移,水平位移量由治理前2.3mm/a减小为2003年0.8~1.7mm/a(T9x1、A下点)。

岩体变形趋于稳定状态(见图2、图3、图4),说明防治工程已经发挥效力。

图2T8—T9缝段T81点年变化量—时间曲线图

相对位移监测资料(见表4)也可以看出危岩体工程治理以后,岩体经过应力调整变形逐渐趋于相对稳定。

图3T8—T9缝段T83点年变化量—时间曲线图

图4T8—T9缝段T82点年变化量—时间曲线图

表3T8—T9缝段岩体治理前后绝对位移监测点年变化量表

表4T8—T9缝段岩体相对位移年变化量表

3.2T9—T11缝段

根据多年的绝对位移监测资料,T9—T11缝段岩块在治理前一直以不均一的蠕动朝 NNW—NNE方向运动,治理后绝对位移监测资料显示(见表5),该缝段崖顶岩块水平位移量由治理前1.4~1.9mm/a减小为2003年0.6~1.9mm/a,下沉量由治理前0.5~0.8mm/a减小为2003年0.1~0.5mm/a,变形方向基本上为NNE—NE—NS;崖下岩体由近 N方向转向 NNE、NE方向位移,位移量由治理前1.8~2.0mm/a减小为2003年1.3~1.7mm/a(B下、T9x2点)

图5T9—T11缝段B上点年变化量—时间曲线图

表5T9—T11缝段岩体治理前后绝对位移监测点年变化量表

该缝区岩体治理后位移变形量及下沉量逐步减小并且低于多年平均位移速率,其值均小于点位中误差,并且变形趋势已经基本相对稳定(见图5、图6),这表明岩体位移变形不明显,防治工程已经发挥效力。

图6T9—T11缝段 F上点年变化量—时间曲线图

3.3“七千方”滑体

“七千方”表层滑移体长期以来一直沿倾向以R402为滑面向NW向滑移。根据绝对位移监测资料(见表6),“七千方”滑体锚固工程加固以后,岩体朝锚索拉张力方向位移,此后沿该方向的位移量逐步减小,位移量由治理前4.9mm/a减小为2003年1.3mm/a(S7点),并且变形趋势(见图7)已经基本上趋于相对稳定状态。说明防治工程已经发挥效力。

表6“七千方”滑体治理前后位移年变化量表

地质灾害调查与监测技术方法论文集

图7“七千方”滑体S7点年变化量—时间曲线图

“七千方”滑体治理后相对位移监测资料(见表7)分析可以知道岩体变形趋于稳定状态,说明防治工程已经发挥效力。

表7“七千方”滑体治理后相对位移监测点年变化量表

3.4“五万方”岩体

“五万方”危岩体经历了NW向顺层滑移(施工前)到朝SE向运动,再朝SE、SW向缓慢位移,位移量由大到危岩体逐渐趋于稳定的过程(见表8)。锚索工程施工后,“五万方”岩体均朝有利于岩体稳定的方向位移且变形量渐趋稳定。以崖顶G上点为例,治理前多年平均水平位移量为1.5mm/a,2003年为0.8mm/a,治理前下沉量0.7mm/a,2003年该点垂向没有发生变形(见图8)。其他各监测点变形情况与G上点类似。

锚索测力计监测也反映了上述变形现象(见图9,图10,表9),该危岩体1996年、1997年经锚索加固锁定后,锚索锁定力逐渐变小(测力计年变量为负值,且绝对值越来越小),表明危岩体朝锚固力方向位移,位移变化量由大到小。1999年锚索测力计年变量多为正数,显示锚索持力之特点,与位移监测表明的岩体变形现象一致,通过近几年的监测资料岩体应力已经重新调整并趋于相对稳定状态,说明锚固工程效力已经发挥。

表8“五万方”绝对位移监测点年变化量表

图8“五万方”危岩体G上点年变化量—时间曲线图

图9“五万方”危岩体锚索测力计监测数据—时间曲线图

图10“五万方”危岩体锚索测力计位移—时间曲线图

表9锚索测力计监测年变化量统计表

相对位移监测资料(见表10,图11)显示治理后由于防治工程发挥效力,危岩体变形已经趋于相对稳定状态。

表10“五万方”危岩体相对位移监测点年变化量表

图11“五万方”危岩体裂缝相对位移历时曲线

3.5雷劈石滑体

雷劈石滑体位移量由治理前1.6~2.0mm/a减小为治理后(见表11)2002年0.6~1.7mm/a(T801和T802点),变形量逐步减小并且相对稳定,变形方向由治理前NW方向改为基本上向NE方向。

表11雷劈石滑体绝对位移监测点(T801、T802)年变化量表

从监测资料分析可以看出,危岩体在防治前后变形趋势明显减缓并且趋于相对稳定,这表明防治工程已经发挥效力,有效遏制了危岩体向不利于岩体稳定方向的变形。

4效果评价

以上分析表明,防治工程结束以后,T8—T9缝段岩体、T9—T11缝段岩体、“七千方”岩体、“五万方”岩体和雷劈石滑体位移变形已不明显;块体间无明显的位移变形。从变形趋势来看,危岩体在防治工程结束以后,岩体应力重新调整,变形趋势逐步趋于稳定。表明防治工程已经发挥效力。

综合分析认为,防治工程结束以来,危岩体在经历了变形调整后,岩体变形进入相对稳定期,岩体的稳定性明显提高。危岩体已经达到相对稳定状态。防治工程效果已经初步体现。

5结语

链子崖危岩体防治工程竣工后,通过危岩体监测资料进行分析,对危岩区的岩体变形可得出:危岩体各缝段岩体变形明显减小,已经趋于相对稳定;各缝间岩体变形已趋于相对稳定。这表明防治工程已经发挥效力,防治工程效果已经初步体现,危岩体已经处于相对稳定状态。

参考文献

[1] 殷跃平,康宏达,张颖.三峡链子崖危岩体锚固工程施工方案[J].中国地质灾害与防治学报,1996,7(1):44~51

[2] 王景宏.链子崖危岩体稳定性分析与治理[J].中国地质灾害与防治学报,1994,5(3):56~62

[3] 徐卫亚,孙广忠.链子崖危岩体整治工程地质适应性[J].中国地质灾害与防治学报,1994,5(3):43~55

[4] 王尚庆.链子崖危岩体监测预报初步研究[J].中国地质灾害与防治学报,1994,5(3):79~89

[5] 王洪德,高幼龙,薛星桥等.链子崖危岩体防治工程监测预报系统功能及效果[J].中国地质灾害与防治学报,2001,12(2):59~63

[6] 王洪德,韩子夜.监测工作在链子崖危岩体防治工程中的重要作用,2004(未出版)

[7] 王洪德,姚秀菊,高幼龙等.防治工程施工对链子崖危岩体的扰动[J].地球学报,2003,24(4):375~378

❻ 地质灾害危险性现状评估

以定性分析为主,定量为辅的评估方法,按“技术要求”规定,根据评估区地质环境条件和已有取得资料,采用地质历史分析法、工程地质类比法和稳定状态,按大、中等、小三级(表5-14)对各类地质灾害危险性现状进行评估。

表5-14 地质灾害危险性分级表

(一)崩塌(危岩)

首先对其稳定性进行评价,之后结合危害对象进行灾害(危害)程度分级评价,在此基础上进行危险性分级,如稳定性好,危害程度轻,则危险性小,相反即为危险性大,介于二者之间为危险性中等。

1.稳定性评价

根据崩塌体所处的地质环境条件,重点依据变形迹象,并与以往同类崩塌发生条件进行类比,综合分析后判定其稳定性。评估区内崩塌大部分稳定性为较差至差,其中差的有19处,较差的有72处,好的有14处。差和较差者存在有再次滑塌的可能。

2.灾害(危害)程度分级评价

根据调查,区内已发生崩塌灾情均为一般级。现依据“基本要求”对崩塌危害程度进行分级评价,其中属于重的有1处,编号b117,位于清水县土门乡老坟村(天水支线38km附近);该危岩体为黄土及下伏新近系泥岩组成的陡坡,由于人为开挖削坡形成,方量1.2×104m3,坡下学校被危及,管道也在下方通过。中等的有5处,其余99处均为轻度危害。主要危害对象为农田和简易公路,少数危害居民、学校,同时为泥石流提供了松散固体物质。

3.危险性评价

结合稳定性和灾害(危害)程度结果,评价得出危险性大的有3处,分别位于张家川木河(b80)、清水县土门(b117)、北道区北部(b120);中等的有 10处,主要分布于皋兰山、清水金集—北道等地;其余92处均为危险性小的。危险性大的前2处距管线较近。

(二)滑坡

对稳定性和危险性分别进行评价。

1.稳定性评价

按滑坡稳定性判别表(表5-15)进行评价,其中稳定性差的有7处,分别位于通渭碧玉、张家川木河、清水金集—北道;较差的有28处,分别位于兰州范家坪、马营—通渭、静宁仁大—秦安莲花、清水土门—天水北道等地;稳定性好的有23处。

现将2处典型滑坡的特征分析一下。

(1)下河里滑坡(h28)

位于张家川木河乡下河里村东侧。滑坡发育在木河上游北岸,沟谷较窄,谷地宽约 100~180m,呈“U”型,发育有一级阶地,高出河床3~5m,沟谷两侧为黄土丘陵,相对高差为80~100m。出露地层为新近系砂质泥岩并夹有灰绿色泥岩条带,出露段表层风化强烈,其上为马兰黄土,厚约30~50m,坡体有细小冲蚀沟槽和零星落水洞。

表5-15 滑坡稳定性判别表

该滑坡为黄土—泥岩滑坡,滑坡体长500m,宽300~350m,平均土体厚20m,约40×104m3。滑距约100m,为一老滑坡,滑体下陡、上缓,坡度25°~40°,成因是地表水流侧蚀形成。目前该滑坡前缘因修路削坡,形成一定的临空面,局部已出现崩塌和浆砌护坡鼓胀开裂,极可能导致开挖段部分滑体复活。现场调查,推断复活体长约50~60m,宽约100~150m,推测滑体厚度5~10m。现状主要威胁对象为公路和农田,有再次发生的可能(图5-5)。管线滑坡体下方,距其前缘剪出口约40m。

图5-5 下河里滑坡示意剖面图

1.黄土 2.泥岩及砂质泥岩 3.黄土状土 4.滑坡堆积物 5.滑床及滑向 6.推测复活体滑床及滑向

(2)莲花城—郭家河滑坡群

位于清水河河谷北岸,共有5处,由巨型和大型老滑坡组成(图5-6),自西向东编号依次为:h127、h128、h129、h130、h131。相应的管道里程桩号283km~288km。该段相对高差120~180m,平均坡度30~35°,出露地层为新近系泥岩、第四系黄土、黄土状土,黄土厚约40~60m,披覆于谷坡及顶部,落水洞及冲蚀沟发育。

图5-6 莲花城—郭家河滑坡群平面分布图

5处滑坡均为黄土—泥岩滑坡,上覆第四系马兰黄土,下伏新近系泥岩夹砂质泥岩。滑坡后壁高约10~30m,滑坡形态清晰,坡体长300~500m不等,宽500~800m,推测平均厚度30~40m,主滑方向垂直清水河流向。由于本段所发育的滑坡全是老滑坡,滑坡体受水流冲蚀切割强烈,坡体表面树枝状冲沟十分发育,切割较深的冲沟两侧小型崩塌发育,部分滑坡后壁在黄土与泥岩接触处有泉水出露。滑坡群整体稳定,但组成物较松散,现状前缘受河流侧蚀和开挖削坡的影响,局部出现掉块和崩塌等轻微的变形迹象,可能导致前缘较陡段复活。目前受威胁的对象为村庄、公路。管线在该5处滑坡下方通过(图5-7)。

图5-7 h131滑坡示意剖面图

1.黄土 2.黄土状土及砂砾石 3.泥岩及砂质泥岩 4.滑坡堆积物 5.滑床及滑向 6.泉

2.危险性评价

据调查结果,区内已发生滑坡灾情从一般级到特大级都存在。危害程度严重的有3处,主要位于通渭碧玉等地;危害程度中等的有6处,主要位于秦安莲花、天水北道等地;其余49处属于危害程度轻的。主要危害农田、公路、零星住户,同时构成泥石流的松散补给物质。

根据滑坡稳定性和危害程度评判结果,评估区危险性大的滑坡有4处,分别位于范家坪—彭家大山(h3、h5)、通渭碧玉峡口(h49)、张家川木河(h28);中等的有30处,分别位于兰州范家坪、静宁仁大—秦安莲花、清水土门~天水北道等地;危险性小的24处。

(三)泥石流

分泥石流灾情和现状危险性评估两部分。

1.泥石流灾情评估

区内已发生过多次灾害性泥石流,按表5-16分级标准进行灾情评估与分级,经调查后初步认为,评估区灾害程度中和轻的较多,特重程度的泥石流一般很少发生。由于无法取得准确的资料,只能从简单的走访中了解。

表5-16 地质灾害灾情与危害程度分级标准

2.泥石流现状危险性评估

按泥石流规模、易发性以及危害情况综合评估危险性。

(1)泥石流规模。

本次按一次最大冲出量划分(表5-17),计算方法采用径流折算法概算,经验公式为:

WH=1000K·H.a.F.

式中:

WH——一次最大冲出量(104m3);

K——系数,取0.1~0.5;

H——小时最大降水量(mm);

a——系数,取0.73;

F——流域汇水面积(km2);

——增流系数。

根据公式

=(γc-10)/(yh-yc)计算求得,其中γ为泥石流重度(k N/m3),根据泥石流数量化评分直接查得,γh为泥沙颗粒重度(k N/m3),取26.5k N/m3

计算得出区内一次最大冲出量介于0.1×104m3~7.5×104m3之间,其中属于小一型的16条,小二型的47条。

(2)泥石流易发性

主要依据已经作过的《县(市)地质灾害调查与区划》成果进行易发程度分区评价。在没有作过此项工作的地区,首先按表5-18进行泥石流易发程度分级评价,其中易发程度(严重程度)按表5-19进行量化。

区内共有泥石流沟57条,中易发性泥石流沟有21条,低易发32条,不易发者4条。

表5-17 评估区泥石流规模划分标准表

表5-18 泥石流易发程度分级表

(3)泥石流危害程度及危险性

评估区泥石流沟多属深切沟谷,而村庄一般均座落于沟谷较高地段,泥石流危害相对较轻,仅对靠近沟口的村庄、农田以及公路有轻微危害,但在城镇附近和人口集中的地方泥石流危害最大,往往对沟谷两侧及沟口设施形成大的威胁和危害,并诱发一些崩塌和滑坡发生,如通渭碧玉、秦安莲花城、张家川韩家硖等地。区内泥石流危害程度轻的有24条,危害程度中等的有33条。

表5-19 泥石流易发程度(严重程度)数量化表

根据泥石流的易发性、规模和危害程度,区内危险性大的泥石流沟有2条,位于燕麦庄(N8)和高崖(N9);危险性中等的泥石流沟有31条,分别位于兰州小坪子、马营镇、莲花城、阎家店等地;危险性小的泥石流沟有24条。2条危险性大的泥石流沟距管线有一定距离,影响小。

(四)洪水冲蚀

洪水冲蚀强度东部大于西部,相应的危害性和威胁性也较大。通渭以西年降水量较低,属中易发区,除少数河沟外,主要对农田、道路的威胁大,危害程度较小~中等。通渭以东,年降水量较多,特别是局地性阵雨及暴雨突发频率较高,汛期洪峰流量大,来势猛,对居民区和道路构成威胁,危害程度中等。除上述危害外,由于水流的不断冲刷、浸泡和侧蚀作用,常引起沟岸坍塌,加剧了水土流失,据有关部门资料和本次调查情况,通渭以西侵蚀模数500~2000t/(km2·a),强侧蚀段坍岸速度0.1~0.5m/a,危害程度轻。通渭以东侵蚀模数小于2000~5000t/(km2·a),局部大于5000 t/(km2·a),危害程度中等。

依据调查成果,对评估区内洪水冲蚀灾情和危险性分别给予评估。

灾情评估依据表5-16分级标准进行,评价结果:属于轻度灾害的有4次,中等灾害的有5次,重灾害有2次(表5-20),表明本区洪水冲蚀危害一般为轻和中等,当遇降水多的年份或遇暴雨很可能造成较大的灾害损失。

表5-20 已发生主要洪水冲蚀灾害灾情一览表

易发性根据实地调查结果,并结合沟谷已发生洪水频次和降水量分布情况确定。评价结果:高易发1处、中易发者1处,低易发10处(表5-21)。

根据洪水冲蚀灾情和易发性结果,区内洪水冲蚀危险性小的有8处,中等的有4处(见表5-21)。

表5-21 评估区区洪水冲蚀沟现状危险性评估一览表

(五)地面塌陷

根据野外调查,评估区采空区目前仅有兰州西固人防工程、地下水位上升引起的地面塌陷,人防工程与管线距离>1.5km,黄土丘陵区开挖窑洞引起的地面塌陷很少,其他地段不存在地面塌陷现象。所以评估区内地面塌陷危害小,危险性小。

(六)特殊岩土灾害

1.黄土湿陷和潜蚀

根据《湿陷性黄土地区建筑规范》,对黄土的湿陷类型及等级作了初步评价。丘陵区黄土为Ⅱ-Ⅳ级自重湿陷性土,属中等—很严重等级,河谷区黄土状土多为Ⅰ—Ⅱ级非自重湿陷性土,仅黄河、渭河二级阶地局部地段为Ⅱ级自重湿陷性土,属轻微—中等级。

黄土湿陷和潜蚀现象主要表现为陷穴、陷坑、落水洞和竖井等。多零星分布于地形低洼地带和陡岸处,规模均较小,落水洞一般深2~5m,洞口直径0.5~2.5m。目前主要危害公路、渠道和农田,另外,引起崩塌、滑坡和水土流失发生。在黄土丘陵和河谷地带对乡间公路危害较大,危险性中等,其余地段危害小,危险性小。

2.盐渍土的盐胀和腐蚀

盐渍土以硫酸—氯化物型为主,经收集资料分析,通渭以西0.0~1.0m段土壤平均含盐量为3.4%,最大可达 8%~15%左右,表层有弱胀缩性和腐蚀性;该类土现状分布面积很小,对农田等不具危害性,因此危害小,危险性小。对建筑基础工程有一定影响,但危害小,危险性小。

高矿度水分布区,矿化度1.7~3.2g/L,p H值1~8,氯离子和硫酸根离子含量大于500mg/L,对混凝土和钢结构有一定的腐蚀性,按《岩土工程勘察规范》(GB50021—2001)指标对比评价,评价区高矿化度水对混凝土具弱—中等结晶性侵蚀,小面积强腐蚀区位于黄河二级阶地后缘和葫芦河、牛谷河及关川河等地;对钢材的腐蚀性均为中等(表5-22)。

3.膨胀岩的胀缩

根据岩样分析结果,白垩系泥岩自由膨胀率(Fs)为20%~60%,蒙脱石含量8.17%~19.09%;页岩自由膨胀率(Fs)为40%~54.3%,蒙脱石含量8.94%~15.59%。

新近系泥岩自由膨胀率(Fs)为11%~59%,膨胀力(Ps)(4~25)k Pa,饱和吸水率(Wsa)9.9%~34.9%。

依据《岩土工程勘察规范》,按自由膨胀率(Fs)分类(表5-23)评价,本区膨胀岩在大部分地段具胀缩性,但均属弱膨胀潜势,主要危害是剥落、掉块造成农田、道路和水利设施等的掩埋,致灾现状轻微,危险性小。此外黄土自由膨胀率变化较大,现状危害轻微,危险性小。

表5-22 高矿化水对混凝土和钢结构腐蚀性评价结果表

表5-23 膨胀岩的膨胀潜势分类表

❼ 对危岩体清除有什么好方法

1,采用聘请专业队伍对危岩体采取一小块小一块分割切除的方法,永绝后患;2,削坡减载加固等方式成功清除危岩体,排除险情。PS:有关部门清除危岩体,至少在公路上要树立警示标志

❽ 地质灾害危岩治理保修期是多久

地质灾害危岩治理保修期没有明确规定,双方可在工程合同里具体约定。
一些岩体内虽然还没有发生容崩塌,但具备发生崩塌的主要条件,而且已出现崩塌前兆现象,因此预示不久可能发生崩塌,这样的岩体称为危岩体。危岩体是潜在的崩塌体。其判别的主要根据是:高差大,或者坡体是孤立陡峭的山嘴,坡体前有巨大临空面的凹形陡坡;坡体内裂隙发育,岩体结构不完整,有大量与斜坡倾向一致或平行延伸的裂隙或软弱带;坡脚崩塌物发育,表明曾发生过崩塌活动;坡体上二部已有拉张裂隙出现,并不断扩展;岩体发生蠕变,出现坠石,预示崩塌随时可能发生。

❾  地质灾害防治措施与防治原则

一、地质灾害防治途径与基本方法

如前所述,地质灾害的形成必须具备灾害体和受灾体。这两方面条件决定了成灾程度。因此,防治地质灾害的基本途径主要有两方面:第一,限制灾害源,消除或消弱灾害体活动能量,解除或缓解灾害活动威胁;第二,对受灾体采取防避保护措施,使其免受灾害破坏,或增强受灾体对灾害的抵御能力。

防治地质灾害的具体方法主要包括:

保护和治理区域地质自然环境,消弱灾害活动的基础条件。其基本措施是根据区域条件,科学地进行资源开发和工程建设活动,特别注意合理利用土地资源、水资源、生物资源,避免过度开发。在广大山区应广泛植树造林,治山治水,宜农则农,宜牧则牧,宜林则林,涵养水土,防治水土流失。在城镇和沿海地区,尤其注意合理开发利用地下水资源,量入为出,保持地下水动态平衡,防止地下水环境恶化,预防地面沉陷和海水入侵等活动。

加强地质灾害勘查。弄清地质灾害的分布情况与形成条件。合理制定城镇规划,选择工程建设场地,尽可能避开地质灾害危害区;对于必须在地质灾害危险区实施的工程建设,制定防灾规划,实施预防措施。

对重要受灾体实施专门性防治工程。为了保护城镇、企业和铁路、公路、桥梁、房屋等工程建设安全,应专门实施不同的防护工程、加固工程等。对不同防灾工程措施不一,将在下面进行专门论述。

加强灾害监测,有效地进行灾害预测预报。应根据需要及时疏散人口、财产、或采取其它措施,最大限度地减少灾害损失。

二、地质灾害防治措施

虽然各种地质灾害的防治途径基本相同,但具体措施不一。所以,无论是哪种地质灾害,都必须首先进行深入细致的勘查工作,以查清灾害体范围、性质、活动条件和受灾体类型、分布情况等。在勘查的基础上选择防治措施,并合理地设计工程规模,取得充分的减灾效果。

(一)崩塌(危岩)灾害防治措施

1.清除危岩

对规模小、危险程度高的危岩体可采用静态爆破或手工方法予以清除,消灭隐患。

2.部分削坡

对于规模较大的危岩体,难以全部清除其隐患。但可以在危岩体上部清除部分岩土体,降低临空面的高度,减小斜坡坡度和上部荷载,提高斜坡稳定性,从而降低危岩的危险程度或减少其它防治工程的工程量。

3.排水防渗

在危岩体及其周围地带,应修建地面排水系统和堵塞裂隙孔洞,以防治过量地表水进入危岩斜坡,从而提高危岩稳定程度,减少崩塌机会。

4.加固斜坡、改善危岩岩土结构,提高斜坡稳定程度

所采取的措施,其具体内容有:①灌浆加固,以增强岩体完整性,提高岩体强度。②采用支撑墩、支撑柱、支撑墙等支撑措施保护斜坡,防止坍落。③采用预应力锚杆或锚索等锚固措施加固危岩体,防止崩落。④软基加固,即在危岩或陡崖底部发育有泥岩等软弱岩层时,采用喷浆护壁等方法保护软基,防止强烈的风化作用和水体浸泡。如在软基发育部位已形成风化凹腔,应根据规模、形态,采用嵌补、支撑、喷浆护壁等方法保护加固;如凹腔内积水,应进行疏干,并采取措施防止继续浸水。

5.拦截

对于在雨季才发生活动的坠石、剥落或小型崩塌活动,可在岩石崩落滚动途中修建落石平台、落石槽、挡石墙等,以拦截落石,防止破坏建筑设施。

6.遮挡

为了防止小型崩塌对铁路等工程设施的破坏,可修建明硐、棚硐等对工程设施进行保护。

7.加强监测预报

(1)危岩体形变监测主要手段包括:通过地面观察、形变测量、地倾斜测量、综合自动监测等方法从外部监测危岩体位移、裂缝变形、地面倾斜等现象;采用钻孔倾斜测量、电测、声发射监测、地应力测量等方法从内部监测危岩体深部变形位移及应力变化情况。

(2)激发崩塌活动要素监测主要包括雨量监测、水文动态监测、地下水动态监测、地温场监测、地震监测等。

(3)综合分析与预测预报基本方法是分析斜坡稳定程度,建立危岩变形数值模型,确定崩塌活动的临界值。在条件允许时,应建立预警系统,进行有效的灾害预报。

8.躲避搬迁对于威胁严重,防治困难的建筑设施,应选址搬迁,避免受害。

(二)滑坡灾害防治措施

1.消除或减轻地表水、地下水对滑坡的诱发作用

(1)修建排水沟,拦截地表水,减少进入滑坡体的地表水量,并及时将滑坡体发育范围内的地表水排走,减轻地表水对斜坡的破坏。

(2)修建截水盲沟和支撑盲沟、开挖渗井或截水盲洞、敷设排水渗管、实施排水钻孔等,以拦截疏导地下水,减轻地下水对斜坡的破坏。

2.改善斜坡状况,增加滑坡平衡稳定条件

(1)在滑坡体上部削坡减重,在坡脚加填,改变斜坡外形,降低斜坡重心,提高滑坡稳定程度。

(2)修建抗滑垛、抗滑柱、抗滑墙、抗滑洞等支挡工程,阻止滑坡体滑动,提高斜坡稳定程度。

(3)实施锚固工程,“加固”滑坡,提高斜坡稳定程度。

(4)采用焙烧法、电渗排水法、灌浆法等物理方法或化学方法,改善滑坡体岩土性质,提高软弱岩土层强度,提高斜坡稳定程度。

3.加强监测预报

(1)滑坡体形变监测通过地面观察、形变测量、地倾斜测量、综合自动监测等方法监测裂缝变形、滑坡体水平位移、垂直形变以及滑坡体上树木、房屋等工程设施形变等情况。采用倾斜仪测量、短基线测量、地应力测量等监测滑坡体内部形变位移情况。

(2)激发滑坡活动的外界要素监测主要包括降水监测、水文动态监测、地下水动态监测、地震监测等。

(3)综合分析与预测预报方法与崩塌预测预报基本相同。

4.躲避搬迁

对于威胁严重,防治困难的工程建筑,应选址搬迁,避免灾害破坏。

(三)泥石流灾害防治措施

1.实施生物措施,保护水土,消弱泥石流活动的基本条件

基本方法是保护森林植被。禁止滥砍乱伐,合理耕牧,并且有计划地植树种草,以提高森林覆盖率和植被覆盖率,抑制水土流失,减缓泥石流活动。

2.实施工程措施,限制泥石流活动,保护耕地与工程设施

(1)拦挡工程修建谷坊、拦砂坝、格栅坝等,蓄水拦砂,减小泥石流流速、容重、规模,抬高局部沟段侵蚀基准,护床固坡,降低泥石流冲刷破坏能力,减轻沟床侵蚀。

(2)排导工程修建导流堤、急流槽、束流堤等,引水输砂,规范泥石流路径,防止漫流,降低泥石流流速,削弱泥石流冲击破坏能力。

(3)停淤工程根据泥石流发育地区地形条件,修建停淤场,将泥石流引入预定场所减速停淤,防止漫流。

(4)沟道整治工程采用固床砂坝、水泥砂浆砌石、石笼等方法保护泥石流沟坡,防止岸坡坍塌、滑移;在沟底进行铺砌或修建肋板稳固沟底,减少沟底冲刷。

(5)防护工程与错避工程对泥石流地区的铁路、公路、桥梁、隧道、房屋等工程设施,进行防护或错避,抵御或避开泥石流的危害。防护工程包括修建护坡、挡墙、顺坝、丁坝等。错避工程主要包括跨越式错避、穿过式错避等。跨越式错避是指修建桥梁,使工程设施凌架于泥石流沟上空,免受泥石流破坏。穿过式错避则是将工程设施置于泥石流沟地下,避开泥石流破坏。

3.监测预报

除利用遥感技术,结合气象资料分析,进行区域泥石流活动中长期预报外,主要是利用降雨预测进行泥石流活动的短期预报和临灾警报。此外,还可利用泥石流遥测地声警报器、泥石流超声波泥位警报器、地震式泥石流警报器等仪器直接监测泥石流活动,并进行短期预报和临灾警报。

4.躲避搬迁

对于威胁严重,难以防护的工程建筑,应选址搬迁,避免灾害破坏。

(四)岩溶塌陷灾害防治措施

1.控水措施

(1)地表水防水措施在塌陷区周围修建排水沟,防止地表水进入塌陷区,减少向地下的渗入量。在地势低洼、洪水严重的防治区围堤筑坝,防止洪水入侵灌入塌陷洞或岩溶孔洞。对塌陷区内严重淤塞的河道进行清理疏通,加速泄流,减少对岩溶水的渗漏补给。对严重漏水的河溪、库塘,铺底防漏或人工改道,减少地表水倒灌。对严重灌水的塌陷洞隙采用粘土或水泥灌注填实,减少地表水入渗倒灌。采用混凝土、氯丁橡胶、玻璃纤维涂料等封闭地面,增强地表土层强度,防止地表水冲刷入渗。

(2)地下水控水措施根据水资源条件规划地下水开采层位、开采强度、开采时间,合理开采地下水。必要时进行人工回灌,控制地下水动态,限制地下水位的频繁升降,并使动水位最低水位不低于基岩面,保持岩溶水承压状态。在地下水主要迳流带修建堵水帷幕,减少区域地下水补给,促使外围地下水位升高,防止塌陷向外围地带扩展。在矿区井下修建防水闸门,建立有效的排水系统,对水量较大的突水点进行注浆封闭,控制矿井突水、突泥,避免矿区地下水大排大放,防止地下水位和岩溶水压力的大起大落,控制地面塌陷活动。

2.加固措施

(1)挖填当孔洞规模和埋藏深度较小时,可清除岩溶上部覆盖层中的软弱土层和洞穴中的软弱充填物,回填碎石或混凝土,改善建筑场地条件,提高地基强度。

(2)强夯在土体厚度较小,地形平坦情况下,采用强夯砸实覆盖层,破坏土洞,提高土层强度。

(3)灌注填充在溶洞埋藏较深时,通过钻孔灌注水泥砂浆,填充岩溶孔洞,提高强度。

(4)钻孔充气钻孔深入到基岩面下溶蚀裂隙或溶洞的适当深度,破坏真空腔的岩溶封闭条件,减少发生塌陷的机会。

(5)采用锚固柱、栅栏柱,支撑建筑物,防止洞穴坍塌。

(6)跨盖采用梁式基础、拱形结构,或以刚性大的平板基础跨越、敷盖溶洞,避免塌陷危害。

3.监测预测

目前对岩溶塌陷还没有建立有效的预报方法,只能根据专门地质调查,查明岩溶分布情况和岩溶塌陷的活动规律,结合浅层地质雷达探测和地下水动态监测、水文动态监测、气象预报等方法,进行一般性预测。

(五)地裂缝灾害防治措施

1.控制人为因素对地裂缝活动的强化作用

主要是合理开采地下水,限制地下水位大幅度下降,从而控制地面沉降活动,防止地面沉降对地裂缝的促进活动。其次是在矿区井下开采时,根据实际情况,控制开采范围,增多、增大预留保安柱,防止矿井坍塌诱发地裂缝。

2.建筑设施避灾、防灾措施

(1)查明地裂缝发育带及潜在危害区,据以作好城镇发展规划和场地工程地质勘查,合理规划工程建筑物布局,使工程设施尽可能避开地裂缝危险带,特别是严格限制永久性建筑设施横跨地裂缝,一般避让宽度不少于4~10m。

(2)对于已建在地裂缝危害带内的工程设施,应根据具体情况采取加固措施进行加固。对于必须建在地裂缝危害带内的新的工程设施,应实施设防措施。如跨越地裂缝的地下管道工程,可采用外廊道隔离、内悬支座或内支座式管道活动软接头连结措施预防地裂缝的破坏。对于已受地裂缝严重破坏的工程设施,进行局部拆除或全部拆除,防止对整体建筑或相邻建筑造成更大规模破坏。

3.监测预测措施

通过地面勘查、地形变测量、断层位移测量以及音频大地电场测量、高分辨纵波反射测量等方法监测地裂缝活动发展情况,预测预报地裂缝发展方向、速率及可能危害范围。

(六)地面沉降灾害防治措施

1.控制人为活动对地面沉降的促进作用

(1)根据水资源条件,限制地下水开采量,防止地下水水位大幅度持续下降,控制地下水降落漏斗规模。

(2)根据地下水资源的分布情况,合理选择开采区,调整开采层和开采时间,避免开采地区、层位、时间过分集中。

(3)人工回灌地下水,补充地下水水量,提高地下水水位。

2.防护措施

地面沉降除有时会引起工程建筑不均匀沉降外,主要是因沉降区地面标高降低,导致积洪滞涝,海水扩侵等次生灾害。次生灾害可造成十分严重的破坏损失。针对这些次生灾害,采取的主要防护措施是修建或加高、加固防洪堤、防潮堤、防洪闸、防潮闸以及疏导河道,兴建排洪排涝工程等。

3.监测预测

基本方法是设置分层标、基岩标、孔隙水压力标、水准点、水动态监测网、水文观测点、海平面观测点等。定期进行水准测量;进行地下水开采量、地下水位、地下水压力、地下水水质监测及回灌监测;进行河流水位、流量监测;进行潮汐及海平面变化监测等。根据地面沉降活动条件和发展趋势,预测地面沉降速度、幅度、范围及可能危害。

(七)海水入侵灾害防治措施

1.控制人为活动对海水入侵活动的促进作用

(1)限制地下水开采量,防止地下水水位持续下降。使地下水位保持在海平面或地下咸水水位以上,并具有一定的水头压力。使其能维持滨海地区地下水与海水动力平衡,扼制海水入侵。

(2)利用回灌井、回灌廊道等实行人工回灌,补充地下水,提高滨海地区地下水水位。

(3)在发生海水入侵或容易诱发海水入侵的滨海地带,禁止挖砂,保护海岸,防治海岸侵蚀,削弱海水沿河上溯活动。规范晒盐、海产养殖,防止人为将大量海水抽引到陆地,减少海水补给源。

2.限制海水入侵的工程措施

(1)修建防潮闸,抑制海水沿河上溯活动。

(2)建造隔水墙或防渗围幕,阻断海水入侵通道,扼止海水扩侵。

3.监测预测

主要监测手段是建立地下水动态监测网,进行水位、水化学监测,必要时辅以海水水文动态监测。根据海水入侵活动机制和历史海水入侵规律,预测海水入侵速率、规模、危害范围。

(八)膨胀土胀缩灾害防治措施

主要包括避灾措施和防灾、治灾措施。

在进行城镇规划和建筑工程选址时,要进行充分的地质勘查,查明工程地质条件,弄清膨胀土的分布范围、发育厚度、埋藏深度以及膨胀土的物理力学性质;在此基础上合理规划建筑布局,使容易受害的建筑工程尽可能避开膨胀土发育区。在膨胀土分布面积比较大,难以选择非膨胀土工程场地时,尽可能选择地形简单、膨胀土胀缩性相对较弱、厚度较小而且地下水水位变化较小、容易排水,而且没有浅层滑坡和地裂缝的地段进行工程建筑,最大限度地减少膨胀土的危害。

在膨胀土发育区进行工程建筑时,应避免大挖大填,加宽建筑物四周散水,设置圈梁,敷设砂垫。铁路、公路施工避免深长路堑,多填少挖,路堤底部垫砂,路堑设置挡土墙,边坡植草铺砂。水利工程要快速施工,合理堆放弃土;必要时设置抗滑桩、挡土墙;渠道要合理选择渠坡坡角;穿过垅岗时使用涵管、隧洞。工程设施附近要修建排水设施,避免降雨、地表水、城镇废水等大量渗入地下。同时要合理开采地下水,保持地下水位相对稳定,避免地下水位大幅度地频繁升降,防止膨胀土反复胀缩。

对于已受膨胀土破坏的工程设施则视具体情况,采用加固、拆除重建等措施进行治理。

综合上述8种地质灾害的防治措施,基本可分为4个方面,即:削弱灾害活动强度措施;受灾体防护措施;监测预报措施;避灾措施。不同灾害的具体方法不同(表8-1)。

三、地质灾害防治基本原则

地质灾害防治的根本目标是取得最充分的减灾效果。然而要实现这个目的,必须遵照下列原则科学地规划、设计、实施防治工程。

(一)预防为主的原则

地质灾害虽然是一种不可避免和无法准确预测的自然现象。随着人类科学技术水平及社会生产力水平的不断发展,人类对地质灾害的认识水平逐渐提高,因此,在灾害面前拥有了越来越大的自主能力。这主要表现在两个方面:第一,在一定程度上可以减少灾害发生机会,削弱灾害活动强度;特别是对于那些主要因人为活动控制的地质灾害,可以通过调整人类活动基本扼制灾害的发展,防止或减少灾害的破坏损失。例如,可以通过人工改变斜坡形态、负荷,减少地表水入渗,加固斜坡等方法增强斜坡稳定程度,减少发生崩塌、滑坡发生的可能;可以通过限制地下水开采量,调整地下水开采层等方法,控制地下水水位,预防和限制地面沉降、海水入侵的发生与发展。第二,有效地进行灾害预测预报,及时避灾。在地面塌陷、地裂缝和膨胀土发育地区,尽可能使工程设施避开高危险区。对于崩塌、滑坡、泥石流等突发性灾害可进行综合监测,根据灾害发生的危险程度,及时疏散人口、财产,减少灾害损失。实践证明,适时采取预防措施是防止灾害破坏,减少灾害损失的最有效途径。

(二)防灾减灾的相对性、持续性原则

尽管人类对地质灾害的防治手段越来越丰富,防治技术越来越高超,但要想制止地质灾害的发生,或者是完全预测预报地质灾害,彻底防治地质灾害是不可能的;无论是现在,还是将来,对地质灾害的防治效果永远也不会达到百分之百。因此,任何时候人类所进行的防治工作都是相对的。基于这种现实,地质灾害的防治是一项长期的、艰巨的任务。为了促进社会经济的健康发展,地质灾害防治要长期持续地进行下去,在不同社会经济发展阶段,力求取得与之相应的减灾效果。

表8-1地质灾害主要防治措施

(三)全面规划与重点防治相结合的原则

地质灾害防治除了具有长期性特点外,还具有广泛性特点。因此,要取得充分的减灾效果,首先要做好防治规划,根据不同地区地质灾害发育情况和不同时期社会经济发展需要,提出地质灾害防治目标、防治对策与措施,从总体上指导地质灾害防治工作。

由于我国是一个发展中国家,目前科学技术水平和社会财力还都不高,因此,不可能对所有地质灾害进行全方位的彻底防治。在这种情况下,只能在全国和地区灾害防治规划指导下,一方面加强区域环境保护与治理,改善地质自然环境,削除或削弱地质灾害活动的背景条件;另一方面选择受地质灾害威胁强烈,破坏损失严重的城镇、交通干线、重要企业等实施重点防治,使有限的资金发挥最大的减灾效果,真正做到“好钢用在刀刃上”。

(四)防治地质灾害与其它社会经济活动相结合的原则

实践证明,地质灾害防治工作常常并不是孤立进行的,它与其它社会经济活动具有不同程度的联系。因此,把防治地质灾害措施与其它环境治理结合起来,并且把地质灾害防治纳入国家和地区社会经济规划,可以取得充分的效果。

首先,从宏观上看,地质灾害防治与土地资源开发、水资源开发、矿产资源开发、植被资源开发以及城镇建设、交通建设等具有直接关系。因此,地质灾害防治应该与这些活动有机地结合起来:一方面在这些活动中积极主动地进行相应地质灾害的防治工作;另一方面地质灾害的有效防治将促进这些活动的正常进行,二者取得相互促进的效果。另外,地质灾害防治不仅是中央政府的责任,而且是一种广泛的社会行为。因此,随着国家改革开放的深入和市场经济的发展,地方政府、企业以及个人在发展经济活动中,为了免受灾害损失,取得效益和利润,就应该将所涉及的地质灾害防治工作纳入经济活动之中,在市场经济利益驱使下开展防治工作。

(五)防治工程最优化原则

地质灾害防治工程一般需要比较巨大的投入。它所防治的对象是复杂的自然现象,所以地质灾害防治工程既是复杂的技术工作,又是复杂的经济工作。无论是哪个部门实施哪种防治工程都需要本着最优化原则审慎对待。最优化原则的核心就是实现科学性、可操作性与最小风险、最大效益的有机结合。

1.科学性

其科学性主要体现在:防治工程类型选择要有充分依据,符合地质灾害的减灾特点或受灾体的防护需要;防治工程设计要有针对性,符合国家有关标准和规范要求。

2.可操作性

其可操作性主要体现在:在目前技术水平条件下能顺利实施;在人力、物力、财力方面有充分保障;现场环境没有严重障碍。

3.最小风险

地质灾害防治工程是在对灾害评价基础上实施的。由于对灾害破坏损失认识的不彻底性,所以防治工程具有一定的风险。其主要表现在:防治工程不完全符合地质灾害成灾特点和受灾体防护需要;设防标准不完全符合灾害活动概率和成灾规模,因而导致防治工程部分失效、完全失效或者超标准运行;防治工程不符合施工标准,达不到预期功能或达不到使用年限。基于这种性质,在设计、实施防治工程时,要力求将风险程度降到最低程度。

4.最大效益

其主要表现是以尽可能少的人力、物力、财力和时间投入,取得最大、最长效的经济效益和社会效益、环境效益。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864