工程地质失事案例
① 建筑工程质量事故分析案例,求答题方向。。。
案例:某工厂新建一生活区,共14 幢七层砖混结构住宅(其中10幢为条形建筑,4幢为点式建筑)。在工程建设前,厂方委托一家工程地质勘察单位按要求对建筑地基进行了详细的勘察。工程于一九九三年至一九九四年相继开工,一九九五年至一九九六年相继建成完工。一年后在未曾使用之前,相继发现10幢条形建筑中的6幢建筑的部分墙体开裂,裂缝多为斜向裂缝,从一楼到七楼均有出现,且部分有呈外倾之势;3幢点式住宅发生整体倾斜。后来经仔细观察 分析 ,出现 问题 的9幢建筑均产生严重的地基不均匀沉降,最大沉降差达160mm以上。
事故发生后,有关部门对该工程质量事故进行了鉴定,审查了工程的有关勘察、设计、施工资料,对工程地质又进行了详细的补勘。经查明,在该厂修建生活区的地下有一古河道通过,古河道沟谷内沉积了淤泥层,该淤泥层系新近沉积物,土质特别柔软,属于高压缩性、低承载力土层,且厚度较大,在建筑基底附加压力作用下,产生较大的沉降。凡古河道通过的9栋建筑物均产生了严重的地基不均匀沉降,均需要对地基进行加固处理,生活区内其它建筑物(古河道未通过)均未出现类似情况。该工程地质勘察单位在对工程地质进行详勘时,对所勘察的数据(如淤泥质土的标准贯入度仅为3,而其它地方为 7~12)未能引起足够的重视,对地下土层出现了较低承载力的现象未引起重视,轻易的对地基土进行分类判定,将淤泥定为淤泥质粉土,提出其承载力为 100kN, Es为4Mpa.设计单位根据地质勘察报告,设计基础为浅基础,宽度为2800mm,每延米设计荷载为270kN,其埋深为- 1.4m~2m左右。该工程后经地基加固处理后投入正常使用,但造成了较大的 经济 损失,经法院审理判决,工程地质勘察单位向厂方赔偿经济损失329万元。
② 崩塌勘查典型实例示范
1.5.1长江三峡链子崖音频大地电场法、甚低频电磁法裂缝、岩溶、煤洞勘测
链子崖位于长江三峡兵书宝剑峡出口处右岸,濒临江边的陡崖主体由二叠系栖霞组灰岩构成,底部为煤系软弱层。在长约700m,宽30~180m范围内发育有58条裂缝,将岩体切割成3个危岩区,即南部的I区To至T6缝区和北部的Ⅲ区T8至T12缝区以及中部的Ⅱ区T7缝区。其中T8至T12缝区危岩体紧临长江,南、西分别被T8、T9、T11缝和T12缝切割,北、东两侧临空,底部煤层基本被采空,是防灾治理、监测预报的重点险段。
到20世纪80年代中期,经过长期的大量调查研究工作,链子崖可见裂缝的分布情况已基本查清;但是,在表土覆盖地段的裂缝分布、延伸、连通交切情况,隐伏构造、岩溶、煤洞的分布等尚不清楚。针对上述问题,地质矿产部水文地质工程地质技术方法研究所于1988年采用了音频大地电场法、甚低频电磁法勘测裂缝、岩溶、煤洞的分布情况。
1.5.1.1 隐伏裂缝勘测
基于裂缝发育的不规则性和地形条件,勘测中采用了异常追踪法:即从已知裂缝的隐没端开始,根据裂缝和异常发育趋势布设勘探剖面,同时辅以现场地质调查,进行异常的定点、连接,循序渐进,直至查明(图1-1)。裂缝上方的音频大地电场和甚低频电阻率异常曲线一般形态尖锐,幅值较大(图1-2)。
裂缝勘测结果表明:链子崖南部Ⅲ区和北部I区裂缝已相互连通。特别是确定了Ⅲ区分布的 T8-1、T8-1-2、T9、T11裂缝均与T12裂缝连通以及T8-0缝向SE方向延伸至陡壁边缘,对危岩体稳定性评价至关重要。勘探结果在随后的工程探槽(图1-3)和声波跨孔测试中得到验证。
1.5.1.2隐伏煤洞勘测
图1-1追踪裂缝的测线布置及异常分布
链子崖的变形与底部马鞍山组(P1mn)煤层采空有直接关系。根据调查访问资料,链子崖底部有采煤巷道20余条,基本沿地层走向分布。为了解其存在状况,用音频大地电场法和甚低频电磁法在链子崖顶部展开了面积性勘测。
煤洞的电场异常不同于裂缝,一是幅值较小、宽度较大、规律性较强(图1-4a)。
勘测共确定煤洞14条,煤洞走向与岩层走向基本一致(SW—NE),长度300~400m,间隔30~40m,勘测结果和实际情况相符。
1.5.1.3隐伏岩溶勘测
平行于链子崖陡崖,勘测中追踪发现一条幅值高、宽度大的异常(图1-4b)带近南北向发育,其东侧裂缝发育,西侧则明显减少;该异常带与北部的黄泥巴壁相接,根据异常形态、结合地质特征分析,推测为一岩溶发育带,后期的勘探工程证实了这一推测(连克等,1991)。
图1-2隐伏裂缝实测剖面(T9缝前端)
图1-3TC3工程探槽展示图
1.5.2链子崖隐伏裂缝的声波检测
链子崖危岩体存在12组50余条裂缝,出露最宽约2m,深不可测。其中T8及T9裂缝,北端隐伏于覆盖层下,是否延伸与T12缝贯通,成为查明岩体结构与方量和确定治理工程设计的关键,为此,在上述裂缝延伸的关键部位,布两钻孔,孔距21m,深150余m。由地质矿产部水文地质工程地质技术方法研究所于1989年承担跨孔声波测试,查明裂缝的延伸及倾向。
现场地质剖面概况及跨孔声波测试示意图如图1-5a。采用等高同步测试法、扇面测试法,测取的波形记录分别如图1-5b及图1-5c。这些记录的推论是:接收到的是绕射波,其地质模型应如图1-5d,即裂缝张开无充填。显然,只有存在地表覆盖层的绕射波,才会出现发射与接收点靠近覆盖层声传播时间短,远离覆盖层则声传播时间加长。为证实现场测试推断是正确的,在室内按推理的地层模型,进行模型超声测试,取得和现场一致的测试结果。
图1-4Ex、ρ。曲线图
另外,在一个孔内逐点发射,并接收裂缝的反射波,根据反射波的声波走时,推断出裂缝的倾向,与地质工程师从地质构造的推论相一致。至此对裂缝的性状给出明确的结论,为链子崖危岩体的治理,提供了依据,受到国家科委表彰(展建设等,1991)。
1.5.3危岩锚固钻孔内裂缝及裂缝密集带声波检测
长江三峡链子崖50000方危岩体防治工程,采用锚索加固处理,锚固孔深30~40m不等,最深达64.2m。危岩体主要以栖霞灰岩为主,裂隙发育且为张性,局部成破碎软弱带。锚固施工需掌握上述裂缝、软弱结构面在锚固孔中的位置,分布及几何尺寸。地质矿产部水文地质工程地质技术方法研究所承担此项特种检测任务,研制一发一收干耦合换能器,在不能存留井液的水平干孔中,完成了共2670m的测试,指导了施工。图1-6其中三个钻孔的测试结果,其中视声速低于1000m/s(图中粗实线部分)的低速孔段均为裂隙及裂隙密集带(展建设、曹修定实测,1996)。
1.5.4岩崩堆积体灌浆补强效果声波测试
1998年地质矿产部水文地质工程地质技术方法研究所在三峡库区迁建城镇新址岩崩堆积体工程改造现场,完成了灌浆补强前后岩体物理力学强度变化试验工作。采用“一发双收”单孔及跨孔声波检测对半径为1.7m圆周等分的六个钻孔中等边三角形分布的三个钻孔作为实施灌浆孔,另三个按等边三角形分布的钻孔及圆心的钻孔作为声波检测孔。采用灌浆前、灌浆后7d、灌浆后28d进行声波单孔测试及跨孔声波透视。
图1-5各种方法测试示意图及推测的地层模型
图1-6危岩锚固孔内裂隙及软弱破碎带声波测试声速-孔深曲线粗实线为裂隙及破碎带
单孔测试采用敲击作震源产生纵波及横波,以三分量检测器贴壁接收;跨孔测试用小药量爆炸震源的以三分量检测器贴壁接收。
岩崩堆积灌浆补强分别在四川奉节及巫山两地各做两组试验,现仅以奉节组试验为例加以说明。图1-7为灌浆前后单孔一发双收的时差-孔深对比曲线;图1-8为灌浆前后跨孔的声速-孔深对比曲线。由跨孔测试结果可见灌浆后声速有明显提高,最高可达60%以上;而单孔测试最高14%、最小仅2%。单孔测试声速变化小的原因是此法能了解沿孔壁一个波长范围的声速,单孔声速的提高,说明灌浆范围已达声波观测孔的孔壁;而跨孔测试是直接了解两孔连线间的岩体灌浆情况。
图1-7灌浆前后单孔一发双收的时差-孔深对深对比曲线
图1-8灌浆前后跨孔的声速-孔深对比曲线
由于测试纵波声速的同时,还测试了横波声速,因此可计算出岩崩堆积体灌浆前后的动弹性力学性能的变化,见表1-4(李洪涛等实测,1998)。
1.5.5长江三峡链子崖煤层采空区老空洞探地雷达探测
长江三峡链子崖底部煤层采空区的分布及其后期充填情况是评价链子崖危岩体稳定性的重要资料,同时也是确定治理工程混凝土承重阻滑键布置的重要依据。为此,在充分的地质调查分析基础上,委托煤炭科学研究总院采用地质雷达技术,利用PD2、PD6和PD1三个勘探平硐对煤层采空区的空洞或充填疏松地带进行了探测,取得了较好的效果。
表1-4奉节动弹性力学参数
地质雷达资料的解释是靠图形识别来进行的。具体解释过程是在资料处理后进行的对比,即对比波在相位、周期(频率)、同相轴和波形等运动学方面的特点,以及测点间在二维(横向与纵向)方向上组成的图形特征。同时,还应注意到相位的强弱(动力学特点)。图1-9为PD2沿线的一段探地雷达图像,图中44~61m之间显示为灰岩分布区,在76~85测点之间出现周期加大,相位改变,呈现明显弧形同相轴,反映的是煤层采空区。根据采空区的这种特征所得PD2平硐的探测成果列于图1-10与表1-5中(刘传正,2000)。
图1-9PD2Z线雷达图像(100MHz)
1.5.6金丽温高速公路崩塌体井内电视探测
由于浙江金丽温高速公路k81段高边坡地质条件复杂,岩层破碎,构造挤压,节理裂隙及断裂构造十分发育,处于崩塌体范围内。根据甲方要求对锚索孔B6-5、B6-9、B4-8、B6-16、B6-19、B6-23进行测试,以上各孔孔径为φ130mm,锚索钻孔俯角15°。主要查找钻孔中裂缝(图1-11)及破碎情况(封绍武实测,2002)。
图1-10PD2平硐雷达测线布置与探测成果
1—煤层采空区;2—充填但未压实的采空区
表1-5PD2平硐探地雷达勘查异常解释综合表
图1-11浙江金丽温高速路k81段高边坡(水平钻孔—干孔)裂缝图片
参考文献
段永侯,罗元华,柳源等.1993.中国地质灾害.北京:中国建筑工业出版社
郭建强,彭成,孙党生等.2003.链子崖危岩体勘查中物探技术的应用.水文地质工程地质
胡厚田.1989.崩塌与落石.北京:中国铁道出版社
李媛,张颖,钟立勋.1992.中国滑坡崩塌类型及分布图说明书.北京:中国地图出版社
李智毅,王智济,杨裕云.1996.工程地质学基础.武汉:中国地质大学出版社
李智毅,唐辉明.2000.岩土工程勘查.武汉:中国地质大学出版社
李大心.1994.探地雷达方法及其应用.北京:地质出版社
连克,朱汝裂,郭建强.1991.音频大地电场法在地质灾害调查中的应用尝试——长江三峡链子崖危岩体隐伏地质结构的探测.中国地质灾害与防治学报
刘传正.2000.地质灾害勘查指南.北京:地质出版社
晏同珍,杨顺安,方云.2000.滑坡学.武汉:中国地质大学出版社
展建设,吴庆曾.1991.跨孔声波穿透法在探测三峡链子崖隐伏裂缝中的应用.中国地质灾害与防治学报
张咸恭,李智毅等.1998.专门工程地质学.北京:地质出版社
③ 工程事故案例分析
四川省工程质量事故典型案例
最近几年来,在对工程质量事故鉴定工作中,我们收集了一些典型的工程质量事故案例。这些案例涉及基本建设程序、工程地质勘察、工程设计、工程施工、材料供应以及质量检测等各方面。现列举一部分,供大家参考。
案例一:
某工厂新建一生活区,共14幢七层砖混结构住宅(其中10幢为条形建筑,4幢为点式建筑)。在工程建设前,厂方委托一家工程地质勘察单位按要求对建筑地基进行了详细的勘察。工程于一九九三年至一九九四年相继开工,一九九五年至一九九六年相继建成完工。一年后在未曾使用之前,相继发现10幢条形建筑中的6幢建筑的部分墙体开裂,裂缝多为斜向裂缝,从一楼到七楼均有出现,且部分有呈外倾之势;3幢点式住宅发生整体倾斜。后来经仔细观察分析,出现问题的9幢建筑均产生严重的地基不均匀沉降,最大沉降差达160mm以上。事故发生后,有关部门对该工程质量事故进行了鉴定,审查了工程的有关勘察、设计、施工资料,对工程地质又进行了详细的补勘。经查明,在该厂修建生活区的地下有一古河道通过,古河道沟谷内沉积了淤泥层,该淤泥层系新近沉积物,土质特别柔软,属于高压缩性、低承载力土层,且厚度较大,在建筑基底附加压力作用下,产生较大的沉降。凡古河道通过的9栋建筑物均产生了严重的地基不均匀沉降,均需要对地基进行加固处理,生活区内其它建筑物(古河道未通过)均未出现类似情况。该工程地质勘察单位在对工程地质进行详勘时,对所勘察的数据(如淤泥质土的标准贯入度仅为3,而其它地方为7~12)未能引起足够的重视,对地下土层出现了较低承载力的现象未引起重视,轻易的对地基土进行分类判定,将淤泥定为淤泥质粉土,提出其承载力为100kN, Es为4Mpa。设计单位根据地质勘察报告,设计基础为浅基础,宽度为2800mm,每延米设计荷载为270kN,其埋深为-1.4m~2m左右。该工程后经地基加固处理后投入正常使用,但造成了较大的经济损失,经法院审理判决,工程地质勘察单位向厂方赔偿经济损失329万元。
案例二
某市一商品房开发商拟建10栋商品房,根据工程地质勘察资料和设计要求,采用振动沉管灌注桩,桩尖深入沙夹卵石层500以上,按地勘报告桩长应在9~10米以上。该工程振动沉管灌注桩施工完后,由某工程质量检测机构采用低应变动测方式对该批桩进行桩身完整性检测,并出具了相应的检测报告。施工单位按规定进行主体施工,个别栋号在施工进行到3层左右时,由于当地质量监督人员对检测报告有争议,故经研究决定又从外地请了两家检测机构对部分桩进行了抽检。这两家检测机构由于未按规范要求进行检测,未及时发现问题。后经省建筑科学研究院对其检测报告进行了审核,在现场对部分桩进行了高、低应变检测,发现该工程振动沉管灌注桩存在非常严重的质量问题,有的桩身未能进入持力层,有的桩身严重缩颈,有的桩甚至是断桩。后经查证该工程地质报告显示,在自然地坪以下4~6m深处,有淤泥层,在此施工振动沉管灌注桩由于工艺方面的问题,容易发生缩颈和断桩。该市检测机构个别检测人员思想素质差,一味地迎合施工单位的施工记录桩长(施工单位由于单方造价报的低,经常利用多报桩长的方法来弥补造价),将砼测试波速由3600米/秒左右调整到4700~4800米/秒,个别桩身经实测波速推定桩身测试长度为5.8m,而当时测试桩长为9.4m,两者相差达3.6m。这样一来,原本未进入持力层的桩,严重缩颈桩和断桩就成为了与施工单位记录桩长一样的完整桩。该工程后经加固处理达到了要求,但造成了很大的经济损失。
案例三
某市一开发商修建一商品房,为了追求较多的利润,要求设计、施工等单位按其要求进行设计施工。设计上采用底层框架(局部为二层框架)上面砌筑九层砖混结构,总高度最高达33.3m,严重违反国家现行规范〈建筑抗 设计规范〉GBJ11-89和地方标准〈四川省建筑结构设计统一规定〉DB51/5001-92的要求,框架顶层未采用现浇结构,平面布置不规则、对称,质量和刚度不均匀,在较大洞口两侧未设置构造柱。在施工过程中六至十一层采用灰砂砖墙体。住户在使用过程中,发现房屋内墙体产生较多的裂缝,经检查有正八字、倒八字裂缝;竖向裂缝;局部墙面出现水平裂缝,以及大量的界面裂缝,引起住户强烈不满,多次向各级政府有关部门投诉,产生了极坏的影响。
案例四:
某县一机关修建职工住宅楼,共六栋,设计均为七层砖混结构,建筑面积10001平方米,主体完工后进行墙面抹灰,采用某水泥厂生产的325水泥。抹灰后在两个月内相继发现该工程墙面抹灰出现开裂,并迅速发展。开始由墙面一点产生膨胀变形,形成不规则的放射状裂缝,多点裂缝相继贯通,成为典型的龟状裂缝,并且空鼓,实际上此时抹灰与墙体已产生剥离。后经查证,该工程所用水泥中氧化镁含量严重超高,致使水泥安定性不合格,施工单位未对水泥进行进场检验就直接使用,因此产生大面积的空鼓开裂。最后该工程墙面抹灰全面返工,造成严重的经济损失。
案例五:
某县级市一乡村修建小学教学楼和教师办公住宿综合楼,乡上个别领导不按照有关基本建设程序办事,自行决定由一农村工匠承揽该工程建设。工程无地质勘察报告,无设计图纸(抄袭其它学校的图纸),原材未经检验,施工无任何质量保证措施,无水无电,砼和砂浆全部人工拌和,钢筋砼大梁、柱子人工浇注振捣,密实度和强度无法得到保证。工程投入使用后,综合楼和教学由于多处大梁和墙面发生较严重的裂缝,致使学校被迫停课。经检查,该综合楼基础一半置于风化页岩上,一半置于回填土上(未按规定进行夯实),地基已发生严重不均匀沉降,导致墙体出现严重裂缝;教学楼大梁砼存在严重的空洞受力钢筋已严重锈蚀,两栋楼的砌体砂浆强度几乎为零(更有甚者个别地方砂浆中还夹着黄泥),楼梯横梁搁置长度仅50mm,梁下砌体已出现压碎现象。经鉴定该工程主体结构存在严重的安全隐患,已失去了加固补强的意义,被有关部门强行拆除,有关责任人受到了法律的惩办。
案例六:
某县有关部门为教师建一广厦工程,位于河边,其上游数百米为电站大坝。该工程于1995年11于月开工建设,1997年元月竣工。具有关资料表明,该工程所在地20年一遇洪水水位313.50(绝对标高),但建设、施工单位擅自将该工程±0.00标高由314.40m降到308.16m。致使该工程自1997年投入使用以来,遭遇洪水淹没五次,洪水水位高出二楼地面约70cm(相当于绝对标高312m),底楼地面受洪水冲刷已多处出现直径约1m~2m、深约0.5m~1m的管涌坑,直接危及地基基础的长期稳定和上部结构的安全。受电站卸洪浪涌冲击压力影响,二楼楼面板向上反拱(据住户反应由二楼板缝冒出的水柱高达70cm),室内瓜米石地坪多处破损并与空心板剥离,二楼部分楼面板已不满足建筑构件安全使用要求。工程设计二个单元九层,实际建造四个单元十层,顶层部分住户擅自加建到十一层,不满足现行国家标准《砌体结构设计规范》GBJ3—88》和《建筑抗震设计规范》GBJ11—89~要求。该工程经有关部门鉴定为不合格工程。
案例七:
四川省某市玻璃厂1999年4月为增加生产规模扩建厂房,在原来天然坡度约22°的岩石地表平整场地,即在原地表向下开挖近5m,并距水厂原蓄水池3m左右,该蓄水池长12m、宽9m、深8.2m,容水约900m3。玻璃厂及水厂厂方为安全起见,通过熟人介绍,请了一高级工程师对玻璃厂扩建开挖坡角是否会影响水厂蓄水池安全作一技术鉴定。该高工在其出具的书面技术鉴定中认定:“该水池地基基础稳定,不可能产生滑移形成滑坡影响安全;可以从距水池3m处按5%开挖放坡,开挖时沿水池边先打槽隔开,用小药量浅孔爆破,只要施工得当,不会影响水池安全;平整场地后,沿陡坡砌筑条石护坡;......本人负该鉴定的技术法律责任”。最后还盖了县勘察设计室的“图纸专用章”予以认可。
工程于7月初按此方案平基结束后,就开始厂房工程施工,至9月6日建成完工。然而,就在9月7日下午5时许,边坡岩体突然崩塌,岩体及水流砸毁新建厂房两榀屋架,其中的工人3死5伤,酿成了一起重大伤亡事故。
该工程边坡岩体属于裂隙发育、遇水可以软化的软质岩石,虽然属于中小型工程,但环境条件复杂,施工爆破、水池渗漏、坡体卸荷变形等不确定的不利影响因素甚多,在没有基本的勘察设计资料的前提下采用直立边坡,破坏了原边坡的稳定坡角,而且未采用任何有效的支挡结构措施,该边坡失稳是必然会发生的。若有正确的工程鉴定,并严格按基建程序办事,采用经过勘察设计的岩石锚桩(或锚杆)挡墙和做好水池防渗处理措施则是能够有效保证工程边坡安全的。
该高工的“技术鉴定”内容过于简略,分析评价肤浅、武断,未明确指出及贯彻执行现行勘察设计技术规范规定的技术原则及技术方法,主要结论建议缺乏技术依据,尽管其中有关地基施工中关于松动爆破和开槽减震的建议是正确的,也是有针对性的,但未经设计计算的有关边坡稳定的结论是不恰当的。有关用条石挡墙护坡的建议也不是该工程边坡条件下能确保边坡安全的有效支挡结构技术措施,而有关采用坡度为1:0.05的放坡建议,则更是没有贯彻现行规范的基本规定,缺少相应的论证分析,它的误导为该工程事故埋下了安全隐患。该“技术鉴定”虽然盖有县勘察设计室的“图纸专用章”,但却无一般勘察、设计单位通常执行的“审核”、“批准”等技术管理和质量保证体系,从技术鉴定的内容到形式都缺乏严肃性;而且这种技术鉴定缺乏委托方与承担方之间的有关目的、任务、质量要求等基本的书面约定,这就从根本上影响了技术鉴定工作的深度和技术质量。
平基施工过程中及完工前后所发现的漏水等边坡岩体不稳定因素的征兆,虽然有关各方曾予以一定程度的重视与研究,但由于缺乏岩土工程及支挡结构方面的专业技术知识与经验,对隐患认识不足,未能采取相应措施,而继续盲目施工至全部工程(人工边坡及厂房扩建)结束和水池继续运行,并在7月3日决定将水池蓄水至7m水深,使整个工程的安危事实上依赖于个人狭隘的专业技术知识与经验上。
综上所述,此次事故造成人员伤亡,经济损失巨大,以及负面社会影响,主要是由于违章进行工程鉴定、处理方案错误所至。从事工程鉴定的技术人员以及管理者应从此次事故中汲取经验教训,严格按照国家的统一鉴定方法与标准进行工程鉴定,即按照:客户委托,确定鉴定目的、范围和内容;初步调查;详细调查及检测验算;安全性、使用性鉴定评级;可靠性评级;出具鉴定报告及处理意见的基本鉴定程序规范、标准地进行工程鉴定。
④ 求关于水利工程由于质量问题引发事故的案例
五强溪,萨彦-舒申斯克,驻马店,阿斯旺,板桥水库大坝等。
世界水回坝事故
水库垮坝答悲剧,如同阴影,伴随着人类自进入“工业革命”时代以来的水库兴建史,一再重演:
1864年,英国戴尔戴克水库在蓄水中发生裂缝垮坝,死亡250人,800所房屋被毁。
1889年,美国约翰斯敦水库洪水漫顶垮坝,死亡4000—10000人。
1959年,西班牙佛台特拉水库发生沉陷垮坝,死亡144人。
1959年,法国玛尔帕塞水库因地质问题发生垮坝,死亡421人。
1960年,巴西奥罗斯水库在施工期间被洪水冲垮,死亡1000人。
1961年,苏联巴比亚水库洪水漫顶垮坝,死亡145人。
1963年,意大利瓦伊昂拱坝水库失事,死亡2600人。
1963年,中国河北刘家台土坝水库失事,死亡943人。
1967年,印度柯依那水库诱发地震,坝体震裂,死亡180人。
1979年,印度曼朱二号水库垮坝,死亡5000—10000人。
⑤ 因地质问题而失效的水利工程案例有哪些
水利工程的建设主要面临的地质问题:
1、水库开发对周边山体切割导致滑坡;专
2、蓄水压力作用可能属导致地震;
3、水库渗水导致周边地下塌陷、溶洞等.
水电工程地质存在的问题很多,除了与其他工程类似的区域地壳稳定、坝基、边坡和地下洞室岩土体的稳定性等问题外,还有库坝渗漏、水库库岸稳定、水库淤积、滨库地区浸没、水库诱发地震的问题。
一般解决的思路是针对具体的工程地质问题分阶段进行专门勘察,并进行稳定性计算和治理设计,然后付诸施工,用工程的方法进行改善.例如边坡问题,先进行地质填图调查,然后设计勘探类型和位置,等勘探施工完成后计算边坡稳定性,如果不够稳定即进行治理,设计抗滑桩,盲沟等等,最后是治理措施的施工.
⑥ 工程地质案例分析
给我你扣扣,我目前正在做一个这个方面的东西