三峡库区地质灾害勘查技术
㈠ 三峡库区万州—巫山段地质灾害监测预警研究
欧阳祖熙张宗润陈明金师洁珊陈征韩文心
(中国地震局地壳应力研究所,北京,100085)
【摘要】为了较好地解决滑坡监测中高度的不确定性问题,需要配合使用多种类型的监测系统。本文系统介绍了三峡库区万州、奉节、巫山等地开展的地质灾害监测预警研究工作,包括基于3S技术和地面变形监测台网建立的研究区典型地段滑坡监测网、研制的新型滑坡无线遥测台网,以及流动倾斜仪、激光测距仪等专用设备。通过近年来获得的一些典型监测结果剖析了不同技术和方法在地质灾害监测预警相关方面应用的有效性。
【关键词】三峡库区滑坡监测预警系统3S技术
1引言
自1998年以来,中国地震局地壳应力研究所(以下简称地壳所)三峡库区地质灾害项目组依托国务院三峡建设委员会移民局“三峡工程万州库区GPS滑坡监测示范研究”,科技部“十五”攻关项目“示范区新型、高效地质灾害遥测台网技术系统研究”,重庆市政府和移民局下达的“奉节、巫山高边坡与高挡墙稳定性监测”,以及地壳所与德国地球科学研究中心和英国伦敦大学学院关于“应用PSInSAR遥感技术监测三峡库区滑坡及库岸变形”等项目的支持,在万州、巫山、奉节三地移民局和国土局的配合下,广泛深入地开展了库区地质灾害监测预警系统的研究。监测的对象由滑坡、危岩与库岸变形,扩展到高挡墙、高边坡和移民楼房基础的稳定性,监测技术体现了多学科的融合。
几年来,在进行地质调查的基础上,项目组运用3S技术,建立地质灾害地理信息系统(GIS);开展全球卫星定位(GPS)滑坡变形监测及多手段仪器监测;并整合现今成熟的、先进的传感器与测量技术、计算机信息处理技术与通讯技术,以 GSM/GPRS为通讯平台的无线遥测台网,可以选择连接不同的传感器来监测崩、滑体地表变形、深部位移、地下水动态、声发射、裂缝变化、雨量,以及库岸及抗滑桩等工程构筑物内部应力及所受的推力等;在遥感(RS)技术应用方面,将国际上新近提出的角反射器技术用以辅助进行InSAR信号处理,建立了试验台网。迄今,项目组在库区库岸与滑坡变形监测及灾害预警系统的工作中已获得了多项阶段性成果,一些典型地区的监测成果为政府减灾决策提供了重要依据。
2库区地质灾害监测网设计的指导思想
库区崩塌、滑坡监测的主要目的是:全面了解和掌握崩、滑体的演变过程,及时捕捉崩、滑体灾变的特征信息,为崩塌、滑坡灾害的正确评价分析、预测预报及治理工程等提供可靠的资料和科学依据。同时,监测结果也是检验崩塌、滑坡分析评价及滑坡工程治理效果的尺度。
为了达到上述目的,库区地质灾害监测系统总体设计思想为:
(1)针对不同崩、滑体的地质构造与变形阶段特征,应采用不同的方案、手段进行监测;
(2)鉴于崩、滑体变形破坏过程的高度不确定性,同一崩滑体上宜采用多种手段监测,形成点、线、面、地表与地下相结合的立体监测网,使其互相补充、检核;
(3)在群测群防工作的基础上,发展常规人工仪器观测与无线自动遥测的技术、建立静态和动态监测相结合的监测预警网络,分别服务于地质灾害的长期、中期预测和短期预警。
3地质灾害监测方法与技术
依据崩、滑体变形监测的物理量,兼顾变形测量对精度的要求和监测工作的效率,结合当前国内外监测技术和方法的发展水平,在实际应用中采用GPS、InSAR、激光测距、流动倾斜、裂缝监测技术测量地表形变,一些地段也采用了传统方法如全站仪和水准测量;钻孔测斜仪监测深部位移;孔隙水压力计监测地下水动态变化;钢筋应力计与锚索(杆)应力计,分别用于监测抗滑桩内部钢筋和锚索、锚杆的受力变化;同时,采用遥测台网技术采集包括地表变形、深部位移、地下水、钢筋计、危岩声发射等在内的各种动态监测数据。下面简要评述这些方法的特点与适用领域。
3.1GPS(全球卫星定位系统)大地测量网
全球卫星定位系统(GPS)是美国国防部研制的导航定位授时系统,由24颗等间隔分布在6个轨道面上、大约20000km高度的卫星组成。在地球上任何地点、任何时刻,在高度角15。以上天空至少能同时观测到4颗以上的卫星。用户在地面用接收机接收这些卫星发射来的信号,测定接收机天线到卫星的距离,就可以计算出接收点的三维坐标。近年来,我国开发和应用GPS定位技术的发展速度很快,如在长江三峡工程坝区已建立了GPS监测网,实践证实,高性能配置的GPS水平定位精度可达毫米级,完全可用于崩塌、滑坡的位移监测。
相对于传统的大地测量方法,GPS测量技术应用于滑坡监测有以下优点:①观测点之间无需通视,选点方便;②不受天气条件限制,可以进行全天候的观测;③观测点的三维坐标可以同时测定;④新一代 GPS接收机具有操作简便、体积小,耗电少的特点。所以,这种方法已广泛运用于滑坡变形监测、施工安全监测以及滑坡工程治理效果监测之中。但是,由于监测站建设和获取数据周期较长,在灾害的短期预警中该方法用得较少。
3.2专用仪器监测网
在此类测量方法中,有多种传统的测量仪器目前仍在广泛使用,如经纬仪、全站仪、水准仪和钻孔测斜仪等,它们主要用于各种工程治理项目的施工安全监测中。除了前述的仪器外,我们还从三峡库区的具体环境条件出发,结合地质灾害其他方面监测工作的需要,开发了便携式倾斜仪、流动激光测距仪等设备,弥补GPS观测受房屋、山坡遮挡而不便施测的不足,以便对位于河谷斜坡地形上的库区移民新城镇的滑坡地表变形、房屋及地基基础变形进行全面监测。在一些经过工程治理的重点滑坡、变形体上,结合治理效果监测,还大量运用了钢筋计和锚杆(索)计以监测抗滑桩内部应力及滑坡的推力。
在地表开展各种流动仪器观测具有监测参量多,灵敏度高,测量范围较大,效率高,成本低,操作简单等特点,因此这类测量方法适用于滑坡治理施工安全监测和效果监测,与前一种GPS流动站观测法相同,也大量应用于多种地质灾害的中、长期监测预报中。
3.3地质灾害无线遥测台网
目前,国外崩塌、滑坡监测预警技术已发展到一个较高的水平。首先是较普遍采用了全自动、多参数监测的遥测台网;其次,在地质灾害模型预报和预警系统方面,已运用3S(GPS、GIS和RS)技术进行地质灾害空间分析、模型预报和预警系统研究。国内在上述方面尽管还存在较大的差距,但近年来,铁道部、交通部等个别研究所及少数矿区已尝试采用小型遥测台网进行滑坡灾害的监测预报;2002年,中国地震局地壳所在三峡库区又率先建立了用于地质灾害监测预警的多参数无线遥测台网。
“RDA型地质灾害无线遥测台网”系地壳所开发的基于GSM/GPRS技术的新型无线遥测台网。该系统主要由监测子站群、监测预警数据中心和GPRS数据通讯公网等三部分组成(系统构成见图1)。GPRS是在GSM基础上发展起来的一种无线分组交换的数据承载业务。相对于GSM/SMS的电路交换数据传送方式,GSM/GPRS采用分组交换数据传送方式,提高了传输速率,有效利用无线网络信道资源,全面实现了移动Internet功能,对于每个用户永远在线等方面具有非常明显的优势。
图1GPRS滑坡无线遥测系统构成
根据单体滑坡监测的需要,可以确定所需遥测子站的个数,各遥测子站可以选择连接不同的传感器来监测滑坡地表位移、深部位移,或者地表倾斜、裂缝变化、雨量,以及监测护岸、抗滑桩等工程构筑物内部应力和所受的推力等。监测预警数据中心系统软件功能包括接收各地质灾害点遥测子站的数据、数据入库、显示变形趋势曲线和超限自动报警等功能。同时,数据中心站可对各遥测子站发出指令,改变其工作参数,如数据采样间隔(5分钟、1小时、24小时等)。系统可接入地区监测预警中心微机局域网,支持运行基于GIS的减灾决策支持系统。市、县级地质灾害监测指挥中心的计算机屏幕上可以准实时地密切监视滑坡加速变形趋势,支持对库岸和滑坡破坏事件进行短期及临滑预报,也可以对发生的地质灾害事件进行现场监测和救助指挥。从2002年我们在万州WJW滑坡建成第一个遥测台网以来,在万州和巫山运用“RDA型地质灾害无线遥测台网”监测的崩、滑体已有近20处,积累了丰富的数据。该地质灾害无线遥测系统主要具有以下特点:
(1)监测参量多,精度高
系统集成了包括:滑坡地表变形(位移、沉降)、倾斜变形测量仪、裂缝测量仪、崩滑体微破裂声发射信号记录仪、钻内地层滑移变形测斜仪、孔隙水压测量仪、钢筋测力计、锚索(杆)拉力计等8种滑坡监测仪器。这些测量仪器均具有较高的测量精度和较大的动态范围。
(2)自动遥测,无人值守
遥测仪器均内置微处理器和无线数据传输模块,动态范围大,全自动监测,无线传输,可用交流电源或太阳能电池供电。
(3)无障碍设计
所研制的仪器在测量、数据传输等方面均符合无障碍设计要求,因而有安装方便,环境适应性好等优点。
(4)依托先进的通讯技术
本遥测台网综合运用了最新发展的GSM/GPRS通讯技术,既适应三峡库区的地形条件,便于安装和维护,又具有高容量、覆盖范围广以及成本较低等特点。
3.4崩塌滑坡应急监测系统
以往,无论在三峡库区还是我国其他地方,发现有崩塌滑坡迹象时,常因缺乏应急监测手段,未能详细积累数据,错失研究的机会且不论,有时终因措施不力造成人民生命的损失。我们在RDA型遥测台网的基础上,将通讯改为GSM/SMS,即短信息方式,目的是使系统对通信公网的适应能力更强,架设更简便可靠。在监测环境偏远以及应急监测的场合,这一点显得尤为重要。
应急监测系统优选了地表倾斜、激光测距、裂缝测量仪等手段。一旦有群众报告或者通过仪器监测发现某地滑坡有加速变形迹象,便能急速赶赴现场,及时安装台网,实施24小时连续监测。既能有效避免不测事件的发生,还可积累研究滑坡变形破坏阶段的宝贵资料。2003年,应万州地方政府的要求对公路、桥梁开展的应急监测便收到了良好的效果。
3.5合成孔径干涉雷达InSAR测量技术
合成孔径雷达干涉(InSAR InSAR—Interferometry Synthetic Aperture Radar的缩写。
干涉雷达优点较多:具全天候工作能力,发射的微波对地物有一定穿透能力,能提供光学遥感所不能提供的信息,且为主动式工作方式。对于欧洲雷达卫星 ERS-1/2和加拿大雷达卫星RADRSAT-1,采用干涉技术来产生 DEM,监测地面位移变化,精度可以达到毫米量级。因此,该技术手段特别适用于大面积的滑坡、崩塌、泥石流以及地裂缝、地面沉降等地质灾害的监测预报,是一项快速、经济的空间探测高新技术。
三峡地区植被茂盛,雨水充沛,地貌差异较大,不利于干涉雷达信号的处理,曾有人在该地区做过尝试未获成功。为此,地壳应力研究所与德国地球科学研究中心(GFZ)合作,采用了国际上新推出的角反射器技术以辅助进行 InSAR信号处理。角反射器是用三块角形金属板制作的一种装置,它对照射其内的雷达波可按原方向反射回去,反射信号相对于周围环境有显著的增强。通过在工作区范围内均匀布设人工角反射器,并确定一些稳定的点作为天然反射点,便于图像的配准和精确计算角反射器的位移。对于三峡库区如此大的范围,仅仅利用有限的点位进行 GPS或其他仪器设备测量滑坡体形变是有局限的,因此,探索利用InSAR技术开展三峡库区滑坡监测,具有重要的意义。2003年,我们已经在万州和巫山两地安装了14个角反射器,进行试验监测和研究,同时还联合进行 GPS变形监测作为对比。
4用于地质灾害监测预警的GIS系统
地质灾害监测地理信息系统是一个能够有效管理各种四维空间(含地理坐标和时间变化)数据的信息系统。它以崩滑体等监测对象为基础,把地形、城市规划、监测点分布等空间数据,按其空间位置存入计算机;通过数据库模块、曲线显示模块与数据分析模块,实现监测数据的存储、更新、查询、趋势分析、绘图显示及图、表输出等功能。
系统主要由四部分组成:地理信息子系统、地质基础资料文献管理子系统、地质灾害监测数据库子系统和监测数据分析子系统。
地壳所自1998年在重庆市万州区开展地质灾害的监测与研究工作以来,首先致力于建立基于GIS的地质灾害数据和资料管理平台,在2000年研制成功“万州库区移民工作地理信息系统”。之后,又逐步完善相关的数据库管理系统,充实数据分析模块,增加自动报警功能,实现了含数据管理、分析于一体的滑坡监测预警GIS系统,并相继推广到巫山、奉节两县。
系统采用面向对象的编程语言Visual C++6.0为开发工具,以MapInfo为基本开发平台;地质灾害监测数据库利用Microsoft SQL Server 2000创建,通过ADO技术进行数据库连接、访问。地质灾害监测预警GIS系统以大比例尺电子地图作为工作用图,可以任意缩放、漫游、能够自动查找地图目标,并与数据库相关联。该系统为管理各种工程地质、水文地质资料,为管理上述几类地质灾害监测网和监测数据,为数据的分析与结果显示,包括为群测群防工作的管理均提供了一个有效的平台,进而为滑坡稳定性的研究打下了很好的基础(系统总体结构如图2)。
图2地质灾害监测预警GIS系统总体结构框图
根据前述功能的要求,该系统可以输出多种表达数据处理及空间分析结果的图形、图表与三维模拟图等可视化形式。图3显示了巫山县GIS系统的一个界面,显示出滑坡、道路及四类监测站的分布,即为一例。
图3巫山GIS系统显示的GPS和倾斜监测站分布图
1.GPS静态监测站;2.GPS动态监测站;3.流动倾斜监测站;4.GPS坐标控制点
数据分析流程基本上有如下的3个方面:
(1)整个监测系统获得的数据,包括自动传输与流动观测的,经过校核确认无误后,即可存入当地地质环境监测站基础数据库。
(2)基于地理信息系统的地质灾害趋势分析及预警技术研究,包括进行监测结果的统计分析、时间序列分析、地表位移矢量图分析、滑坡的深度—位移曲线分析、位移—降雨量分析等,并进而确定在不同的地质环境下滑坡预警的阈值。
(3)所获得的滑坡变形时间变化曲线及其二维平面分布图像的结果,可用于做进一步的滑坡稳定性分析研究。
5各类监测技术的应用与典型监测结果
5.1GPS技术用于滑坡变形监测
自1999年底万州库区建成含120余个流动站的GPS滑坡变形监测网,到2002年底,共完成了8期测量。结果显示,多数滑坡近期变形速率较低,在5mm/a以下;但半边石坝与实验小学等少数滑坡年变形速率分别达84mm和49mm;关塘口、青草背等滑坡也有明显变形。图4显示了万州城区滑坡现今变形的分区特点:变形大的地区多为陡坡,有的是古滑坡分布地区;近期的变形主要和人类工程活动以及强降雨等因素有关。
图4万州城区滑坡变形分布示意图
1.GPS滑坡监测点;2.滑坡;3.滑移矢量;4.变形较小的稳定地区
上述结果对于库区城镇的建设规划有指导意义。据了解,有的基础设施项目选在上述变形区域内,自2002年初开工,场平屡屡受阻,历时3年无法开展基本建设,付出了沉重的代价。对这几处稳定性差的滑坡体,加强了跟踪监测和研究。例如万州 SMB滑坡2003年继续发生变形垮塌,其北部区域5月以来曾发生严重变形。图5给出了3条有代表性的基线变化情况,纵坐标表示日降雨量以及GPS基线长度变化,单位为mm。由图中可以看到,2003年一季度该区变形速率不高,4月18日(即图中第108日)降大雨84mm后,滑坡变形明显加速。G123-134是接近主滑方向的测量基线,到6月累计变形量达到400m左右。除了该区是因人类工程活动触发滑坡变形因素外,强降雨的影响不可低估。
又如奉节新县城地区有大小崩塌、滑坡50余处,其中以三马山、宝塔坪、白衣庵、南竹园等大型滑坡对新建县城的影响最大。由于新县城地处复杂的地质构造部位,岩层较为破碎,冲沟发育,高阶地较窄,且连续性差。新建移民区大多分布在地势较陡的沟、谷坡上,人工开挖的高陡边坡随处可见,并以高度大、连续分布长为特点,边坡高度可达30~40m,长度数百米。高边坡的稳定性问题是奉节县城最大的潜在地质灾害问题之一。
2002年我们在奉节建立了含290个监测桩的GPS和地表倾斜变形监测网。到2003年中,整个县城近8km2范围的变形分布如图6所示,发生最大变形的地区是西部朱衣河谷坡一带的高边坡。这些地带大多是高阶地、陡坡,表现的主要地质灾害问题是建筑载荷导致的自然高、陡边坡、古滑坡失稳;因平整建筑场地而切削边坡,填平坡脚、沟谷,产生的高边坡与回填边坡的失稳等。
图5SMB滑坡地表变形 GPS测量成果
图62003年奉节新县城变形等值线图
5.2在滑坡工程治理安全施工阶段运用的监测技术
本阶段的监测工作主要用于评价滑坡(危岩)治理施工过程中滑坡的稳定程度,及时反馈、跟踪和控制施工进程,对原有的设计与施工组织的改进提供最直接的依据,对可能出现的险情及时发出报警信号,以便调整有关施工工艺和步骤,避免恶性事故的发生。做到信息化施工,以期取得最佳的经济效益。目前,在安全监测中使用了大量的专用仪器布设监测网,这已为广大工程技术人员所熟悉,这里仅举一例说明“RDA型地质灾害无线遥测台网”的应用成果。从2002年5月起在万州 WJW滑坡建立了无线遥测台网。该滑坡为三峡库区二期地质灾害工程治理计划项目,从2002年11月开始施工,2003年2月完成。图7所示为沿滑坡主滑方向激光测距遥测仪获得的结果。尽管施工包括59个抗滑桩的开挖与浇注,但由于设计与施工合理,整个施工期间滑坡体位移仅几个毫米,可见通过遥测台网连续监测,可以及时准确掌握滑坡变形动态,确保施工安全。
5.3 工程治理效果监测
仍以万州WJW滑坡为例。该滑坡治理工程采取以预应力锚拉抗滑桩为主,地表排水及生物工程为辅的综合治理方案。治理效果监测网采用了GPS、深部位移、孔隙水压力测量和钢筋应力计等仪器监测方法,在关键部位还设置了遥测台网进行连续监测。
图7万州 WJW滑坡工程治理施工安全监测位移曲线
图8 为A2号抗滑桩上3002遥测子站2003年8月到12月观测结果的日变化曲线。由图可见:锚拉抗滑桩内力(钢筋计、锚杆计观测)和滑坡深部位移的变化与地下水孔隙压力(渗压计观测)的变化呈明显的相关关系;根据气象资料,滑坡孔隙水压力的变化与降雨亦有直接关系。但是从总趋势看,抗滑桩内力、深部位移变化不大,说明 WJW滑坡经过治理后基本上处于稳定状态,这与其他监测点仪器巡测的结果基本一致。
图83002遥测子站观测结果曲线显示
图9 为巫山GIS系统上分析、显示的WZB边坡倾斜变形矢量图,是使用仪器监测网进行工程治理效果监测的实例。如矢量图所示,4个测点的倾向均与坡向大体一致,2003年累计角变量≤0.02°,说明经过治理后的边坡稳定性良好。
5.4滑坡变形应急监测
巫山县残联滑坡位于巫山新县城中心地带,滑坡区内高程在278~492m之间,为河流谷坡地形,坡角在10°~30°之间。滑坡体为第四纪坡积物,含碎石、粉质粘土,厚度0~12m,总体积约15万m3。由于本区域为斜坡区,公路及房屋等建设须对原始边坡不同程度的开挖、切坡,2001年已发现有变形发生。地勘资料表明残联滑坡周界明显,滑面渐趋形成,属推移式滑坡。2002年虽经两度治理,其西区在2003年仍有明显变形,危及其下的公路和移民楼房的安全。
图9巫山县 WZB边坡倾斜变形矢量图
图10巫山残联滑坡激光测距曲线(2003年9月~2004年2月)
应巫山县国土局要求,2003年9月安装了遥测台网。残联滑坡遥测台网安装在最能反映滑体变形特征的部位,四台遥测子站沿主滑方向形成一条测线。
激光测距的监测数据随时间的变化如图10所示。上条曲线为测距结果,测线长51.3m,滑坡向下滑移对应测线缩短,单位为mm;下条为环境温度曲线,单位为℃,横坐标为测量时间,按-年-月-日时:分格式显示。
从2003年9月12日至2004年2月3日,可大体分为两个阶段:
第一阶段:9月12日到9月27日为滑坡体中部抗滑桩完工之前,由于开挖引起边坡内部应力调整。受滑坡体上部载荷的影响,土体向前挤压。滑坡体中、下部向临空面的蠕滑变形明显,下滑速率大致均匀,约2mm/d,16天总计变化量达30mm。
第二阶段:在滑体中部的部分抗滑桩竣工后,位移速率变缓,降至0.5~1mm/d;到2004年2月上旬,变化量仅0.1mm/d。这说明抗滑治理工程对滑体变形起到了遏制作用,达到了抢险治理的目的。
6结论
(1)基于3S技术和地面变形监测台网,基本建立了研究区典型地段滑坡监测系统。运用GPS等空间技术可以获得滑坡变形区域分布状况,不但有利于确定需要重点监测的滑坡,而且对库区城镇改造规划有指导意义。遥测台网可快速测定变形速率,是掌握滑坡动态变形趋势与开展应急监测的有效工具。
(2)为了较好地解决滑坡监测中高度的不确定性问题,需要配合使用多种类型的仪器。作者等为此研制的新型滑坡无线遥测台网和流动倾斜仪、激光测距仪,精度高,性能稳定,有较大的推广价值。
(3)由于滑坡、高边坡所处地质环境差异以及影响因素的不同,其破坏机理和危险性程度也不尽相同。正确认识、区分滑坡与高边坡的地质环景,合理布置稳定性监测点位,对其稳定性监测、分析及评价具有十分重要的意义。
在此,对参加过此项工作的杨旭东、陈诚、范国胜、李涛等同志表示感谢。
参考文献
[1]卓宝熙.“三 S”地质灾害信息立体防治系统的建立及其实用意义[J].中国地质灾害与防治学报,1998,9(4):252~257
[2]崔政权,李宁.边坡工程——理论与实践最新发展[M].北京:中国水利水电出版社,1999
[3]欧阳祖熙,张宗润,张路等.重庆市万州区三峡工程移民地理信息系统.见:地壳构造与地壳应力文集(12).北京:地震出版社,1999:140~146
[4]欧阳祖熙,张勇,张宗润等.全球卫星定位技术在三峡库区滑坡监测中的应用.见:地壳构造与地壳应力文集(13).北京:地震出版社,2000:185~191
[5]欧阳祖熙,丁凯,师洁珊等.一种新型地质灾害无线遥测台网.中国地质灾害与防治学报,2003,14(1):90~94
[6]欧阳祖熙,王明全,张宗润等.用 GPS技术研究三峡工程万州库区滑坡的稳定性.中国地质灾害与防治学报,2003,14(2):76~81
[7]欧阳祖熙,师洁珊,王明全等.RDA型滑坡变形无线遥测台网.见:中国土木工程学会第九届全国土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003:1261~1266
[8]陈明金,欧阳祖熙,师洁珊等.基于GPRS技术的地质灾害无线遥测系统.自然灾害学报,2004,13(3):65~69
[9]陈明金,欧阳祖熙.预应力锚索抗滑桩内力反演计算.见:地壳构造与地壳应力文集(17).北京:地震出版社,2004:139~145
[10]欧阳祖熙,张宗润,丁凯等.基于3S技术和地面变形观测的三峡库区典型地段滑坡监测系统.岩石力学与工程学报,2005(待刊)
㈡ 三峡库区重庆市巫山县滑坡灾害分布发育规律
高文军1叶晓华1陈中富2
(1四川九〇九建设工程有限公司,江油,621701;2重庆市巫山县地质环境监测站,重庆,404700)
摘要巫山县自然地质环境条件复杂,以滑坡为主的地质灾害发育,对库区移民迁建实施和人民生命财产安全影响严重。通过本次地质灾害防治规划监测预警专项调查评价工作,基本查明了滑坡的成生环境、类型与分布、形成机制、发育规律、危害状况等,为巫山县地质灾害的防治工作提供了基础资料。
关键词三峡库区滑坡灾害发育规律巫山县
前言
重庆市巫山县地处四川盆地褶皱山区的东缘,位于重庆市东部,地处长江三峡腹地,扼长江“黄金水道”,有“渝东大门”之称。自然地质条件复杂,地质灾害发育,所造成的危害严重。随着三峡工程建设和移民迁建工程的逐步实施,频繁的人类工程活动,对原有地质环境的改变在进一步增强,地质灾害发生的数量、频率、规模及危害性在进一步增加,对三峡工程建设、移民迁建工程实施及库区人民生命财产安全的影响在进一步加剧,已成为三峡库区地质灾害多发区和重灾区之一。2004年3月我公司受三峡库区地质灾害防治工作指挥部委托承担了三峡库区巫山县三期地质灾害防治规划监测预警专项调查评价工作,基本查清了巫山县地质灾害的分布发育规律,为有效的防治巫山县的地质灾害提供了重要的基础性资料。
1滑坡的成生环境
1.1地形地貌
库区地貌类型为侵蚀溶蚀中山地形和侵蚀剥蚀低山丘陵地形,从北至南两种地貌类型相间分布,以侵蚀剥蚀低山丘陵地形为主。低山丘陵地貌区地势较低缓,呈波状起伏,地形坡度一般为20°~400,以流水地貌为主,地表水系较发育,主沟长、坡降缓、谷底较宽,山体多被冲沟切割较深,坡型以凹型和阶状坡为主,坡上植被一般不发育,多为农耕地带,以旱地为主,该类地貌区滑坡强发育,分布集中。中山地貌区地势高陡,呈脊状起伏,地形坡度一般30°~600,部分达700以上,以岩溶地貌为主,地表水系弱发育,主沟深切,支沟短、坡降陡、谷地狭窄,坡型以凸型和直线型为主,坡上植被较发育,多为林地和草灌地,该类地貌区滑坡弱发育,分布零散。
1.2地层岩性
地层岩性以三叠系巴东组的砂质泥岩为主,大面积分布于库区北部大昌、福田、双龙一带的大宁河及中部三溪、巫山、南陵一带的长江岸坡地段,其次为南部官渡、石碑、培石一线的谷坡地段,为低山丘陵地貌区的主要地层,岩性软弱,力学强度低,易风化破碎,组成的斜坡表层普遍分布第四系残积、坡积和崩积的松散土石,多形成土质斜坡,易被降雨浸润软化和冲蚀,为库区易滑地层。三叠系嘉陵江组地层与巴东组地层相间分布,呈条带状,志留系至三叠系大治组地层分布零星,面积小,与嘉陵江组地层构成中山地貌区的主要地层,岩性为碳酸盐岩夹碎屑岩,岩石较坚强,力学强度较高,抗风化能力较强,组成的斜坡高陡,以岩质斜坡为主,在坡脚地段分布崩坡积松散土石,组成土质斜坡,是滑坡发生的地段。
1.3地质构造
地质构造控制了地形地貌的格局,也控制了地层岩性的分布。库区地质构造主体为褶皱,背斜与向斜呈规律性地相间分布,背斜展布地带为中山地貌区,以嘉陵江组等硬质岩层分布为主,向斜展布地带为低山丘陵地貌区,以巴东组地层分布为主,组成的斜坡有利于滑坡的形成,背斜构造轴部走向基本与山脊走向一致,组成斜坡不易形成滑坡。
1.4大气降雨与人类工程活动
库区位于巫山县境内中心地带,多年平均降雨量1049.3mm,年最大降雨量1356mm,月最大降雨量445.9mm(1979年9月),日最大降雨量141.4mm(1964年5月24日)。一年中降雨分布不均,主要降雨集中在5~9月,占全年降雨量的68.8%。调查的滑坡发生时间多在雨季,或一次大降雨过程延缓一定时间后发生滑坡。尤其是一次大降雨的中后期发生滑坡。陡坡垦殖、交通与城镇建设、移居安置迁建等人类工程活动,不但改变斜坡坡型与坡度,破坏岩土体结构,而且破坏生态环境,人为加大荷载等,促进了滑坡的形成与发展,在产生新的滑坡的同时,也会激发老滑坡的复活。
2滑坡的类型、分布及危害
2.1滑坡的类型
本次调查的滑坡189个,按物质成分、规模大小及稳定性等依据进行划分,滑坡全部为松散土石滑坡,崩塌均为岩质崩塌,大、中型滑坡占滑坡总数的91.5%,中、小型崩塌占崩塌总数的80%,处于潜在不稳定或不稳定的滑坡占总数的57.2%,崩塌均处于潜在不稳定状态(见表1)。
表1滑坡崩塌灾害分类表
2.2滑坡的分布
主要分布在长江、大宁河两岸,其次为官渡及抱龙一带。据统计,长江、大宁河两岸,各占调查总数的55.7%和34.5%,官渡至抱龙一带仅占调查总数的9.8%。从滑坡在地形高程和行政辖区上的分布情况来看,也存在着明显的差异性特点,以坝前水位175m高程为界,崩滑体前缘在175m(含175m)以下的涉水崩滑体为96个,不涉水崩滑体98个,分别占调查总数的49.5%和50.5%;分布于库区21个乡(镇)的崩滑体按分布数量以巫峡镇最多,共有43处,其次为曲尺乡、大昌镇和大溪镇,分别有28个、27个和25个,上述四个乡(镇)总共有123个,占调查总数的63.4%,各个乡(镇)分别占调查总数的22.16%、14.4%、13.9%和12.9%,龙溪、楚阳、大庙和笃坪四个乡(镇)分布最少,各有1个,其次为龙井、三溪各有2个;按城(集)镇和农村来看,以城(集)镇分布少,有34个,而大多数分布在农村,有160个,分别占调查总数的17.5%和82.5%。
2.3滑坡的危害
2.3.1滑坡危害现状
滑坡造成以下直接危害:对城乡工程建筑产生严重危害;对长江和大宁河航运、公路交通及运输具有破坏性影响;给城乡人民生命财产带来巨大损失;危害厂矿、企业、科教等企事业单位,给国家财产带来巨大损失;增大国家对三峡工程建设、城镇迁址及移民安置的直接投入。
造成以下间接影响:增加城乡人民心理负担,影响社会安定;对当地国民经济发展产生间接影响;导致水土流失、耕地损失、城乡人民生存生活环境恶化;使贫困山区贫困化加剧。
根据调查统计,滑坡已造成的危害主要表现为民房毁坏倒塌或开裂倾斜变形为危房,共计毁坏倒塌民房以及不能居住的危房21787m2,其次为人员死亡1人,水塘和埝渠局部变形破坏,以及公路开裂下沉和路基边坡垮塌等。
2.3.2滑坡危害预测
本次调查的滑坡可能发生的受威胁人数为39589人,受威胁的直接经济损失为105158万元,主要集中在巫峡镇、曲尺乡、大溪乡和大昌镇。而巫峡镇、官渡镇、大溪乡、曲尺乡、福田镇、大昌镇和南陵乡等7个乡(镇)的滑坡崩塌可能发生危害威胁人数为34770人,威胁直接经济损失为91050万元,分别占总数的87.8%和86.6%(表2)。
表2主要乡(镇)滑坡崩塌危害预测表
3滑坡的形成机制、发育特征、稳定性评价
3.1滑坡形成机制
3.1.1滑坡影响因素分析
(1)适宜的地形坡度和地形高差为滑坡的形成提供了空间条件。受河流侵蚀切割作用,谷坡较陡而临空,有利于斜坡岩土体在自重作用下临空卸荷,为岩土体滑动运移创造了空间条件。斜坡坡度和坡形是主要地形因素,库区滑坡多发生于坡度为20°~40°,坡形为凹型或阶状的斜坡。
(2)软弱岩土体为滑坡的形成提供了物质条件。组成滑坡体的岩性均为第四系松散土石,粉质粘土或粉土与碎块石混杂堆积物,结构松散,与下伏基岩接触面是滑坡形成的滑移控制面。
(3)暴雨是滑坡形成的主要孕灾因素。降雨年年发生,每年降雨时间和强度集中,季节性周期特征明显,每到雨季大量降雨尤其是暴雨对斜坡土体浸润、冲蚀、软化,降低其稳定性,引发滑动变形,是滑坡形成或突发的主要因素。
(4)人类活动是滑坡形成的重要促进因素。人工削坡、开挖、加载等工程活动,改变斜坡坡形和坡度,破坏岩土体应力结构和应力平衡,降低斜坡稳定性,促进滑坡的形成和发展。人为垦殖、毁林等经济活动,松动斜坡表层土石,破坏了植被固土保水的能力,增强了降雨对土体冲刷,促进了滑坡的形成和发展。
(5)水库蓄水降低了滑坡的稳定性,加剧滑坡滑动变形。库水位附近岩土体含水量急剧增大,滑坡土体受水饱和、冲刷等作用,抗剪强度大幅度降低,易引发滑坡部分地段失稳滑动变形破坏,从而降低整个滑坡的稳定性,激发滑坡复活。
3.1.2滑坡变形特征
库区滑坡在不同的时间均发生过不同程度的活动变形,初始时间一般在20世纪80年代末期至90年代初期,90年代末期是一个活动高潮期,大多数滑坡发生了较强烈的滑动变形,2003年蓄水前后一段时间内滑坡的活动性又开始增强。本次调查的滑坡变形现象主要是近年来发生的,部分滑坡变形还是最近时间发生或增强而明显的。其主要特征表现为:
(1)地表位移、拉裂。受人为耕种、封埋等原因,地表位移裂缝多被全部或部分破坏,迹象已不明,现有迹象表明地表拉裂缝长度一般30~100m,最长为200m,水平位移宽度一般1~10cm,最宽为100cm,垂直位移高度一般1~10cm,最大为100cm。
(2)地表浅表层小规模的滑动破坏。主要发生于斜坡坡面,两侧谷坡及前缘陡坡地段,造成地面发生局部塌陷,为局部滑动变形强烈而发生破坏的现象。
(3)建筑物变形,为常见的保留迹象较明显的变形特征。主要分布在民房建筑地段,在公路、挡墙、水渠等建筑物地段也有迹象,以民房墙体开裂、倾斜、倒塌,地基拉裂、位移下沉、公路路基下陷、路面拉裂位移以及挡墙和水渠边坡鼓裂、垮坍等现象为主要变形特征。墙体裂缝长度一般2~10m,宽度一般0.5~2cm,最宽为5cm,错位倾斜距离一般0.1~1cm,最大为10cm,地基拉裂缝长一般5~20m,宽0.2~1cm,最宽7cm,位移下沉高度一般0.2~1cm,最大为5cm。
(4)树木歪斜,水塘或水田漏水,地面洼地或湿地以及地面鼓丘等变形特征有少量表现。
3.1.3滑坡形成机制
根据调查分析,滑坡发育分布规律主要受控于地层岩性、地质构造、地形地貌、大气降水及人类工程活动,地层岩性、地质构造、地形地貌是滑坡形成的内在基础条件,大气降水入渗和人类工程活动是滑坡诱发的主要动力因素。
区内滑坡均为松散土层滑坡,滑体物质为粉质粘土、粉土与碎块石混杂,碎块石块径差异较大,磨圆度一般较差。在母岩为泥岩的滑坡中,碎块石块径在2~150mm之间;在母岩为灰岩等坚硬岩石的滑坡中,碎块石块径在5~400mm之间,碎石土密实度在松散—稍密之间,粉质粘土、粘土为坚硬—硬塑—可塑,遇水后易软化,可塑性增强,向软塑、流塑方向转化,易形成蠕滑或流动,滑面多为第四系与基岩接触面。且斜坡坡度较陡,多在20°~40°之间。降雨后,地表水渗入土体,至强风化顶面或基岩顶面运动,形成沿斜坡面的向下的径流,进而软化冲蚀土体,强度下降,加之切坡开挖、人为加载、水库蓄水等人类工程活动的影响,促进了滑坡发生发展。
3.2滑坡发育规律
3.2.1地貌类型上的差异性与地形坡度上的集中性
库区中部低山丘陵区滑坡集中发育分布,调查112个,占总数的59.3%,其次为北部低山丘陵区和南部低山丘陵区,中部中山区和南部中山滑坡零星分布,分别调查了6个和5个,各占总数的3.2%和2.6%;滑坡发生的斜坡坡度一般为20~40°,以30~40°斜坡最多,达102个,占总数的54.0%。
3.2.2地层岩性上的集中性
软弱的岩土体为主要易滑地层。斜坡岩土体是滑坡形成的物质基础,控制了滑坡的发育分布,岩性软弱的岩土体,构成的斜坡易发生滑坡。滑坡绝大多数发育在巴东组地层出露区,占总数的90.5%,嘉陵组地层出露区滑坡占总数5.3%,志留系至二叠系地层出露区滑坡占总数的4.2%,
3.2.3地质构造上的差异性
向斜构造区滑坡发育强烈。滑坡主要发育分布在巫山向斜和大昌、水口向斜构造地带,滑坡数量分别占总数58.2%和22.2%,其次为官渡、培石向斜构造地带,滑坡数量占总数的10.5%,背斜和断层构造地带发育分布很少,分别占总数的6.9%和2.1%,
3.2.4时间上的季节性
滑坡发生发展时间集中在雨季。根据调查,滑坡灾害形成的影响因素表明,降雨尤其是暴雨是滑坡灾害形成的主要诱发因素。巫山县降雨丰沛,多年平均降雨量为1049.3mm,降雨集中在每年的5~9月,其降雨量占全年降雨量的68.8%,降雨强度大,多大雨和暴雨,最大一日降雨量达141.4mm,因此,库区滑坡灾害多发生在每年雨季,主要集中在雨季的5~9月发生。
3.3滑坡稳定性评价
根据滑坡形成的地形地貌、地层岩性和降雨等自然地质作用以及开挖、加载和水库蓄水等人类工程活动影响,结合滑坡变形特征和变形发育史,定性评价滑坡的稳定性。
3.3.1稳定性现状评价
在评价滑坡目前稳定状况时,考虑到滑坡影响因素相类似的条件下,将滑坡近年来尤其是最近时间发生或活动加强而增大的变形特征,作为评价滑坡稳定性的半定量依据,其评价结果稳定和基本稳定滑坡81个,占调查总数的42.8%,潜在不稳定和不稳定滑坡108个,占调查总数的57.2%,见表3。
表3滑坡目前稳定状况统计表
3.3.2稳定性预测评价
在预测滑坡发展趋势时,考虑到滑坡目前稳定状况和潜在不稳因素(如水库蓄水、降雨、开挖、加载等)的强度,周期以及它们对滑坡稳定性的影响,重点分析水库效应对涉水滑坡稳定性的影响。三峡库区蓄水位已于2003年6月达到坝前135m高程,按蓄水计划安排2007年9月至2009年汛前,库水位达到坝前156m高程,以后按坝前175m水位方案运行。在水库正常运行下,145~175m高程为库水位急剧变幅带,对于本次调查的96个涉水滑坡而言,滑坡前缘处于此变幅带内,水位升高时,岸坡土体浸泡于水中,地下水位抬高,引起土体软化,坡体静水压力增大,水位急剧下降时,将导致滑体内外产生水头差而形成动水压力,同时地下水流出时会携带大量粘性物质和细颗粒,使坡体架空而失稳产生塌滑,在未采取防治工程措施的条件下,涉水滑坡均会发生不同程度的塌岸,从而引发滑坡部分或整个滑动变形破坏,因此,由于水库效应的影响,不稳定滑坡大量增加。
3.4滑坡主要诱发因素
根据调查分析,在诱发滑坡的暴雨、冲蚀、库水位、开挖、加载及地震等诸多非地质孕灾因素中,暴雨是主要的自然诱发因素,开挖加载是主要的人为诱发因素。随着三峡工程坝前135m水位蓄水以后,库水位已成为影响滑坡稳定性的重要因素,水位继续上升过程中和以后变化时,对滑坡稳定性的影响会日益严重。
3.4.1暴雨是诱发滑坡的主要自然因素
库区滑坡集中分布于长江、大宁河等干支流河谷岸坡地带,地貌类型为低山丘陵地形,人口密度大,耕地大量分布,农业经济活跃,同时生态环境脆弱,植被条件差,斜坡岩土体失去植被保护后,雨季暴雨会大量入渗,既增大了岩土体容重,降低其抗剪强度,又在土体与下伏岩层接触带形成地下水活跃地带,产生静、动水压力,促进滑动面的发育形成,使斜坡岩土体向不利于稳定的方式发展,诱发滑坡的形成和发展,大量滑坡发生时间集中在每年雨季(5~9月),其滑动变形或破坏均与大量降雨密切相关,由此说明暴雨是诱发滑坡的主要自然因素。
3.4.2开挖和加载是诱发滑坡的主要人为因素
由于库区淹没城集镇、道路、居民点、工厂等人口和设施的迁建安置,人类工程活动日益活跃,影响范围和发生强度不断加大,切坡开挖及坡体上荷载增加现象频繁发生,既改变了斜坡形态,增大边坡坡度和高度,又破坏了岩土体内部结构和应力平衡,同时毁坏生态植被,对地质环境造成不同程度的改变和影响,降低了斜坡的稳定性,促进了斜坡土体的变形破坏,诱发了滑坡的形成与发展。近年来巫山县新城区,双龙镇等城镇迁建中出现的多处新滑坡,大昌镇春早村庙湾子等移民迁建小区发生的滑坡等等,均与切坡开挖、增加荷载等人类工程活动密切相关。
3.4.3水库效应对滑坡稳定性的影响作用明显增强
库区二期蓄水至坝前135m水位以后,除部分位置低的滑坡被全部或大部分淹没外,还有一些滑坡如巫峡镇红岩子滑坡、江东咀滑坡以及双龙镇下湾村向阳坪滑坡等,滑坡前受此水位影响,降低了滑坡的稳定性,出现新的蠕动变形现象。如向阳坪滑坡,位于大宁河右岸,滑坡前缘被库水位淹没,2003年7月下旬,民房水泥地面和砖墙出现新的裂缝,至2004年4月5日调查发现,地裂长度一般2.6~6.9m,最长19.2m,宽度一般0.3~1.6m,最宽7m,下沉距离最大为14cm,滑动变形迹象明显,说明库水位对滑坡的稳定性影响较强烈。
水库蓄水对滑坡稳定性的影响主要是通过饱和浸泡水位附近的岩土体,改变其水文地质条件,使岩土体容重增大,抗剪强度急剧下降,水位波动冲刷岸坡产生塌岸,以及水位回落产生的动水压力的作用等影响方式,导致滑坡部分或整体滑动变形或破坏。随着库水位上升至坝前175m水位,在145~175m之间波动时,对库区滑坡稳定性的影响会更加显著。
4结语
(1)巫山县库区自身的自然地质环境条件较差,自然地质作用产生的地质灾害发育,以滑坡灾害为主要类型,具有点多面广、规模大和危害重的特点。随着三峡工程建设和移民迁建工程的逐步实施,人为作用诱发的地质灾害不断发生,危害加剧,使巫山县库区成为三峡库区地质灾害的易发区、多发区和重灾区之一。
(2)本次调查的滑坡均为松散土石滑坡,大中型滑坡占91.5%,现状条件下处于潜在不稳定或不稳定的滑坡占57.2%;主要分布在低山地貌区,集中在中西部长江沿岸的巫峡镇、南陵乡、曲尺乡和大溪镇,以及北部大宁河沿岸的大昌镇、福田镇和双龙镇。
(3)滑坡主要成生于三叠系巴东组地层出露的斜坡地带,地形坡度为20~40°的斜坡是滑坡发生的优势地形,坡度过陡则易形成崩塌。发生滑坡的斜坡坡形主要是凹型,均为土质结构斜坡,堆积土层与下伏基岩接触面常构成控滑结构面,受降雨或地表水垂直入渗,接触面润滑软化,堆积土层含水饱和,粘聚力下降,与下伏基岩间抗剪强度大幅降低,从而产生滑坡或变形。
(4)降雨和人类工程活动是诱发滑坡崩塌的主要因素,也是较地质环境条件更为活跃的影响因素。在水库效应的影响下,滑坡变形破坏以前缘坍滑—牵引后退—暂稳定—再坍滑后退直到稳定的形式发展,水库效应是主要复活诱发因素,因此应加强涉水滑坡的防治工作。
(5)巫山县以滑坡为主的地质灾害发育,危害严重,应加强监测预防、应急处理、工程治理等工作。
㈢ 三峡大坝库区可能引起哪些地质灾害
三峡大坝蓄水,巨大的水压可能对地下岩层有压坏的可能,引起局部地震。如果库区岩土不实,容易发生渗透。水位升高,对库区的山体作用,形成山体滑坡。
㈣ 教育部长江三峡库区地质灾害研究中心的研究生怎么样
中国地质大学土木工程专业的研究生就业是不成问题的,而且薪资待遇都还不错,内如果你读北京容校区甚至能留京。这两个专业方向偏重不同,工程学院的土木专业以工程地质、隧道及地下建筑工程、岩土工程及基础工程施工为专业特色,而研究所的那个偏向于水利和地深方向。但其实课程都差不多,更多详细信息你可以登陆该校的研究生院网站了解。希望这些能帮助你,祝考研成功!