地质灾害预警最新
⑴ 地质灾害气象预警区划
如前所述,在地质灾害的控制与影响因素中,降雨和人类工程活动是最为活跃的触发因素。在人类不合理工程活动地段,黄土的卸荷与风化裂隙、落水洞、陷穴等尤为发育,降水容易沿着这些通道快速渗入地下,引发地质灾害,降雨成为触发地质灾害最积极的因素。所以,通过气象预报,可有效开展滑坡崩塌泥石流等地质灾害预警,实现防灾减灾的目标。
一、临界降雨量确定
据本次调查资料,2000~2004年发生的13次新滑坡和16次崩塌,其发生频次均与月平均降水量呈显著的正相关,滑坡、崩塌发生时间全部落在6~10月份,在9月份最高,7月和8月次之,6月和10月份较低。地质灾害的发生频次与本区的降水特征有关,9月份常出现淋雨,并伴有大雨,这种降水特征有最利于浸润黄土和入渗补给地下水,触发地质灾害发生;7月和8月份集中了全年75%以上的R1h≥10mm强降水和82%以上的R1h≥20mm强降水,这种强降水特征不如9月份有利于降水入渗,所以,7月和8月份出现的灾害频次不如9月份高;6月和10月份强降水频率低于7月,8月和9月,但高于其他月份;另外,10月份也常有淋雨,所以在6月和10月份也引发了地质灾害。由此可见,无论是淋雨,还是强降雨,都是触发地质灾害的因素。
宝塔区历史上仅有一个气象站,不能反映降水特征的空间展布,为了能够揭示区域降水特征,本次与陕西省气象局合作,对1980年到2005年25年间,陕北黄土高原地区的27个气象站的日、时降水量进行了分析,统计了各站日降水量中R1h≥10mm或20mm的局地暴雨过程,对其气候特征和时空间演变规律进行归类分析、研究总结。研究结果表明:
(1)在25年中,陕北黄土高原共出现R1h≥10mm的强降水2638时次,R1h≥20mm强降水574时次,年平均R1h≥10mm的强降水有106时次,R1h≥20mm强降水有23时次。
(2)R1h≥10mm发生时次最多的年份是1994年,为173时次;最少的是1980年,仅有36时次。R1h≥20mm强降水发生次数最多的年份是1994年,为56时次;最少的是1982年仅有3时次。可见陕北强降水出现时次的年际差异较大,最多年份与最少年份相差十几倍之多。
(3)R1h≥10mm强降水旬分布具有多峰值的特点。7月中旬,7月下旬和8月上旬为第一高峰值,在数值比较接近也是全年的最大峰值;8月下旬为全年的次峰值,6月上旬为全年的第三峰值。R1h≥20mm单峰特征较明显,8月上旬为其高峰值,8月上旬之前,强降水频次缓升后,强降水的频次突然降低、减少。
(4)淋雨主要出现在9月,10月份也有淋雨和大雨发生。
(5)宝塔区暴雨年频次>0.8(图7-5),大雨日年频次为4左右(图7-6)。
图7-5 陕北暴雨年频次分布图
图7-6 陕北大雨年频次分布图
对比分析本区降水特征和地质灾害发生的关系,可以确定地质灾害气象预警的临界降雨量。预警的临界降雨量特征值分别是:
(1)日降雨量≥50mm(R24h≥50mm);
(2)6小时降雨量≥25mm(R6h≥25mm);
(3)1小时降雨量≥20mm或3小时降雨量≥25mm并且日降雨量≥30mm(R1h≥20mm或R3h≥25mm且R24h≥30mm);
(4)连续多日降雨,且日降雨量≥10mm。
符合以上条件之一就应该进行地质灾害预警,作为地质灾害气象诱发日向外发布。
据此临界降雨量可以进行模拟校验,校验结果表明,调查区内地质灾害暴雨诱发日为2.5d/a,连阴雨诱发日为2.8d/a,即每年可预报的次数将在2~7次。说明选取上述4项指标是符合实际情况和可以操作的(图7-7)。
图7-7 陕北地质灾害暴雨诱发日分布图
二、地质灾害气象预警级别
参考陕西省地质灾害气象预报预警分级划分,结合调查区实际情况,将预警级别划分为三级:分别是Ⅰ级预警、Ⅱ级预警和Ⅲ级预警。
Ⅰ级预警是高级预警,地质灾害发生概率最大,为地质灾害发布警报级;
Ⅱ级预警是中级预警,地质灾害发生概率中等,为地质灾害发布预报级;
Ⅲ级预警是低级预警,地质灾害发生概率最小,为地质灾害不发布预报级。
三、地质灾害气象预警区划
(一)日降雨量≥50mm预警区划
本降雨量级别在预警气象中相对降雨强度为最小(图7-8)。
图7-8日降雨量≥50mm预警区划图
(1)Ⅰ级预警区的范围最小,仅限于北半部延河流域,分散于这一区域的北部、西部和中部少部分地区(图中深灰色)。总面积927.71km2,占调查区总面积的26.1%。这些地区位居延河干流,河谷深切;以及较长支流的上游,沟谷强烈下切地带,人类工程活动极为强烈,为调查区的地质灾害发育区。
(2)Ⅱ级预警区主要分布在调查区北部延河流域(图中浅灰色),面积1303.96km2,占调查区总面积的36.7%。这一区域大多为延河次级支沟黄土梁、峁地区,主要沟谷多处于中游,人类工程活动较强烈,地质灾害发育强度稍低。
(3)Ⅲ级预警区分布于调查区南部汾川河流域(图中白色),面积1324.33km2,占调查区总面积的37.2%。这里植被茂盛,沟谷宽缓,人类工程活动不强烈,地质灾害极不发育。
(二)6小时降雨量≥25mm预警区划
本降雨量级别在预警气象中相对降雨强度为中等(图7-9)。
图7-9 6小时降雨量≥25mm预警区划图
(1)Ⅰ级预警区的范围较前有所扩大。除北部延河流域中部少量区域外,占据北部延河流域大部分地区(图中深灰色)。总面积1627.70km2,占调查区总面积的45.8%。为调查区地质灾害发育区及部分次发育区。
(2)Ⅱ级预警区的范围较前有所减少。主要分布在调查区北部延河流域(图中浅灰色),南部汾川河流域有少量分布。总面积676.38km2,占调查区总面积的19%。这一区域大多为延河次级支沟黄土梁、峁地区,主要沟谷多处于中游,人类工程活动较强烈,地质灾害发育强度稍低。
(3)Ⅲ级预警区的范围较前有所减少,全部分布于调查区南部汾川河流域(图中白色),面积1251.92km2,占调查区总面积的35.2%。这里植被茂盛,沟谷宽缓,人类工程活动不强烈,地质灾害极不发育。
(三)1小时降雨量≥20mm预警区划
本降雨量级别还包括3小时降雨量≥25mm并且日降雨量≥30mm,在预警气象中相对降雨强度为最大(图7-10)。
图7-10 1小时降雨量≥20mm预警区划图
(1)Ⅰ级预警区的范围为扩展至最大。占据整个北部延河流域(图中深灰色)。总面积2232.67km2,占调查区总面积的62.8%。为调查区地质灾害发育区及全部次发育区。
(2)Ⅱ级预警区的范围缩减至最少。从调查区北部延河流域全部退出,仅分布在南部汾川河流域主干流(图中浅灰色),分布面积194.91km2,占调查区总面积的5.5%。这一区域为汾川河主干流上中游,沟谷切割较强烈,地质灾害发育程度较其他地区稍强。
(3)Ⅲ级预警区的范围缩减至最小,全部分布于调查区南部汾川河流域(图中白色),面积1128.42km2,占调查区总面积的31.7%。这里植被茂盛,沟谷宽缓,人类工程活动较少,地质灾害极不发育。
⑵ 地质灾害气象预报预警响应
群测群防机构可通过电视、网络、传真、通讯等形式接收国家、省(自治区、直辖市)、市、县发布的地质灾害气象预报预警信息。
县级群测群防机构收到地质灾害气象预报预警信息后,应在2小时内将信息转发到相关地质灾害防治责任单位、隐患点监测责任人以及隐患区巡查责任单位(或责任人)。
(1)当预警级别为3级时,群测群防机构应通知基层群测群防监测人员注意,查看隐患点变化情况。
(2)当预警级别为4级时,群测群防机构应通知基层群测群防监测人员加密监测,注意防范,做好启动防灾应急预案的准备。
(3)当预警级别为5级时,群测群防组织应立即通知基层群测群防监测人员加强巡查,加密监测。一旦发现地质灾害临灾前兆,应立即发布紧急撤离信号,组织疏散受威胁的人员。
(4)未在地质灾害气象预报预警区域内,出现持续大雨或暴雨天气时,群测群防责任单位和监测人员应及时上岗加强监测。当发现临灾特征时,应立即组织疏散受威胁人员。
(5)鼓励公民和组织通过电话等各种形式向人民政府、国土资源主管部门提供地质灾害灾情和险情信息。
(6)县级群测群防机构在汛期每个月25日前,应将当月地质灾害信息反馈到省(自治区、直辖市)、市国土资源主管部门,信息反馈内容详见附件Ⅰ-5。
⑶ 地质灾害区域预警原理
据检索统计,世界上约有20多个国家或地区不同程度地开展过降雨引发滑坡、泥石流的研究或预警工作。其中,中国香港(Brandetal.,1984)、美国(Keeferetal.,1987)、日本(Fukuzono,1985)、巴西(Neiva,1998)、委内瑞拉(Wieczoreketal.,2001)、波多黎各(Larsen&Simon,1993)和中国大陆等曾经或正在进行面向公众社会的降雨引发区域性滑坡、泥石流的早期预警与减灾服务工作,预警的地质空间精度达到数千米量级,时间精度达到小时量级。这些国家和地区一般都在地质灾害多发区或敏感区开展或完成了比较详细的地质灾害调查评价工作,拥有比较长期且比较完整的降雨与滑坡、泥石流关系资料,或在典型地区建立了比较完善的降雨遥控监测网络和先进的数据传输系统。
综合分析国内外研究与应用状况,基于气象因素的区域地质灾害预警预报理论原理可初步划分为三大类,即隐式统计预报法、显式统计预报法和动力预报法。
4.2.1 隐式统计预报法
隐式统计预报法把地质环境因素的作用隐含在降雨参数中,某地区的预警判据中仅仅考虑降雨参数建立模型。隐式统计预报法可称为第一代预报方法,比较适用于地质环境模式比较单一的小区域。由于这种方法只涉及一个或一类参数,无论预警区域的研究程度深浅均可使用,所以这是国内外广泛使用的方法,也是最易于推广的方法。这种方法特别适用于有限空间范围,且地质环境条件变化不大的地区,如以花岗岩及其风化残积物分布为主的中国香港地区多年来一直在研究应用和深化这一方法。
这种方法考虑的降雨参数包括年降雨量、季度降雨量、月降雨量、多日降雨量、日降雨量、小时降雨量和10min降雨量等。实际应用时,一般只涉及1~3个参数作为预报判据,如临界降雨量、降雨强度、有效降雨量或等效降雨量等。
突发性地质灾害临界过程降雨量判据的预警方法抓住了气象因素诱发地质灾害的关键方面,但预警精度必然受到所预警地区面积大小、突发性地质事件样本数量、地质环境复杂程度和地质环境稳定性及区域社会活动状况的限制,单一临界降雨量指标作为预警判据的代表性是有限的。
代表性研究成果主要有:
Onodera et al.( 1974) 通过研究日本的大量滑坡,提出累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 作为判据。Nilsen et al.( 1976) 发现美国 Alameda,Califor-nia 在累计降雨量超过 180mm 时,滑坡将频繁发生。Oberste-lehn( 1976) 认为累计降雨量达到 250mm 左右,美国 San Benito,California 将发生滑坡。Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。Caine( 1980) 全面总结了全球的可利用数据,给出了不同地区诱发滑坡暴雨事件的降雨强度和持续时间与滑坡的关系式。这一关系式当然不可能适用于全球所有地区( Crozier 在 1997 年证明) ,仍不失为探讨诱发滑坡临界降雨值的里程碑。
Brand et al.( 1984) 在中国香港研究表明,大多数滑坡由局部高强度短历时降雨诱发,而前期降雨量不是主要因素,除非是小型滑坡。Ng and Shi( 1998) 认为降雨的持续也是一个非常重要的诱发滑坡的因素。中国香港地区预测 24h 内降雨量达到 175mm 或 60min 内市区内雨量超过 70mm,即认为达到滑坡预报阈值,即由政府发出通报。中国香港平均每年约发出 3 次山洪滑坡暴发警报。
Ganuti et al.( 1985) 提出了临界降雨系数( critical precipitation coefficient,CPC) 的概念,并总结出当 CPC >0.5 时,将有 10a 一遇的滑坡发生; 当 CPC >0.6 时,将有 20a 一遇的滑坡发生。
Glade( 1997) 综合前人研究成果建立了确定诱发滑坡的降雨临界值的 3 个模型,并在纽西兰北岛南部的 Wellington 地区进行了验证。3 个模型要求的基本数据为: 日降雨量、滑坡发生日期和土体潜在日蒸发量( 通过 Thornthwaite method 方法计算得到) 。降雨强度临界值Glade( 1997) 的模型 1———日降雨模型( daily rainfall model) ,只使用日降雨量参数,简单地分析诱发滑坡和不诱发滑坡的日降雨量( Glade,1998) ,得出最小临界值和最大临界值,即在最小临界值以下,没有滑坡发生; 在最大临界值以上,滑坡一定发生。降雨量等级划分以20mm 为一个等级; 降雨过程雨量临界值 Glade( 1997) 的模型 2———前期日降雨量模型( an-tecedent daily rainfall model) ,考虑了前期降雨的影响。他认为决定前期情况有两个主要因素: 前期降雨的历时时间和土体含水量减少的速率; 土体含水状态临界值 Glade( 1997) 的模型 3———前期土体含水状态模型( antecedent soil water status model) ,他认为除了前期雨量,土体含水量和潜在的蒸发量对滑坡的影响也很大。
刘传正在 2003 年 5 月主持全国地质灾害气象预警工作过程中,利用地质灾害发生前15d 降雨量建立滑坡、泥石流发生区带的临界过程降雨量创建了预警判据模式图,并结合具体区域( 2003 年28 个区、2004 年以后74 个区) 进行校正的方法。该方法适应3 级预报的要求界定了 α 线和 β 线作为预警等级界限。3 年多来汛期的预警成果发布检验与应用证明,该方法在科学依据上是成立的,但限于预警区域过大、基础数据和地质灾害统计样本数量太少,准确率有待提高,同时也充分说明了开展地质灾害数据集成研究的迫切性。
另外,中国科学院成都山地灾害与环境研究所等机构在单条泥石流监测与预警建模方面进行了多年持续不懈的研究工作,取得了具有代表性的成果。
4.2.2 显式统计预报法
显式统计预报法是一种考虑地质环境变化与降雨参数等多因素叠加建立预警判据模型的方法,它是由地质灾害危险性区划与空间预测转化过来的(CarraraA.,1983;HaruyamaH.&KawakamiH.,1984;BaezaC.&CorominasJ.,1996;CarraraA.,CardinaliM.&GuzzettiF.,1991;刘传正,2004;殷坤龙,2005)。
区域地质灾害危险性评价和风险区划研究仍是当前的研究主流,而利用之进行地质灾害的实时预警与发布则多处于探索阶段。这种方法可以充分反映预警地区地质环境要素的变化,并随着调查研究精度的提高相应地提高地质灾害的空间预警精度。显式统计预报法可称为第二代预报方法,是正在探索中的方法,比较适用于地质环境模式比较复杂的大区域。
基于地质环境空间分析的突发性地质灾害时空预警理论与方法是根据单元分析结果经过合成实现的,克服了仅仅依据单一临界雨量指标的限制,但对临界诱发因素的表达、预警指标的选定与量化分级等尚存在需要进一步研究的诸多问题。
因此,要实现完全科学意义上的区域突发性地质灾害预警,必须建立临界过程降雨量判据与地质环境空间分析耦合模型的理论方法———广义显式统计模式地质灾害预报方法,预警等级指数(W)是内外动力的联立方程组。即
中国地质灾害区域预警方法与应用
式中:W为预警等级指数;a为地外天体引力作用,包括太阳、月亮的引潮力,太阳黑子、表面耀斑和太阳风等对地球表面的作用,a=f(a1,a2,…,an);b为地球内动力作用,主要表现为断裂活动、地震和火山爆发等,b=f(b1,b2,…,bn);c为地球表层外动力作用,包括降雨、渗流、冲刷、侵蚀、风化、植物根劈、风暴、温度、干燥和冻融作用等,c=f(c1,c2,…,cn);d为人类社会工程经济活动作用,包括资源、能源开发和工程建设等引起地质环境的变化,d=f(d1,d2,…,dn)。
20世纪70年代,以美国加利福尼亚州旧金山地区圣马提俄郡的滑坡敏感性图为代表,利用多参数图的加权(或不加权)叠加得到区域滑坡灾害预测图。
20世纪80年代,CarraraA.(1983)将多元统计分析预测方法引用到区域滑坡空间预测中,并在世界各国得到迅速发展与推广。如HaruyamaH.&KawakamiH.(1984)利用数学统计理论对日本活火山地区降雨引起的滑坡灾害进行了危险度评价。BaezaC.&CorominasJ.(1996)利用统计判别分析模型进行了浅层滑坡敏感性评估,结果斜坡破坏的正确预测率达到96.4%,有力地说明了统计预测的适用性。CarraraA.,CardinaliM.&GuzzettiF.等(1991)将统计模型与GIS结合,应用于意大利中部某小型汇水盆地的滑坡危险性评估,实现从数据获取到分析、管理的自动化,结果证明统计分析与GIS的综合使用是一种快速、可行、费用低的区域滑坡危险性评价与制图方法。
20世纪90年代中后期以来,随着计算机技术和信息科学的高速发展,RS、GIS和GPS等“3S”技术联合应用使快速处理海量的地质环境数据成为可能,出现了地质灾害空间预测模型方法应用研究逐步从地质灾害危险评价与预警应用相结合的新态势。
刘传正等(2004)创建并发表了用于区域地质灾害评价和预警的“发育度”、“潜势度”、“危险度”和“危害度”时空递进分析理论与方法,简称“四度”递进分析法(AMFP),并在三峡库区(54175km2)和四川雅安地质灾害预警试验区(1067km2)进行了应用,结果是可信的。
李长江等(2004)将GIS和ANN(人工神经网络)相互融合,考虑不同的地质、地貌和水文地质背景,建立了给定降雨量的浙江省区域群发性滑坡灾害概率预报(警)系统(LAPS)。
宋光齐等(2004)根据地貌、岩性和地质构造几率分布,基于GIS建立了给定降雨量的四川省地质灾害预报系统。
殷坤龙等(2005)以浙江省为例探索了基于WebGIS的突发性地质灾害预警预报问题。
由于我国政府在全国范围内推行区域地质灾害预警预报机制,目前我国的预警探索工作走在世界前列。
4.2.3 动力预报法
动力预报法是一种考虑地质体在降雨过程中地-气耦合作用下研究对象自身动力变化过程而建立预警判据方程的方法,实质上是一种解析方法。动力预报方法的预报结果是确定性的,可称为第三代预报方法,目前只适用于单体试验区或特别重要的局部区域。该方法主要依据降雨前、降雨中和降雨后降水入渗在斜坡体内的转化机制,具体描述整个过程斜坡体内地下水动力作用变化与斜坡体状态及其稳定性的对应关系。通过钻孔监测地下水位动态、孔隙水压力和斜坡应力-位移等,揭示降雨前、降雨过程中和降雨后斜坡体内地下水的实时动态响应变化规律、整个坡体物理性状变化及其变形破坏过程的关系。在充分考虑含水量、基质吸力、孔隙水压力、渗透水压力、饱水带形成和滑坡—泥石流转化因素条件下,选用数学物理方程研究解析斜坡体内地下水动力场变化规律与斜坡稳定性的关系,确定多参数的预警阈值,从而实现地质灾害的实时动力预报。
目前,这种方法局限于试验场地或单个斜坡的研究探索阶段,必须依赖具有实时监测、实时传输和实时数据处理功能的立体监测网(地-气耦合)作为支撑才能实现实时预报。由于理论、技术和经费等方面的高要求,这种方法比较适用于重要的小区域或单体的研究性监测预警。
据研究,美国旧金山海湾地区的6h降雨量达到4in(101.6mm)时,就可能引发大面积泥石流。为了监测降雨期间地下水压力的变化,研究人员设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。
在我国,刘传正等(2004)在四川雅安区域地质灾害监测预警试验区进行了大气降水与斜坡岩土层含水量变化的分层响应监测,发现不同降雨过程和降雨强度下,斜坡岩土体的含水量相应发生明显变化,可以研究降雨在斜坡岩土体内的渗流过程直至出现滑坡、泥石流的成因机理。
2003年8月23~25日是一个引发多处地质灾害并造成人员伤亡的典型降雨过程,可以作为分析实例。以8月19日15时的含水量为背景值,则8月23,24和25日降雨过程分别对应第96,120和144h的含水量,4个层位的记录曲线明确反映了随累计降雨量增加斜坡岩土体含水量急剧增加,第一、二层位达到过饱和状态,且含水量急剧增加出现于第121h,即24日15时之后,滞后于降雨时间约20h。各层含水量峰值出现于第151h,即接近滑坡呈区域性暴发时间(26日零时,对应第153h)。该分析未考虑沿裂隙的地下水渗流作用(图4.1)。
图4.1 四川雅安桑树坡监测试验点第1~4层含水量随时间变化曲线
分析对比隐式统计预报法、显式统计预报法和动力预报法3类方法,我们认为,未来的方向是探索地质灾害隐式统计、显式统计与动力预警3种模型的联合应用方法,以适应不同层级的地质灾害预警需求。研究内容包括临界雨量统计模型、地质环境因素叠加统计模型和地质体实时变化(水动力、应力、应变、热力场和地磁场等)的数学物理模型等多参数、多模型的耦合。3种模型的联合应用不仅适应特别重要的区域或小流域,也为单体地质灾害的动力预警与应急响应提供决策依据。
⑷ 地质灾害调查与预警
一、部署重点
开展我国西南山区、黄土高原、湘鄂桂山区等主要地质灾害高易发区地质灾害详细调查,建立典型地质灾害监测预警区;完善长江三角洲、华北平原和汾渭盆地地面沉降监测网,开展珠江三角洲、东北平原等地区地面沉降调查,开展京沪、大同—西安等高速铁路沿线地面沉降与地裂缝详细调查。
二、部署建议
(一)全国地质灾害调查监测综合评价
1.工作现状
完成了全国1:50万以地质灾害为主的环境地质调查与综合研究,完成了700个县(市)的县市地质灾害调查成果集成,正在开展1640个县(市)的县市地质灾害调查成果集成。2005年起,开展1:5万地质灾害详细调查数据库建设及成果初步梳理工作。开展地质灾害气象预警技术方法研究,逐步提高我国区域地质灾害预警预报技术水平。
但随着详细调查与监测预警示范的大规模铺开,需要进一步进行数据的整理、分析与综合集成,并在研究基础上编制满足国家层面需求的系列图系。
2.工作目标
总体目标:整合地质灾害详细调查成果,分析地质灾害发育分布规律,划定地质灾害易发区,搭建综合研究技术平台和信息化平台,建立全国地质灾害数据库。整合监测预警示范区成果,研究监测预警网络建设模式,形成全国地质灾害监测预警信息平台。完善地质灾害调查与监测技术规程与技术要求,综合研究并编制满足国家需要的地质灾害系列图系。
“十二五”期间:建立地质灾害调查与地质灾害监测预警成果集成体系。总结地质灾害调查成果,开展区域地质灾害易发区综合评价和易发程度区划。总结地质灾害监测预警示范区建设成果,搭建地质灾害监测预警信息平台。
“十三五”期间:完善地质灾害调查与地质灾害监测预警成果集成体系。进一步总结地质灾害调查成果,形成全国和省级地质灾害易发区综合评价和易发程度区划。系统总结地质灾害调查与地质灾害监测成果,形成全国地质灾害早期预警区划。
3.工作任务
完成全国1:5万地质灾害调查与典型预警示范区建设成果的汇总、集成与综合研究。搭建1:5万地质灾害调查综合研究技术平台和信息化平台,建立全国地质灾害数据库。搭建全国地质灾害监测预警信息平台,完善早期预警产品发布体系。总结修订《崩塌、滑坡、泥石流1:50000调查规范》,完成全国地质灾害早期预警区划,编制全国及分省地质灾害与地质灾害早期预警综合图系。
“十二五”期间:对西北黄土高原区、西南山区、湘鄂桂山区、东南沿海地区地质灾害高易发区1:5万地质灾害调查成果进行集成,建立1:5万地质灾害调查信息化成果技术要求;完成11个地质灾害监测预警示范区成果综合研究,搭建全国地质灾害监测预警信息平台,初步建立全国地质灾害早期预警区划。
“十三五”期间:完成西北黄土高原区、西南山区、湘鄂桂山区、东南沿海地区地质灾害高、中易发区1:5万地质灾害调查成果集成,完善1:5万地质灾害调查信息化成果技术要求。完成全国30个地质灾害监测预警示范区成果综合研究,形成建立全国地质灾害早期预警区划。编制完成全国及分省地质灾害与地质灾害早期预警综合图系。
(二)西北黄土高原区1:5万地质灾害调查
1.工作现状
完成了以省(区、市)为单元的西北省区1:50万以地质灾害为主的环境地质调查、263个县的1:10万山区丘陵县地质灾害调查。2005年起,在46个县近10万平方千米范围内开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力地支持了完善地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在西北黄土高原区及秦巴山区中,仍有处于地质灾害高、中易发区的191个县近54万平方千米需要尽快开展1:5万地质灾害调查工作。
2.工作目标
以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西北黄土高原区及秦巴山区20万平方千米(191个县)的1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:开展西北地质灾害高易发区1:5万地质灾害调查,基本查清区内地质灾害分布发育规律,逐步建立地质灾害风险控制管理工作体系。
“十三五”期间:继续开展地质灾害高、中易发区1:5万地质灾害调查,查清区内地质灾害分布发育规律,形成西北地区地质灾害易发区区划和重点区域地质灾害风险管理区划,显著提高我国地质灾害防治水平。
3.工作任务
开展西北地区地质灾害中、高易发区1:5万地质灾害调查;完善地质灾害易发性和危险性区划;健全完善地质灾害群测群防体系,建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展1:5万地质灾害调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成西北地区高、中易发区调查。在调查基础上,完善地质灾害易发性和危险性区划,健全完善地质灾害群测群防体系,探索建立地质灾害风险评价与风险控制管理工作体系。
“十二五”期间:开展西北黄土高原区地质灾害高易发区1:5万地质灾害调查。
“十三五”期间:继续开展西北黄土高原区地质灾害高、中易发区1:5万地质灾害调查。
(三)西南山区1:5万地质灾害调查
1.工作现状
完成了以省(区、市)为单元的西南山区1:50万以地质灾害为主的环境地质调查、423个县的1:10万山区丘陵县地质灾害调查。2005年起,在29个县(近10万平方千米)开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力支持并完善了地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在西南山区,仍有处于地质灾害高、中易发区的190个县近75万平方千米需要尽快开展地质灾害详细调查工作。
2.工作目标
总体目标:以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西南山区、藏东地区75万平方千米,1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:开展西南川滇山区、藏东地区等地质灾害高易发区1:5万地质灾害调查,基本查清区内地质灾害分布发育规律,逐步建立地质灾害风险控制管理工作体系。
“十三五”期间:继续开展西南川滇山区、藏东地区地质灾害高、中易发区1:5万地质灾害调查,查清区内地质灾害分布发育规律,形成全国地质灾害易发区区划和重点区域地质灾害风险管理区划。显著提高我国地质灾害防治水平。
3.工作任务
开展西南川滇山区、藏东地区滑坡、崩塌、泥石流等突发性地质灾害中、高易发区1:5万地质灾害调查;健全完善覆盖地质灾害中、高易发区的群测群防网络,完善地质灾害易发性和危险性区划。建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展1:5万地质灾害调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成西南山区高、中易发区调查。在调查基础上,建立完善群测群防体系,完善地质灾害易发性和危险性区划,探索建立区域风险评价与风险控制管理工作体系。
“十二五”期间:开展西南山区高易发区1:5万地质灾害调查工作。
“十三五”期间:继续开展西南山区高、中易发区1:5万地质灾害调查工作。
(四)湘鄂桂山区地质灾害详细调查
1.工作现状
完成了以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查、287个县的1:10万山区丘陵县地质灾害调查。2005年起,在14个县近4万平方千米范围内开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力地支持了完善地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在湘鄂桂山区,仍有处于地质灾害高、中易发区的82个县近20万平方千米需要尽快开展1:5万地质灾害详细调查工作。
2.工作目标
总体目标:以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西南山区、藏东地区1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:完成湘鄂桂山地丘陵区20个县(市)1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,为制定防灾规划和减灾提供技术支撑。
“十三五”期间:全面完成湘鄂桂山地丘陵区40个县(市)1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,为制定防灾规划和减灾提供技术支撑。
3.工作任务
开展湘鄂黔山地区滑坡、崩塌、泥石流等突发性地质灾害中、高易发区1:5万地质灾害调查;健全完善覆盖地质灾害中、高易发区的群测群防网络,完善地质灾害易发性和危险性区划。建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展地质灾害1:5万调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成湘鄂黔山地区高、中易发区调查。在调查基础上,建立完善群测群防体系,完善地质灾害易发性和危险性区划,探索建立区域风险评价与风险控制管理工作体系。
“十二五”期间:开展高易发区1:5万地质灾害调查。
“十三五”期间:继续开展高、中易发区1:5万地质灾害调查。
(五)东南沿海山区1:5万地质灾害调查
调查区主要包括浙江、福建、安徽、江西四省常年遭受台风袭击的地质灾害高风险区及中低山丘陵区,总面积约12万平方千米。该区域人口密度高、经济发达,地质条件复杂,台风和降雨频繁,地质灾害影响严重。
1.工作现状
完成了以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查,以县(市)为单元的1:10万丘陵山区地质灾害调查约271个县(市),浙江省开展了小流域1:1万地质灾害调查。初步查明了崩塌、滑坡、泥石流等突发性地质灾害分布情况、发育特征、发育强度及其形成条件和发生规律,对地质灾害发生的环境地质条件和发展趋势进行了区划及预测评价,调查成果及时为重点县(市)及区域地质灾害防治提供了技术支撑。
虽然浙江开展小流域1:1万地质灾害调查调查,尚未系统开展1:5万地质灾害调查,缺少区域1:5万地质灾害调查资料,目前地质灾害防治依靠的是以往1:10万县市地质调查资料,地质灾害防灾工作能力和水平亟待提升。
2.工作目标
总体目标:全面完成地质灾害高、中易发区1:5万地质灾害调查工作,查明崩塌、滑坡、泥石流等突发性地质灾害分布情况、发育特征、发育强度及其形成条件和发生规律,对地质灾害发生的环境地质条件和发展趋势进行了区划及预测评价,调查成果及时为重点县(市)及区域地质灾害防治提供了技术支撑。
“十二五”期间:完成地质灾害高易发区1:5万地质灾害调查工作,选择25处重大地质灾害高易发区开展风险管理。
“十三五”期间:完成地质灾害中易发区1:5万地质灾害调查工作,选择15处重大地质灾害中易发区开展风险管理。
3.工作任务
以保护人民生命财产和生存环境、保障重大建设工程、重要矿山、国家级或省级旅游景区建设为目标,开展1:5万地质灾害调查,基本查明地质灾害发育及危害现状、形成条件和形成机理,进行地质灾害危险性评价和风险评估;开展区域地质灾害监测预警网络建设,建立典型区地质灾害监测预警示范;开展重大地质灾害调查与风险管理选区及评估;建立区域地质灾害数据共享平台。
(六)汶川地震地质灾害调查评价
1.工作现状
开展了工作区在内的青藏高原东南缘的地壳变形、断裂运动、地震活动研究、活动断裂和古地震研究、区内区域地壳稳定性研究及一系列的深部地球物理探测研究。从1991年到2006年已在青藏高原东部及邻区开展了十多年地壳形变监测。震后完成了地震灾区地质灾害应急调查、详细调查及对重大灾害体的勘察。
但震后地质环境、地应力场及位移场均发生了较大变化,需尽快完成调查。震后地震灾区地质灾害应急调查、详细调查及对重大灾害体的勘察资料亟待整理。灾后恢复重建迫切需要区域稳定性评价及地质灾害防治区划。与地震及地震地质灾害相关的关键科学问题亟待解决。
2.工作目标
总体目标:以汶川地震为契机,全面开展龙门山地区地震与地质灾害详细调查工作,结合综合地球物理勘查,摸清龙门山断裂带主要特征;系统总结工作区现代构造运动的地质灾害效应规律及地质灾害链形成机理;揭示龙门山及邻近构造带未来地震活动趋势;了解龙门山及邻近构造带的地震工程地质条件;开展区域地壳稳定性和重要场地工程地质稳定性评价;为龙门山地震重灾区恢复重建及邻区重要工程规划提供地质依据;建设地震地质灾害信息系统,为地震灾区防灾减灾和重建规划服务。
“十二五”期间:完成龙门山地区地震地质灾害调查,确定汶川地震发震断裂和同震断裂的地表变形特征,确定活动断裂深部结构,初步完成青藏高原东缘地壳形变和斜坡动力响应综合监测及汶川地震灾区地脉动测试,建立极震区滑坡形成机理模式及汶川地震区工程岩体稳定性评价与地质灾害填图技术方法,完成地质灾害相应成果建设,为汶川地震灾后重建提供相关地震地质灾害资料和必要的技术支撑。
“十三五”期间:深入研究地震地质灾害链的形成机理和演化过程,开展区域地壳稳定性评价,总结提升各种地震地质灾害调查、监测和评价的技术水平,并促进相关技术方法的推广应用。
3.工作任务
在广泛收集利用前期已有相关地质研究资料的基础上,利用遥感解译与野外地面调查、深部探测相结合,线路地质调查与重点地段大比例尺填图调查相结合,新构造运动特征定性分析与断裂活动时域及强度定量测试分析相结合,内动力与外动力地质作用调查相结合,物理仿真模拟与数值模拟相结合,对工作区活动断裂特别是发震断裂及其灾害效应进行定量—半定量评价;基于青藏高原东缘地壳形变和斜坡动力响应综合监测,以及对地震动力与地质灾害相关性的多方位综合调查和研究(模拟试验、常规和非常规岩土工程特性试验等),分析龙门山及邻近构造带未来新构造运动趋势及其灾害效应,开展汶川地震地质灾害关键科学问题的深入研究,力图在典型地震地质灾害的成灾机理和评价技术方面有所突破。
“十二五”期间:开展汶川地震灾区以滑坡、崩塌、泥石流灾害为主要内容的1:5万地质灾害调查与测绘;进行龙门山及邻近构造带地震工程地质调查评价;开展龙门山及邻近构造带活动断裂调查;开展区域地壳稳定性综合评价;在龙门山及其邻近地区开展综合地球物理探测,取得地震活动带较详细的岩石圈结构模型;在青藏高原东缘开展系统的高精度GPS测量与监测,重点开展对龙门山断裂带、鲜水河—安宁河—小江断裂带及其附近区域的监测。
开展川西地区地震地质及区域构造稳定性研究,研究更加符合斜坡地震动响应客观实际的地震动稳定性评价方法;通过大型振动台试验,揭示不同地震波下边坡的动力响应规律;通过开展汶川地震灾区地脉动测试及研究分析,提升对地震及余震有关的地质灾害问题更深层次的研究;在先期地震灾区地质灾害隐患巡排查工作的基础上,建立地震滑坡稳定性评价及失稳概率的定量评价模型,对地震滑坡危险程度进行分级,并对其危险性进行分区,形成地震滑坡灾害编图的一套技术方法体系。
“十三五”期间:地震灾区地质灾害调查和研究成果进行综合分析研究。
(七)西部复杂山体地质灾害成灾模式与风险评价
1.工作现状
西部地区复杂山体区已开展过不同程度的调查工作。其中包括基础性的1:20万区域地质图和1:20万水文地质图,及部分区域完成了1:5万地质填图。专业性的包括以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查、1:10万山区丘陵县地质灾害调查。2005年起,部分地区开展了1:5万地质灾害调查。
但由于西部大型山体滑坡成因复杂,只依靠地表普查很难认清成灾模式,更难以掌握灾害的多米诺效应。如武隆鸡尾山滑坡,前期工作已将滑坡区圈定为危险区,但调查成果并没能对滑坡破坏机理与成灾模式作出正确的判断。武隆鸡尾山滑坡、宣汉天台乡滑坡、冯店垮梁子滑坡多起灾难性滑坡灾害的发生,表明在西部山区复杂斜坡地带,存在隐蔽性极高、突发性强、成因机理复杂、灾害隐患极大的特殊类型滑坡。这些滑坡成灾机理、致灾模式亟待研究。
2.工作目标
总体目标:以西部复杂山体为研究对象,依托已有调查成果,全面开展西部复杂山体成灾机理研究。开展地质灾害成灾模式调查、成灾条件与机理研究、致灾模式与机理研究、重大灾害防治对策研究。初步摸清西部地区地质灾害成因机制,建立西部复杂山体灾害识辨方法、完善灾害评价体系、提出区划防治建议,为主动防灾服务。
“十二五”期间:完成乌江流域、清江流域、三峡库区等西南山区复杂山体滑坡和黄土地区灌溉型滑坡、秦巴山区浅表层滑坡的形成机理和成灾模式研究;完成西部复杂山体特大地震滑坡的致灾范围预测研究;完成复杂山体滑坡的快速加固技术及复杂山体滑坡的遥感早期识别技术研究;建立融合重大地质灾害识别、稳定性判定、致灾模式判别、监测防治措施的防灾体系。
“十三五”期间:深入研究复杂山体地质灾害链的形成机理和演化过程,完善融合重大地质灾害识别、稳定性判定、致灾模式判别、监测防治措施的防灾体系,总结提升各种地质灾害调查、评价、监测和防治的技术,并促进相关技术方法的推广应用。
3.工作任务
“十二五”期间:在重大地质灾害易发的乌江流域、清江流域、三峡库区、西部山区、秦巴山区和黄土地区选择有代表性的滑坡,通过调查、勘察及试验,深入研究这些地区滑坡形成原因、运动机理及致灾模式,完善灾害发育特征认识,构建主动防灾体系。
通过对西部复杂山体地震滑坡三维物理模拟、多种三维数值模拟、变形破坏过程分析以及滑坡动力学分析等分析手段,对滑坡的影响范围进行深入探讨。开展微型组合抗滑桩、土工合成挡墙、快速注浆、预制格构等地质灾害快速加固技术的研究,并开展快速加固技术应用示范及加固效果监测分析,开展遥感早期识别技术研究等关键问题研究,提升主动防灾能力。
“十三五”期间:开展西部复杂山体地质灾害成灾模式与风险评价综合研究。
(八)典型地质灾害监测预警与示范推广
1.工作现状
完成了长江三峡库区滑坡等地质灾害GPS控制监测网建设。初步建立四川雅安、重庆巫山、云南哀牢山等8个代表不同突发性地质灾害类型的监测预警示范区。解决了地质灾害实时监测、实时传输、预警产品快速发布等多项关键技术。2003年开始,开展了全国和省级尺度的汛期地质灾害气象预警,取得了良好的效果。研制了三维激光微位移监测系统、滑坡微震自动连续观测系统、滑坡监测多媒体网络远程监控技术、FBG滑坡监测解调设备、地质灾害光导监测仪等多项技术与设备。研制了适用于地质灾害群测群防的系列仪器,已推广20万套,并在“5·12”抗震救灾工作中发挥了重要作用。
健全监测预警网络,形成覆盖我国主要灾害类型的国家级地质灾害监测工程示范区,进一步开发实用监测预警设备是下一步工作的重点。
2.工作目标
建立30个国家级地质灾害监测工程示范区,对地质灾害高风险区的重点区域实施专业监控,不断提高预测预警水平,推动区域地质灾害监测工作,为全国地质灾害综合预警提供依据。研制系列监测预警仪器和防治技术设备,不断完善突发性地质灾害监测数据采集、传输与分析管理技术,为突发性地质灾害监测和减灾防灾提供技术支持。
“十二五”期间:完成11个典型地质灾害监测预警示范区建设,建立区内有效的地质灾害预警系统。
“十三五”期间:全面完成地质灾害高易发区30个典型区域国家级专业监测工程示范区建设。
3.工作任务
以地质构造背景、气候条件和地质灾害发育规律为基础,选择典型地质灾害区域建设地质灾害监测预警示范区,研究探索不同地质灾害区地质灾害监测预警技术工作方法,为减灾防灾提供技术支持。根据1:5万地质灾害调查成果,优先考虑有代表性、工作基础较好、示范作用明显的区域开展工作。协助地方开展全国山地丘陵区县(市)地质灾害群测群防早期预警能力建设。
在地质灾害高易发区30个典型区域建立国家级专业监测工程示范区,完善监测内容、建立监测网络。开展全国山地丘陵区县(市)地质灾害群测群防早期预警能力建设,为已经确认的5万余处群测群防地质灾害隐患点,安装自动监测报警仪器。
开展简易监测仪器研发与示范、实时监测新技术研究与示范、监测技术平台建设。
“十二五”期间:在突发性地质灾害高易发区,根据不同地质灾害类型,选择建设完善燕山山地滑坡泥石流监测预警区、辽东南中低山泥石流区等11个典型区域地质灾害监测预警区。
建设区域地质灾害群测群防网络,对2万处隐患点进行简易仪器自动观测。
“十三五”期间:继续加强突发性地质灾害高易发区专业监测示范工程建设,完成长白山崩塌滑坡、天山谷地降雨—融雪型滑坡泥石流等19个区域突发性地质灾害监测预警区建设。
建设区域地质灾害群测群防网络,对1万处隐患点进行简易仪器自动观测。
(九)全国地面沉降调查与监测
1.工作现状
初步完成长江三角洲地区、华北平原、汾渭盆地等重点地区地面沉降和地裂缝调查10万平方千米,基本查明该地区发生的地质背景和地面沉降分布规律,基本建立以基岩标、分层标和GPS、水准测量为主的区域地面沉降立体监测网络,在上海、江苏和北京地面监测站,实现了监测数据自动采集、传输,初步建成地面沉降地理信息系统,为制定科学的地面沉降防治措施打下了良好的基础。
存在问题主要包括:地面沉降发展的趋势加剧,防治任务艰巨;地面沉降调查工作程度不平衡;监测网络需要进一步完善,监测技术有待进一步提升;重大工程面临地面沉降的威胁。
2.工作目标
建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降立体综合监测体系,实现对地面沉降的有效监控。
“十二五”期间:完成我国所有地面沉降区、城市及重要交通干线地面沉降调查。在主要地面沉降区建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降立体综合监测体系,基本实现对主要沉降区地面沉降的有效监控。
“十三五”期间:在所有地面沉降区建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降综合监测体系,实现对所有地面沉降区地面沉降的有效监控。完成所有地面沉降区地面沉降风险管理与区划,为制定科学的地面沉降防治措施打下坚实的基础。
3.工作任务
利用In SAR等现代化监测技术,完善长江三角洲、华北平原、汾渭盆地地面沉降监测网,并继续进行监测;开展珠江三角洲、东北平原等地面沉降工作空白区地面沉降调查,建立地面沉降监测网络;和铁道部、交通部等部门密切合作开展重大工程区地面沉降调查与监测;结合区域地质环境背景和区域经济发展布局,开展地面沉降灾害风险评估,制定分区地面沉降控制目标和管理措施。
“十二五”期间:开展安徽阜阳、松嫩平原、珠江三角洲、江汉—洞庭湖平原等一般地面沉降区1:10万的地面沉降调查5000平方千米;继续对长三角、华北平原、汾渭盆地等主要沉降区进行地面沉降监测。
长江三角洲地区:开展江浙两省沿海平原等以往工作较薄弱地区包括淮安、扬州、泰州、南通、绍兴、台州地区的1:25万地面沉降灾害调查,重点城市1:5万地面沉降灾害调查。
华北平原:对前期工作薄弱的地区开展1:5万地面沉降调查工作;基本覆盖以开采地下水为主要水源的平原地区。
汾渭盆地:开展汾渭盆地陕西咸阳、渭南和榆次、临汾及运城等重点城市的地面沉降地裂缝灾害调查。
继续对长三角、华北平原、汾渭盆地等主要沉降区进行地面沉降监测与风险管理。
“十三五”期间:重要地面沉降区监测。
长江三角洲地区:完善地面沉降监测网络,每年定期开展In SAR地面沉降监测。
华北平原:完善地面沉降监测网络,每年定期开展In SAR地面沉降监测。
汾渭盆地:完善地面沉降地裂缝监测网络,每年定期开展山西地面沉降监测。每年定期开展In SAR地面沉降监测。
一般沉降区地面沉降监测。即安徽阜阳、松嫩平原、珠江三角洲、江汉—洞庭湖平原等一般地面沉降区地面沉降In SAR监测。
重大工程地面沉降调查与监测。主要开展涉及华北平原、汾渭盆地和长三角地区三个地面沉降防治规划区的主要高速铁路建设项目的地面沉降灾害防治工作,包括:全线位于汾渭盆地的大同—西安高速铁路、跨华北平原和长三角地区的京沪高速铁路。
⑸ 地质灾害预警系统研发
3.1.1 总体思路
3.1.1.1 基本认识
中国地域广大,地质环境类型复杂多样,斜坡岩土体含水状态与滑坡泥石流事件发生的对应关系是复杂的,滑坡泥石流事件与降雨过程的关系具有离散性。因此,尽可能细化预警区域的划分,对每个预警区的斜坡坡角、坡积层工程地质特征、植被类型和人类活动方式进行系统研究,得出特定环境地质条件(地层岩性、地质结构、地貌形态、地表植被和人类工程经济活动等)下引发地质灾害的大气降雨量临界值,作为地质灾害区域预警判据是可行的。
3.1.1.2 预警对象与预警重点区
降雨引发的区域突发性群发型地质灾害:崩塌、滑坡、泥石流等。
预警重点区是:
1)威胁山区的乡镇、居民点,且无力搬迁的地区;
2)威胁重要工程如桥梁、水坝和电站等地区;
3)威胁线状工程如公路、铁路、输油(气)管线和输电线路以及水上交通线等地区;
4)重要经济区(发达经济区、工矿区和农业区等);
5)重要自然保护区、自然景观和人文景观地区;
6)区域生态地质环境脆弱,且又必须开发的地区。
3.1.1.3 预警类型
突发性地质灾害气象预警可分为时间预警和空间预警两种类型。
空间预警是比较明确地划定在一定条件下(如根据长期气象预报),一定时间段内地质灾害将要发生的地域或地点,主要适用于群发型;
时间预警是在空间预警的基础上,针对某一具体地域或地点(单体),给出地质灾害在某一时段内或某一时刻将要发生的可能性大小,主要适用于单体如大型滑坡,并有群测群防网络或专业监测网络相配合。
空间预警是减轻区域性、全局性地质灾害的有效手段。空间预警是基于地质灾害的主要控制因素(如地层岩性、地质结构、地貌形态、地层突变等)和引发因素(如降雨、地震、冰雪消融、人为活动)开展工作,控制因素是基本条件,引发因素在不同地区或同一地区的不同地段常常表现出极大差异。
3.1.1.4 预警等级
根据《国土资源部和中国气象局关于联合开展地质灾害气象预报预警工作协议》,地质灾害气象预报预警分为5个等级:
1级,可能性很小;
2级,可能性较小;
3级,可能性较大;
4级,可能性大;
5级,可能性很大;
国家层次发布地质灾害预警按以下考虑:
1~2级不发布预报,用绿色和蓝色表示;
3级发布预报,用黄色表示;
4级发布预警,用橙色表示;
5级发布警报,用红色表示。
3.1.1.5 预警时段与地域
预报预警时段是当日20时至次日20时。
预报预警地域是中华人民共和国领土范围,暂不包括香港特别行政区、澳门特别行政区和台湾省。
3.1.1.6 技术路线
1)把全国划分为若干预警区域。
2)确定预警判据。对每个预警区的历史滑坡、泥石流事件和降雨过程的相关性进行统计分析,分别建立每个预警区的地质灾害事件与临界过程降雨量的统计关系图,确定滑坡泥石流事件在一定区域暴发的不同降雨过程临界值(低值、高值),作为预警判据。
3)判定发生地质灾害的可能性。接收到国家气象中心发来的前期实际降雨量和次日预报降雨量数据后,对每个预警区叠加分析,根据判据图初步判定发生地质灾害的可能性。
4)判定预报预警等级。对判定发生地质灾害可能性较大或以上等级的地区,结合该预警区降雨量、地质环境、生态环境和人类活动方式、强度等指标进行综合判断,从而对次日的降雨过程引发地质灾害的空间分布进行预报或警报。
5)制作地质灾害预警产品。
6)发送预警产品。将预警产品报请有关领导签发后,发送国家气象中心。
7)发布预警产品。国家气象中心收到预警产品后,以国土资源部和中国气象局的名义在中央电视台播出。同时,地质灾害预警结果在中国地质环境网站上进行发布。
8)发布预警后,预警人员跟踪校验预警效果,总结提高预警准确率。
3.1.2 科学依据
根据1990~2002年对突发性地质灾害的分类统计,发现持续降雨引发者占总发生量的65%,其中,局地暴雨引发者约占总发生量的43%,占持续降雨引发者总量的66%。也就是说,约2/3的突发性地质灾害是由于大气降雨直接引发的或是与气象因素相关的,地质灾害气象预警工作是有科学依据的。
3.1.2.1 气象因素引发地质灾害的特点
1)区域性:一般在数百至数千平方公里内出现;单条泥石流的流域面积:≤0.6km2者11.9%;0.6~10km2者61.6%;10~50km2者22.4%。
2)群发性:崩塌、滑坡、泥石流等在某一区域多灾种呈群体出现。
3)同时性:巨大灾难在数十分钟—数小时内先后或同时出现。
4)暴发性:滑坡、特别是泥石流的发生具有突然暴发性,宏观上完好的坡体突然滑塌或“奔流”;当地人称为“涡旋炮”或“山扒皮”。如陕西省紫阳县同一地点伤亡人员最多的联合乡鱼泉村7组(瞬间造成37人遇难)是5个“涡旋炮”同时击中的结果。
5)后续性:大型滑坡一般出现在降雨过程后期,甚至降雨结束后数天。
6)成灾大:造成重大人员伤亡和各种财产损失。
3.1.2.2 气象因素引发地质灾害的成因
1)区域性持续降雨或暴雨使松散堆积层达到过饱和状态。
2)成灾地区地形陡峻,坡形变化复杂,坡度25°~70°。
3)地质上具备二元结构,上为松散堆积层,下为坚硬基岩,容易在二者的接触处形成强大渗流带。
4)松散堆积层厚度1~10m,一般1~4m。
5)一般植被覆盖率较高,在强烈暴雨持续作用下起到滞水作用。
6)居民防灾意识薄弱,房屋结构简易,抗灾强度低。房屋大多建在溪沟出山口地段,属于泥石流的流通路径。调查发现,虽然滑坡、泥石流灾害具有暴发性,但多数地点仍有数小时至数分钟的躲避时间,因防灾基本知识缺乏,以致有的村民在抢运财物过程中丧生。
7)对大型滑坡滞后于降雨过程的机理缺乏科学认识。
3.1.2.3 来自统计学的认识
地质灾害具有自然和社会的双重属性。理论研究与科学实践均证明,地质灾害具有可区划性、可监测预警性。
1)分析发现,滑坡的发生在过程降雨量和降雨强度两项参数中,存在着一个临界值,当一次降雨的过程降雨量或降雨强度达到或超过此临界值时,泥石流和滑坡等地质灾害即成群出现。
2)不同地区具体一条沟谷的泥石流始发雨量区间为10~300mm,差异之大反映了地质条件、气候条件等的差异。
3)在降雨过程的中后期或局地单点暴雨达到临界值时出现突发性群发型泥石流、滑坡等地质灾害,滑坡以小型者居多。
4)大型滑坡常在降雨过程后期或雨后数天内出现。
3.1.2.4 区域地质灾害的时空分布
据20世纪90年代的调查,我国泥石流的时空分布频率具有以下特点:
(1)泥石流频率与地貌
3500m以上的高山占9%;1000~3500m的中山占56%;小于1000m的低山占15%;黄土高原区占11%。
(2)泥石流频率与工程地质岩组
变质岩区占43%;碎屑岩区占32%;黄土区占11%;岩浆岩区占9%;碳酸盐岩区占7%。
(3)泥石流发生频率与年平均降雨量(mm/a)
<400区域占10%;400~600区域占16%;600~800区域占18%;800~1000区域占24%;1000~1400区域占22%;>1400区域占10%
(4)泥石流暴发时间(月份)分布频率
5月:9%;6月:18%;7月:34%;8月:24%;9月:10%
上述统计说明,泥石流主要分布在中低山地区;多出现在易于风化破碎的岩土分布区;年均降雨量过高或过低都不会暴发泥石流;发生时间主要出现在每年的6~8月。
3.1.3 中国地质灾害气象预警区划
基于我国地质灾害类型分布、全国气候区划和滑坡泥石流与区域降雨关系的各类研究文献,编制中国地质灾害气象预警区划图。
3.1.3.1 资料依据
基于气象因素的《中国地质灾害气象预警区划图(1∶500万)》的编制主要依据以下资料:
1)中国泥石流及其灾害危险区划图(1∶600万),
中国科学院成都山地灾害与环境研究所,1991
2)中国滑坡灾害分布图(1∶600万),
中国科学院成都山地灾害与环境研究所,1991
3)中国地质灾害类型图(1∶500万),
地质矿产部成都水文地质工程地质中心,1991
4)中国泥石流灾害图(1∶600万),
地质矿产部成都水文地质工程地质中心,1992
5)中国滑坡崩塌类型及分布图(1∶600万),
地质矿产部环境地质研究所,1992
6)中国特殊类土及危害图(1∶600万),
中国地质科学院水文地质工程地质研究所,1992
7)中国地形图(立体,1∶600万),地图科学研究所,1999
8)中华人民共和国气候图集,气象出版社,2002
9)区域降雨资料与滑坡、泥石流关系的各类文献
3.1.3.2 预警区划分原则
根据研究需要,在此提出斜坡划分原理:
1)滑坡和泥石流是在斜坡地区发生的;
2)区域分水岭的两坡气象降雨条件和生态环境是不同的;
3)我国的最大斜坡是帕米尔高原—东海大陆架的多级多层次斜坡;
4)区域斜坡可分为三类:一类是分水岭到海滨,如后界燕山—鲁儿虎山,左界辽河,右界永定河/海河和前界渤海圈闭的区域;二类如大别山—淮河—黄河圈闭的区域;三类如四川盆地周缘区域。
一级区以全国性分水岭或雪线为界,考虑长时间周期、大空间尺度的气候区划和地质地貌环境条件;
二级区主要以重大水系、区域分水岭、区域气候、历史滑坡泥石流事件分布密度、地质环境条件、斜坡表层岩土性质和年均降雨量分布。
3.1.3.3 预警区域划分
本研究立足全国范围,暂时提出两级区划,共划分7个一级预警区,28个二级预警区,可以满足初步工作要求(图3.1)。
(1)预警区的地质灾害特征
A东北山地平原区
A1三江地区
图3.1 中国地质灾害气象预警区划图(28个区)(台湾省专题资料暂缺)
佳木斯/牡丹江地区,气象因素引发地质灾害微弱。
A2东北平原
桦甸/敦化地区以及大兴安岭东麓,气象因素引发地质灾害较弱。
B大华北地区
B1辽南地区
辽东半岛地区(千山),气象因素引发地质灾害较严重。
B2京承地区
北京北部和河北承德地区,气象因素引发地质灾害严重。
B3晋冀地区
太行山东麓地区,气象因素引发地质灾害较严重。
B4山东丘陵
泰山和胶东地区,气象因素引发地质灾害在小范围较严重。
B5豫西地区
灵宝/许昌之间和伏牛山北麓地区,气象因素引发地质灾害较严重—轻微。
B6皖苏地区
大别山北麓和张八岭地区,气象因素引发地质灾害较严重—轻微。
B7江浙地区
临安/嵊州地区,气象因素引发地质灾害在小范围较严重。
C中南山地丘陵区
C1闽浙地区
武夷山/九连山以东地区,气象因素引发小规模地质灾害严重。
C2江西地区
九岭山和赣南地区,气象因素引发小规模地质灾害严重。
C3豫鄂地区
南阳、神农架、大洪山和大别山南麓地区,气象因素引发地质灾害较严重。
C4湖南地区
湘西和湘南(雪峰山)地区,气象因素引发地质灾害严重。
C5桂粤地区
桂西和两广北部地区,气象因素引发小规模地质灾害严重。
D西南中高山区
D1陕南地区
秦岭南麓和大巴山北麓地区,气象因素引发地质灾害严重。
D2四川盆地
成都平原外的其他地区,气象因素引发地质灾害严重。
D3黔渝地区
黔北和重庆地区,气象因素引发地质灾害严重。
D4滇南地区
滇南和黔南部分地区,气象因素引发地质灾害严重。
D5川滇地区
川西、滇西和滇中地区,气象因素(含高山融水)引发地质灾害极严重。
E黄土高原区
E1吕梁地区
大同—太原—临汾一线地区,气象因素引发地质灾害较严重—轻微。
E2陕北地区
陕北黄土高原地区,气象因素引发地质灾害严重。
E3陇西地区
陇西和海东地区,气象因素引发地质灾害极严重。
F北方干旱沙漠区
F1内蒙古东部地区
气象因素引发地质灾害轻微。
F2阿拉善地区
祁连山北麓、玉门/武威地区,气象因素(高山融水)引发地质灾害较严重。
F3南疆地区
天山南麓、阿尔金山北麓气象因素(高山融水)引发地质灾害较严重。
F4北疆地区
天山北麓气象因素(暴雨和高山融水)引发地质灾害严重。
G青藏高原区
G1藏北地区
气象因素引发地质灾害轻微。
G2藏南地区
雅鲁藏布江及支流流域气象因素(暴雨和高山融水)引发地质灾害较严重;藏东南
暴雨引发地质灾害严重。
(2)一级区域界线标志
A/F大兴安岭—七老图山
漠河—凤水山(1398)—古利牙山(1394)—太平岭(1712)—兴安岭(1397)—巴代艾来(1540)—罕山(1936)—黄岗梁(2029)—七老图山
A/B云雾山—长白山
小五台山(2882)—赤城—云雾山(2047)—七老图山—阜新—铁岭—莫日红山(1013)—白头山
B/E太行山—中条山
小五台山(2882)—恒山(2017)—北台顶(3058)—阳曲山(2059)—历山(2322)—华山(2160)
E/F毛毛山—靖边—东胜—小五台
海晏—仙密大山(4354)—毛毛山(4070)—景泰—定边—靖边—榆林—东胜—丰镇—小五台山(2882)
EB/DC秦岭—伏牛山—大别山—括苍山
海晏—龙羊峡—同仁—鸟鼠山(2609)—武山南—凤县—太白山(3767)—首阳山(2720)—秦岭—华山(2160)—全宝山(2094)—老君山(2192)—太白顶(1140)—鸡公山(744)—霍山(1774)—安庆—九华山(1342)—黄山(1873)—桐庐—括苍山(1382)—北雁荡山(1057)
F/G阿尔金山—祁连山
公格尔山(7649)—慕士塔格山(7509)—赛图拉—慕士山(6638)—乌孜塔格(6250)—九个达坂山(6303)—阿卡腾能山(4642)—阿尔金山(5798)—大雪山(5483)—祁连山(5547)—冷龙岭(4849)—毛毛山(4070)
C/D老君山—梵净山—岑王老山
老君山(2192)—武当山(1612)—大神农架(3053)—建始—来凤(>1000)—酉阳—梵净山(2494)—佛顶山(1835)—雷公山(2179)—岑王老山(2062)—富宁
D/G九寨沟—察隅
武山—九寨沟—雪宝顶(5588)—马尔康—炉霍—新龙—巴塘—察隅
(3)二级区域界线
A1/A2小兴安岭—张广才岭—白头山
呼玛—大黑顶山(1047)—平顶山(1429)—大青山(944)—大秃顶子山(1690)—大石头(1194)—甑峰山(1677)—白头山
B1/B2下辽河
B2/B3永定河—海河
B3/B4黄河
B4/B5黄河故道
B5/B6淮河—黄河故道
B6/B7长江
C1/C2武夷山—九连山
黄山(1873)—玉京峰(1817)—黄岗山(2158)—白石峰(1858)—木马山(1328)—九连山(1248)—龙门
C2/C34霍山—幕阜山—罗霄山脉
霍山(1774)—九江—九宫山(1543)—幕阜山(1596)—连云山(1600)—武功山(1918)—井冈山—八面山(2042)—石坑埪(1902)
C3/C4长江
C124/C5南岭山脉
雷公山(2179)—猫儿山(2142)—韭菜岭(2009)—石坑埪(1902)—雪山嶂(1379)—龙门—飞云顶(1282)—莲花山(1336)—神泉港
D1/D23米仓山—大巴山
九顶山(4984)—广元—米仓山—大巴山—大神农架(3053)
D2/D3长江—重庆—华蓥山—万源北
D123/D5夹金山—大凉山
雪宝顶(5588)—九顶山(4984)—二郎山(3437)—贡嘎山(7556)—铧头尖(4791)—大凉山(3962)—长江—五莲峰(2561)—陆家大营(2854)
D3/D4苗岭山脉
陆家大营(2854)—黄果树瀑布—惠水—雷公山(2179)
D4/D5乌蒙山—哀牢山—高黎贡山
陆家大营(2854)—黎山(2678)—马龙—玉溪—哀牢山(3166)—猫头山(3306)—高黎贡山—(3374)—尖高山(3302)
E1/E2吕梁山脉
岱海—管涔山—荷叶坪(2784)—黑茶山(2203)—关帝山(2831)—禹门口
E2/E3屈吴山—六盘山脉
景泰—屈吴山(2858)—六盘山(2928)—太白(2819)
F1/F2
古尔班乌兰井—呼和巴什格(2364)—贺兰山(3556)—香山
F2/F3
马鬃山(2583)—大雪山(5483)
F3/F4天山山脉
托木尔峰(7443)—比依克山(7443)—天格尔峰(4562)—博格达峰(5445)—巴里坤山—托木尔提(4886)
G1/G2冈底斯山—念青唐古拉山脉
扎西岗—冈仁波齐峰(6656)—冷布冈日(7095)—念青唐古拉峰(7111)—嘉黎—洛隆—邦达—巴塘。
3.1.4 地质灾害气象预警判据研究
3.1.4.1 判据确定原则与资料依据
根据有限研究积累和历史经验,滑坡、泥石流的发生不但与当日激发降雨量有关,而且与前期过程降雨量关系密切,本项研究选定1d,2d,4d,7d,10d和15d过程降雨量等6个数据进行统计分析,期望对一个地区气象因素引发滑坡、泥石流地质灾害的原因与临界雨量判据的确定具有全面认识。
本次研究的资料依据主要有两方面:
1)中国地质环境监测院建立的全国地质灾害调查数据库中气象因素引发的历史滑坡泥石流灾害数据(999个);
2)国家气象中心根据中国地质环境监测院提供的滑坡、泥石流数据,整理提供了731个相关站点15d内历史降雨量数据。
3.1.4.2 预警区的临界降雨量判据研究
(1)不同降雨过程代表数据的选定
中国气象局系统对日降雨量(Q)的预报是按当日20时到次日20时计算,而滑坡、泥石流事件可能发生在此24h的任一时段。
若灾害事件在接近24时发生,则基本可对应1d(即当日)过程降雨量;若灾害事件在次日0时以后的夜间发生,则对应前一日(2d)过程降雨量更符合实际。因此,本项研究选定的数据代表时段(日:24h)是:
1d过程降雨量:0≤Q1≤1
2d过程降雨量:1≤Q2≤2
4d过程降雨量:3≤Q4≤4
7d过程降雨量:6≤Q7≤7
10d过程降雨量:9≤Q10≤10
15d过程降雨量:14≤Q15≤15
(2)临界过程降雨量预警判据图的建立
根据滑坡泥石流与降雨关系的研究,制作滑坡泥石流与不同时段临界降雨量关系散点图,发现散点集中成带分布,其上界可用β线表示,下界可用α线表示。因此,利用1d,2d,4d,7d,10d和15d等过程降雨量,可以建立地质灾害预警判据模式图(图3.2)。
图中横轴是时间(1~15d),纵轴是相应的过程降雨量(mm)。我们规定,α线和β线为两条滑坡、泥石流发生的临界降雨量线,α线以下的A区为不预报区(1,2级,可能性小、较小),α~β线之间的B区为地质灾害预报区(3,4级,可能性较大、大),β线以上的C区为地质灾害警报区(5级,可能性很大)。
(3)预警区临界降雨判据图研究
在28个气象预警区中,18个预警区可以形成完整的滑坡、泥石流发生的临界降雨预警判据图(上限值β线、下限值α线);10个预警区因缺乏资料尚不能形成判据图,其中,A1,B5,F1和G24个区完全缺数据;B4,B6,E1,E2,F3和F46个区数据不全(只能形成α线或β线,甚至散点)。这10个区主要为滑坡、泥石流不发育区或人口稀疏地区,暂时对全国的预警工作效果影响不大。
图3.2 预报判据模板图
代表性数据及曲线举例
A2东北平原
中国地质灾害区域预警方法与应用
*3个样本。
A2气象预警区判据图
B1辽南地区
中国地质灾害区域预警方法与应用
*9个样本。
B1气象预警区判据图
C1闽浙地区
中国地质灾害区域预警方法与应用
*50个样本。
C1气象预警区判据图
D1陕南地区
中国地质灾害区域预警方法与应用
*45个样本。
D1气象预警区判据图
D5川滇地区
中国地质灾害区域预警方法与应用
*60个样本。
D5气象预警区判据图
E3陇西地区
中国地质灾害区域预警方法与应用
*50个样本。
E3气象预警区判据图
F2阿拉善地区
中国地质灾害区域预警方法与应用
*8个样本。
F2气象预警区判据图
G1藏北地区
中国地质灾害区域预警方法与应用
*15个样本。
G1气象预警区判据图
3.1.4.3 预警判据校正
为了提高预警精度,依据以下资料对预警区判据图进行了校正:
1)中国大陆滑坡、泥石流与降雨关系的各类科技文献;
2)历年中国地质灾害公报;
3)部分省(区、市)的地质灾害年报;
4)全国县(市)地质灾害调查区划成果资料(主要是福建省);
5)重点地区地质灾害专项研究报告等。
检索发现有13个预警区具有部分滑坡、泥石流与临界过程降雨量研究资料,有15个预警区暂未收集到或完全缺乏研究资料。
13个具备部分研究资料的预警区分别整理成图、表,可供确定相应预警区预警级别时参考,或与预警判据图配合使用。
以C1区为例,见下表(图3.3):
图3.3 C1区地质灾害点分布与临界降雨量统计关系
3.1.5 预警尺度精度评价
3.1.5.1 预警尺度
(1)空间预警尺度
图面表示3000km2(基于1∶500万~1∶600万地质灾害预警区划图)。
(2)时间预警尺度
地灾预警与气象预警时间尺度同步。
3.1.5.2 预警精度评价
1)取决于气象预报精度。目前全国性的气象预报精度尚不高,特别是对引发泥石流影响明显的局地单点暴雨的预报有待加强。
2)雨量站点代表性精度。地质灾害气象预警判据图依赖于气象站点经(纬)度和地质灾害发生点的经(纬)度(距离)的接近程度。
本次资料地质灾害灾情点的经(纬)度与相邻气象站点的经(纬)度之差在0.3°~1.0°之内,也即相差40~50km,反映在平面上即存在约2000km2的误差。
3)地质环境-气象因素耦合机制的研究精度。地形坡度、植被、岩土类型、含水状态、地表入渗和产流等的研究尚很薄弱。
4)人类活动方式、强度与斜坡变形破坏模式尚缺乏科学界定。
3.1.6 地质灾害预警产品制作与发布
3.1.6.1 预警产品制作、签批与发布
1)国家气象中心提供全国每次降雨过程的天气预报资料,每天16:00通过适当方式(E-mail)发送前期实际降雨量和次日预报降雨量数据;
2)中国地质环境监测院接到降雨量数据后,根据此数据和预警判据图对各预警区发生地质灾害的等级进行逐个分析和判定;
3)专家会商、分析判定预报预警结果,根据会商后的结果,做出空间预警,在预警图上划出预报或警报区,此称预警产品;
4)领导审定、签批预警产品;
5)经签批的预警产品于当天16:30通过适当方式(E-mail)发回国家气象中心;
6)国家气象中心接收预警产品,并和天气预报产品统一制作,配音;
7)中央电视台在当天晚上19:30新闻联播后播出地质灾害气象预报或警报及等级;
8)预报或警报地区的有关省级地质环境监测总站应在预警发出24h至48h内,向中国地质环境监测院反馈预警效果校验结果;
9)中国地质环境监测院分析研究预警效果校验结果,改进预警判据,逐步提高预警精度。
3.1.6.2 预警产品发布形式
(1)中央电视台发布播出
预警产品署名:国土资源部
中国气象局
模拟预报词:
今天晚上到明天白天,××地区发生地质灾害的可能性较大,请注意防范。
(2)中国地质环境信息网站发布
主要供专业人士和政府管理部门参考,跟踪研究预警效果,讨论研究预警方法与对策。
设计制作了地质灾害气象预警预报专用“符号”(图3.4)。
图3.4 地质灾害气象预报预警专用“符号”
从2005年开始,在中央电视台发布地质灾害气象预警预报信息图片时,同时配发崩塌、滑坡和泥石流动画,增强了地质灾害预警信息的视觉冲击力,也提高了地质灾害气象预报预警的社会影响力。
3.1.7 地质灾害预警软件系统
3.1.7.1 基于C语言的预警预报软件
2004~2006年,模型采用第一代临界雨量判据法,基于C语言的预警预报软件。具备自动生成降雨等值线、雨量站点上自动计算预报等级、查看雨量站点雨量等功能(图3.5)。缺点是无法自动成区、不具备GIS图层操作功能。
图3.5 基于C语言的第1套预警软件Predmap抓图
3.1.7.2 基于ArcGIS开发了第2套预警预报软件
2007年,基于ArcGIS开发了第2套预警预报软件,模型仍采用第一代临界雨量判据法(图3.6)。主要改进在于将软件系统升级为基于GIS开发,且实现预警区的自动圈闭。缺点是ArcGIS软件庞大,软件操作、升级等方面不便。
图3.6 基于ArcGIS的第2套预警软件抓图
⑹ 中国地质灾害分区预警模型
根据5.4节中中南山地丘陵区试运算过程中的总结修正的思路,在全国7个预警大区范围内分别完成地质灾害潜势度计算、地质灾害预警指数计算,从而实现国家级地质灾害气象预警预报。
5.6.1 分区潜势度计算
5.6.1.1 权重计算结果
考虑到因子图层准备情况和时间关系,本次计算中选取了25个因子图层,在7个大区分别开展计算。各区内因子图层的权重计算结果见表5.10。从权重计算结果来看具有如下特点:
(1)总体上符合经验认识
从敏感因子排序来看,中南山地丘陵区(C区),最敏感的因子是地形起伏(权重为0.17);西南部地区(D区),最敏感因子为地震动参数(权重为0.18);黄土地区(E区),最敏感因子为岩土体类型(权重0.09),等等。而铁路、塔庙宇等因素的敏感度则非常低,甚至很多区的权重为0。
(2)因子权重差偏小
主要是由于选取因子较多(25个),且各因子之间有一定重复,因此造成每个因子的权重相对较小,权重差偏小。25个因子的平均因子权重应为1/25,即0.04,因此当某个因子权重超过0.04时,可以认为该因子为地质灾害的敏感因子。
(3)精确程度还有待进一步提高
目前的计算,是在整理现有的地质背景环境资料和历史灾害点资料基础上,图层资料的比例尺还相对有限,特别是历史灾害点资料主要是建立在县市调查数据基础上的,已调查县灾害点密集,而未调查的县数据缺失,造成统计分析结果的精确程度有限。
表5.10 分区计算各因子权重结果表
目前的计算,主要旨在探索计算思路,计算结果的精确程度会随着原始资料的不断充实而不断提高。
5.6.1.2 潜势度计算结果校验
将各区潜势度的计算结果,与历史灾害点的分布情况进行对比分析,校验潜势度是否能够体现地质环境的优劣程度。
图5.20~图5.26反映地质灾害潜势度值大的区域历史灾害点分布多,地质灾害潜势度值小的区域历史灾害点分布少,即地质灾害潜势度值的大小能够反映历史地质灾害点的多少,能够反映地质背景环境条件的优劣。
图5.20 A区地质灾害潜势度与灾害分布对比
图5.21 B区地质灾害潜势度与灾害分布对比
5.6.2 分区预警模型
在全国7个预警大区中,C区(中南)、D区(西南)、B区(华北)灾害样本较多,雨量站点相对稠密,采用统计分析方法,建立了显式统计的线性回归模型。
图5.22 C区地质灾害潜势度与灾害分布对比
图5.23 D区地质灾害潜势度与灾害分布对比
图5.24 E区地质灾害潜势度与灾害分布对比
图5.25 F区地质灾害潜势度与灾害分布对比
图5.26 G区地质灾害潜势度与灾害分布对比
A区(东北)、E区(西北黄土)、F区(西北新疆)、G区(青藏高原)由于灾害点样本太少和雨量站点稀疏,匹配到灾害点上的雨量误差较大。不具备统计分析的样本条件,采用的是潜势度-雨量经验方法,即不同潜势度分段范围内,根据经验给定临界降雨判据。
5.6.2.1 线性回归模型
将历史灾害点的发生个数作为输出量,潜势度值、当日雨量、前期累计雨量作为输入雨量,进行线性回归分析,根据统计结果可见,地质灾害的发生与地质环境基础因素(G)、降雨激发因素(Rd,Rp)存在一定程度的线性关系。
根据T值进行预警等级划分的原则如下:
回归分析中,输出量为历史地质灾害点的发生个数;得到预警模型后,T值(预警指数)为地质灾害发生可能性大小的量化参数,是地质环境条件与降雨条件综合作用的量度。根据我国各大区历史地质灾害发生情况以及几年来地质灾害气象预警预报工作经验总结,主要通过试运算进行地质灾害预警等级划分。统计分析时将地质灾害的严重程度按区分为3个级别,并以此3个级别作为预警模型中预警等级划分的重要参考。同时,具体操作中也考虑了如下4个方面:
1)各大区内,挑选近年来地质灾害群发的典型区域,进行预警模型试运算,并将其结果与地质灾害点实际发生情况对比分析,从而修正预警等级划分标准。
2)在典型区域内,分别采用第二代预警系统和第一代预警系统开展预警预报试运算,通过结果对比修正预警等级划分标准。
3)预警模型中各变量的实际意义与取值范围。G(潜势度)为地质环境条件的量化参数;Rd和Rp为降雨条件的量化参数。取值范围各区有所不同。
4)考虑到地质灾害气象预警预报对于地质灾害防治工作的具体作用,在预警预报区域面积的大小方面也有所考虑,此项考虑主要为定性考虑。预警区域面积过大,可能会导致地质灾害防治工作中无从参考,预警区域面积过小,可能会导致地质灾害多发区域的漏报。
在B,C,D3个区的回归分析过程和结果如下。
(1)B区
复相关系数:R=0.19;
判定系数:R2=0.16;
得到回归模型方程为
中国地质灾害区域预警方法与应用
根据括号内的t统计量的值可知:G,Rd,Rp均对地质灾害的发生情况有显著影响。根据F统计量的值F=5.60,可知:回归方程是显著的。
通过试运算,根据T值进行分段,确定预警等级。3级(T<10);4级(10≤T<20);5级(T≥20)。
(2)C区
复相关系数:R=0.50;
判定系数:R2=0.48;
得到回归模型方程为
中国地质灾害区域预警方法与应用
根据括号内的t统计量的值可知:G,Rd,Rp均对地质灾害的发生情况有显著影响。根据F统计量的值F=21.40,可知:回归方程是显著的。
通过试运算,根据T值进行分段,确定预警等级。3级(T<10);4级(10≤T<60);5级(T≥60)。
(3)D区
复相关系数:R=0.48;
判定系数:R2=0.45;
得到回归模型方程为
中国地质灾害区域预警方法与应用
根据括号内的t统计量的值可知:G,Rd,Rp均对地质灾害的发生情况有显著影响。根据F统计量的值F=14.40,可知:回归方程是显著的。
通过试运算,根据T值进行分段,确定预警等级。3级(T<18);4级(18≤T<50);5级(T≥50)。
5.6.2.2 潜势度-临界雨量经验方法
(1)A区
根据潜势度G值,将A区分为3类:
中国地质灾害区域预警方法与应用
(2)E区
根据潜势度G值,将E区分为3类:
中国地质灾害区域预警方法与应用
(3)F区
根据潜势度G值,将F区分为3类:
中国地质灾害区域预警方法与应用
(4)G区
根据潜势度G值,将G区分为3类:
中国地质灾害区域预警方法与应用
⑺ 我国地质灾害监测预警工作现状
7.1.1 地质灾害防治与监测的法规建设
伴随我国国民经济建设的发展,各种类型的人类工程活动不断加剧,崩塌、滑坡、泥石流及其他多种地质灾害不断发生。为防治地质灾害的发生、发展,满足地方社会经济发展的需要,包括了对地质灾害监测工作进行管理在内的地方性地质灾害防治法规,自1995年开始出现。至1999年,已有18个省(区、市)颁布了21项法规条例,至2004年即已有29个省(区、市)颁布了40余项法规、条列(附录2)。
在全国各地地方性地质灾害防治法规的基础上,2001年5月国土资源部发布了《“十五”国土资源生态建设和环境保护规划》;2001年5月国务院办公厅转发了《关于加强地质灾害防治总体规划》;001年10月国土资源部完成了《三峡库区地质灾害防治总体规划》,并于2002年1月由国务院批复,2002年2月下发湖北省和重庆市国土资源部门落实。作为地质灾害防治方面的全国性法规,2003年11月国务院颁布了《地质灾害防治条例》(附录2)。在上述全国性法规、规划的指导下,目前“全国地质环境管理办法”等一系列的规程、规范正在编制之中。这些法规、条例的出台,有力地推进了全国地质灾害监测预警体系的建设和地质环境管理、保护工作。
7.1.2 监测网络与机构建设
(1)专业监测机构建设现状与存在的问题
截至2002年9月,全国地质灾害监测机构及队伍状况如表7.1所示。由该表可知,我国现有:国家级地质环境监测中心1个,省级地质环境监测总站(院、中心)31个,地(市)级地质环境监测站220个,其中直属分站138个,代管分站131个,县级地质环境监测站49个(重庆40个,四川7个,福建2个)。上述机构中,中国地质环境监测院在职职工126人(包括三峡中心),省地级地质环境监测队伍在职人数3349人。合计全国地质环境监测专业队伍在职人数3349人。这样一支队伍初步形成了地质灾害勘查、监测和预报预警的科研体系,为地质灾害的防治、地质环境的保护和依法行政提供了组织保障。
表7.1 全国地质灾害监测机构及队伍状况
值得指出的是,目前地质灾害监测预警管理体制还不够健全。虽然省(区、市)级和地(市)级两级国土资源主管部门承担起了地质灾害监测预警职能,但多数地(市)级国土局没有专门的科室,县级以下机构很不健全,体制还没有理顺。与此同时,在水利、铁路、公路和城建等部门也还没有设立地质灾害监测预警预报指挥系统。国土资源部门原有各级地质环境监测站是在政事不分、事企不分的历史条件下建立的,部分省(区)的公益性监测工作仍由企业性质的地勘单位承担,与政府行政管理脱节,难以满足政府和社会的需要。
(2)地质灾害监测网络建设现状与存在的问题
1)突发性地质灾害监测。全国突发性地质灾害监测状况参见表7.2。截至2003年,全国完成地质灾害调查与区划的县(市)达到545个,面积200万km2,共调查出灾害隐患点7万余处,建立了群测群防点4万多处;湖南、广西、四川、宁夏、青海、新疆开展专业监测与巡测的灾害点120余处。
三峡库区20个市(区、县)已成立17个地质环境监测站,建立了秭归-巴东段(50km)地质灾害GPS监测网并投入监测运行。该网包括国家级控制网(A级)、基准网(B级)、滑坡监测(C级)三级GPS监测网,对12个单体滑坡进行监测,共建有59个GPS监测点。
黑龙江省七台河市地面塌陷监测网控制面积10km2,设地面塌陷监测点58个,为矿山地质灾害监测起到了示范作用。
2)缓变性地质灾害监测。缓变性地质灾害监测网在长江三角洲地区除上海市建立了覆盖全市的较为完善的、由基岩标、分层标、GPS观测点、地面水准点和地下水监测孔等构成的地面沉降监测网络外,江苏的苏锡常地区2002年也在个别地区建立了分层标,其他地区尚属空白。环渤海地区只有天津市在城区建立了7组分层标,而且多建于1985年以前。北京市的3组基岩标和分层标正在建设之中。西安设立了部分地裂缝监测点,宁波初步建成了地面沉降监测网。目前开始实施地面沉降和地裂缝监测的主要地区为华北平原和长江三角洲和部分大中城市。全国地面沉降监测现状参见表7.2的有关内容。
3)区域性群测群防体系尚未建成。群众对地质灾害缺乏预防知识,基层主管部门缺少专业技术人员,群专结合的地质灾害监测体系和群测群防的监测网络不健全,全国大部分县(市)还没有建立。目前仅是开展过地质灾害调查与区划的539个县(市)建立了群测群防监测网络。地质灾害监测尚未引起全社会足够的重视,资金保证程度差,缺乏完善的救灾防灾系统。因此,加大宣传和管理力度,加强立法工作,强化地质环境管理,编制地质灾害防治工作规划纲要,指导各县(市)编制本地区的地质灾害防治规划,积极有效地开展地质灾害防治工作,对防灾减灾是非常必要的。
4)监测工作经费严重不足。地方各级政府尚未建立地质灾害专项资金渠道,仅靠国家补助的部分地质灾害防治专项资金开展工作。每年的监测经费不足以维持正常的监测工作,监测工作日益萎缩,设备陈旧老化、设施破损严重,影响监测成果质量,难以满足准确快速实时监测的要求。
表7.2 全国地质灾害监测状况
7.1.3 监测预警信息系统建设
利用中国地质环境监测院提供的数据库软件,省级地质环境监测总站(院、中心)基本实现了991年以后地下水监测数据和地质灾害调查数据的入库管理,部分省(区)还建立了图形库、文档库、监测点档案库和信息管理系统等。四川省开展了地质灾害预报信息随同天气预报播出的试点工作。全国地质环境监测信息管理现状如表7.3所示。
表7.3 全国地质环境信息管理现状
在网络建设方面,只有少数省(区、市)实现了与Internet的专线连接(河北、青海、海南等)和内部局域网建设,多数省区通过拨号上网向中国地质环境监测院传输数据。目前,地质环境监测数据的分析和开发利用还很不够,地质环境监测数据基本上没有向社会和公众开放。这些情况表明,在地质灾害防治方面,信息传输与处理没有跟上时代步伐。
⑻ 美国和日本等国地质灾害预警服务
目前,实现地质灾害预警的国家和地区,一般具备如下条件:
1)模型方法方面:对降雨和地质灾害的发生进行深入研究,获得了地质灾害预警的理论模型方法。
2)降雨监测和降雨预报方面:一是降雨预报数据,能够实现区域未来一段时间内的降雨预报;二是实时降雨监测数据,该数据一般可以通过两种方式获得:
a)雨量计,通过在区域上埋设一定数量的雨量计,实时精确掌握点上的降雨情况,从而实现区域上实时降雨的获得。通过安装自动遥测雨量监测仪(截至1995年,在旧金山湾地区安装了60台),当雨量每增加1mm时,通过电波自动传送数据到任何可接收到信号的地方(要求有接收器、计算机、数据接收分析显示的软件)。
b)降雨雷达,通过多普勒雷达(通过降雨云层上反射的雷达波)数据来进行降雨实时监测,该方法的难题在于,雷达回波值与地面上的降雨自动遥测值之间的关系确定上。原因有二:一是冰的反射能力远远大于水滴,因此温度成为一个关键的因素,且云中水滴的大小与温度、高度都相关,同时,除了水滴外,粉尘、昆虫、鸟等都能反射雷达的能量,都有回波;二是地面发散,即接近地面的雷达回波存在问题,特别是受到地形的影响。因此,将雷达回波值转换到降雨强度难度较大,且不同地区转换关系又不一样。
3)预警系统:根据降雨引发灾害的理论模型方法,实时进行分析预警。
4)预警信息发布平台:一般通过广播电台或电视台,向公众发布预警信息。
存在不足:理论模型方法需要更多的校验;缺乏有关斜坡岩土体方面的实时监测。
1.4.1 美国
美国是最早开展区域泥石流灾害预警的国家之一。
1.4.1.1 旧金山海湾地区
1985年,美国地质调查局(USGS)和美国气象服务中心(NWS)联合在旧金山海湾地区正式建立了泥石流预警系统。该系统于1986年2月12~21日在旧金山海湾地区的一次特大暴雨灾害中用于滑坡预报,并得到检验。由于技术复杂、机构变动和人员变动等方面原因,该预警系统在1995年被迫停止运行。
基于1982年1月3~5日在美国旧金山海湾地区发生的一次特大暴雨所引起的滑坡灾害数据,这次特大暴雨持续了34h,降雨量616mm,引发了大量的滑坡,造成25人死亡和超过6600万美元的经济损失。Mark&Newman通过对1982年1月的降雨情况分析得出,当前期雨量超过300~400mm,暴雨量超过250mm,即超过年平均降雨量的30%时,滑坡将大规模发生。该系统的基本原理是考虑了临界降雨强度和持续时间,并且考虑地质条件、降雨的空间分布,以及地形条件。美国地质调查局和美国气象服务中心在整个旧金山海湾地区共设计了45个自动降雨记录点,当降雨每增加1mm时,降雨观测点就通过自动方式将数据传送到美国地质调查局的接收中心和计算机系统。同时,为了监测降雨期间地下水压力的变化,工作人员还设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。当降雨量和降雨强度将要超过临界值时,提前进行滑坡灾害的预报,以减少滑坡灾害的损失和可能的人员伤亡。
旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。
1986年2月12~21日的滑坡灾害预警首先由美国地质调查局决定,通过当地电台、电视台以及美国气象服务中心的特别预报的方式来进行的。这次滑坡灾害的预警分为两个阶段:第一阶段是2月14日的6h灾害危险期;第二阶段是17~19日之间的60h的灾害危险期。由于地质条件的复杂性和地形条件的变化,这两次预报主要是针对整个旧金山海湾地区,而不是某一个特定的滑坡灾害地点。根据滑坡灾害发生后的调查,10处滑坡灾害点有目击者能提供精确的时间,其中有8处滑坡所发生的时间与预警的时间段是完全一致的(图1.17)。
图1.17 累计降雨量、滑坡预警时间(水平线段)、滑坡发生时间空心三角为滑坡;实心三角为泥石流
进一步研究要点:
a) 降雨—滑坡关系需精练,要考虑长期中等强度的降雨影响,使降雨与滑坡发生之间有更准确的模型,同时要针对滑坡的临界值,而不仅仅是泥石流;
b) 土体含水量和孔隙水压力的测量方法要更精确、有效;
c) 预警系统需要模式化和自动化,以便在暴雨期能够更快、更有效地得到数据;
d) 与滑坡有关的地形、水文和地质条件等内容,需进一步考虑,以使今后的预警更准确、有效。
作为第一个预警系统,从 4 个方面保证运行:
a) 降雨方面: 国家气象服务中心降雨预报( 未来 6h 预报) ,降雨实时连续监测( 多于 40个实时雨量计) ;
b) 预警方法方面: Canon and Ellen( 1985) 的临界降雨判据;
c) 预警运行上: 美国地质调查局根据降雨预报和实时降雨监测,实时预警系统进行分析;
d) 美国地质调查局和气象服务中心共同确定预警,并向社会发布。
1.4.1.2 俄勒冈州
1997 年,美国的 Oregon 政府建立了泥石流预警系统。该系统,由林业部的气象学家、地调系统( DOGAMI) 的地质学家、交通部( ODOT) 的工程师一起创建的。预警信息和建议通过 NOAA 天气节目和 Law Enforcement Data System 进行广播发布。DOGAMI 负责向媒体和相关地区提供关于泥石流的追加信息; ODOT 负责在更风险时段向机动车辆提供预警,包括在高泥石流风险路段安装预警信号。
1.4.1.3 夏威夷州
1992 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wilson 等,1992) 。
1.4.1.4 弗基尼亚州
2000 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wieczoic 等,2000) 。
1.4.1.5 波多黎各岛
1993 年,加勒比海的波多黎各岛建立了与旧金山海湾类似的 I-D 的预警模型,并进行了数次实时预报( Larsen & Simon,1993) 。
1.4.2 日本福井县
Onodera et al.( 1974) 通过研究发现,在日本,累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 时,大量滑坡将发生滑动。
日本在泥石流预警系统研制和开发方面处于国际领先地位。以发展具体一条或相邻沟的小规模地区的泥石流预报系统为主,通过上游泥石流形成区降雨资料的统计分析,确定临界雨量值和临界雨量报警线,通过上游雨量实时数据采集、演算和比较判别,自动发出报警信号。
山田刚二等( 1977) 通过滑坡的位移和地下水压力的监测,认为滑坡位移速率以及地下水压力不仅与当天降雨量有关,而且还与以前的降雨量有关,所以用有效雨量来表示雨量,有效雨量可以从下式求得:
中国地质灾害区域预警方法与应用
式中:Rc为有效雨量;R0为当天降雨量;Rn为日前降雨量;α为系数;n为经过的天数。通过对山阴干线小田—天仪之间403km,400km附近的滑坡研究发现,日有效降雨量、位移速率、地下水压力随时间而变化的曲线,位移速率v,Rc与地下水压力(p)之间关系分别是二次曲线和直线:
中国地质灾害区域预警方法与应用
目前,日本在福井县开展了地质灾害预警预报工作。以点代面,根据区域地形、地貌和环境地质特征以及灾害可能发生的危险程度,在全县范围内布设了 66 个预警预报监测点,实现了定点、定时和灾害程度的预警预报。同时通过该系统还可以了解过去某一时间的雨量情况和发布情况等内容。
1.4.3 巴 西
Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。
1996 年,里约热内卢( Rio de Janeiro) 州建立了预警系统( Geo-Rio) 。由地质力学所设计并安装了 30 台自动雨量计,向中心计算机( Geo-Rio) 发送数据。中心计算机接收数据,并发布预警。2001 年滑坡灾害中,对里约热内卢的部分地区发布了预警,但在向北 60 km 处的 Petropolis 损失惨重。由于火灾,Geo-Rio 系统于 2002 年 11 月被迫停止。
⑼ 国土资源部中国气象局关于进一步推进地质灾害气象预警预报工作的通知
国土资发〔2011〕135 号
各省、自治区、直辖市及计划单列市国土资源主管部门,气象局,中国地质环境监测院、国家气象中心、中国气象局公共气象服务中心:
为深入贯彻落实 《国务院关于加强地质灾害防治工作的决定》 (国发 〔2011〕20 号)、《国务院办公厅关于加强气象灾害监测预警及信息发布工作的意见》(国办发 〔2011〕33 号)和 《国土资源部与中国气象局关于深化地质灾害气象预警预报工作合作的框架协议》有关精神,进一步推进全国地质灾害气象预警预报工作,现就有关事项通知如下:
一、共同推进地质灾害气象预警预报体系建设
地方各级国土资源、气象部门要根据地质灾害实际情况,围绕地质灾害防治气象服务需求,采用多种方式,争取多方支持,依托现有资源,共同推动在地质灾害易发区建立综合的地质灾害气象观测站网,加快对易发区及周边地区气象观测站的升级改造,加强对已建气象设施的维护和保障,使气象观测设施处于良好运行状态,以满足地质灾害易发区市 (地、州)、县 (区、市)的地质灾害气象预警预报工作顺利开展的需要。
二、健全完善地质灾害气象预报预警信息共享平台和应急联动工作机制
地方各级国土资源、气象部门加快建设地质灾害监测预警信息和气象预报预警信息的共享平台,建立会商机制,共同发布地质灾害气象预报预警信息。要建立应对恶劣天气特别是突发强降雨等极端气象条件的应急联动工作机制。国土资源部门应根据地质灾害气象预警信息,加强应急值守,一旦发生 4 级以上地质灾害气象预警的灾害性天气,要及时启动相关应急预案,切实做好应对防范工作。气象部门应加强 4 级以上地质灾害气象预警灾害性天气的监测、预报、预警和服务保障工作,根据国土资源部门提供的地质灾害发生情况,组织开展加密观测和针对性的预报服务会商,及时提供气象服务信息,并提出相关防范意见和措施建议。要依托现有通信专线,进一步加强双方信息数据共享,重点加强地质灾害易发区监测、灾害数据的充分共享。要进一步加强应急联动能力建设,完善双方信息互通制度,拓展灾害应急联动方式渠道,丰富应急联动技术手段。双方要明确各自的责任部门、联络人员及联系方式,做到责任到人。
三、大力推进地质灾害气象业务标准体系建设
要加强科研和联合攻关,大力推进地质灾害防治气象业务标准体系建设,不断提高地质灾害气象监测预警预报精细化水平。地方各级国土资源、气象部门要联合制定地质灾害易发区气象观测站建设安装、运行维护、检测校准、通讯协议、信息交换共享、预报服务产品制作、信息发布等方面的规范和标准,充分利用各自的资源和技术优势,形成合力,共同加快相关标准和规范的编制工作,促进地质灾害气象业务的规范化发展。联合加强对各级地质灾害气象预警预报业务人员的培训,提高业务水平和能力。要针对地质灾害突发性强等特点,联合研发 6 小时间隔的地质灾害气象预警预报产品,逐步开展地质灾害短时临近预警预报业务。要积极推动基层地质灾害气象预警预报工作的深入开展,推进福建省泉州市、云南省玉溪市和三峡库区地质灾害监测预警示范区建设,深入开展精细化地质灾害气象预警预报试验研究,探索积累经验并在全国推广应用。
四、全面提高地质灾害气象预警信息发布能力
地方各级国土资源、气象部门要积极争取地方政府和有关部门的大力支持,不断加强易灾地区特别是偏远山区、学校、农村等地区的地质灾害气象预警及气象灾害信息发布传播设施建设,努力拓宽预报预警信息覆盖范围。要加强与广电、电信、城建等部门的联系与合作,通过建立协同高效的联合响应机制,利用电视和电台、手机短信、城区显著位置电子广告牌等设施及时发布地质灾害气象预报预警信息,保证预报预警信息渠道畅通、播发及时。
五、积极探索建立多样化的地质灾害防治合作模式
地方各级国土资源、气象部门要根据各地特点和需求,积极探索建立符合本地实际的地质灾害气象业务发展长效合作机制,建立多方参与、权责明晰的地质灾害气象监测系统建设、运营维护与服务提供模式。对于面向公众的灾害性天气预报预警、实况监测信息等服务,属气象部门公益服务范畴的,由各级气象部门无偿提供。对于相关部门和单位提出的个性化地质灾害气象服务需求,由气象部门按照有关规定通过协议方式予以提供。
国土资源部 中国气象局
二〇一一年九月八日
⑽ 从( )的6月1日起,中央电视台天气预报节目中正式发布全国地质灾害气象预报预警
从2003年6月1日起,中央电视台天气预报节目中正式发布全国地质灾害气象预报预警信息.