国家预警发布地质灾害
Ⅰ 地质灾害区域预警原理
据检索统计,世界上约有20多个国家或地区不同程度地开展过降雨引发滑坡、泥石流的研究或预警工作。其中,中国香港(Brandetal.,1984)、美国(Keeferetal.,1987)、日本(Fukuzono,1985)、巴西(Neiva,1998)、委内瑞拉(Wieczoreketal.,2001)、波多黎各(Larsen&Simon,1993)和中国大陆等曾经或正在进行面向公众社会的降雨引发区域性滑坡、泥石流的早期预警与减灾服务工作,预警的地质空间精度达到数千米量级,时间精度达到小时量级。这些国家和地区一般都在地质灾害多发区或敏感区开展或完成了比较详细的地质灾害调查评价工作,拥有比较长期且比较完整的降雨与滑坡、泥石流关系资料,或在典型地区建立了比较完善的降雨遥控监测网络和先进的数据传输系统。
综合分析国内外研究与应用状况,基于气象因素的区域地质灾害预警预报理论原理可初步划分为三大类,即隐式统计预报法、显式统计预报法和动力预报法。
4.2.1 隐式统计预报法
隐式统计预报法把地质环境因素的作用隐含在降雨参数中,某地区的预警判据中仅仅考虑降雨参数建立模型。隐式统计预报法可称为第一代预报方法,比较适用于地质环境模式比较单一的小区域。由于这种方法只涉及一个或一类参数,无论预警区域的研究程度深浅均可使用,所以这是国内外广泛使用的方法,也是最易于推广的方法。这种方法特别适用于有限空间范围,且地质环境条件变化不大的地区,如以花岗岩及其风化残积物分布为主的中国香港地区多年来一直在研究应用和深化这一方法。
这种方法考虑的降雨参数包括年降雨量、季度降雨量、月降雨量、多日降雨量、日降雨量、小时降雨量和10min降雨量等。实际应用时,一般只涉及1~3个参数作为预报判据,如临界降雨量、降雨强度、有效降雨量或等效降雨量等。
突发性地质灾害临界过程降雨量判据的预警方法抓住了气象因素诱发地质灾害的关键方面,但预警精度必然受到所预警地区面积大小、突发性地质事件样本数量、地质环境复杂程度和地质环境稳定性及区域社会活动状况的限制,单一临界降雨量指标作为预警判据的代表性是有限的。
代表性研究成果主要有:
Onodera et al.( 1974) 通过研究日本的大量滑坡,提出累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 作为判据。Nilsen et al.( 1976) 发现美国 Alameda,Califor-nia 在累计降雨量超过 180mm 时,滑坡将频繁发生。Oberste-lehn( 1976) 认为累计降雨量达到 250mm 左右,美国 San Benito,California 将发生滑坡。Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。Caine( 1980) 全面总结了全球的可利用数据,给出了不同地区诱发滑坡暴雨事件的降雨强度和持续时间与滑坡的关系式。这一关系式当然不可能适用于全球所有地区( Crozier 在 1997 年证明) ,仍不失为探讨诱发滑坡临界降雨值的里程碑。
Brand et al.( 1984) 在中国香港研究表明,大多数滑坡由局部高强度短历时降雨诱发,而前期降雨量不是主要因素,除非是小型滑坡。Ng and Shi( 1998) 认为降雨的持续也是一个非常重要的诱发滑坡的因素。中国香港地区预测 24h 内降雨量达到 175mm 或 60min 内市区内雨量超过 70mm,即认为达到滑坡预报阈值,即由政府发出通报。中国香港平均每年约发出 3 次山洪滑坡暴发警报。
Ganuti et al.( 1985) 提出了临界降雨系数( critical precipitation coefficient,CPC) 的概念,并总结出当 CPC >0.5 时,将有 10a 一遇的滑坡发生; 当 CPC >0.6 时,将有 20a 一遇的滑坡发生。
Glade( 1997) 综合前人研究成果建立了确定诱发滑坡的降雨临界值的 3 个模型,并在纽西兰北岛南部的 Wellington 地区进行了验证。3 个模型要求的基本数据为: 日降雨量、滑坡发生日期和土体潜在日蒸发量( 通过 Thornthwaite method 方法计算得到) 。降雨强度临界值Glade( 1997) 的模型 1———日降雨模型( daily rainfall model) ,只使用日降雨量参数,简单地分析诱发滑坡和不诱发滑坡的日降雨量( Glade,1998) ,得出最小临界值和最大临界值,即在最小临界值以下,没有滑坡发生; 在最大临界值以上,滑坡一定发生。降雨量等级划分以20mm 为一个等级; 降雨过程雨量临界值 Glade( 1997) 的模型 2———前期日降雨量模型( an-tecedent daily rainfall model) ,考虑了前期降雨的影响。他认为决定前期情况有两个主要因素: 前期降雨的历时时间和土体含水量减少的速率; 土体含水状态临界值 Glade( 1997) 的模型 3———前期土体含水状态模型( antecedent soil water status model) ,他认为除了前期雨量,土体含水量和潜在的蒸发量对滑坡的影响也很大。
刘传正在 2003 年 5 月主持全国地质灾害气象预警工作过程中,利用地质灾害发生前15d 降雨量建立滑坡、泥石流发生区带的临界过程降雨量创建了预警判据模式图,并结合具体区域( 2003 年28 个区、2004 年以后74 个区) 进行校正的方法。该方法适应3 级预报的要求界定了 α 线和 β 线作为预警等级界限。3 年多来汛期的预警成果发布检验与应用证明,该方法在科学依据上是成立的,但限于预警区域过大、基础数据和地质灾害统计样本数量太少,准确率有待提高,同时也充分说明了开展地质灾害数据集成研究的迫切性。
另外,中国科学院成都山地灾害与环境研究所等机构在单条泥石流监测与预警建模方面进行了多年持续不懈的研究工作,取得了具有代表性的成果。
4.2.2 显式统计预报法
显式统计预报法是一种考虑地质环境变化与降雨参数等多因素叠加建立预警判据模型的方法,它是由地质灾害危险性区划与空间预测转化过来的(CarraraA.,1983;HaruyamaH.&KawakamiH.,1984;BaezaC.&CorominasJ.,1996;CarraraA.,CardinaliM.&GuzzettiF.,1991;刘传正,2004;殷坤龙,2005)。
区域地质灾害危险性评价和风险区划研究仍是当前的研究主流,而利用之进行地质灾害的实时预警与发布则多处于探索阶段。这种方法可以充分反映预警地区地质环境要素的变化,并随着调查研究精度的提高相应地提高地质灾害的空间预警精度。显式统计预报法可称为第二代预报方法,是正在探索中的方法,比较适用于地质环境模式比较复杂的大区域。
基于地质环境空间分析的突发性地质灾害时空预警理论与方法是根据单元分析结果经过合成实现的,克服了仅仅依据单一临界雨量指标的限制,但对临界诱发因素的表达、预警指标的选定与量化分级等尚存在需要进一步研究的诸多问题。
因此,要实现完全科学意义上的区域突发性地质灾害预警,必须建立临界过程降雨量判据与地质环境空间分析耦合模型的理论方法———广义显式统计模式地质灾害预报方法,预警等级指数(W)是内外动力的联立方程组。即
中国地质灾害区域预警方法与应用
式中:W为预警等级指数;a为地外天体引力作用,包括太阳、月亮的引潮力,太阳黑子、表面耀斑和太阳风等对地球表面的作用,a=f(a1,a2,…,an);b为地球内动力作用,主要表现为断裂活动、地震和火山爆发等,b=f(b1,b2,…,bn);c为地球表层外动力作用,包括降雨、渗流、冲刷、侵蚀、风化、植物根劈、风暴、温度、干燥和冻融作用等,c=f(c1,c2,…,cn);d为人类社会工程经济活动作用,包括资源、能源开发和工程建设等引起地质环境的变化,d=f(d1,d2,…,dn)。
20世纪70年代,以美国加利福尼亚州旧金山地区圣马提俄郡的滑坡敏感性图为代表,利用多参数图的加权(或不加权)叠加得到区域滑坡灾害预测图。
20世纪80年代,CarraraA.(1983)将多元统计分析预测方法引用到区域滑坡空间预测中,并在世界各国得到迅速发展与推广。如HaruyamaH.&KawakamiH.(1984)利用数学统计理论对日本活火山地区降雨引起的滑坡灾害进行了危险度评价。BaezaC.&CorominasJ.(1996)利用统计判别分析模型进行了浅层滑坡敏感性评估,结果斜坡破坏的正确预测率达到96.4%,有力地说明了统计预测的适用性。CarraraA.,CardinaliM.&GuzzettiF.等(1991)将统计模型与GIS结合,应用于意大利中部某小型汇水盆地的滑坡危险性评估,实现从数据获取到分析、管理的自动化,结果证明统计分析与GIS的综合使用是一种快速、可行、费用低的区域滑坡危险性评价与制图方法。
20世纪90年代中后期以来,随着计算机技术和信息科学的高速发展,RS、GIS和GPS等“3S”技术联合应用使快速处理海量的地质环境数据成为可能,出现了地质灾害空间预测模型方法应用研究逐步从地质灾害危险评价与预警应用相结合的新态势。
刘传正等(2004)创建并发表了用于区域地质灾害评价和预警的“发育度”、“潜势度”、“危险度”和“危害度”时空递进分析理论与方法,简称“四度”递进分析法(AMFP),并在三峡库区(54175km2)和四川雅安地质灾害预警试验区(1067km2)进行了应用,结果是可信的。
李长江等(2004)将GIS和ANN(人工神经网络)相互融合,考虑不同的地质、地貌和水文地质背景,建立了给定降雨量的浙江省区域群发性滑坡灾害概率预报(警)系统(LAPS)。
宋光齐等(2004)根据地貌、岩性和地质构造几率分布,基于GIS建立了给定降雨量的四川省地质灾害预报系统。
殷坤龙等(2005)以浙江省为例探索了基于WebGIS的突发性地质灾害预警预报问题。
由于我国政府在全国范围内推行区域地质灾害预警预报机制,目前我国的预警探索工作走在世界前列。
4.2.3 动力预报法
动力预报法是一种考虑地质体在降雨过程中地-气耦合作用下研究对象自身动力变化过程而建立预警判据方程的方法,实质上是一种解析方法。动力预报方法的预报结果是确定性的,可称为第三代预报方法,目前只适用于单体试验区或特别重要的局部区域。该方法主要依据降雨前、降雨中和降雨后降水入渗在斜坡体内的转化机制,具体描述整个过程斜坡体内地下水动力作用变化与斜坡体状态及其稳定性的对应关系。通过钻孔监测地下水位动态、孔隙水压力和斜坡应力-位移等,揭示降雨前、降雨过程中和降雨后斜坡体内地下水的实时动态响应变化规律、整个坡体物理性状变化及其变形破坏过程的关系。在充分考虑含水量、基质吸力、孔隙水压力、渗透水压力、饱水带形成和滑坡—泥石流转化因素条件下,选用数学物理方程研究解析斜坡体内地下水动力场变化规律与斜坡稳定性的关系,确定多参数的预警阈值,从而实现地质灾害的实时动力预报。
目前,这种方法局限于试验场地或单个斜坡的研究探索阶段,必须依赖具有实时监测、实时传输和实时数据处理功能的立体监测网(地-气耦合)作为支撑才能实现实时预报。由于理论、技术和经费等方面的高要求,这种方法比较适用于重要的小区域或单体的研究性监测预警。
据研究,美国旧金山海湾地区的6h降雨量达到4in(101.6mm)时,就可能引发大面积泥石流。为了监测降雨期间地下水压力的变化,研究人员设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。
在我国,刘传正等(2004)在四川雅安区域地质灾害监测预警试验区进行了大气降水与斜坡岩土层含水量变化的分层响应监测,发现不同降雨过程和降雨强度下,斜坡岩土体的含水量相应发生明显变化,可以研究降雨在斜坡岩土体内的渗流过程直至出现滑坡、泥石流的成因机理。
2003年8月23~25日是一个引发多处地质灾害并造成人员伤亡的典型降雨过程,可以作为分析实例。以8月19日15时的含水量为背景值,则8月23,24和25日降雨过程分别对应第96,120和144h的含水量,4个层位的记录曲线明确反映了随累计降雨量增加斜坡岩土体含水量急剧增加,第一、二层位达到过饱和状态,且含水量急剧增加出现于第121h,即24日15时之后,滞后于降雨时间约20h。各层含水量峰值出现于第151h,即接近滑坡呈区域性暴发时间(26日零时,对应第153h)。该分析未考虑沿裂隙的地下水渗流作用(图4.1)。
图4.1 四川雅安桑树坡监测试验点第1~4层含水量随时间变化曲线
分析对比隐式统计预报法、显式统计预报法和动力预报法3类方法,我们认为,未来的方向是探索地质灾害隐式统计、显式统计与动力预警3种模型的联合应用方法,以适应不同层级的地质灾害预警需求。研究内容包括临界雨量统计模型、地质环境因素叠加统计模型和地质体实时变化(水动力、应力、应变、热力场和地磁场等)的数学物理模型等多参数、多模型的耦合。3种模型的联合应用不仅适应特别重要的区域或小流域,也为单体地质灾害的动力预警与应急响应提供决策依据。
Ⅱ 美国和日本等国地质灾害预警服务
目前,实现地质灾害预警的国家和地区,一般具备如下条件:
1)模型方法方面:对降雨和地质灾害的发生进行深入研究,获得了地质灾害预警的理论模型方法。
2)降雨监测和降雨预报方面:一是降雨预报数据,能够实现区域未来一段时间内的降雨预报;二是实时降雨监测数据,该数据一般可以通过两种方式获得:
a)雨量计,通过在区域上埋设一定数量的雨量计,实时精确掌握点上的降雨情况,从而实现区域上实时降雨的获得。通过安装自动遥测雨量监测仪(截至1995年,在旧金山湾地区安装了60台),当雨量每增加1mm时,通过电波自动传送数据到任何可接收到信号的地方(要求有接收器、计算机、数据接收分析显示的软件)。
b)降雨雷达,通过多普勒雷达(通过降雨云层上反射的雷达波)数据来进行降雨实时监测,该方法的难题在于,雷达回波值与地面上的降雨自动遥测值之间的关系确定上。原因有二:一是冰的反射能力远远大于水滴,因此温度成为一个关键的因素,且云中水滴的大小与温度、高度都相关,同时,除了水滴外,粉尘、昆虫、鸟等都能反射雷达的能量,都有回波;二是地面发散,即接近地面的雷达回波存在问题,特别是受到地形的影响。因此,将雷达回波值转换到降雨强度难度较大,且不同地区转换关系又不一样。
3)预警系统:根据降雨引发灾害的理论模型方法,实时进行分析预警。
4)预警信息发布平台:一般通过广播电台或电视台,向公众发布预警信息。
存在不足:理论模型方法需要更多的校验;缺乏有关斜坡岩土体方面的实时监测。
1.4.1 美国
美国是最早开展区域泥石流灾害预警的国家之一。
1.4.1.1 旧金山海湾地区
1985年,美国地质调查局(USGS)和美国气象服务中心(NWS)联合在旧金山海湾地区正式建立了泥石流预警系统。该系统于1986年2月12~21日在旧金山海湾地区的一次特大暴雨灾害中用于滑坡预报,并得到检验。由于技术复杂、机构变动和人员变动等方面原因,该预警系统在1995年被迫停止运行。
基于1982年1月3~5日在美国旧金山海湾地区发生的一次特大暴雨所引起的滑坡灾害数据,这次特大暴雨持续了34h,降雨量616mm,引发了大量的滑坡,造成25人死亡和超过6600万美元的经济损失。Mark&Newman通过对1982年1月的降雨情况分析得出,当前期雨量超过300~400mm,暴雨量超过250mm,即超过年平均降雨量的30%时,滑坡将大规模发生。该系统的基本原理是考虑了临界降雨强度和持续时间,并且考虑地质条件、降雨的空间分布,以及地形条件。美国地质调查局和美国气象服务中心在整个旧金山海湾地区共设计了45个自动降雨记录点,当降雨每增加1mm时,降雨观测点就通过自动方式将数据传送到美国地质调查局的接收中心和计算机系统。同时,为了监测降雨期间地下水压力的变化,工作人员还设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。当降雨量和降雨强度将要超过临界值时,提前进行滑坡灾害的预报,以减少滑坡灾害的损失和可能的人员伤亡。
旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。
1986年2月12~21日的滑坡灾害预警首先由美国地质调查局决定,通过当地电台、电视台以及美国气象服务中心的特别预报的方式来进行的。这次滑坡灾害的预警分为两个阶段:第一阶段是2月14日的6h灾害危险期;第二阶段是17~19日之间的60h的灾害危险期。由于地质条件的复杂性和地形条件的变化,这两次预报主要是针对整个旧金山海湾地区,而不是某一个特定的滑坡灾害地点。根据滑坡灾害发生后的调查,10处滑坡灾害点有目击者能提供精确的时间,其中有8处滑坡所发生的时间与预警的时间段是完全一致的(图1.17)。
图1.17 累计降雨量、滑坡预警时间(水平线段)、滑坡发生时间空心三角为滑坡;实心三角为泥石流
进一步研究要点:
a) 降雨—滑坡关系需精练,要考虑长期中等强度的降雨影响,使降雨与滑坡发生之间有更准确的模型,同时要针对滑坡的临界值,而不仅仅是泥石流;
b) 土体含水量和孔隙水压力的测量方法要更精确、有效;
c) 预警系统需要模式化和自动化,以便在暴雨期能够更快、更有效地得到数据;
d) 与滑坡有关的地形、水文和地质条件等内容,需进一步考虑,以使今后的预警更准确、有效。
作为第一个预警系统,从 4 个方面保证运行:
a) 降雨方面: 国家气象服务中心降雨预报( 未来 6h 预报) ,降雨实时连续监测( 多于 40个实时雨量计) ;
b) 预警方法方面: Canon and Ellen( 1985) 的临界降雨判据;
c) 预警运行上: 美国地质调查局根据降雨预报和实时降雨监测,实时预警系统进行分析;
d) 美国地质调查局和气象服务中心共同确定预警,并向社会发布。
1.4.1.2 俄勒冈州
1997 年,美国的 Oregon 政府建立了泥石流预警系统。该系统,由林业部的气象学家、地调系统( DOGAMI) 的地质学家、交通部( ODOT) 的工程师一起创建的。预警信息和建议通过 NOAA 天气节目和 Law Enforcement Data System 进行广播发布。DOGAMI 负责向媒体和相关地区提供关于泥石流的追加信息; ODOT 负责在更风险时段向机动车辆提供预警,包括在高泥石流风险路段安装预警信号。
1.4.1.3 夏威夷州
1992 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wilson 等,1992) 。
1.4.1.4 弗基尼亚州
2000 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wieczoic 等,2000) 。
1.4.1.5 波多黎各岛
1993 年,加勒比海的波多黎各岛建立了与旧金山海湾类似的 I-D 的预警模型,并进行了数次实时预报( Larsen & Simon,1993) 。
1.4.2 日本福井县
Onodera et al.( 1974) 通过研究发现,在日本,累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 时,大量滑坡将发生滑动。
日本在泥石流预警系统研制和开发方面处于国际领先地位。以发展具体一条或相邻沟的小规模地区的泥石流预报系统为主,通过上游泥石流形成区降雨资料的统计分析,确定临界雨量值和临界雨量报警线,通过上游雨量实时数据采集、演算和比较判别,自动发出报警信号。
山田刚二等( 1977) 通过滑坡的位移和地下水压力的监测,认为滑坡位移速率以及地下水压力不仅与当天降雨量有关,而且还与以前的降雨量有关,所以用有效雨量来表示雨量,有效雨量可以从下式求得:
中国地质灾害区域预警方法与应用
式中:Rc为有效雨量;R0为当天降雨量;Rn为日前降雨量;α为系数;n为经过的天数。通过对山阴干线小田—天仪之间403km,400km附近的滑坡研究发现,日有效降雨量、位移速率、地下水压力随时间而变化的曲线,位移速率v,Rc与地下水压力(p)之间关系分别是二次曲线和直线:
中国地质灾害区域预警方法与应用
目前,日本在福井县开展了地质灾害预警预报工作。以点代面,根据区域地形、地貌和环境地质特征以及灾害可能发生的危险程度,在全县范围内布设了 66 个预警预报监测点,实现了定点、定时和灾害程度的预警预报。同时通过该系统还可以了解过去某一时间的雨量情况和发布情况等内容。
1.4.3 巴 西
Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。
1996 年,里约热内卢( Rio de Janeiro) 州建立了预警系统( Geo-Rio) 。由地质力学所设计并安装了 30 台自动雨量计,向中心计算机( Geo-Rio) 发送数据。中心计算机接收数据,并发布预警。2001 年滑坡灾害中,对里约热内卢的部分地区发布了预警,但在向北 60 km 处的 Petropolis 损失惨重。由于火灾,Geo-Rio 系统于 2002 年 11 月被迫停止。
Ⅲ 地质灾害预警预报分为几个等级,主要通过什么途径发布
根据地质灾害活动或损失程度划分的等级。目的是表示地质灾害的轻重程度,便于专对不同地质灾害事件属或地质灾害与其他自然灾害进行对比。分级的依据或类型有两种。一是根据地质灾害活动的强度、规模、速度等指标反映地质灾害的活动程度,有人称其为灾变等级。不同地质灾害的分级标准和指标不一,只有少数地质灾害已形成公认的分级标志(如地震采用震级表示地震活动强度),多数地质灾害尚没有统一的分级方案。二是以地质灾害的破坏损失程度分级。有人称其为灾度等级,但没有公认的分级方案和相应的指标标准。多数人认为以地质灾害事件造成的人员伤亡和直接经济损失数量作为地质灾害破坏损失分级指标,从大到小依次为巨灾、大灾、中灾、小灾、微灾。这两种分级含义不同,但有密切联系:地质灾害活动强度级次所标识的是地质灾害动力活动的强弱程度或规模大小;地质灾害破坏损失级次标识的是地质灾害破坏损失的大小,它除了受地质灾害强度控制外,还与受灾地区人口、财产分布以及受灾体的脆弱程度等社会经济条件密切相关。
地质灾害按照人员伤亡、经济损失的大小,分为特大型、大型、中型和小型四个等级。
Ⅳ 什么是地质灾害预警
以地质环境条件和历史地质灾害发育分布规律为基础,对降雨、地震和人类工程版活动等诱发因素可能引权发的地质灾害的空间范围、危险性程度和发生时段进行分析预测,并把预测结果通过电视台、电台和互联网等媒体向公众发布的行为。
Ⅳ 地质灾害预警级别 地质灾害预警什么意思
地质灾害预警制度。预警内容主要包括地质灾害可能发生的时间、地点、成专灾范围和影响程度属等。地质灾害预警由县级以上人民政府国土资源主管部门会同气象主管机构发布。任何单位和个人不得擅自向社会发布地质灾害预警。
按照未来24小时内,地质灾害发生的可能性大小,地质灾害预警分为五级,分别为
一级:可能性很小;
二级:可能性较小;
三级:可能性较大(通知监测人员和威胁住户注意);
四级:可能性大(预报阶段,停止外业,各岗位人员到岗待命);
五级:可能性很大(警报阶段,无条件紧急疏散,密切观测)。
Ⅵ 地质灾害预警系统研发
3.1.1 总体思路
3.1.1.1 基本认识
中国地域广大,地质环境类型复杂多样,斜坡岩土体含水状态与滑坡泥石流事件发生的对应关系是复杂的,滑坡泥石流事件与降雨过程的关系具有离散性。因此,尽可能细化预警区域的划分,对每个预警区的斜坡坡角、坡积层工程地质特征、植被类型和人类活动方式进行系统研究,得出特定环境地质条件(地层岩性、地质结构、地貌形态、地表植被和人类工程经济活动等)下引发地质灾害的大气降雨量临界值,作为地质灾害区域预警判据是可行的。
3.1.1.2 预警对象与预警重点区
降雨引发的区域突发性群发型地质灾害:崩塌、滑坡、泥石流等。
预警重点区是:
1)威胁山区的乡镇、居民点,且无力搬迁的地区;
2)威胁重要工程如桥梁、水坝和电站等地区;
3)威胁线状工程如公路、铁路、输油(气)管线和输电线路以及水上交通线等地区;
4)重要经济区(发达经济区、工矿区和农业区等);
5)重要自然保护区、自然景观和人文景观地区;
6)区域生态地质环境脆弱,且又必须开发的地区。
3.1.1.3 预警类型
突发性地质灾害气象预警可分为时间预警和空间预警两种类型。
空间预警是比较明确地划定在一定条件下(如根据长期气象预报),一定时间段内地质灾害将要发生的地域或地点,主要适用于群发型;
时间预警是在空间预警的基础上,针对某一具体地域或地点(单体),给出地质灾害在某一时段内或某一时刻将要发生的可能性大小,主要适用于单体如大型滑坡,并有群测群防网络或专业监测网络相配合。
空间预警是减轻区域性、全局性地质灾害的有效手段。空间预警是基于地质灾害的主要控制因素(如地层岩性、地质结构、地貌形态、地层突变等)和引发因素(如降雨、地震、冰雪消融、人为活动)开展工作,控制因素是基本条件,引发因素在不同地区或同一地区的不同地段常常表现出极大差异。
3.1.1.4 预警等级
根据《国土资源部和中国气象局关于联合开展地质灾害气象预报预警工作协议》,地质灾害气象预报预警分为5个等级:
1级,可能性很小;
2级,可能性较小;
3级,可能性较大;
4级,可能性大;
5级,可能性很大;
国家层次发布地质灾害预警按以下考虑:
1~2级不发布预报,用绿色和蓝色表示;
3级发布预报,用黄色表示;
4级发布预警,用橙色表示;
5级发布警报,用红色表示。
3.1.1.5 预警时段与地域
预报预警时段是当日20时至次日20时。
预报预警地域是中华人民共和国领土范围,暂不包括香港特别行政区、澳门特别行政区和台湾省。
3.1.1.6 技术路线
1)把全国划分为若干预警区域。
2)确定预警判据。对每个预警区的历史滑坡、泥石流事件和降雨过程的相关性进行统计分析,分别建立每个预警区的地质灾害事件与临界过程降雨量的统计关系图,确定滑坡泥石流事件在一定区域暴发的不同降雨过程临界值(低值、高值),作为预警判据。
3)判定发生地质灾害的可能性。接收到国家气象中心发来的前期实际降雨量和次日预报降雨量数据后,对每个预警区叠加分析,根据判据图初步判定发生地质灾害的可能性。
4)判定预报预警等级。对判定发生地质灾害可能性较大或以上等级的地区,结合该预警区降雨量、地质环境、生态环境和人类活动方式、强度等指标进行综合判断,从而对次日的降雨过程引发地质灾害的空间分布进行预报或警报。
5)制作地质灾害预警产品。
6)发送预警产品。将预警产品报请有关领导签发后,发送国家气象中心。
7)发布预警产品。国家气象中心收到预警产品后,以国土资源部和中国气象局的名义在中央电视台播出。同时,地质灾害预警结果在中国地质环境网站上进行发布。
8)发布预警后,预警人员跟踪校验预警效果,总结提高预警准确率。
3.1.2 科学依据
根据1990~2002年对突发性地质灾害的分类统计,发现持续降雨引发者占总发生量的65%,其中,局地暴雨引发者约占总发生量的43%,占持续降雨引发者总量的66%。也就是说,约2/3的突发性地质灾害是由于大气降雨直接引发的或是与气象因素相关的,地质灾害气象预警工作是有科学依据的。
3.1.2.1 气象因素引发地质灾害的特点
1)区域性:一般在数百至数千平方公里内出现;单条泥石流的流域面积:≤0.6km2者11.9%;0.6~10km2者61.6%;10~50km2者22.4%。
2)群发性:崩塌、滑坡、泥石流等在某一区域多灾种呈群体出现。
3)同时性:巨大灾难在数十分钟—数小时内先后或同时出现。
4)暴发性:滑坡、特别是泥石流的发生具有突然暴发性,宏观上完好的坡体突然滑塌或“奔流”;当地人称为“涡旋炮”或“山扒皮”。如陕西省紫阳县同一地点伤亡人员最多的联合乡鱼泉村7组(瞬间造成37人遇难)是5个“涡旋炮”同时击中的结果。
5)后续性:大型滑坡一般出现在降雨过程后期,甚至降雨结束后数天。
6)成灾大:造成重大人员伤亡和各种财产损失。
3.1.2.2 气象因素引发地质灾害的成因
1)区域性持续降雨或暴雨使松散堆积层达到过饱和状态。
2)成灾地区地形陡峻,坡形变化复杂,坡度25°~70°。
3)地质上具备二元结构,上为松散堆积层,下为坚硬基岩,容易在二者的接触处形成强大渗流带。
4)松散堆积层厚度1~10m,一般1~4m。
5)一般植被覆盖率较高,在强烈暴雨持续作用下起到滞水作用。
6)居民防灾意识薄弱,房屋结构简易,抗灾强度低。房屋大多建在溪沟出山口地段,属于泥石流的流通路径。调查发现,虽然滑坡、泥石流灾害具有暴发性,但多数地点仍有数小时至数分钟的躲避时间,因防灾基本知识缺乏,以致有的村民在抢运财物过程中丧生。
7)对大型滑坡滞后于降雨过程的机理缺乏科学认识。
3.1.2.3 来自统计学的认识
地质灾害具有自然和社会的双重属性。理论研究与科学实践均证明,地质灾害具有可区划性、可监测预警性。
1)分析发现,滑坡的发生在过程降雨量和降雨强度两项参数中,存在着一个临界值,当一次降雨的过程降雨量或降雨强度达到或超过此临界值时,泥石流和滑坡等地质灾害即成群出现。
2)不同地区具体一条沟谷的泥石流始发雨量区间为10~300mm,差异之大反映了地质条件、气候条件等的差异。
3)在降雨过程的中后期或局地单点暴雨达到临界值时出现突发性群发型泥石流、滑坡等地质灾害,滑坡以小型者居多。
4)大型滑坡常在降雨过程后期或雨后数天内出现。
3.1.2.4 区域地质灾害的时空分布
据20世纪90年代的调查,我国泥石流的时空分布频率具有以下特点:
(1)泥石流频率与地貌
3500m以上的高山占9%;1000~3500m的中山占56%;小于1000m的低山占15%;黄土高原区占11%。
(2)泥石流频率与工程地质岩组
变质岩区占43%;碎屑岩区占32%;黄土区占11%;岩浆岩区占9%;碳酸盐岩区占7%。
(3)泥石流发生频率与年平均降雨量(mm/a)
<400区域占10%;400~600区域占16%;600~800区域占18%;800~1000区域占24%;1000~1400区域占22%;>1400区域占10%
(4)泥石流暴发时间(月份)分布频率
5月:9%;6月:18%;7月:34%;8月:24%;9月:10%
上述统计说明,泥石流主要分布在中低山地区;多出现在易于风化破碎的岩土分布区;年均降雨量过高或过低都不会暴发泥石流;发生时间主要出现在每年的6~8月。
3.1.3 中国地质灾害气象预警区划
基于我国地质灾害类型分布、全国气候区划和滑坡泥石流与区域降雨关系的各类研究文献,编制中国地质灾害气象预警区划图。
3.1.3.1 资料依据
基于气象因素的《中国地质灾害气象预警区划图(1∶500万)》的编制主要依据以下资料:
1)中国泥石流及其灾害危险区划图(1∶600万),
中国科学院成都山地灾害与环境研究所,1991
2)中国滑坡灾害分布图(1∶600万),
中国科学院成都山地灾害与环境研究所,1991
3)中国地质灾害类型图(1∶500万),
地质矿产部成都水文地质工程地质中心,1991
4)中国泥石流灾害图(1∶600万),
地质矿产部成都水文地质工程地质中心,1992
5)中国滑坡崩塌类型及分布图(1∶600万),
地质矿产部环境地质研究所,1992
6)中国特殊类土及危害图(1∶600万),
中国地质科学院水文地质工程地质研究所,1992
7)中国地形图(立体,1∶600万),地图科学研究所,1999
8)中华人民共和国气候图集,气象出版社,2002
9)区域降雨资料与滑坡、泥石流关系的各类文献
3.1.3.2 预警区划分原则
根据研究需要,在此提出斜坡划分原理:
1)滑坡和泥石流是在斜坡地区发生的;
2)区域分水岭的两坡气象降雨条件和生态环境是不同的;
3)我国的最大斜坡是帕米尔高原—东海大陆架的多级多层次斜坡;
4)区域斜坡可分为三类:一类是分水岭到海滨,如后界燕山—鲁儿虎山,左界辽河,右界永定河/海河和前界渤海圈闭的区域;二类如大别山—淮河—黄河圈闭的区域;三类如四川盆地周缘区域。
一级区以全国性分水岭或雪线为界,考虑长时间周期、大空间尺度的气候区划和地质地貌环境条件;
二级区主要以重大水系、区域分水岭、区域气候、历史滑坡泥石流事件分布密度、地质环境条件、斜坡表层岩土性质和年均降雨量分布。
3.1.3.3 预警区域划分
本研究立足全国范围,暂时提出两级区划,共划分7个一级预警区,28个二级预警区,可以满足初步工作要求(图3.1)。
(1)预警区的地质灾害特征
A东北山地平原区
A1三江地区
图3.1 中国地质灾害气象预警区划图(28个区)(台湾省专题资料暂缺)
佳木斯/牡丹江地区,气象因素引发地质灾害微弱。
A2东北平原
桦甸/敦化地区以及大兴安岭东麓,气象因素引发地质灾害较弱。
B大华北地区
B1辽南地区
辽东半岛地区(千山),气象因素引发地质灾害较严重。
B2京承地区
北京北部和河北承德地区,气象因素引发地质灾害严重。
B3晋冀地区
太行山东麓地区,气象因素引发地质灾害较严重。
B4山东丘陵
泰山和胶东地区,气象因素引发地质灾害在小范围较严重。
B5豫西地区
灵宝/许昌之间和伏牛山北麓地区,气象因素引发地质灾害较严重—轻微。
B6皖苏地区
大别山北麓和张八岭地区,气象因素引发地质灾害较严重—轻微。
B7江浙地区
临安/嵊州地区,气象因素引发地质灾害在小范围较严重。
C中南山地丘陵区
C1闽浙地区
武夷山/九连山以东地区,气象因素引发小规模地质灾害严重。
C2江西地区
九岭山和赣南地区,气象因素引发小规模地质灾害严重。
C3豫鄂地区
南阳、神农架、大洪山和大别山南麓地区,气象因素引发地质灾害较严重。
C4湖南地区
湘西和湘南(雪峰山)地区,气象因素引发地质灾害严重。
C5桂粤地区
桂西和两广北部地区,气象因素引发小规模地质灾害严重。
D西南中高山区
D1陕南地区
秦岭南麓和大巴山北麓地区,气象因素引发地质灾害严重。
D2四川盆地
成都平原外的其他地区,气象因素引发地质灾害严重。
D3黔渝地区
黔北和重庆地区,气象因素引发地质灾害严重。
D4滇南地区
滇南和黔南部分地区,气象因素引发地质灾害严重。
D5川滇地区
川西、滇西和滇中地区,气象因素(含高山融水)引发地质灾害极严重。
E黄土高原区
E1吕梁地区
大同—太原—临汾一线地区,气象因素引发地质灾害较严重—轻微。
E2陕北地区
陕北黄土高原地区,气象因素引发地质灾害严重。
E3陇西地区
陇西和海东地区,气象因素引发地质灾害极严重。
F北方干旱沙漠区
F1内蒙古东部地区
气象因素引发地质灾害轻微。
F2阿拉善地区
祁连山北麓、玉门/武威地区,气象因素(高山融水)引发地质灾害较严重。
F3南疆地区
天山南麓、阿尔金山北麓气象因素(高山融水)引发地质灾害较严重。
F4北疆地区
天山北麓气象因素(暴雨和高山融水)引发地质灾害严重。
G青藏高原区
G1藏北地区
气象因素引发地质灾害轻微。
G2藏南地区
雅鲁藏布江及支流流域气象因素(暴雨和高山融水)引发地质灾害较严重;藏东南
暴雨引发地质灾害严重。
(2)一级区域界线标志
A/F大兴安岭—七老图山
漠河—凤水山(1398)—古利牙山(1394)—太平岭(1712)—兴安岭(1397)—巴代艾来(1540)—罕山(1936)—黄岗梁(2029)—七老图山
A/B云雾山—长白山
小五台山(2882)—赤城—云雾山(2047)—七老图山—阜新—铁岭—莫日红山(1013)—白头山
B/E太行山—中条山
小五台山(2882)—恒山(2017)—北台顶(3058)—阳曲山(2059)—历山(2322)—华山(2160)
E/F毛毛山—靖边—东胜—小五台
海晏—仙密大山(4354)—毛毛山(4070)—景泰—定边—靖边—榆林—东胜—丰镇—小五台山(2882)
EB/DC秦岭—伏牛山—大别山—括苍山
海晏—龙羊峡—同仁—鸟鼠山(2609)—武山南—凤县—太白山(3767)—首阳山(2720)—秦岭—华山(2160)—全宝山(2094)—老君山(2192)—太白顶(1140)—鸡公山(744)—霍山(1774)—安庆—九华山(1342)—黄山(1873)—桐庐—括苍山(1382)—北雁荡山(1057)
F/G阿尔金山—祁连山
公格尔山(7649)—慕士塔格山(7509)—赛图拉—慕士山(6638)—乌孜塔格(6250)—九个达坂山(6303)—阿卡腾能山(4642)—阿尔金山(5798)—大雪山(5483)—祁连山(5547)—冷龙岭(4849)—毛毛山(4070)
C/D老君山—梵净山—岑王老山
老君山(2192)—武当山(1612)—大神农架(3053)—建始—来凤(>1000)—酉阳—梵净山(2494)—佛顶山(1835)—雷公山(2179)—岑王老山(2062)—富宁
D/G九寨沟—察隅
武山—九寨沟—雪宝顶(5588)—马尔康—炉霍—新龙—巴塘—察隅
(3)二级区域界线
A1/A2小兴安岭—张广才岭—白头山
呼玛—大黑顶山(1047)—平顶山(1429)—大青山(944)—大秃顶子山(1690)—大石头(1194)—甑峰山(1677)—白头山
B1/B2下辽河
B2/B3永定河—海河
B3/B4黄河
B4/B5黄河故道
B5/B6淮河—黄河故道
B6/B7长江
C1/C2武夷山—九连山
黄山(1873)—玉京峰(1817)—黄岗山(2158)—白石峰(1858)—木马山(1328)—九连山(1248)—龙门
C2/C34霍山—幕阜山—罗霄山脉
霍山(1774)—九江—九宫山(1543)—幕阜山(1596)—连云山(1600)—武功山(1918)—井冈山—八面山(2042)—石坑埪(1902)
C3/C4长江
C124/C5南岭山脉
雷公山(2179)—猫儿山(2142)—韭菜岭(2009)—石坑埪(1902)—雪山嶂(1379)—龙门—飞云顶(1282)—莲花山(1336)—神泉港
D1/D23米仓山—大巴山
九顶山(4984)—广元—米仓山—大巴山—大神农架(3053)
D2/D3长江—重庆—华蓥山—万源北
D123/D5夹金山—大凉山
雪宝顶(5588)—九顶山(4984)—二郎山(3437)—贡嘎山(7556)—铧头尖(4791)—大凉山(3962)—长江—五莲峰(2561)—陆家大营(2854)
D3/D4苗岭山脉
陆家大营(2854)—黄果树瀑布—惠水—雷公山(2179)
D4/D5乌蒙山—哀牢山—高黎贡山
陆家大营(2854)—黎山(2678)—马龙—玉溪—哀牢山(3166)—猫头山(3306)—高黎贡山—(3374)—尖高山(3302)
E1/E2吕梁山脉
岱海—管涔山—荷叶坪(2784)—黑茶山(2203)—关帝山(2831)—禹门口
E2/E3屈吴山—六盘山脉
景泰—屈吴山(2858)—六盘山(2928)—太白(2819)
F1/F2
古尔班乌兰井—呼和巴什格(2364)—贺兰山(3556)—香山
F2/F3
马鬃山(2583)—大雪山(5483)
F3/F4天山山脉
托木尔峰(7443)—比依克山(7443)—天格尔峰(4562)—博格达峰(5445)—巴里坤山—托木尔提(4886)
G1/G2冈底斯山—念青唐古拉山脉
扎西岗—冈仁波齐峰(6656)—冷布冈日(7095)—念青唐古拉峰(7111)—嘉黎—洛隆—邦达—巴塘。
3.1.4 地质灾害气象预警判据研究
3.1.4.1 判据确定原则与资料依据
根据有限研究积累和历史经验,滑坡、泥石流的发生不但与当日激发降雨量有关,而且与前期过程降雨量关系密切,本项研究选定1d,2d,4d,7d,10d和15d过程降雨量等6个数据进行统计分析,期望对一个地区气象因素引发滑坡、泥石流地质灾害的原因与临界雨量判据的确定具有全面认识。
本次研究的资料依据主要有两方面:
1)中国地质环境监测院建立的全国地质灾害调查数据库中气象因素引发的历史滑坡泥石流灾害数据(999个);
2)国家气象中心根据中国地质环境监测院提供的滑坡、泥石流数据,整理提供了731个相关站点15d内历史降雨量数据。
3.1.4.2 预警区的临界降雨量判据研究
(1)不同降雨过程代表数据的选定
中国气象局系统对日降雨量(Q)的预报是按当日20时到次日20时计算,而滑坡、泥石流事件可能发生在此24h的任一时段。
若灾害事件在接近24时发生,则基本可对应1d(即当日)过程降雨量;若灾害事件在次日0时以后的夜间发生,则对应前一日(2d)过程降雨量更符合实际。因此,本项研究选定的数据代表时段(日:24h)是:
1d过程降雨量:0≤Q1≤1
2d过程降雨量:1≤Q2≤2
4d过程降雨量:3≤Q4≤4
7d过程降雨量:6≤Q7≤7
10d过程降雨量:9≤Q10≤10
15d过程降雨量:14≤Q15≤15
(2)临界过程降雨量预警判据图的建立
根据滑坡泥石流与降雨关系的研究,制作滑坡泥石流与不同时段临界降雨量关系散点图,发现散点集中成带分布,其上界可用β线表示,下界可用α线表示。因此,利用1d,2d,4d,7d,10d和15d等过程降雨量,可以建立地质灾害预警判据模式图(图3.2)。
图中横轴是时间(1~15d),纵轴是相应的过程降雨量(mm)。我们规定,α线和β线为两条滑坡、泥石流发生的临界降雨量线,α线以下的A区为不预报区(1,2级,可能性小、较小),α~β线之间的B区为地质灾害预报区(3,4级,可能性较大、大),β线以上的C区为地质灾害警报区(5级,可能性很大)。
(3)预警区临界降雨判据图研究
在28个气象预警区中,18个预警区可以形成完整的滑坡、泥石流发生的临界降雨预警判据图(上限值β线、下限值α线);10个预警区因缺乏资料尚不能形成判据图,其中,A1,B5,F1和G24个区完全缺数据;B4,B6,E1,E2,F3和F46个区数据不全(只能形成α线或β线,甚至散点)。这10个区主要为滑坡、泥石流不发育区或人口稀疏地区,暂时对全国的预警工作效果影响不大。
图3.2 预报判据模板图
代表性数据及曲线举例
A2东北平原
中国地质灾害区域预警方法与应用
*3个样本。
A2气象预警区判据图
B1辽南地区
中国地质灾害区域预警方法与应用
*9个样本。
B1气象预警区判据图
C1闽浙地区
中国地质灾害区域预警方法与应用
*50个样本。
C1气象预警区判据图
D1陕南地区
中国地质灾害区域预警方法与应用
*45个样本。
D1气象预警区判据图
D5川滇地区
中国地质灾害区域预警方法与应用
*60个样本。
D5气象预警区判据图
E3陇西地区
中国地质灾害区域预警方法与应用
*50个样本。
E3气象预警区判据图
F2阿拉善地区
中国地质灾害区域预警方法与应用
*8个样本。
F2气象预警区判据图
G1藏北地区
中国地质灾害区域预警方法与应用
*15个样本。
G1气象预警区判据图
3.1.4.3 预警判据校正
为了提高预警精度,依据以下资料对预警区判据图进行了校正:
1)中国大陆滑坡、泥石流与降雨关系的各类科技文献;
2)历年中国地质灾害公报;
3)部分省(区、市)的地质灾害年报;
4)全国县(市)地质灾害调查区划成果资料(主要是福建省);
5)重点地区地质灾害专项研究报告等。
检索发现有13个预警区具有部分滑坡、泥石流与临界过程降雨量研究资料,有15个预警区暂未收集到或完全缺乏研究资料。
13个具备部分研究资料的预警区分别整理成图、表,可供确定相应预警区预警级别时参考,或与预警判据图配合使用。
以C1区为例,见下表(图3.3):
图3.3 C1区地质灾害点分布与临界降雨量统计关系
3.1.5 预警尺度精度评价
3.1.5.1 预警尺度
(1)空间预警尺度
图面表示3000km2(基于1∶500万~1∶600万地质灾害预警区划图)。
(2)时间预警尺度
地灾预警与气象预警时间尺度同步。
3.1.5.2 预警精度评价
1)取决于气象预报精度。目前全国性的气象预报精度尚不高,特别是对引发泥石流影响明显的局地单点暴雨的预报有待加强。
2)雨量站点代表性精度。地质灾害气象预警判据图依赖于气象站点经(纬)度和地质灾害发生点的经(纬)度(距离)的接近程度。
本次资料地质灾害灾情点的经(纬)度与相邻气象站点的经(纬)度之差在0.3°~1.0°之内,也即相差40~50km,反映在平面上即存在约2000km2的误差。
3)地质环境-气象因素耦合机制的研究精度。地形坡度、植被、岩土类型、含水状态、地表入渗和产流等的研究尚很薄弱。
4)人类活动方式、强度与斜坡变形破坏模式尚缺乏科学界定。
3.1.6 地质灾害预警产品制作与发布
3.1.6.1 预警产品制作、签批与发布
1)国家气象中心提供全国每次降雨过程的天气预报资料,每天16:00通过适当方式(E-mail)发送前期实际降雨量和次日预报降雨量数据;
2)中国地质环境监测院接到降雨量数据后,根据此数据和预警判据图对各预警区发生地质灾害的等级进行逐个分析和判定;
3)专家会商、分析判定预报预警结果,根据会商后的结果,做出空间预警,在预警图上划出预报或警报区,此称预警产品;
4)领导审定、签批预警产品;
5)经签批的预警产品于当天16:30通过适当方式(E-mail)发回国家气象中心;
6)国家气象中心接收预警产品,并和天气预报产品统一制作,配音;
7)中央电视台在当天晚上19:30新闻联播后播出地质灾害气象预报或警报及等级;
8)预报或警报地区的有关省级地质环境监测总站应在预警发出24h至48h内,向中国地质环境监测院反馈预警效果校验结果;
9)中国地质环境监测院分析研究预警效果校验结果,改进预警判据,逐步提高预警精度。
3.1.6.2 预警产品发布形式
(1)中央电视台发布播出
预警产品署名:国土资源部
中国气象局
模拟预报词:
今天晚上到明天白天,××地区发生地质灾害的可能性较大,请注意防范。
(2)中国地质环境信息网站发布
主要供专业人士和政府管理部门参考,跟踪研究预警效果,讨论研究预警方法与对策。
设计制作了地质灾害气象预警预报专用“符号”(图3.4)。
图3.4 地质灾害气象预报预警专用“符号”
从2005年开始,在中央电视台发布地质灾害气象预警预报信息图片时,同时配发崩塌、滑坡和泥石流动画,增强了地质灾害预警信息的视觉冲击力,也提高了地质灾害气象预报预警的社会影响力。
3.1.7 地质灾害预警软件系统
3.1.7.1 基于C语言的预警预报软件
2004~2006年,模型采用第一代临界雨量判据法,基于C语言的预警预报软件。具备自动生成降雨等值线、雨量站点上自动计算预报等级、查看雨量站点雨量等功能(图3.5)。缺点是无法自动成区、不具备GIS图层操作功能。
图3.5 基于C语言的第1套预警软件Predmap抓图
3.1.7.2 基于ArcGIS开发了第2套预警预报软件
2007年,基于ArcGIS开发了第2套预警预报软件,模型仍采用第一代临界雨量判据法(图3.6)。主要改进在于将软件系统升级为基于GIS开发,且实现预警区的自动圈闭。缺点是ArcGIS软件庞大,软件操作、升级等方面不便。
图3.6 基于ArcGIS的第2套预警软件抓图
Ⅶ 地质灾害黄色预警是什么意思
地质灾害黄色预警信号是指24小时内地质灾害发生的风险较高。地质灾害黄色预警信号是地质灾害预警信号中的第一级。
地质灾害预警级别分为五级,但预警信号为四级,即蓝色、黄色、橙色和红色,分别代表一般、较重、严重和特别严重,黄色预警是指未来24小时内发生地质灾害的可能性较大,应及时通知监测人员和受威胁住户注意避险。
(7)国家预警发布地质灾害扩展阅读:
质灾害气象预警预报信息每年汛期(5-9月)在中央电视台天气预报节目中和中国地质环境信息网上发布,目的是提醒被预警区的干部和群众防范滑坡、崩塌和泥石流灾害。可以分为以下等级:
一级提醒级,24小时内,灾害发生可能性很小。 启动重要地质灾害隐患点的群测群防巡查。
二级 提醒级,24小时内,灾害发生可能性较小。 预报预警时间内对重要地质灾害隐患点24小时监测。
三级 注意级,24小时内,灾害发生可能性较大。 预报预警时间内启动地质灾害隐患点群测群防,并24小时监测;采取防御措施,提醒灾害易发地点附近的居民、厂矿、学校、企事业单位密切关注天气预报,以防天气突然恶化。
四级 预警级,24小时内,灾害发生可能性大。 启动受地质灾害隐患点威胁区居民临时避让方案;暂停灾害易发地点附近的户外作业,各有关单位值班指挥人员到岗准备应急措施。组织抢险队伍,转移危险地带居民,密切注意雨情变化。
五级 警报级,24小时内,灾害发生可能性很大。 启动不稳定危险斜坡威胁区居民临时避让方案;紧急疏散灾害易发地点附近的居民、学生、厂矿、企事业单位人员,关闭有关道路,组织人员准备抢险。
参考资料:网络—地质灾害黄色预警信号
Ⅷ 从( )的6月1日起,中央电视台天气预报节目中正式发布全国地质灾害气象预报预警
从2003年6月1日起,中央电视台天气预报节目中正式发布全国地质灾害气象预报预警信息.
Ⅸ 中国气象局和国土资源部共同发布的地质灾害预报共分几级
分四级,即特级预警,一级预警,二级预警及一般预警
Ⅹ 国土资源部中国气象局关于进一步推进地质灾害气象预警预报工作的通知
国土资发〔2011〕135 号
各省、自治区、直辖市及计划单列市国土资源主管部门,气象局,中国地质环境监测院、国家气象中心、中国气象局公共气象服务中心:
为深入贯彻落实 《国务院关于加强地质灾害防治工作的决定》 (国发 〔2011〕20 号)、《国务院办公厅关于加强气象灾害监测预警及信息发布工作的意见》(国办发 〔2011〕33 号)和 《国土资源部与中国气象局关于深化地质灾害气象预警预报工作合作的框架协议》有关精神,进一步推进全国地质灾害气象预警预报工作,现就有关事项通知如下:
一、共同推进地质灾害气象预警预报体系建设
地方各级国土资源、气象部门要根据地质灾害实际情况,围绕地质灾害防治气象服务需求,采用多种方式,争取多方支持,依托现有资源,共同推动在地质灾害易发区建立综合的地质灾害气象观测站网,加快对易发区及周边地区气象观测站的升级改造,加强对已建气象设施的维护和保障,使气象观测设施处于良好运行状态,以满足地质灾害易发区市 (地、州)、县 (区、市)的地质灾害气象预警预报工作顺利开展的需要。
二、健全完善地质灾害气象预报预警信息共享平台和应急联动工作机制
地方各级国土资源、气象部门加快建设地质灾害监测预警信息和气象预报预警信息的共享平台,建立会商机制,共同发布地质灾害气象预报预警信息。要建立应对恶劣天气特别是突发强降雨等极端气象条件的应急联动工作机制。国土资源部门应根据地质灾害气象预警信息,加强应急值守,一旦发生 4 级以上地质灾害气象预警的灾害性天气,要及时启动相关应急预案,切实做好应对防范工作。气象部门应加强 4 级以上地质灾害气象预警灾害性天气的监测、预报、预警和服务保障工作,根据国土资源部门提供的地质灾害发生情况,组织开展加密观测和针对性的预报服务会商,及时提供气象服务信息,并提出相关防范意见和措施建议。要依托现有通信专线,进一步加强双方信息数据共享,重点加强地质灾害易发区监测、灾害数据的充分共享。要进一步加强应急联动能力建设,完善双方信息互通制度,拓展灾害应急联动方式渠道,丰富应急联动技术手段。双方要明确各自的责任部门、联络人员及联系方式,做到责任到人。
三、大力推进地质灾害气象业务标准体系建设
要加强科研和联合攻关,大力推进地质灾害防治气象业务标准体系建设,不断提高地质灾害气象监测预警预报精细化水平。地方各级国土资源、气象部门要联合制定地质灾害易发区气象观测站建设安装、运行维护、检测校准、通讯协议、信息交换共享、预报服务产品制作、信息发布等方面的规范和标准,充分利用各自的资源和技术优势,形成合力,共同加快相关标准和规范的编制工作,促进地质灾害气象业务的规范化发展。联合加强对各级地质灾害气象预警预报业务人员的培训,提高业务水平和能力。要针对地质灾害突发性强等特点,联合研发 6 小时间隔的地质灾害气象预警预报产品,逐步开展地质灾害短时临近预警预报业务。要积极推动基层地质灾害气象预警预报工作的深入开展,推进福建省泉州市、云南省玉溪市和三峡库区地质灾害监测预警示范区建设,深入开展精细化地质灾害气象预警预报试验研究,探索积累经验并在全国推广应用。
四、全面提高地质灾害气象预警信息发布能力
地方各级国土资源、气象部门要积极争取地方政府和有关部门的大力支持,不断加强易灾地区特别是偏远山区、学校、农村等地区的地质灾害气象预警及气象灾害信息发布传播设施建设,努力拓宽预报预警信息覆盖范围。要加强与广电、电信、城建等部门的联系与合作,通过建立协同高效的联合响应机制,利用电视和电台、手机短信、城区显著位置电子广告牌等设施及时发布地质灾害气象预报预警信息,保证预报预警信息渠道畅通、播发及时。
五、积极探索建立多样化的地质灾害防治合作模式
地方各级国土资源、气象部门要根据各地特点和需求,积极探索建立符合本地实际的地质灾害气象业务发展长效合作机制,建立多方参与、权责明晰的地质灾害气象监测系统建设、运营维护与服务提供模式。对于面向公众的灾害性天气预报预警、实况监测信息等服务,属气象部门公益服务范畴的,由各级气象部门无偿提供。对于相关部门和单位提出的个性化地质灾害气象服务需求,由气象部门按照有关规定通过协议方式予以提供。
国土资源部 中国气象局
二〇一一年九月八日