当前位置:首页 » 地质工程 » 地质灾害危险性评估老滑坡

地质灾害危险性评估老滑坡

发布时间: 2021-03-11 15:45:53

❶  地质灾害类型及其危险性现状评估和预测评估

一、地质灾害类型及特征

评估区地质灾害类型有地面灾害和斜坡变形灾害两大类共6个灾种,灾害类型划分及其主要特征见表12-5。

表12-5地质灾害类型划分及主要特征表

(一)地面沉降

在评估区及其附近,地面沉降分布于淮北平原阜阳、界首、太和、利辛、涡阳、蒙城等市县,是由于超采中、深层孔隙承压水引起的。20世纪80年代以来,各城镇开采井多深达150~200m,随着开采量逐年增大,承压水头逐渐下降,使得1.62×104km2的自流区基本消失,形成了以城镇为中心的区域性降落漏斗。至90年代中期,阜阳市城区降落漏斗中心水位埋深已达80m,水位降幅1.44~1.88m/a;界首市城区水位埋深已超过70m;有些地段降落漏斗已相连接。承压水位持续下降诱发了地面沉降。

20世纪80年代初有关部门对阜阳市进行水准复测发现,位于颖河西侧水文站内的9号点仅沉降83.7mm,沉降范围80~100km2。此后该市开采中深层承压水进入了高峰期,地下水位以3m/a的速率持续下降,至1990年沉降范围和中心沉降量分别以26km2/a和78.9mm/a高速增长,沉降中心最大沉降速率达109mm/a,沉降范围已达360km2,沉降中心最大累积沉降量873mm。地面沉降量与地下水开采量及水位埋深呈正相关。1990~1999年沉降速率虽有所减缓,但沉降范围扩展和中心沉降速率仍达6.25km2/a和59.3mm/a,至1999年1月沉降范围约410~420km2,中心最大累积沉降量已达1347.4mm(图12-2)。

图12-2阜阳市累积地面沉降量等值线图

等值线单位:mm

此外,管线附近界首、太和、利辛等县城水位持续下降,已形成水位降落漏斗,地面沉降有一定显示。

过量开采中深层地下水,使地下水位大幅度持续下降,造成含水层及相邻土体的有效应力增加从而固结压密并发生地面沉降。阜阳地区0~156m深度范围内主要有6个压缩层,总厚度50~l00m,其中A7-4、A9-5和A11-6三个压缩层是主要的,它们的埋深分别为39~77m、78~101m和107~132m,而埋深40m以内的土体则为超固结土,压缩沉降量小。

(二)采空塌陷

采空区地面塌陷是采掘巷道上部的岩层失去支撑,力学平衡条件被破坏,而发生的崩落、开裂、弯曲等变形破坏现象,最终导致地面沉陷的地质灾害。在安徽段采空区地面塌陷主要分布于淮海煤矿和定远石膏矿和盐矿三地。

1.淮南煤矿地面塌陷

淮南矿业集团所属12对矿井,井田总面积为301.12km2,至今采空塌陷面积达57.744km2。随着煤矿开采的延深和规模扩大,1997年1月至2000年6月塌陷区增加了8.04km2,年增长率为4.1%。矿区地跨淮河两岸,为冲积平原区,淮河以南采空塌陷(距管线达19km)总面积34.734km2,塌陷最大深度约20.Om;淮河以北采空塌陷总面积23.01km2,塌陷最大深度约5.5m。淮南煤矿采空塌陷比较严重,造成村庄、农田被淹没,工程设施损坏,并对水利和防洪工程造成较大的影响。

淮南煤矿采空塌陷属缓变型。基本特征是:回采1.5个月左右,地面塌陷开始产生,3~4个月为活跃期,此时的塌陷总量可达70%左右,一般18个月后逐渐稳定,且采空区与地面塌陷区基本一致。淮河以北潘谢矿区采空塌陷处于持续发展过程中。

2.定远石膏矿地面塌陷灾害

定远石膏矿地面塌陷形成的特点是:巷道遗弃支护一拆除,巷道顶板岩层立即塌落,随后引起地面塌陷。目前塌陷面积仅为50~800m2,塌陷的深度最大为0.50~0.65m,管线离其尚有一定距离,且开采规模呈现减少的态势。

3.定远县东兴盐矿地面塌陷灾害

该矿的开采区位于输气管线(K235+280)的南侧4km处。自1988年末开采至今,仅在1998年后开采区开始产生轻微的地面塌陷,且与开采区范围相吻合,面积约0.2km2。目前对开采区及周围影响不大。

地面塌陷的产生及危害程度受诸多因素制约,主要与矿层厚度及埋藏深度、顶板围岩强度和上覆的第四系松散堆积物厚度有关:矿层厚度愈大,埋深愈小,顶板围岩强度愈小,上覆第四系松散堆积物愈厚,则地面塌陷愈强烈。

(三)地震液化

管线穿越的地震烈度Ⅶ度区有两段:一段位于淮北平原的四庙—孙集一带(K59—K70),西淝河河床两侧为第四系全新统粘性土、粉砂、细砂,厚度6.40~14.80m,地下水位埋深2.20~2.50m,其下伏的粉砂、细砂在地震条件下存在轻微液化;另一段位于江淮丘陵平原的前王一带(K266+200—K273+200),池河河床两侧分布的全新统粘性土、粉土和含泥砂砾石,厚15~20m,水位埋深0.8~2.4m,上覆的粘性土厚度在6m左右,下伏的粉土较薄,且标贯击数在17击左右,粘粒含量大于10%,基本不产生地震液化问题。

(四)膨胀土灾害

评估区内界首、蒙城、定远、滁州、来安等地丘陵岗地及河谷Ⅱ级阶地上广布的上更新统的冲积、洪冲积及残坡积的粘土、粉质粘土,颜色为灰白、棕黄、褐黄和土黄色,厚度一般7~15m,局部大于30m。天然状态下呈硬塑、坚硬状,柱状节理发育,含铁锰质结核和薄膜。由于土层中含较高的蒙脱石、伊利石等亲水性矿物成分,有遇水膨胀、失水收缩的特征,往往造成其上的建筑物变形、开裂。经取样测试,评估区内膨胀土自由膨胀率为40%~63.5%,属弱膨胀潜势。淮北平原区和沿江丘陵平原区一般在40%~57.5%;江淮丘陵平原区一般为45.5%~63.5%;局部可达66.5%~74.5%。从地貌上可以看出,膨胀土的膨胀性有在平原区稍低,丘陵坡麓的岗地区稍大的特点。

工程沿线膨胀土分布地段为K19+600—K58+400、K63+400—K65+000、K70+000—K178+500、K184+300—K219+100、K226+650—K245+450、K246+150—K251+250、K253+900—K262+050、K263+300—K266+150、K305+500—K309+900、K312+480—K321+870、K323+190—K325+050、K328+390—K333+900、K343+110—K345+910,分布长度为242.7km,占线路总长的70%。

(五)崩塌

沿线崩塌灾害主要分布于K185—K200、K280—K334段,崩塌均与人工切坡不当有关,有土崩和岩崩。崩塌体的规模一般在50~200m3之间,调查过程中发现多处岩崩,主要分布于K280—K302段,由中元古界千枚岩等浅变质岩组成的斜坡,节理裂隙极为发育,岩性破碎。因修建房屋和公路切坡的边坡大多不够稳定,如滁州市南谯区小庄村崩塌,土崩主要分布于K302—K334段,由Q3弱膨胀土组成,切坡后极易产生崩塌。如滁州市甘里阜和定远县城东轮窑厂崩塌等。

此外,还有人工堆积层崩塌分布于K185—K200段,是由采石场弃碴于采坑边造成的。

二、地质灾害危险性现状评估

(一)地面沉降

阜阳市地面沉降的发展已直接或间接地给城市建设和经济发展造成了一定危害,主要表现有:

1.破坏水利设施和降低防洪标准:位于沉降区的颍河和泉河,左右堤坝全长48km,堤顶高度均已随地面沉降而降低,已达不到原设计20年一遇的防洪标准。20世纪80年代以来,阜阳节制闸多处闸体开裂现象逐年增宽,目前已严重威胁大闸的运行安全。

2.破坏市政及供水设施:部分深层地下水开采井发生倾斜、错位、井管抬升、井台开裂变形。颖上路段排水管道错裂,原可顺畅外排的污水向沉降部位集中。

3.破坏城市测量控制网:中国地震局以阜阳市为中心布设的阜阳环Ⅱ等水准线路,因地面沉降干扰,影响了地震监测工作。1999年总参在阜阳进行地形校测时,导线无法闭合,不得不从沉降区外水准点引测。

阜阳市中深层孔隙承压水水位下降速率近年来有所减小,反映阜阳市地面沉降有减缓的趋势。而输气管线通过地段在阜阳市地面沉降区以北约30km处,沿线除利辛县城外皆为农村,目前中深层地下水开采量不大,尚未发现地面沉降现象。

(二)采空塌陷

1.淮南煤矿采空塌陷

淮南煤矿系国家统配煤矿,开采数十年来所形成的地面塌陷范围和塌陷深度都很大。地面塌陷所导致的灾害比较严重,其危害主要表现在:塌陷盆地中心部位已形成一系列的塌陷湖(塘),造成村庄、农田、通信线路被淹没。边缘区(危险变形区)工程建设及设施被损坏,如房屋倾斜、墙基开裂、地坪错开等;对水利和防洪工程造成较大的影响,如淮河堤塌陷,下沉深度大于1m的达850m,累计影响长度15.1km;铁路路基下沉(大通—张楼线的望李段),影响长度为7.41km;外边缘区主要表现在对房屋的破坏,如墙基开裂等。

淮河以北的潘谢矿区地面塌陷正处于持续发展过程中,且距输气管线相对较近(在K159处相距为10.3km)。目前塌陷区呈北西西—北西向展布,而且潘1、潘2、潘3三个矿井的塌陷区几乎相接(图12-3)。矿区规划的开采区向四周扩展,无疑距输气管线将愈来愈近,应予关注。

图12-3淮河以北煤田采空区地面塌陷预测图

2.定远石膏矿地面塌陷

该矿采空区顶板岩层以软弱的泥岩和粉砂质泥岩为主。根据多年观测资料表明,当矿床开采深度在170~180m以内时,可引起地面塌陷;其中以开采深度60~70m的最易引起地面塌陷。

根据该矿1992年的调查结果,采空塌陷自1990年开始,在不到一年的时间里,地面塌陷面积达10余亩,随着采空区面积的增加,地面塌陷时有发生,其多发年份为1998年之前,其后地面塌陷灾害有减缓的趋势。地面塌陷产生的同时,多伴有地裂缝的产生(危险变形区)。调查结果表明:定远石膏矿采空区塌陷的影响范围,一般比采空区范围向外扩展l00m左右。塌陷的危害主要是引起房屋开裂、电线杆歪斜、渠道损毁、耕地破坏等。而矿区位于县城的东南郊,属居民较密集区,且存在一些高层建筑(楼房、烟囱),因而,采空区的地面塌陷已威胁到人们的正常生活环境。

由于定远石膏矿目前开采规模呈现减少的态势,因而矿区的地面塌陷问题影响甚弱,地面塌陷危险性等级属轻微。

3.定远县东兴盐矿采空塌陷

该矿矿体顶板埋深218m左右,近东西向展布,岩性为软弱的泥岩和钙质泥岩,目前采用钻井注水法生产工艺开采,采空区即为溶腔,溶腔间预留80~100m的保安矿柱。自1988年末开采至今,矿区地质环境现状较好,基本未产生相关的地质环境问题,仅在1998年后,开采区开始产生微弱的地面塌陷,其形态与开采区范围相吻合,面积约0.2km2。由于属钻井注水法开采,故其地面塌陷属缓变型,且地面显示不明显,主要表现在降雨期存在积水问题,而对开采区及周围影响不大(居民远离矿区,相距600m以外),地面塌陷危险性等级属轻微。

(三)地震液化

由于缺乏系统的资料,历史上中强地震时评估区土层液化的分布及液化对建筑物的破坏情况无法细述,但据现有资料,以阜阳市为例:1668年7月25日山东莒县—郯城间8.5级地震(是我国东部最强烈的地震),在阜阳市造成Ⅶ度破坏;1481年3月9日涡阳6级地震、1831年9月28日凤台北东6.25级地震、1937年8月1日山东菏泽7级地震,在阜阳市均造成V度破坏。由于淮北平原浅部发育全新世的砂类土和低塑性粉土,且地下水位埋深一般为1~2m,因此,存在地震液化的可能性。

(四)膨胀土灾害

评估区内膨胀土分布范围很广,属弱膨胀潜势,但据现场调查,对低层建筑仍有一定破坏性,主要表现在使房屋及墙体产生开裂,并伴有地裂或地基上鼓。如蒙城县的双佛塔建在膨胀土地基上,现在从塔顶到塔底产生一条大裂缝,另外淮南、蒙城、界首、定远等地的厂矿、学校、民房等,有不少因膨胀土地基而产生房屋开裂,其中蒙城县的蒙古族中学院墙在1978年秋天产生地基上鼓现象。

由膨胀土组成的边坡,边岸也极易产生滑坡、崩岸,如河岸、湖岸及人工渠的边坡都产生过规模不等的滑坡和崩塌,位于江淮分水岭附近的人工渠及巢湖湖岸,都有这类危害。

(五)崩塌

评估区内崩塌灾害主要是堵塞道路交通、压覆植被、掩埋农田等。输气管线施工的切坡开挖,势必会受到崩塌的危害。

三、地质灾害危险性预测评估

(一)工程建设诱发、加剧地质灾害的可能性

(1)工程沿线大部分为平原地区,工程建设时和建成后不会加剧地面沉降、地面塌陷等灾害。

(2)鉴于沿线膨胀土分布广泛,在区内刘巷子、定远、滁州等丘岗地带,地形起伏较大,工程建设时如开挖斜坡地带,易诱发边坡不稳定,一般不会加剧滑坡灾害,如在庙陈—滁州地段,基岩裂隙发育,人工切坡时易诱发崩塌或滑坡灾害,应注意边坡的防护工作。

(3)管线穿越淮河、池河、滁河等较大水体,如工程处理不当,会造成地基破坏,易产生管涌、渗漏问题,影响防洪堤。

(二)工程本身遭受地质灾害危险性评估

1.地面沉降

根据规划资料,中、深层地下水在将来仍然是城镇供水的主要水源,且开采量和开采范围均有所扩大。采用水文地质比拟法,结合近年来的水位、水量、沉降监测资料的相关性分析,各主要城镇地面沉降预测结果见表12-6和图12-4。

表12-6主要城镇地面沉降预测结果表

图12-4安徽段地面沉降趋势预测图

鉴于缺乏淮北平原区地面沉降专门研究,其预测结果和将来实际情况可能存在一定偏差,但其地面沉降的发展是存在的,会对管线造成一定的危害,笔者认为利辛段地面沉降发展对管线危险性大,其他危险性小。

2.采空塌陷

(1)淮南煤矿地面塌陷

根据淮南煤田分布特征和矿区地质构造条件分析,并采用工程地质比拟法和概率积分法预测,离管线最近(4.5km)的朱集矿区,即使将来采矿,其塌陷影响范围一般以开采深度的65°角外延,其最大距离为2.5km(-1200m的开采标高)。2015~2020年预计最大下沉值为3.6m,下沉0.5m以上的塌陷范围为5.532km2,未延伸至管线;潘谢矿区地面塌陷灾害严重,但距管线较远。预测地面塌陷对管线的危险性小。

(2)定远石膏矿地面塌陷

定远石膏矿区矿层稳定,规划开采井巷最南端距管线1.4km。采用类比法和理论计算两种方法预测,认为规划开采区可能塌陷边缘距管线仅500~600m,塌陷影响带将波及到管线。管线在K245+500—K252+020段(长6.52km)通过石膏矿体分布区,若今后在管线下部及一定范围内(2km内)开采,势必会对管道的安全产生危害性,潜在危险性较大。

(3)定远东兴盐矿采空塌陷

矿区边界和管线最近距离为3.5km。东兴盐矿开采过程中,采用钻井水溶法开采,其采空区实际上是水与盐矿体(溶于水而流出地表)的置换过程,且矿体尖灭部位距管线3.5km,开采产生的地面塌陷对管线的危险性小。

3.膨胀土

评估区内膨胀土大气影响深度在3.0~3.5m之间,膨胀土的胀缩性易对管线产生顶压,加之地形起伏大,易产生滑坡,有可能会对管线产生不良影响,总体危险性小,局部中等。

4.地震液化

采用标准贯入试验判别法对西淝河漫滩全新统冲积层(15m以浅的深度内进行判别,Ncr为7.07~7.72,在Ⅶ度远震的情况下,顶部的粉土不存在地震液化问题,而下部的粉砂、细砂则存在轻微地震液化。

5.崩塌、滑坡

采用图解法和极限平衡法预测,管线工程沿线的边坡存在基本稳定(K184—K227)和不稳定(K280——K301)两种情况,如切坡不合理,甚至局部形成人工边坡,上述斜坡段均可能产生崩塌、滑坡灾害,危及管线,但总体危险性小。

❷ 地质灾害危险性评估等级

地质灾害危险性是指地质灾害危险源危险区范围及其可能造成的人员伤亡和财产损失。
地质灾害评估等级划分为三级,是根据拟建工程的重要性和评估区地质环境复杂程度来综合确定的。

❸  地质灾害危险性综合评估及防治对策

一、地质灾害危险性综合评估

山西段沿线地质灾害有9种,主要有5种,即滑坡和崩塌、泥石流、采空塌陷、黄土湿陷。根据地质灾害的发育特征、分布范围、现状和预测情况,采用综合性、预防性原则和定性半定量方法,以及两种以上灾害就重不就轻的原则来划分危险性大小。

土地适宜性评价根据地质灾害危险性大小来确定,即危险性大的土地适宜性差;危险性小的土地适宜。地质灾害危险性综合评估及土地适宜性评价详见表10-11、图10-10。

图10-10西气东输管道工程山西段建设用地地质灾害危险性分区图

1.危险性大;2.危险性中等;3.危险性小;4.危险性分区界线;5.地质界线;6.输气管线;7.压气站(清管站)

表10-11地质灾害综合评估分类表

管线在山西段总长323.484km,以临汾盆地为界,西段以采空塌陷、滑坡、黄土湿陷为主;盆地区以地震液化为主;东段以煤矿采空塌陷、地裂缝、滑坡、崩塌、黄土湿陷、泥石流为主,总体危险性中等—大。土地适宜性基本适宜和适宜性差。其危险性和土地基本适宜性所占的比例为:危险性大、土地适宜性差,全长87.607km,占总长27%;危险性中等、土地基本适宜,全长188.347km,占总长58.3%;危险性小、土地适宜,全长47.529km,占全长14.7%。

二、地质灾害防治对策和建议

(一)地质灾害防治对策

总的原则是“以防为主,防治结合”。对于滑坡、崩塌等影响范围较小的点状灾种,应坚决采取局部绕避的方法,一般不予工程治理,对于黄土落水洞、黄土陷穴密集分布区地段,应适当移动管线位置;对于瓦斯爆炸和煤层自燃灾害,应采取防火和防塌陷的工程措施;对于地面沉降、黄土湿陷、地震液化这些面状灾种,应采取限采地下水或防水工程措施;对于煤矿采空塌陷、地裂缝或采空后尚未塌陷的地段,应采取治理和避让相结合的方法,即对于浅埋型采空区治理、深埋区避让,对于泥石流应采取深埋、避让和治理相结合的方法。

(二)地质灾害防治建议

1.滑坡

本区虽然大多数滑坡已稳定,但考虑到煤矿采空对滑坡复活的影响,建议管线应尽可能靠近公路、铁路等建筑物,远离滑坡区,加大与滑坡的距离。因为这些建筑物在走线和施工中考虑了致灾因素。在黄土边坡陡坎下施工时,应与陡坎保持一定距离,在稳定性差构造发育的岩质边坡段施工,应禁止大开大挖,避免诱发新的滑坡。

2.崩塌

崩塌属易发多发灾害,具有规模小、分布广等特点,管线经过崩塌地段时适当加大埋设深度或远离崩塌体及高陡临空危岩体。

3.泥石流

管线通过泥石流沟要根据冲沟坡降和沟中堆积情况,管线适当深埋,坡降大的地段,谷底为松散层的埋深要大于3m,谷底为基岩时埋深2m即可;坡降小时,可按设计埋置。对于泥流分布区配合当地植树造林等措施,逐步减少水土流失;管线尽量靠近公路铺设。

4.煤矿采空塌陷

对于浮山县境内的采空塌陷采取绕避措施,改线方案见图10-11。原管线长5km,改线后5.9km。

图10-11改线方案图

1.设计管线及桩号;2.建议管线;3.煤矿矿界;4.煤矿采空区;5.崩塌及编号;6.滑坡及编号;7.地裂缝及编号;8.采空塌陷及编号

对于蒲县—临汾尧都段、阳城段全部采用抗变形结构铺设管道,因为此两段目前还未发现有裂缝与管道相交。其方法是在输气管线底部铺设一定厚度的钢筋混凝土层,必要时在管道两边加设钢筋混凝土墙,形成钢筋混凝土框,并在管道两边预留一定的错动空隙。

在泽州段,由于地下采空区埋深相对较浅,应采取高压注浆法对其进行治理。

应当指出的是,在输气管线下未开采的煤层,应留设一定的保安煤柱,保安煤柱管线两侧分别不小于100m。

5.黄土湿陷

对于I级、Ⅱ级自重或非自重湿陷性黄土,应采取换土或强夯法处理。

对于Ⅲ级自重或非自重湿陷性黄土应采取冲击碾压、土桩挤密法处理。

6.地面沉降

地面沉降防治重点应放在对地下水开采的管理上。建议当地水利部门对输气管线经过的屯里一带城北水源地制定严格的开采规划,尽量保持地下水补采均衡,制止城北水源地中深层地下水降落漏斗的进一步扩大。

7.地震液化

根据液化层的深度分别采取挖除液化层、加密法(如振动加密、砂桩挤密、强夯等),必要时可采取桩基础。

8.地裂缝

在开挖过程中,应注意地貌单元过渡带及陡坎处是否存在新的地裂缝的迹象,在这些地段工程中采用抗变形结构。

9.瓦斯爆炸和煤层自燃

在当地政府的积极配合下,坚决禁止本区小煤窑的私开乱挖现象,煤炭生产要走向法治化、规范化的轨道。要加强井下安全生产,最大限度地避免因瓦斯爆炸造成人员伤亡,进而威胁到管线安全。小煤窑闭坑后,应将坑口堵塞,避免因空气流动出现残留煤柱自燃现象。

❹ 站场地质灾害危险性评估

甘肃段全线设有站场4个,它们分别是:兰州西固首站、定西分输泵站、张家川分输泵站和天水北道末站。下面将逐个对其进行地质灾害危险性评估。

(一)兰州西固首站

里程桩号为0.0km段,地貌位置为黄河南岸二级阶地,地形平坦,地表无侵蚀切割,距离南侧山坡大于2km。地基具二元结构,自上而下分别是黄土状土和砂砾土,其中表层黄土状土厚约10m左右,具非自重湿陷性;下伏厚层砂砾土。由于地下水埋深5~10m,黄土状土中含水量普遍较高,饱水部位呈软塑—流塑状态时,承载力低,易发生湿陷。此外,西固及其南部为高矿化地下水,硫酸盐含量一般为1500~2500mg/L,对混凝土具有中等侵蚀性。可能的地质灾害为黄土湿陷,但规模小发生频率也低,对站场的危害小。预测地质灾害危险性小。

(二)定西分输泵站

里程桩号为 137.7km段,位于南河南岸,地貌上为河谷平原,南河沿两岸发育一级阶地,阶地和漫滩宽约50~100m,干旱季节流量小或断流,暴雨时有洪峰产生,最大流量100m3/s,对岸边侧蚀强烈,常有崩塌发生,阶地具有二元结构,上部为黄土状土,具有湿陷性,下部砂卵石,是良好的持力层。地下水主要储存于砂卵石中,埋深大于10m。矿化度高,硫酸盐含量大于1000~3000mg/1,对混凝土具有弱—中等腐蚀性。该站场地主要地质灾害为洪水冲蚀,包括暴雨洪流对主河道的两岸及谷坡支沟的冲蚀和地表的面蚀,洪水暴发规模及频率均较小,对站场的危害性小,预测地质灾害危险性小。建议站场的建设中对有侧向侵蚀的沟岸采取加固措施,对有洪水威胁的冲沟采取工程排导措施。

(三)张家川分输泵站

里程桩号为325.0km,位于张家川镇南后川河西岸与其支流交汇附近,地貌上为河谷平原,地形平坦,谷底宽约1000m,沟谷走向近南北,两岸发育一、二级阶地。一、二级阶地宽1000~2000m,河漫滩宽100~200m,阶地前缘高出漫滩2~5m。具二元结构,有黄土状土和砂砾石组成,地下水储存于砂砾石中,埋深8~10m,矿化度1900~2500mg/1,硫酸盐含量小于450mg/1,对混凝土不具侵蚀性。现沿河两岸建有防洪堤,洪水对岸边土体无冲蚀或轻微冲蚀,造成灾害的可能性很低,预测地质灾害危险性小。建议选建场地应与山坡保持一定的距离,以防滑坡危害。

(四)天水北道末站

里程桩号为天水支线73km,位于渭河北岸,地貌上为河谷平原,由一、二级阶地组成,地形平坦,尤其以一级阶地最为发育,谷底宽约 800~1000m,沿渭河两岸连续分布,阶地前缘高出漫滩2~5m,河漫滩宽100~200m。平原区具多元结构,上部为黄土状土,厚5~6m以下为砂砾土、淤泥质粉质粘土和砂层,所夹淤泥质粉质粘土及砂层为透镜体状,厚度不稳定,一般厚度为 2~10m,上述地基土中除砂砾层承载力较高外,其余承载力较低,特别是淤泥质亚粘土和砂层,容易发生液化和滑移,场地附近地下水分布于砂砾石中,埋深大于6m,水质良好,北岸附近山地带地下水对混凝土有弱腐蚀性。平原区属地质灾害低易发区,主要地质灾害为河流洪水对岸边的冲蚀,目前沿河岸均修建有堤防,可能造成灾害的危险性小。场站北侧谷坡附近大部分地带分布有古滑坡,整体虽然稳定,但土体较松散,在靠近边坡附近建设时,建议对边坡部位进行工程治理,或者坡脚保证一定的距离,预防滑坡发生。

由以上分析可知,甘肃段管线工程建设地段地质环境条件复杂,以崩塌、滑坡、泥石流、洪水冲蚀以及黄土湿陷和潜蚀为主的地质灾害发育,工程建设和运营过程中可能遭受的地质灾害来源于已有的地质灾害和诱发及加剧的地质灾害共同威胁。工程所遭受的灾种首推崩塌和滑坡,它们大多分布于丘陵区和峡谷段,对管线的危害方式有压埋、推移、悬空等破坏作用,危险性大—中等。泥石流和洪水冲蚀灾害分布于沟谷地段,管线经过的泥石流沟主要在泥石流堆积区,下切作用不强,而淤埋和推移作用强烈。洪水冲蚀以侧蚀作用为主,当管道距河床较近时可能存在侧蚀架空。泥石流和洪水冲蚀危险性中等—小。黄土湿陷和潜蚀灾害除阎家店以东外,绝大部分地段均有分布,尤其是上更新统马兰黄土分布地段危害更大,危险性大—中等。

综上所述,预测工程建设和运营期间可能遭受地质灾害危险性中等—大的地段是:

小坪子—雷坛河—直沟门段可能遭受崩塌、泥石流、洪水冲蚀及黄土湿陷和潜蚀灾害。

高崖—红土窑—马营段可能遭受崩塌、泥石流灾害。

马营—碧玉段可能遭受滑坡和泥石流灾害,局部有洪水冲蚀。

碧玉—魏店—莲花镇段可能遭受崩塌、滑坡、泥石流及黄土湿陷和潜蚀灾害。

龙山镇—张家川镇—阎家店段可能遭受滑坡、泥石流、洪水冲蚀灾害。

韩家A—张堡—北道段可能遭受崩塌、滑坡、泥石流及黄土湿陷和潜蚀灾害。

甘肃段场站区地质灾害不发育,危害性小,危险性小。

❺ 地质灾害危险性预测评估

(一)工程建设引发或加剧地质灾害危险性的预测

依据野外地质灾害调查访问资料及对历史、区域资料进行分析研究,并考虑该成品油管线工程项目具有路线长、经过地形地貌单元多、地质环境变化大等特点,由于管道工程对地质环境影响较小,敷设方式采取埋地、地面、地上3种方式,一般埋地深度2m左右,管道对土层增加的荷载很小,工程穿越河流、铁路、国道采用盾构法或顶管法施工,对河岸的稳定性影响较小,工程施工中应加强开挖的支护工作,防止出现滑塌等安全事故,工程建设引发和加剧地质灾害主要有以下几个方面:

1.引发或加剧崩塌、滑坡灾害的危险性预测

主要发生于灵宝—郑州段的黄土丘陵区,这些地段冲沟发育,地形起伏大:在黄土梁峁和黄土台塬周边斜坡地带,现状条件下是崩塌、滑坡的易发区,建议管线工程势必开挖削切边坡,改变了原有斜坡应力状态,以致使边坡失稳,引发和加剧崩滑灾害。以下几个地段预测可能性较大:

(1)灵宝—三门峡段(G0~G100)

该管线地段地面全为中、上更新统黄土类土展布,北依黄河,有众多发源于小秦岭和崤山北麓的短促河流切割黄土,切深较大,在河流沟谷两侧形成高陡斜坡现状条件下有多处崩滑点。管线自西往东均要穿越这些河沟和斜坡,引发或加剧崩滑灾害的主地段(里程桩号)是:G4~G6、G9~G11、G14~G18、G23~G24、G29~G30、G39~G42、G48~G50、G80~G95。上述地段除崩滑灾害外,洪水冲蚀灾害也不能忽视。

(2)铁门镇—朝阳乡段(G168~G210)

该管线地段面全为中、上更新统黄土类土展布,大冲沟极其发育,切割深度大,沟壁陡峻条件下,现状条件下崩塌和滑坡较发育。尤其是G168~G200地段引发和加剧崩滑灾害的危险性较大。

(3)芝田镇东—高山镇段(G264~G290)

该管线地段地面全为上更新统黄土展布,南北向冲沟发育,皆被东西向的管线穿越,地形起伏变化较大。虽未发现崩塌、滑坡分布,但工程建设引发崩滑灾害的潜在威胁应予重视。此地段还有巩义市金龙煤矿有采空地面塌陷的危险。

(4)荥阳市—龙岗镇南段(G298~G330)

该管线地段地面全为上更新统黄土展布,冲沟发育较密集,地形复杂,起伏变化大,现状条件下有多处崩塌点,管线穿越冲沟地段引发崩滑灾害可能性大。此外,在G330附近的郑州市二七区龙岗煤矿有潜在采空地面塌陷危险。

2.引发或加剧特殊土地面变形灾害的危险性预测

河南段管线途经地段有黄土类土和膨胀土两类特殊土,在工程建设中有可能加剧灾害的影响。

工程建设引发、加剧黄土湿陷的危害:工程开挖使管线及周边的黄土被扰动,已非原状土,由于黄土具有非自重湿陷,在雨水下渗作用下可能引起黄土潜蚀,产生黄土陷穴,从而对管道产生破坏。由于开挖量较小,深度为 2m,同时又要进行填埋,因此,工程建设引发、加剧黄土湿陷的危险性小。

工程建设引发、加剧膨胀土的胀缩危害:在工程开挖后,管线及周边的膨胀土已被扰动,已非原状土,其大气影响急剧层深度也有可能超过1.4~1.6m,甚至达到2m深度以下,对管线工程的运营还会存在威胁。但由于开挖量较小,深度为 2m,本区膨胀土的膨胀系数又较小,属具弱膨胀潜势的膨胀土,对管线的影响较小,因此,地质灾害危险性小。

(二)工程建设可能遭受地质灾害危险性的预测

地质灾害的发展会对管道工程带来一定的危险性。根据现场调查、资料分析,兰州—郑州—长沙成品油管道工程自西向东转向由北向南,依次穿越灵宝—三门峡黄土冲沟发育区,三门峡—新安段的煤矿分布区,新安—洛阳—郑州段的黄土冲沟发育区,许昌市地面沉降区、信阳采矿区、平顶山到漯河、驻马店到确山膨胀土分布区,另外管线的平顶山支线经过了煤矿采空区等地质灾害易发区。以上区段地质灾害的发展将对输油管道产生不同程度的危害。分灾种进行预测评估如下:

1.工程建设可能遭受崩塌、滑坡地质灾害危险性的预测

现状条件下,评估区主要有崩塌灾害52处,滑坡灾害14处,均分布在黄土冲沟、河岸等陡坡、陡崖处。崩塌、滑坡规模为小型,距管线100~1000m,一般500m左右,对拟建工程影响较小,其管道遭受崩塌、滑坡地质灾害危险性小。

2.工程建设可能遭受泥石流和洪水冲蚀地质灾害的危险性预测

现状条件下,据野外调查资料在评估区没有发现泥石流灾害。但在信阳南部特别是在上天梯一带,采矿活动十分强烈,采矿弃碴到处堆放,同时在彭新店以南,坡度较大,岩石风化比较强烈,在河谷中堆积有较多的风化崩塌堆积物,在遭遇洪水时,可能形成泥石流地质灾害,会对穿越沟谷的管道工程造成危害,因此,工程建设遭受泥石流地质灾害的危险性为中等。此外,在灵宝—三门峡段管线穿越的山区河流较多,洪水冲蚀威胁不容忽视,危险性中等。

3.工程建设可能遭受采空地面塌陷和地裂缝地质灾害危险性的预测

据野外调查资料,现状条件下,有煤矿采空塌陷3处,为陕县张茅镇至观音堂段G100~G130段、义马千秋管线G150—G160段南约400~700m、平顶山支线P30~P45+3km段。陕县观音堂G120-4.6km~G120+6.9km段煤矿采空塌陷,塌陷形状不规则,总体呈现北西—南东向,塌陷面积超过20km2,地面塌陷造成附近居民点墙体发生裂缝,破坏耕地及陇海铁路的运行安全。平顶山煤矿采空塌陷区位于平顶山支线的近终点处P35+2km—P40,采空区面积较大,管线经过区域长度约2.95km,距管线最近的采空塌陷面积约30km2,评估区内塌陷面积9.6km2,塌陷深度一般为2~3m,平均2.8m,最大塌陷深度可达7.8m。尽管已经过多年的塌陷,但部分地段目前仍有变形,而煤矿采空塌陷对管线的危害性较大,因此,管线遭受煤矿采空塌陷灾害的危险性大。

义马千秋管线G150—G160段南约400~700m的煤矿采空塌陷边部的地裂缝,没有造成大的经济损失,主要破坏农田和简易公路,由距管线有一定距离,但在管线经过有煤系地层存在,而煤矿采空塌陷对管线的危害性较大,因此,管线遭受煤矿采空塌陷灾害的危险性大。

陕县张茅镇至观音堂段 G100~G130段、平顶山支线 P30~P45+3km和义马千秋管线G150+3.7km~G160—1.0km段地质灾害危险性大。

在G160+2.9km~G170-2.4km段管线通过陕县煤田仁村—杜家矿区,在G170+3.0km~G180-1.2km段管线紧临义马煤业有限责任公司新安煤田新义井田矿区,在 G270+0.6km~G270+3.5km段管线通过巩义市金龙煤矿矿区,在G330-2.4km~G330+0.7km段管线通过郑州市二七区龙岗煤矿矿区,在P05+1.8km~P10+2.0km段管线通过平顶山煤业(集团)有限责任公司张得井田矿区,在以上矿区虽然现状条件下未发现地面塌陷,但随着采矿范围的不断扩大,将直接影响管线,甚至破坏管线的潜在危险。因此,管线在 G160+2.9km~G170-2.4km段、G170+3.0km~G180-1.2km段、G270+0.6km~G270+3.5km段、G330-2.4km~G330+0.7km段、P05+1.8km~P10+2.0km段遭受煤矿采空塌陷灾害的危险性中等。

4.工程建设可能遭受地面沉降地质灾害危险性的预测

管线经过地段除许昌市地面沉降较强外,其他地段因距城镇沉降中心较远,危险性小。考虑到许昌市地面沉降范围会不断扩大,累积沉降量量级不断增加的现状,预测该地段地面沉降危险性为中等。

5.工程建设可能遭受采砂坑和采矿坑地质灾害危险性的预测

澧河和淮河采砂活动比较强烈,驻马店到信阳段采矿活动比较强烈,这些人类活动对地质环境条件破坏比较大;采矿形成的高边坡破坏了边坡的稳定性,除易产生崩塌外,还容易引起滑坡,同时采矿的弃碴是泥石流的物源。河道采沙对河道造成了巨大破坏。采沙和采矿对管线破坏相对比较强,主要破坏表现为引起河道下切,水流冲蚀管道,采坑的回填易形成不均匀沉陷,形成的高边坡易发生崩塌和滑坡地质灾害,这些灾害对管道危害较大,因此,管道遭受砂坑和采矿坑的危险性为中等—大。具体评估是:信阳站场南—杨家岗(K289~K296)危险性大,其他地段危险性中等。

6.工程建设可能遭受特殊土地面灾害危险性的预测

在黄土冲沟发育区,黄土的湿陷、潜蚀引起的黄土塌陷,在现状条件下仅仅见到几个小塌陷坑,但潜在的危险性比较大,根据《河南省地裂缝和地面沉陷调查》资料,在荥阳市王村乡曾发过地面塌陷,进陷区长度在1.5~2.0km,宽1.5km,下陷深度在0.4~4.0m,对管线的破坏比较强烈,因此,管道遭受黄土塌陷地质灾害的危险性中等。

膨胀土和膨润土中都含有亲水性粘土矿物,在环境湿度变化影响下,产生胀缩变形,从而对工程建设造成破坏。在冲沟、河谷和山坡上有膨胀土零星分布,多数上部有残坡积层,由于管线所经过的区域为具弱膨胀潜势的膨胀土,胀缩的对管线影响较小,因此,管道遭受膨胀土灾害的危险性小。

❻ 地质灾害危险性现状评估

(一)滑坡

评估区内27处滑坡中,有16处距管线较近(<200m)或管线即在滑坡体上通过,对管线安全有一定影响,故将各滑坡列表说明其危险性现状(表6-5)。

从现状评估可知,稳定性差和较差者有11处,其中大型1处,中型4处,小型6处;除1处是小型碎石土滑坡外,其余皆为黄土滑坡。其中现状危险性大的有3处。

下面以两个典型实例来说明滑坡的活动特征。

实例1:凤翔县柳林镇半坡铺二组滑坡(H15)

位于柳林镇半坡铺二组,千凤公路西侧黄土峁半坡上,坡向150°、坡度60~70°,滑坡壁清晰,呈半园弧形,后壁较陡,鼓丘明显,滑体上可见醉汉林、马刀树。滑体岩性为中上更新统黄土,土质疏松,垂直节理发育,局部有崩塌现象,滑体长50m,宽110m,厚20m,体积11×104m3,滑床为中更新统黄土类土。为中型黄土滑坡(图6-5)。

该处斜坡较陡,坡下切坡修路,致使坡脚临空增大,破坏了斜坡的自然平衡,组成斜坡的黄土,土质疏松,垂直节理发育,在暴雨的作用下产生滑动。

该滑体坡度较陡,前缘呈鼓丘状,表面冲蚀严重,局部有崩塌现象,稳定性差,威胁坡下12户60人、100间房屋、50孔窑洞及千—凤公路车辆、行人安全,现状评估危险性大。

实例2:泾阳县蒋刘乡大堡子滑坡(H24)

位于泾阳县蒋刘乡大堡子村西北泾河右岸黄土塬边斜坡上,坡向 15°,上缓下陡,坡度30°左右。组成斜坡的岩性为中上更新统黄土,土质疏松,垂直节理发育。该处为村民公墓,呈多级台阶状,人类工程活动强烈。滑体长52m,宽200~250m,厚20~30m,体积29.3×104m3,为中型黄土滑坡(图6-6)。

该处为黄土塬边,坡度较陡,村民在此切坡埋葬故人活动频繁,破坏了坡体的自然平衡,组成斜坡的黄土,土质疏松,垂直节理发育,土体破碎,风化严重,植被较差,在降水因素作用下产生滑动。

该处人类活动强烈,坡面多为台阶状,排水不畅,滑体后缘已出现拉张裂缝,稳定性差,对3户村民15人及一所村办小学产生威胁,现状评估危险性大。

表6-5 滑坡危险性现状评估一览表

续表

续表

图6-5 半坡铺二组滑坡剖面图

1.人工堆积物;2.滑坡体;3.古土壤:4.上更新统黄土:5.中更新统黄土:6.滑动面

图6-6 大堡子滑坡平面及剖面图

1.滑坡周界;2.主滑方向;3.滑坡剖面线;4.滑坡堆积物;5.上更新统黄土:6.中更新统黄土;7.古土壤;8.全新统河流冲积物:9.地形等高线;10.滑动面

(二)崩塌

评估区内18处崩塌中,有7处临近管线(<100m)或管线直接穿越崩塌体,对管线有一定影响。现将这7处崩塌列表说明其危险性现状(表6-6)。

由表6-6可知,稳定性差和较差的崩塌有6处,其中基岩崩塌2处,黄土崩塌4处;中型的2处,小型的4处。其中现状危险大的有3处。

下面举陇县曹家湾乡段家峡曹固公路崩塌(B5)说明崩塌的特征。

该崩塌体位于曹家湾乡段家峡西北,千河左岸黄土梁峁斜坡上,坡向220°,坡度50°~60°,组成斜坡的岩性为奥陶系灰岩,受构造活动影响,岩体完整性差,节理裂隙发育,可见10~15cm宽的张裂缝,垂直发育,延伸数米,斜坡上危石摇摇欲坠。坡下修路,人类工程活动较强(图6-7)。由于切坡修路开挖坡脚,致使沿坡脚形成20余米高的陡崖,局部岩体突出,崖面向坡内凹陷,形成突出危岩体,随时都有垮塌的可能。

稳定性及危险性评估的结论是:山坡陡峻,岩石破碎,风化强烈,节理裂隙发育,坡体已出现10~15cm宽的拉张裂缝,切坡修路形成陡崖,临空面增大,稳定性差,坡下为公路,危及车辆及行人安全,危险性大。

(三)地裂缝

评估区内4条地裂缝,其分布位置,主要特征、稳定性及危险性现状评估列于表6-7中。可知D1、D2和D3三条地裂缝危险性中等,而D4危险性小。

(四)泥石流及洪水冲蚀

评估区内 1处泥石流(位于千阳县草碧镇附近的葫芦沟),依据《县市地质灾害区划要求》综合评判,现状评估危险性小。

4处洪水冲蚀现状评估结果详见表6-8。

可知4处洪水冲蚀点现状评估危险性皆小,需要指出的是,T2、T3和T4三处洪水冲蚀点距拟建管线较近或者就在线路通过处。

(五)黄土湿陷和潜蚀

评估区内广泛分布管线中、西段(里程桩号430~615)的晚更新世风成黄土,厚数米至十余米,均具有强—中等湿陷性,一般在地表和浅层湿陷性强烈,随深度增加湿陷性变弱,至一定深度湿陷性消失。湿陷深度最小2.5m,最大11m。由于本成品油管道埋深较小(1.5m左右),故湿陷性对工程有较大影响。此外,黄土类土的潜蚀作用则可遭致管道悬空变形破坏。根据现场调查,黄土湿陷和潜蚀在黄土梁峁区和黄土台塬边缘斜坡地带发育较强烈,而在广阔的黄土台塬面上则发育弱甚或不发育。因此黄土湿陷和潜蚀灾害在黄土梁峁区和黄土台塬边斜坡地带危险性大—中等,黄土台塬面危险性小。

(六)地震液化

评估区系强震区,地震烈度Ⅶ—Ⅷ度,50年超越概率10%的地震动峰值加速度0.15~0.20g,历史上大地震时曾在渭河谷地内发生过强烈的砂土液化现象。据此,管线经过的渭河谷地一级阶地和河漫滩地段庆考虑地震液化的设防措施,以防患于未然。重点地段为:西安支线的西安市区北部沣河—耿镇,渭南支线渭河及支流地带(尤其是沋河入渭三角洲以西的渭河漫滩地带)。

❼  各类场站地质灾害危险性评估

一、蒲县压气站

蒲县压气站位于蒲县鹿场东侧(桩号EC048—EC049),属西气东输工程第16号站。占地面积为5万m2

拟建压气站位于昕水河南岸一级阶地,阶地宽约500m左右,由第四系冲洪积粉土、粉质粘土、砂等组成,第四系地层厚5~10m,下部为三叠系砂岩。阶地南侧为蒲县黄土塬边坡,坡度30°~500,坡体下部为第三系红土,上部为第四系中上更新统黄土,沿第四系中上更新统黄土与第三系红土界面,易发生黄土顺层滑坡,H27滑坡即位于此边坡。阶地北侧为昕水河河床边坡,河床宽10~30m,由冲洪积砂砾石类组成,厚3~5m,下部为三叠系砂页岩。河床北部边坡由三叠系砂页岩组成,部分地段上覆很薄的第四系中上更新统黄土,砂页岩倾向与坡向斜交,倾角3°~10°,属稳定边坡。

综观压气站所处的地质环境条件,压气站地表5~10m为第四系冲洪积物,下部为三叠系砂页岩,地基稳定性较好,其北部边坡由三叠系砂页岩组成,坡向与地层倾向斜交,边坡倾角介于20°~50°之间,属稳定边坡;其南部边坡虽有H27滑坡存在,但经滑坡稳定性验算,滑坡稳定系数为2.352,属稳定滑坡。在压气站施工过程中,对滑坡体没有任何影响,不会改变滑坡稳定系数;压气站建在昕水河一级阶地上,施工过程中对所有边坡不会产生影响,不会诱发新滑坡的产生。因此,判定压气站建设用地地质灾害危险性小,预测地质灾害造成的损失为小,适宜工程建设。

二、阳城清管站

阳城清管站分属于西气东输工程第17号站,位于阳城北留南部,起止桩号EH125—EH128,占地面积为1.5万m2

(一)环境地质背景条件

站址位于侵蚀溶蚀黄土丘陵区,地形平缓,总体向西倾斜,倾角2°~3°,平均海拔标高734.8m。

丘陵顶部覆盖第四系上更新统坡洪积粉土、粉质粘土,沟谷出露石炭系砂泥岩和奥陶系灰岩地层,其地层岩性特征是:

上更新统粉土、粉质粘土(

):呈褐黄、浅黄、红褐色,硬塑—坚硬状,湿,含铁锰质结核和钙质结核,主要物理力学性质指标:天然含水量(w)19.2%~23%,天然容重(γ)14.7~18.8kN/m3,天然隙比(e)0.7~1.192,饱和度(Sr)37.1%~74.3%,液限(WL)27%~40.6%,塑限(WP)18.2%~24.8%,压缩系数(α1-2)0.08~0.45MPa-1,为中—低压缩性土。厚度约21.Om。

石炭系(C):出露于沟谷内,为本溪组以及太原组底部地层,岩性为铝土岩、灰岩、砂岩、泥页岩,底部为山西式铁矿,出露厚度约10m。

奥陶系(O2):只出露奥陶系中统,主要岩性为中厚层灰岩、白云质灰岩,岩层产状200°∠120,出露厚度5~10m。

场区位于吕梁—太行断块沁水块坳东缘,距东部晋获断裂约10km。场区内未见褶皱、断裂构造。

场区北部采矿活动强烈,矿层为本溪组硫铁矿、铁矿。距场区最近的矿有小沟铁矿、硫铁矿(30)、崇上硫铁矿(32),面积为0.25~0.294km2,均为露天开采,采深5~10m,目前已闭坑。

(二)地质灾害

主要灾种为黄土湿陷,根据探井资料,自重湿陷系数为0.023~0.1068,总自重湿陷量(Δzs)为6.53cm,总湿陷量为43.44cm,为Ⅱ级非自重湿陷黄土。湿陷厚度为9.1m。场区及其周边未发现黄土湿陷对建筑物破坏的实例,但工程建设和建成后潜在此种灾害有可能发生,若地面排水不畅或地基处理不当,会出现建筑物变形和裂缝等灾害。

另外,在场区北部采矿区还潜在滑坡、崩塌灾害,其地质灾害危险性中等。建站时应充分考虑这一影响因素,适当保持与采矿边界的距离。

综上所述,黄土湿陷、滑坡、崩塌现状评估危险性小,预测评估危险性中等,经过地质灾害防治,可消除此类灾种对工程建设的影响,场区适宜清管站建设。

❽ 地质灾害危险性评估流程

建设用地地质灾害危险性评估,是有效预防、减轻或避免地质灾害对未来工程设施及其运行环境直接危害和间接危害的一项主动防灾措施。科学合理地开展此项工作,对发现项目建设区潜伏重大地质灾害问题、提供地质灾害防治措施和建议,以及指导建设项目安全实施和运营等方面均有十分重要的意义(黄雅虹等,2007)。

为规范我国建设工程和规划区地质灾害危险性评估工作,切实贯彻《地质灾害防治条例》(国务院令第394号),国土资源部于2004年颁发了 “国土资源部关于加强地质灾害危险性评估工作的通知”(国土资发[2004]69号文件)及附件《地质灾害危险性评估技术要求(试行)》(以下简称《技术要求》),作为目前进行地质灾害危险性评估的规范和依据。

(一)评估的任务

地质灾害危险性评估工作的任务包括:

(1)查明地质灾害的类型、规模、分布特征及其形成的地质环境条件和诱发因素;

(2)分析预测工程项目建设对地质环境的影响;

(3)评价工程建设是否诱发新的地质灾害和工程本身遭受地质灾害的危险性;

(4)划分地质灾害危险区;

(5)进行建设用地适宜性评价;

(6)提出地质灾害防治建议等(郭富赘等,2003)。

(二)评估对象及灾种

《技术要求》规定,凡在全国地质灾害易发区内进行各类建设工程以及进行城市总体规划、村庄和集镇规划时,均要进行地质灾害危险性评估。需要提及的是:一旦受建设单位委托进行地质灾害危险性评估,无论场地是否跨越地方县(市)地质灾害调查划分的所谓易发区和非易发区,均应进行评估。

图2-2 常见的建设项目选址意见书办理流程图(各地行政主管部门办理流程各异.以当地行政主管部门为准)

需要评估的主要地质灾害种类,《技术要求》中有明确的规定。总体可概括为自然因素或者人为活动引发的危害人民生命和财产安全的崩塌、滑坡、泥石流、地面塌陷(含岩溶塌陷和矿山采空塌陷)、地裂缝和地面沉降及不稳定斜坡等与地质作用有关的灾害。

除地质灾害外,还经常遇到一些环境地质问题需要讨论,主要有活动断层、岩溶、冲沟、淤泥、软土和饱和砂土的液化等,一般情况下是将其纳入到相关灾害中进行讨论。如岩溶问题可以并入到地面塌陷或地下水污染灾害中讨论;活动断层、软土、砂土液化等问题可并入到地面变形或不均匀沉降(陷)灾害中讨论(金德山,2004)。

(三)评估的基本要求

1.总体要求

(1)在地质灾害易发区内进行工程建设,必须在可行性研究阶段或者在申请核准、备案前进行地质灾害危险性评估(国务院令第394号,国办发[2001]35号)。

(2)在已进行过地质灾害危险性评估的城镇规划区范围内进行工程建设,建设工程处于已划定为危险性大—中等的区段,还应按建设工程项目的重要性与工程特点进行建设工程地质灾害危险性评估(国土资发[2004]69号)。

(3)地质灾害危险性评估,必须对建设工程遭受地质灾害的可能性和该工程建设中、建成后引发地质灾害的可能性做出评价,提出具体的预防治理措施(国土资发[2004]69号)。

(4)地质灾害危险性评估的灾种主要包括:崩塌、滑坡、泥石流、地面塌陷(含岩溶塌陷和矿山采空塌陷)、地裂缝、地面沉降和冻土沉陷等。

(5)地质灾害危险性评估的主要内容是:阐明工程建设区的地质环境条件基本特征;分析论证工程建设区各种地质灾害的危险性,进行现状评估、预测评估和综合评估;提出防治地质灾害措施与建议,并做出建设场地适宜性评价结论。

(6)地质灾害危险性评估工作,必须在充分搜集利用已有的遥感影像、区域地质、矿产地质、水文地质、工程地质、环境地质和气象水文等资料基础上,进行地面调查,必要时可适当进行物探、坑槽探与取样测试。

(7)地质灾害危险性评估成果,应按照国家有关规定组织专家审查、备案后,方可提交立项、用地审批使用。

(8)地质灾害危险性评估不替代建设工程和规划各阶段的工程地质勘察或有关评价工作。

2.评估的主要内容

地质灾害危险性评估是在查明各种致灾地质作用的性质、规模和承灾对象社会经济属性的基础上,采用定性和定量相结合的方法,对其潜在的危险性进行现状评估、预测评估和综合评估。主要内容包括:(1)阐明工程建设区和规划区的地质环境条件基本特征;(2)调查分析工程建设区或规划区各种地质灾害的现状;(3)简要分析评估对象在建设或运营过程中与地质环境相互作用的范围、方式、强度与持续时间;(4)分析论证建设工程遭受地质灾害的可能性,工程建设中和运营中加剧或引发地质灾害的可能性;(5)进行地质灾害危险性现状评估、预测评估和综合评估;(6)给出建设场地工程建设地质适宜性的评估结论;(7)针对不同建设阶段,提出防治地质灾害的地质工作意见和防治地质灾害的具体措施建议。

3.评估的程序和方法

地质灾害危险性评估的工作程序包括前期野外调查和后期室内分析。地质灾害危险性评估工作流程见图2-3。

(1)野外调查方法:野外调查工作的基本原则是以较低的成本投入,获取较多的基础资料并得到可靠的评价结果。因此,除采用一系列传统方法收集、获取相关基础资料外,需充分利用已有的新技术和新方法,进行高效、可靠的资料获取。如利用空间对地观测的InSAR技术可快速获取大范围、高精度现今地面沉降信息,对传统的水准测量结果进行补充和验证;利用高分辨率数字化航片或卫星图像,可对区域活动构造迹象、滑坡泥石流潜势等进行有效判读,达到事半功倍的效果。

(2)室内分析研究:室内分析研究主要是在野外调查及观测的基础上对地质灾害进行现状分析、未来预测和综合评估。

图2-3 地质灾害评估工作程序图

地质灾害现状评估和预测评估常采用的方法包括:地质历史分析法和工程地质类比法。此外,现状评估有时也采用地质环境条件综合判别法,而预测评估有时会采用多因素分析法等。由于地质灾害评估工作一般投入的实物工作量较少,又与建设项目的选址阶段相对应,而且评估工作的性质是指出问题并提出解决问题的措施,而不是解决问题。因此,评估的工作方法目前多以定性分析或半定量分析方法为主,较少采用定量计算的方法。如滑坡、崩塌、地裂缝、地面塌陷和地面沉降(包括斜坡及工程边坡),一般采用地质类比法定性评估其稳定性;而对泥石流的稳定性多采用地质环境条件综合评判法进行判定,或采用易发性量化指标半定量评估。地质灾害综合评估(地质灾害危险性分区)方法较常见的有信息叠加法、多因素综合判别法、模糊数学评判法和层次分析法等。

4.评估级别

依据建设项目重要性与地质环境条件复杂程度,《技术要求》将评估级别划分为3级。凡重要建设项目,无论地质环境条件属哪类,均划为一级;较重要建设项目和一般建设项目的级别划分是个难点,要根据地质环境条件复杂程度确定评估级别。确定评估级别时应按以下顺序进行:(1)按《技术要求》确定的建设项目重要性类别;(2)按《技术要求》确定的评估区地质环境条件复杂程度;(3)根据这两个判别结果来综合确定评估级别(黄雅虹等,2007)。

5.评估范围的确定

地质灾害危险性评估范围不应局限于建设用地和规划用地面积内,应视建设和规划项目的特点、地质环境条件和地质灾害种类予以适当扩大,确定对工程项目有直接影响和间接影响的区域范围,必要时可对直接影响范围做重要评估,而对间接影响范围做一般性评估(邢岩等,2004)。

地质灾害的空间分布(从形成到成灾)有点状、线状和面状之分,如崩塌、滑坡可以相对理解为点状;泥石流、地面塌陷及地面沉降为面状;地裂缝为线状。因此确定评估范围时,除用地单位申请批复的面积外,要充分认识和预测不同灾种从形成到成灾可能涉及的空间。一般而言,对于滑坡、崩塌,其评估范围应达到 “山坡有多高范围就有多大” 的基本要求;泥石流灾害要追索到泥石流形成区,必须以完整的沟道流域面积(包括冲洪积扇)为评估范围;地面塌陷及地面沉降的评估范围应与初步预测的可能范围相一致;具有线状特征的地裂缝,也应按预测的可能延展范围作为评估范围。对于预测确有困难的灾害类型,评估范围一般应大于现状确定范围的3~5倍。当然,评估范围的确定离不开建设工程的实际布局(王得楷,2002)。

(四)评估报告内容要求

评估报告内容包括:前言、评估工作概述、地质环境条件论述、现状评估、预测评估、综合评估和结论。其中,评估工作概述中涉及的工作方法及完成的工作量,建议用列表的方式比较简明,另外,应尽可能附一张清晰的、包含有建设用地位置、交通和评估工作实际材料(如钻孔、物探线等)的示意图。

1.地质环境条件

地质环境条件综合分析是认识评估区基本环境特征和分析地质灾害形成环境,以及讨论拟建工程环境效应的重要基础。地质环境条件所涉及的内容包括:气象、水文,地形、地貌,地层岩性,地质构造与区域地壳稳定性,工程地质、水文地质条件及人类工程活动对地质环境的影响等。不能仅仅停留于环境现象或环境特征的简单罗列,而应紧密结合工程布局,突出与地质灾害发育规律分析和危险性评估有联系的环境要素或环境特征,重视区域地质环境的研究,并从区域环境条件中分析地质灾害体的演化过程和主要控制及诱发因素。为了给后续分析论证提供必要的资料支撑和逻辑铺垫,应以详细描述的方式突出与地质灾害发育规律分析和危险性评估有联系的环境要素或环境特征,而与地质灾害发育规律分析和危险性评估无关的环境描述,要尽量简略(金德山,2004)。地质环境条件复杂程度的总体评价应用“复杂、中等、一般” 来定位。跨度大的复杂地区或环境地质条件分区、分段明显的,可以用分段分片评价。

2.地质灾害危险性评估

地质灾害危险性评估是灾害易发程度、危险程度和危害程度的综合反映。其实质是对建设项目区,在地质环境现状条件和未来工程活动条件下,地质灾害的空间预测和成灾可能性的预测,是地质灾害危险性评估的核心内容。

(1)现状评估和预测评估:现状评估除按《技术要求》的规定进行外,还应注意其着重点是对现有灾害的分析和评述。分析和评述内容应包括:灾害发育基本规律的归纳;代表性灾点的重点剖析;各种灾害(点)历史危害情况、现实活动特征及稳定状况的评价(金德山,2004)。危险性一律用大、中、小描述,避免使用 “较” 字。

在现状评估中如果没有地质灾害就不评估,切忌画蛇添足;对现状地质灾害不发育,但工程建设和运行中有可能诱发地质灾害的地区,可开展评估工作;对有液化发生的区域及地段,液化评估时要依据相应的国家规范,如区域性评估可按建筑规范进行评估等。

预测评估的侧重点是在评估区叠加了拟建工程影响后,拟建工程和环境可能遭受地质灾害危害的危险性程度的预测评价。一般情况下,按可能遭受地质灾害的次序进行分灾种危险性评估,而对于有些复杂工程也可按功能区分别论述。

需要指出的是,由于地质灾害的危险性评估是一种风险评估,所以应借鉴已有的同类型工程在建设过程中诱发或遭受地质灾害的经验,这将为在建工程的地质灾害评估提供有效的信息,为地质灾害的预测评估提供可靠的依据,减少预测的风险性。

(2)合理区分现状评估和预测评估:综合评估和最终结论主要是依据现状评估和预测评估结论而定。根据笔者的体会,在评估报告中往往易出现二者重复性大、重点不突出和结论不够明确的问题。因此,处理好二者的关系十分重要。从现状评估、预测评估的内容看,二者的关系比较清楚:即现状评估是预测评估的背景;而预测评估不但要紧紧围绕工程布局和施工特点进行,而且还应与现状评估结果相互叠加后,共同形成危险性预测评估的最终结论(王得楷,2003)。

3.综合分区评估及防治措施

(1)综合评估原则与量化指标:地质灾害危险性综合评估应遵守“区内相似、区际相异、并置取大” 的原则。评估工作以说清问题为原则,其量化指标的确定可以以地质分析方法为主,定量评价为辅。如果资料充分,有条件的可进行定量分析评价。

(2)综合评估内容:地质灾害危险性综合评估包括:(1)危险性分区;(2)建设场地适宜性分区评估;(3)防治措施。这些内容应按区段评估,并配以相应的说明。

综合评估的侧重点是在现状评估和预测评估的基础上,根据现有和潜在地质灾害成灾的可能性和成灾后果的严重性,对工程建设区和规划区进行分区(或分地段、分工程部位)的综合评估(金德山,2004)。

危险性分区可根据评估区地质灾害危险性综合评价结果进行划分,符合哪一级就划为哪一级。如只有危险性大区和危险性小区,就没有必要在它们中间再划分一个危险性中区;又如只有危险性中区,就没有必要再划分一个危险性小区等。另外,要防止危险性分区随意扩大或缩小化,如由于工程施工开挖造成边坡失稳时,地质灾害危险程度较重区将主要集中在工程沿线或仅限于河谷等特殊地带,有时在进行危险性分区划分时,往往可能将划分范围扩大到外围,这样是不合理的(邢岩等,2004)。

综合评估应简明扼要,只要把现状评估和预测评估的主要认识反映出来即可,避免对上述评估的简单重复。对地质灾害危险性大的或中等的,要提出防治地质灾害的措施与建议;对重大地质灾害防治,尤其是提出避让或改变建设工程选择的,要提出论证,并给出建设场地适宜性评价结论。

(3)建设场地适宜性评价与地质灾害防治措施:建设场地适宜性评价结论是评估工作的目的,最终结论的得出应该建立在2个判据之上:一是地质灾害危害后果的严重程度,对此不能仅局限于灾害对拟建工程影响的分析,还要考虑拟建工程对加剧和诱发地质灾害的影响和对环境带来的危害;二是地质灾害防治的难易程度,此评价既要考虑技术上进行防治的难易程度,还要考虑防治费用的投入及经济上的合理性(金德山,2004)。

建设项目地质灾害危险性评估的最终目的是防止地质灾害发生,即获得“防” 和 “治” 的具体措施。因此,选择的工程防治技术类型越简单,越易于实现越好,通常经济实用的技术是应该首先推荐的(具有特殊目的的工程项目除外);对于地质灾害危险性大,现有经济技术条件难以达到防治要求的场地,从“防” 的角度,应态度明确,坚决提出 “躲避”、“另选场地” 和 “局部改选” 的建议,不应迁就局部和地方利益,铸成潜伏重大灾害隐患工程的大错(王得楷,2002)。

(五)评估报告评审要求与备案

评估报告完成后,需按照国土资源行政主管部门的有关规定组织专家进行报告评审,评审完待评估报告提交委托单位后,还要对评估成果进行备案。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864