当前位置:首页 » 地质工程 » 地质灾害隧道与地下工程

地质灾害隧道与地下工程

发布时间: 2021-03-10 14:01:15

⑴ 隧道地质灾害的特点、危害

地质灾害为岩溶塌陷
岩溶塌陷是地面塌陷的一种,指在岩溶地区,下部可内溶岩层中的溶容洞或上覆土层中的土洞,因自身洞体扩大或在自然与人为因素影响下,顶板失稳产生塌落或沉陷的统称。其地面表现形式是局部范围内的地表岩土体的开裂、不均匀下沉和突然陷落。

岩溶塌陷的危害主要有:
影响交通:岩溶塌陷对交通网络的正常运行会造成严重的影响,对公路、铁路的安全构成较大的威胁。
毁坏农田:发生于农田中的岩溶塌陷,会使作物被毁,粮食减产,给人民群众造成较大的危害;并且地面耕植土落入地下塌坑,造成了耕作面积的减少,未进行填埋或者由于塌坑规模太大而不便进行填埋的地方则无法继续进行农作物耕种。
破坏建筑:发生于建筑及人口密集区的岩溶塌陷,会造成房屋墙壁裂缝、屋内地面裂缝下沉,严重的直接导致建筑物倒塌。
沟通地表地下水系,污染地下水:由于近年来工业的发展,大部分河流等地表水体水质较差,岩溶塌陷发生后,揭穿了灰岩含水层顶板,沟通了地表水系与地下水系,使得地表水通过塌坑大量涌入岩溶含水层,加之岩溶裂隙、溶洞的连通性好,污水会在岩溶含水层中迅速扩散,污染岩溶地下水。
大规模的塌陷可引起地震效应。

⑵ 地质灾害与地下污染探测

程业勋

(中国地质大学(北京))

“环境”一词起源于18世纪,逐步被广泛引用到自然环境、社会环境、经济环境等。但当代环境科学研究的环境范畴,主要是指人类生存与可持续发展的外部条件。所以《中华人民共和国环境保护法》中明确指出:“本法所指的环境,是指人类生存和发展的各种天然的和经过人工改造的自然因素的总体,包括大气、水、海洋、土地、矿藏、森林、草原、野生生物、自然遗迹、自然保护区、风景名胜区、城市和乡村等。”地球物理学主要研究发生在岩石圈、水圈、大气圈和地球空间的对人类生存和发展有重要影响的环境变化和供给条件。因此,从一定意义上讲,地球物理学从产生的那一天起,就是一门研究人类生存与发展环境的科学。

西方工业化300年,已经消耗地球亿万年的资源储备,而且日益加剧,造成资源紧缺,环境恶化。2007年10月25日联合国环境规划署(UNEP)发布集1400位科学家智慧写成的《全球环境展望》(GE0-4)综合报告指出,自1978年以来的30年,人类消耗地球资源的速度,已将人类自身置于岌岌可危的境地,到目前为止,已经超出地球生态承载能力近三分之一。每年有7.5万人死于自然灾害,全球一半以上城市的环境超出世界卫生组织(WHO)制订的污染标准。

岩石圈(含土壤)、水圈(含地下水)、大气圈和生物圈构成地球物质循环的整体,是人类生存不可或缺的各个组成部分。地下(土壤和岩层)一直是人类处置废弃物和垃圾的场所。包括大气沉降物在内,超过土壤自净(降解)能力的时候,就会构成土壤污染,特别是难以被土壤生物降解的有毒物质,还会随着水的蒸发和大气环流,扩散到全球(称蚱蜢效应)。这就告诉我们,对于难以降解的有毒物质来讲,地球是一个封闭的生态系统,这些有毒的污染物,只能转移而不会消失。即使远离污染源上万千米,生活在北冰洋的伊努特人体内也可以检测到持久性污染物(POP)的存在。

美国上世纪30~40年代,就开始将工业废弃物以及活水、污油注入地下。时隔二三十年后,由于地下地质环境的变迁,有些原来埋在河谷(山谷)地区的这些物质,经历容器的腐蚀、洪水冲刷而扩散、深灌的污水上涌,造成泄漏污染。为进一步防治,在不得已的情况下,找到地球物理方法,探测再次造成的地下污染分布区域。这也是环境地球物理分支学科建立的起始。

1 自然地质灾害的勘察

地球上山地面积占陆地总面积的四分之一,居住人口占总数的10%,道路总里程占30%,是泥石流、滑坡、崩塌等自然灾害主要分布区。我国地处自然地质灾害集中的太平洋环带和地中海至喜马拉雅山带的聚集部位,成为地震和各种地质灾害多发国家之一。据报道,全国共有地质灾害隐患地点22.92万处,威胁着3500万人的安全,财产超万亿元,以及重大工程、城镇和村庄的安全。1965年11月23日发生在云南禄劝县火山泥沟的特大滑坡,总土方量达3.9亿m3,滑体流速高达5~6km,在河中迅速堆积成长1100m,高167m的拦河大坝,形成5万m3蓄水的堰塞湖。不久滑体大坝陷落,迅速淹没5个村庄。1981年7月9日暴雨引发成昆铁路线上利子依达沟发生的泥石流,使400吨重的巨石冲入沟口,将数节火车推入大渡河,迅速堆积成坝,形成回水5km,积水29万m3的堰塞湖。长江三峡链子崖危岩体位于秭归县新滩镇,长江南岸,兵书宝剑峡的出口处,属于西陵峡崩塌隐患区。本区有历史记载的崩塌滑坡造成重大自然环境破坏性灾害的有14次。其中1030年崩塌滑坡体堵塞长江21年,1452年滑坡堵江82年,1985年6月12日凌晨3点45分至4点20分,历时35分的大滑坡,使总计3,000余万立方米的崩塌堆积体整体滑移,高速飞下的土石将位于江岸的新滩镇全部摧毁,在江内激起54m高的巨浪,将对岸上的建筑卷入江中。由于几年前的电磁测深和浅层地震为主查明了滑体的厚度和范围。1977年开始连续监测,及时准确预报,撤离果断,滑区内457户,1,371人,无一人伤亡,仅航运中断12天。这样大规模的滑坡,及时准确预报成功,在国内外是罕见的,被誉为一起世界奇迹。[1]

我国山地多,滑坡、泥石流、崩塌等地质灾害的分布区域占国土总面积的65%。随着自然的变迁和人为的致灾作用,各种地质灾害逐年增加。据四川省统计,泥石流致灾的县市:20世纪30年代有14个;50~60年代76个;70年代109个;1981年135个;1990年达200个。70年代以前地面沉降、地面塌陷和海水入侵还是少数地区,近年来由于对地下水的过度开采,至2008年有70多个城市出现地面沉降,总面积达6.4万km2,上海、天津、西安等城市有的降幅达2m,天津塘沽达3.1m;地面塌陷3000多处,总面积300多km2;海水入侵总面积达1000km2

各种地质灾害的发生都是地质环境变化引发致灾岩体内部结构变异,稳定性受到破坏的结果。因此,自然地质灾害勘察的目的在于查明致灾岩体(土)的地质环境和内部结构,研究致灾岩体的结构变异和稳定状态,圈定致灾岩体范围,评价发生发展趋势。在滑坡、崩塌、泥石流、地面塌陷以及海水入侵等地质灾害勘察中[2],应用地球物理勘查主要是查明致灾的地质条件,为防治或预测预报提供依据。

表1 自然地质灾害地球物理勘查的主要任务和可用的技术方法一览表

为了进一步说明地球物理勘查在自然地质灾害防治中的作用,列举三个实例如下。

1.1 滑坡体和滑坡面的勘察

滑坡勘查的主要任务是查明滑坡体的深度和范围,以及滑动面的深度与形态[3]

黑海沿岸高加索地区是滑坡发育地区之一。滑坡所处的地形高约为20~25m,滑坡体主要由砂质粘土加碎石构成,下伏泥岩风化壳。选用电阻率法以及浅层地震进行勘察。电阻率测量结果如图1所示。

图1 电阻率与地震划分的滑体与滑床

可划为三层:地表层电阻率ρ1=13~29Ωm,相当于滑体。中间层电阻率ρ2=2~4Ωm,为风化岩,可认为相当于滑动带。最下层电阻率ρ3=8~12Ωm,是未风化的泥岩,为该滑坡的滑床;浅层地震资料解释,可划为上下两层:上层纵波速度VP=340~360m/s,可认为是滑体和滑动带,下层:VP=1360~1400m/s,为坚硬的未风化泥岩。在未风化的泥岩顶部用电阻率和地震测量得到的速度跃变界面和电性界面在深度上比较一致(相差1~1.5m),构成的过渡带(弱带)可能形成滑坡的滑动面。

1.2 滑坡的监测与预测研究

山区占地球陆地总面积的四分之一,加上矿山开采构成的人为坡地,滑坡每年造成的经济损失和人员伤亡巨大。对滑坡的监测和预测引起重视[3]。1985年6月12日凌晨3点45分发生在长江三峡新滩镇大滑坡预报成功。其监测工作中的地质、物探和测量工作是从1962年开始的,基础调查工作完成后,于1977年设置四条视准线,连续观测滑坡堆积体的水平位移。前后监测研究23年。多年来设想主要用地球物理方法预报滑坡的研究也不在少数。其中南乌克兰露天开采铁矿的斜坡滑动研究是以视电阻率(ρs)观测和矿山测量联合研究提出的。滑坡地点如图2(a)所示,视电阻率(ρs)观测,采用不同供电极距的对称四极装置与水准点矿山测量共同布置在滑动体上。连续观测得到三种极距视电阻率曲线如图2(b)所示,两种极距的视电阻率比值ρs*so—t曲线;反映地电断面变化非常灵敏。图2中t1,t2,t3时刻视电阻率出现异常,反映t1时刻斜坡岩石形成微小裂隙;t3时刻斜坡岩石产生滑落。

图2 倾斜露天矿场滑坡上的动态观测

1.3 海水入侵的勘察

近年来由于地下水的过度开采,造成地下漏斗100多个,面积达15万km2;70多个城市地面沉降达6.4万km2;沿海城市的海水入侵达1000km2以上。莱州湾、辽东半岛历来最为严重。中国科学院地球物理所利用电测在这一地区进行了勘察[4]。研究了海水入侵与电阻率关系(表2)。根据电阻率分布划出海水入侵平面图(图3)。该区海水入侵可分为入侵严重区(ρ1=2~17Ω·m);轻度区(ρ1=17~30Ω·m);受入侵影响区(ρ1=30~100Ω·m)。在王河和朱桥河地区为两个地下漏斗区,地下水位分别为–15m和–10m,这一地区海水入侵面积最大,致使50万亩耕地不能使用地下水灌溉。

表2 海水入侵程度与电阻率关系

图3 山东莱州三河下游海水入侵分布图

2 地下污染物的勘查

近30年来,随着经济和城市人口的迅速增长,废弃污染物的排放量逐年增加:1999年工业废弃物排放量7.8亿吨,2007年达17.6亿吨,增长率15%,截至2009年废弃物积存量已达80亿吨;城市生活垃圾2000年总量为1.4亿吨,2005年为1.95亿吨,2010年将达2.0亿吨[5]。据调查,全国668座大中城市中2/3被垃圾围城,1/4城市已没有堆放场地。全国有近亿辆汽车在开动,加油站林立。据北京1000多座加油站调查,有1/2存在漏油现象。

所有排放的污染物,无论是气体、液体和固体,最终的归宿都是土壤和水体(地表水和地下水)。截至20世纪末,我国受污染土壤的耕地面积达2000万公顷,约占总耕地面积的1/5,每年因污染导致粮食减产1000万吨。水污染更为突出:“70年代水质变坏,80年代鱼虾绝迹,90年代身心受害”,成为水污染的真实写照。600座大中城市浅层地下水都不同程度地遭受污染,其中一半城市地下水已不能直接饮用。农村已有3.6亿人喝不上符合标准的饮用水。

地下污染,往往不易及时发现,直到危及生产和生活。如吉林工业废渣堆淋滤液渗入地下,导致几十平方千米内1800眼水井被污染而报废。佳木斯140多万吨工业和生活垃圾堆放场,产生的硝酸基荃污染地下水,使6个自来水厂停产。北京天通苑是20世纪60~70年代的垃圾堆放场,停用后掩埋,改建住宅小区,2008年一名绿化工人下井(在三区22楼外)接水管时中毒昏倒井内,另一名下去营救也倒在井内,经查为硫化氢中毒。这就是垃圾堆掩埋产生的“定时炸弹作用”。宋家庄三位地铁工人挖探井(2009年4月28日),3m深时闻到臭味,5m深时感到不适,一人呕吐,医院检查三人为中毒,经查该地20世纪70年代曾是一家农药厂,未作土壤污染处理,毒气在地下土壤中积累。

人的眼力有限,不可能看清地下污染。地球物理勘查就是帮助人们即时了解地下污染存在空间以及迁移状况。美国20世纪40年代开始在几个河谷和山谷填埋工业废弃物,几十年后这些当时认为处置安全的废弃物开始泄漏,到80年代开始,感到非治不可,但时至今日,地下污染物的空间位置及其污染流变范围都不清楚,于是通过地球物理勘查,重新圈定地下污染物的空间位置。

应用地球物理探测方法,对地下污染物的探测和监测,防止污染扩散,保护环境。概括来看,目前主要用在以下几个方面:

(1)用于废物填埋场选址调查[6]。工业生产废物和人类生活垃圾不仅量大而且成分复杂,有毒有害物质混杂其间,经雨水淋滤产生渗漏液侵入地下污染土壤和地下水水源。因此,选择远离地下水且致密的防渗岩(土)层作为垃圾填埋场地是重要的。主要用电阻率法、瞬变电磁法、探地雷达、折射地震和放射性测井。目的在于查明地下:①基岩面形状;②地表粘土层的结构;③地下水位及含水层分布范围及地下水流向;④基岩结构及构造;⑤地下暗河及河道分布。

(2)一些发达国家常以地球物理监测作为垃圾填埋场和废物堆放场的档案资料。从垃圾填埋(堆放)开始,直至垃圾填埋场终止封场后延续30年进行监测,跟踪监测表明,固体垃圾降解很缓慢,以固体垃圾溶解物总量(TDS)为例,前10年降解1/2,20年时余1/5,30年后余1/10;氯离子、硫酸盐等30年只降解1/10。一旦发现泄漏且有扩散危险,应立即进行处理。所用的探测方法主要是电阻率法和瞬变电磁法。激发极化法也有良好的效果。而我国还没有建立监测制度。

(3)追踪污染源。根据地下环境中水流与污染物迁移模型以及地层渗透率的差异,或者存在地下古河道、断裂、裂隙,使地下水和污染物在地下形成一定的迁移轨迹。在某井位或河边、海岸发现污染可以利用地球物理方法追踪探测出迁移路线,查出污染源所在地,为污染防治提供资料,主要利用电阻率法。

(4)探查垃圾填埋场衬底塑料膜出现漏洞位置。由于受压、承重等原因使衬底塑料出现漏洞,使填埋场的渗漏液外泄。为了修复需要及时找到漏洞位置。主要利用直流电阻率法。

(5)地下废弃物的调查。故旧废弃物和垃圾堆放场填埋多年,现移作他用,为了重新处理,需了解其分布范围和确定深度。主要采用电阻率法、地震雷达法等。

(6)废弃物堆放场对土壤和地下水污染的监测。矿山废弃物、选矿和冶金废弃物,化工厂和药厂等可能成为污染源的堆放场进行监测。主要使用电法、磁法和土壤氡测量方法等。

(7)地下储油罐和输油管泄漏探测。加油站世界林立,仅北京市就有1100多处。美国探测证实上世纪70年代以前建的加油站几乎全部有泄漏。因此,加油站是土壤和地下水的主要污染源之一,对加油站进行常规监测是必要的。常用的探测方法有自然电位、电阻法以及挥发性气体(CH4)法等。用土壤氡气测量法也有良好效果。我国也做了试验监测工作。

(8)深埋废液处理场的监测。随着区域地质结构变化和地下水位变化,废液可能发生迁移和外溢,所以监测是必要的。一般用自然电位法圈定二次污染范围。

(9)核电厂对核废物处置场有深埋和浅埋两种,其选址要求和方法各不相同。浅埋与垃圾场选址类似。深埋选址是永久性的,要进行深部选择勘查。选址是极为慎重的地质勘查工作。深埋选址一般要选择区域地层稳定,没有裂缝断层、渗透系数极小的岩层。主要使用深部探测的重力、磁法和电磁法以及地震方法。

现举两个应用实例如下。

2.1 保定韩村地下垃圾填埋场勘查

保定韩村垃圾堆放场,占地200m×200m,后来加盖1.5m原土层,掩埋了垃圾堆多年,成为平地。四周已有建筑。急需查明地下垃圾堆的污染区域,以利整治(杨进,刘兆平等,2006)[7]

为了取得好的效果,探测工作以高密度电阻率法和探地雷达为主。用了5种探测方法,测线以东西方向3条,南北方向4条,均匀分布,每条测线长度为200m。

2.1.1 高密度电阻率法

沿测区7条测线:4条南北向(HCH.1.4.7.10),3条东西向(HCH.11.12.13)进行剖面测量。使用电极64,点距3m。根据北京市北神树等3个垃圾填埋场渗沥液的实测电阻率资料,对比本区土壤的电性特征,每个剖面图可划分出4个电性层。其对比数值列于表3。可见视电阻率小于15Ω·m的区域为垃圾及其污染区。本区掩埋的故垃圾堆及其形成的污染区分带图如图4所示。

表3 工作区污染带异常划分表

2.1.2 探地雷达法

共测6条剖面,南北向4条,东西向2条,与高密度电阻率法同步进行。使用SIR-3000仪器,100MHz天线。探测深度10~15m。剖面图电磁波信号分区明显。根据本测区电性特征,进行对比。可以认为视电阻率1~10Ω·m,相对应的介电常数均为5~100;电磁波传播速度均在0.047~0.13m/ns。为此得到本测区垃圾污染区埋深在2.5~3.5m以下,如图5所示,为资料解释结果。

对已掩埋多年的韩村地下垃圾场探测后根据异常区,用洛阳铲和挖掘的方法进行了验证,证明在深1.5m以下见到垃圾,说明探测结果是可靠的。

图4 韩村测区HCH.1.4.7.10线剖面污染异常分带图

图5 韩村测区HCH.1.4.7.10线雷达资料解释

2.2 安家楼第三加油站漏污染探查

北京市朝阳区安家楼住总第三加油站,1995年春发现泄漏,致使位于东南的自来水厂部分停产。7月某物探与化探研究所以氧化还原电位法、磁化率以及气烃(CH4和C2H4)测量方法,同时进行了面积勘查。由于周围都是道路和建筑,测线基本上沿马路两侧以及住总三公司停车场院内,宝马汽车维修中心院内空旷地区布置。

氧化还原电位,设备轻便,在人行杂乱的市区工作方便。其测量结果的等值图(5mV间隔)列于图6。由图可见,地下漏油的展布与该地区的地下水流方向一致(南偏东方向)。

土壤磁化率方法,土壤气烃方法测量获得的油污染展布与氧化还原电位测量结果非常吻合,展布方向的趋势也基本一致。

轻烃(CH4)和重烃(C2H4)是直接抽取土壤中CH4(甲烷)和C2H6(乙烷)测量的结果,其平面等值图与氧化还原电位也完全一致。

经过加油站核实,先后泄漏柴油78吨。开挖对污染土壤进行清理、更换。证明柴油逐步漏入地下包气带和潜水层,其地下分布于探测结果完全相符。

图6 北京朝阳某加油站漏油污染氧化还原电位等值图

美国杨百翰大学用探地雷达在亚利桑那州的Tuba城探测汽油罐漏油污染土壤和地下水。首先用探地雷达圈出漏油污染区,其次是钻孔取样分析油的含量,监测孔确定地下水位和流向,第三步是将雷达探测结果与钻孔土样、水分析结果进行对比,最终确定漏油引起的污染范围和深度。研究认为,由于油污一部分出现在潜水面之上,另一部分流入浅水面下方的饱水带,使电磁波反射变得模糊不清。所以,图7中雷达信号反射增强部分对应于漏油处。探地雷达用的80MHz天线频率。

图7 石油罐泄漏区上的探地雷达记录(中心频率80MHz)

主要参考文献

[1]陆业海.新滩滑坡征兆期及成功的监测预报[J].水土保持通报,1985,(5):1~8.

[2]郭建强.地质灾害勘查地球物理技术手册[M].北京:地质出版社,2003.

[3]程业勋,杨进.环境地球物理学概论[M].北京:地质出版社,2005.

[4]蒋宏耀,程业勋.环境与地球物理,地球物理科普文选(第三集)[M].北京:地震出版社,1997.

[5]中国环境科学学会.2008—2009环境科学技术学科发展报告[M].北京:中国科学技术出版社,2009.

[6]余调梅,朱百里编译.废弃物填埋场设计[M].上海:同济大学出版社,1999.

[7]刘兆平.地球物理方法在垃圾填埋场的应用研究[D].北京:中国地质大学(北京),2010.

⑶ 常见地质灾害对工程建筑的影响

举个例子吧, 设想一个场地,要建一个高楼。
拟建场区地质条件变化较大,地质结构较复杂,岩土层性质变化较大,对其场地的地质环境条件应进行详细的勘察和论证,尤其探明灰岩的分布和岩溶的发育情况,避免由于基岩地质条件、工程地质条件的不明而引起岩溶地面塌陷、软弱土层地面沉降、基坑失稳破坏、基坑降水诱发地面沉降、基坑突涌、地基土浸水膨胀和失水收缩等灾害的发生,从而对建筑基础造成破坏。
3、针对基坑降水地面沉降地质问题,可根据周边环境设置有效的止水帷幕,如不能设置有效的止水帷幕,可采取回灌井方案,同时需注意进行地面沉降监测及周边影响区域内的建筑物变形监测。
4、基坑开挖面积及深度较大,开挖土方量大,堆放在评本区内可能造成堆积土边坡失稳,施工时应注意选择弃土堆放场所并注意控制堆放边坡角度处于自稳范围内。
5、在岩溶地面塌陷危险性中等区进行工程建设时,应对可溶性岩层的分布、特征、是否存在溶洞、是否造成岩溶地面塌陷灾害进行分析、论证或查明,以避免隐伏性岩溶地面塌陷灾害的发生;岩溶区施工灌注桩宜选用对地基扰动和影响小的成孔工艺,如回转钻进成孔。灌注桩施工前应进行专门的施工勘察,查明岩溶洞隙及其伴生土洞的位置、规模、埋深等情况;当采用嵌岩桩时,应进行专门的桩基勘察;对一柱一桩的基础,应逐桩布置勘探孔,直径大于1m的桩应布置2-3个勘探孔。勘探孔如发现溶洞或土洞应跟踪注浆充填。
6、本区域土层中夹有高岭土,在施工过程中注意高岭土与地下水作用产生的危害。基坑开挖和基础施工时,应防止地表水及地下水浸泡地基土,也不宜暴晒地基土,保持地基土的天然湿度。
7、针对基坑涌水地质问题,需进行次重点防治。应对基坑内水量进行必要监测,同时采取合理的降水措施,并配合相应的截水和排水措施,如修建截水沟、排水井等,避免发生基坑突涌。工程建设时采取合理防排水措施,及时疏排地表水,防止浸泡冲刷地基。
8、本区内桩端持力层局部高差较大,基础施工时应加强桩端持力层的验收工作,确保桩端进入持力层一定深度。另外,桩身过长时桩长细比过大,在进行设计及施工时应避免过大的弯曲变形造成的建筑物不均匀沉降危害。
9、场地现有的地面高度有一定的高差变化,如果本区工程建设出现或存在人工边坡,应根据具体边坡工程地质条件,设置相应的挡土墙的防护措施。

⑷ 工程地质灾害

(1)工程地质灾害的类型

国家建设中特别是西部地区,经常遇到滑坡、溶洞、地面下沉、水库坝基漏水、软土变形、水土突涌、水下砂体运移、浅层天然气、岸带冲淤、砂土液化等工程地质问题,查清引起这些灾害的工程地质条件,制订防治、整治措施,需要工程地球物理探测技术。如南昆铁路沿线、长江三峡库区有很多滑坡需要治理,广西岩溶地区水库地下漏水问题等,都是工程地质灾害。

越来越突出的工程地质灾害问题不仅威胁到人民生命安全,而且严重地制约了国民经济的发展。崩塌、滑坡和泥石流等地质灾害正随着矿产资源的开发而加剧,中国每年因此而损失约300亿元人民币。近10年来,中国由于崩塌、滑坡和泥石流造成了近万人死亡,全国400多个市、县、区、镇受到严重侵害。在全国铁路沿线分布的大中型滑坡达1000余处,平均每年中断交通运输44次,铁路沿线有泥石流沟1386条,受危害铁路达3000km以上;全国有近千座水电站及数百座水库受到崩塌、滑坡和泥石流灾害的严重威胁,仅云南省已毁坏水电站360座、水库50座。由于矿山采掘造成的压占、采空塌陷所损毁的土地面积超过3000hm2;全国共有16个省(区、市)的46个城市(地段)、县城出现地面沉降问题,总沉降面积达到48700km2;地裂缝出现在17个省(区、市),总长超过346km。据统计,中国的地质灾害共有30种,除火山外,崩塌、滑坡、泥石流、地面塌陷、地面沉降等15种为主要灾害。专家认为,中国经济建设的高度发展和人口的急剧增加,对地质环境的破坏日趋严重,中国50%以上的地质灾害都与人为因素有关。中国地质灾害的成灾具有明显的方向性,地质灾害的损失与人口密度、经济发达的程度呈现出正比。我国目前有400个地质灾害重灾县(市),占全国县(市)的20%。每年地质灾害(不包括地震)造成的直接经济损失占各种自然灾害造成损失的20%~25%,年平均死亡近千人,受伤近万人,经济损失难以估量。

(2)工程地质灾害的特点

我国工程地质灾害的基本特点是:种类繁多,破坏损失严重;分布零散而又十分广泛;防治周期特别长。1998年我国共发生不同规模的崩塌、滑坡和泥石流等突发事件约18万宗,造成1150人死亡,1万多人受伤,毁坏房屋50多万间,直接经济损失约15.9亿元。我国政府对地质灾害的危害问题处于极大关注,因此灾害评估得到越来越广泛的重视,研究内容也越来越广泛,研究的手段也越来越丰富。但是我国毕竟是一个发展中国家,由于财力和技术水平的限制,不可能对所有工程地质灾害进行全面治理,因而研究发展很不平衡,理论研究也非常薄弱,灾害评估没有得到充分的实践应用。

(3)工程地质灾害的危害

由矿石开采后形成的采空区的突然冒落与塌陷属于不连续下沉方式曾发生多起事故,造成人员和财产的重大损失。最早在世界上有报道,在1938年英国的一个锡矿山,由于采区冒顶产生冲击地压。1958年,德国维尔钾盐公司的台尔曼矿也曾发生采空区冒落。1960年1月20日在南非的科尔布鲁克诺斯(Coalbrook North)煤矿曾发生一起灾难性破坏,当时面积大约3km2左右的房柱法采空区突然陷落,造成了437人的死亡。1962年12月在南非远西兰德(FarWestRand)金矿区发生塌陷,当时一个三层的井下破碎硐室突然塌落掉进了一个下部渗坑,造成29人死亡。1970年9月25日,在穆福利拉矿区发生较严重的空区突然陷落,造成89人死亡,同时伴随约45000m3尾矿泥浆淹没了部分矿井。

我国工程地质灾害分布十分广泛,曾发生过多起地质灾害事故。崩塌灾害最典型的例子是湖北安远县盐池河磷矿山崩。盐池河磷矿区位于黄陵背斜东北翼,自1969年以来,在三面(东、西、北)临空的陡崖下开采磷矿石约60×104t,采空面积达6.6×104m2。由于采空了山脚地区,改变了山体的应力状态,引起山体开裂。终于在1980年6月3日凌晨发生大规模山崩。高100m的半壁山头顷刻崩塌,激起巨大气浪将矿务局建筑物席卷而起,直撞到对岸陡壁,撞得粉碎,近100×103m3的碎石堆积在500m×478m左右的范围内,将盐池河河谷填埋,形成一座高20~42m的堆石坝,掩埋(死亡)了284人及矿务局的所有建筑、机械设备。

据初步调查,全国有灾害性泥石流沟1.2万条,滑坡数万条,崩塌数千处。1949~1996年共发生“崩、滑、流”灾害4600次,其中造成严重损失达1001次。1983年3月在甘肃东乡族发生过一次特大的滑坡,下滑物体总体积达3000×104m3,埋没了苦顺和新庄两村和德勒村一部分,毁坏农田3000hm2,填埋水库一座,造成巨大损失。1985年6月,长江西陵峡新滩镇发生大岩崩,顷刻之间有300多年历史的新滩古城整个被覆没,滑坡体冲入长江中土石量约200×104m3,埋没房屋1000多间,击毁机帆船13艘,木船64只,直接损失1000多万元。由于湖北岩崩调查处预报及时,使1300多居民安全撤离无伤亡。

2010年8月,陕西省安康市普降大到暴雨,受强降雨影响,白河县四新、卡子、茅坪、构扒4个乡镇受灾严重,导致350户800余间房屋被淹,冲毁农田3000余亩,特别是公路、电力、水利、通信等基础设施严重受损。其中四新乡和茅坪镇南贫沟流域通信、电力全部中断,直接经济损失1200余万元。该区地质条件复杂,千枚岩等易滑地层分布较广,同时,随着近年来经济的迅速发展,导致了人类工程活动的加剧,如开山采石、开荒种田、劈山修路等,严重地扰乱了自然地质环境,加剧了该区地质灾害突发和群发。

⑸ 常见地质灾害对土木工程的影响

定义
自然变异和人来为作用导致的地自质环境或地质体发生变化而给人类和社会造成的危害称为地质灾害。
常见的地质灾害有滑坡、崩塌、泥石流、地面沉降、地面塌陷、岩土膨胀、砂土液化、土地冻融、土壤盐渍化、土地沙漠化以及地震、火山、地热害等。
地质灾害分类
地质灾害按地质作用分为内生地质灾害、外生地质灾害和人类活动诱发的地质灾害。
1.内生地质灾害
是由地球内部动力作用(岩浆活动、构造运动等)引发的地质灾害,如地震、火山喷发等;
2.外生地质灾害
是由外动力(如重力、水力等)作用产生的地质灾害。
3.人类活动诱发的地质灾害
主要指由于人类的工程活动(如开挖、搬运和堆填等)诱发的地质灾害。

⑹ 地质工程学科中的。地质灾害及防护工程专业硕士。的就业方向

还就业方向呢抄,你还有没有机会改行?能改赶紧改,地质行业走下坡路了,干了十年了,工资反而没有刚毕业的时候拿的多了(物价却上涨了n倍)。哪个行业不比干地质的拿得多?你能说出来一个吗?端盘子都比我们挣得多,还tmd天天加班,各种出野外,最后媳妇都跟人跑喽,你好好想想吧

⑺ 矿山与地下工程地质灾害

地下采矿和地下工程开挖,最基本的生产过程就是破碎和挖掘岩石与矿石,同时维护顶板和围岩稳定。如果对地下洞室不加以支撑维护,则洞室围岩在地应力的作用下发生变形或破坏,这种现象在采矿界称为地压显现。由地压造成的灾害,对矿井来说,主要表现为顶板下沉和垮落、底板隆起、岩壁垮帮、支架变形破坏、采场冒落、岩层错动、煤与瓦斯突出及岩爆等。因采空区处理不当而引起的大规模地压灾害在地面表现为地表开裂、地面下沉、建筑物倒塌、水源枯竭等。对于煤矿,尤其是露天煤矿,常常表现为滑坡、崩塌、倾倒等边坡失稳及其引起的地面变形破坏。而煤与瓦斯突出是高瓦斯煤矿开采过程中最常见、危害性最大的地压灾害。这里主要讨论危害大、发生频率高、分布范围广的冒顶垮帮、岩爆、煤与瓦斯突出。

(一)冒顶垮帮

1.冒顶垮帮的特征及其影响因素

地下洞室开挖后,由于卸荷回弹,应力和水分的重新分布常使围岩的性状发生很大变化。如果围岩岩体承受不了回弹应力或重新分布应力的作用,就会发生变形或破坏。围岩岩体变形及破坏的形式和特点,除与岩体内的初始应力状态和洞形有关外,主要取决于围岩的岩性和结构(表92)。

冒顶事故是对矿山工人人身安全威胁大且发生频率最高的矿山地质灾害之一。据不完全统计,我国各种矿山每年工伤死亡人数中有40%死于矿坑冒顶,死亡频率占各种矿山地质灾害之首。

表9-2 围岩的变形破坏形式及其与围岩岩体和结构的关系

续表

(据张倬元等,1994)

湖南锡矿山南矿的开采实践表明,当失去支撑能力的矿柱达到全采场矿柱60%左右时,采空区顶板就可能冒落。而一个采空区的冒落会在相邻采空区引起连锁反应,导致采场地压急剧增大,采场和巷道严重破坏,人员伤亡。美国、英国、日本等国金属矿山冒顶事故死亡人数均占井下事故死亡总人数的1/3~1/2,日本为40.7%,美国为30.2%,英国、俄罗斯、波兰和比利时等国约占30%~50%。

我国冶金矿山顶板冒落及其他地压灾害死亡人数占全部伤亡人数的25%~27%;大中型统配煤矿近年发生的重大死亡事故中,顶板冒落灾害占30%左右。

顶板冒落或侧壁垮帮的征兆有:顶板掉渣由小而大,由稀变密,裂隙数量增多、宽度加大,煤帮煤质在高压下变软,支架压坏、折断,瓦斯涌出量突然增多,淋水量增大等。

2.采空区处理方法

防止采空区大冒落的处理方法可归纳为“充填”、“崩落”、“支撑”、“封闭”8个字(隋鹏程,1998)。

1)充填法:采空场采矿开采完毕后,要及时用碎石、尾矿砂、水沙、混凝土等物质充填采空区,从而起到支撑顶板、减小其承受上覆岩土体压力的作用。如湖南锡矿山南矿在3次大冒落后,新采区地压剧增,地表不断沉陷,为保证安全,对采空区进行了全面充填处理,充填率达90.6%,使地压活动得以缓和。

2)崩落法:指利用深孔爆破的方法将采空区围岩崩落,充填采空区。

3)支撑法:以矿柱或支架等支撑采空区,防止其发生危险变形。

4)封闭法:常用来处理与主要矿体相距较远、围岩崩落后不会影响主矿体坑道和其他矿体开采的孤立小采空区。封闭这些小采空区的目的主要是防止围岩突然冒落时空气冲击波对人员和设备的危害。

为有效预防冒顶垮帮,还必须采取合理的开采方案,避免片面追求产量而采富弃贫,坚决杜绝开采保护矿柱的乱采行为;采用合理的设计方案,进行科学的顶板管理;根据围岩应力集中大小与分布形式,采用声发射监测技术及其他测定地应力方法,预测预报顶板来压的强度和时间,掌握地压规律,及时采取有效措施;制定科学合理的工作面作业规程、支护规程、采空区处理规程等。

(二)岩爆

岩爆又称冲击地压,是指承受强大地压的脆性煤、矿体或岩体,在其极限平衡状态受到破坏时向自由空间突然释放能量的动力现象,是一种采矿或隧道开挖活动诱发的地震。在煤矿、金属矿和各种人工隧道中均有发生。

岩爆发生时,岩石碎块或煤块等突然从围岩中弹出,抛出的岩块大小不等,大者直径可达几米甚至几十米,小者仅几厘米或更小。大型岩爆通常伴有强烈的气浪巨响,甚至使周围的岩体发生振动。岩爆可使洞室内的采矿设备和支护设施遭受毁坏,有时还造成人员伤亡。

1.岩爆的类型和特点

由于发生部位和释放能量的差异,岩爆表现为多种不同的类型,它们的特点也各不相同(张倬元等,1994)。

1)围岩表部岩石破裂引起的岩爆:在深埋隧道或其他类型地下洞室中发生的中小型岩爆多属这种类型。岩爆发生时常发出如机枪射击的噼噼啪啪响声,故被称为岩石射击。一般发生在新开挖的工作面附近,掘进爆破后2~3h,围岩表部岩石发生爆破声,同时有中间厚、边部薄的不规则片状岩块自洞壁围岩中弹出或剥落。这类岩爆多发生于表面平整、有硬质结核或软弱面的地方,且多平行于岩壁发生,事前无明显的预兆。

2)矿柱围岩破坏引起的岩爆:在埋深较大的矿坑中,由于围岩应力大,常常使矿柱或围岩发生破坏而引发岩爆。这类岩爆发生时通常伴有剧烈的气浪和巨响,甚至还伴有周围岩体的强烈振动,破坏力极大,对地下采掘工作常造成严重的危害,被称为矿山打击或冲击地压。在煤矿中,这类岩爆多发生于距坑道壁有一定距离的区域内。四川绵竹天池煤矿就曾多次发生此类岩爆,最大的一次将约20t的煤抛出20m以外。

3)断层错动引起的岩爆:当开挖的洞室或坑道与潜在的活动断层以较小的角度相交时,由于开挖使作用于断层面上的正应力较小,降低了断层面上的摩擦阻力,常引起断层突然活动而形成岩爆。这类岩爆一般发生在活动构造区的深矿井中,破坏性大,影响范围广。

2.岩爆的产生条件与发生机制

岩爆是洞室围岩突然释放大量潜能的剧烈的脆性破坏。从产生条件来看,高储能体的存在及其应力接近于岩体极限强度是产生岩爆的内在条件,而某些因素的触发则是岩爆产生的外因(张倬元等,1994)。

围岩内高储能体的形成必须具备两个条件:①岩体能够储聚较大的弹性应变能;②在岩体内部应力高度集中。弹性岩体具有最大的储能能力,受力变形时所能储聚的弹性应变能非常大,而塑性岩体则无储聚弹性应变能的能力。

从应力条件看,围岩内高应力集中区的形成首先需要有较高的原岩应力。但在构造应力高度集中的地区,岩爆也可以发生在浅部隧洞中,甚至有可能发生在地表的基坑或采石场中。

洞室围岩表部岩爆经常发生在如下一些高压力集中部位:因洞室开挖而形成的最大压应力集中区,围岩表部高变异应力及残余应力分布区以及由岩性条件决定的局部应力集中区,断层、软弱破碎岩墙或岩脉等软弱结构面附近形成的应力集中区。

对地下洞室造成破坏的岩爆主要有三种形式:岩体扩容、岩石突出和振动诱发冒落。岩体扩容是指由于岩石的破碎或结构失稳而使岩体体积增大的现象,如果扩容的幅度很大且过程较为猛烈,就会给洞室造成危害。当远处传来的扰动地震波能量较高时,可直接将洞室围岩碎块以非常快的速度(可达2~3m/s)弹射到洞室中而形成灾害,这就是以岩石突出形式发生的岩爆。振动诱发岩石冒落是当洞室顶部有松动岩块或存在软弱面时,在扰动地震波和巨大重力势能作用下发生垮落的现象。

3.岩爆的预测及防治

(1)岩爆的监测预报

对岩爆灾害的预测包括对岩爆发生强度、时间和地点的预测。由于地下工程开挖和岩爆现象本身的复杂性,岩爆的预测工作需要考虑地质条件、开挖情况以及扰动等许多因素。以往的岩爆记录是预测未来岩爆的重要参考资料。

岩爆的预测预报可以分为两个方面:①在试验室内测量煤岩或岩块的力学参数,依据弹性变形能量指数判断岩爆的发生几率和危险程度;②现场观测,即通过观测声响、震动,在掘进面上钻进时观察测量钻屑数量等进行预测预报。目前国内外常用的岩爆预测预报方法有钻屑法、地球物理法、位移测试法、水分法、温度变化法和统计方法等(张斌等,1999)。

1)钻屑法或岩心饼化率法:对于强度很高的岩石,若钻孔岩心取出后在地表发生饼化现象则表明地下存在较高的地应力,可根据一定厚度岩心中岩饼数量的相对大小来进行判断。在钻进过程中,还可借助钻孔中的爆裂声、摩擦声和卡钻现象等动力响应进行辅助判断。

2)地震波预测法:利用已发生岩爆(诱发地震)的信息来预测未来开挖过程中的岩爆,并建立岩爆次数、大小、分布及其与地应力场变化的关系,从而预报大中型岩爆的时空位置及数量和大小。此外,还可以利用单道地震仪对掌子面及前方岩体进行监测,如沿水平线每隔1 m逐点测试岩石弹性波速度,采用强度概念推测发生岩爆的可能性等。

3)声发射(A-E)法:声波发射A-E法即Acoustic-Emission方法。此方法的建立基于岩石临近破坏前有声发射这一实验检测结果,它是对岩爆孕育过程最直接的监测预报方法。其基本参数是能率和大事件数频度,二者在一定程度上可以反映岩体内部的破裂程度和应力增长速度。岩爆发生前通常有一个能量的积蓄期,这一时期是声发射平静期,可以视为发生岩爆的前兆。这种方法可望在现场对岩爆进行直接的定量定位监测,是一种具有很大发展前景的监测和预报方法。

岩爆预测是地下建筑工程地质勘查的重要任务之一,在总结已有的实践经验和研究成果的基础上,国内外学者目前已建立了一些可行的准则。挪威曾采用巴顿的方法,将岩石单轴抗压强度(Re)与地应力(σ1)的比值(α=Re1)作为岩爆的判别准则:

1)当α=5~2.5时,有中等岩爆发生;

2)当α<2.5时,有严重岩爆发生。

我国在一些工程实践中常采用巴顿法进行预测。例如贵州天生桥电站,根据巴顿法判断隧洞施工中可能有中等岩爆发生,工程开挖的实际情况证明预测基本成功(张倬元等,1994)。

此外,由于岩爆属于一种诱发地震,地震震级和发震时间的预报方法可用来预测岩爆的震级和发生概率。

(2)岩爆的防治

岩爆的防治问题虽然目前尚难彻底解决,但在实践中已摸索出一些较为有效的方法,根据开挖工程的实际情况,可采取不同的防治方法。

1)设计阶段的防治对策:

·洞轴线的选择:人们通常认为洞轴线方向应与最大主应力方向平行,以改善洞室结构的受力条件。然而,使洞室相对稳定的受力条件是围岩不产生拉应力、压应力均匀分布和切向压应力最小。在选择轴线方向时应多方面比较选择,以减少高地应力引发的不利因素。

·洞室断面形状选择:洞室断面形状一般有圆形、椭圆形、矩形和倒U形等。当断面的宽度高比等于侧压系数时,可综合考虑各种因素确定洞室断面形状。

2)施工阶段的防治对策:

·超前应力解除法:在高地应力区,洞室开挖后易产生超高应力集中。为了有效地消除应力集中现象,可采取预切槽法、表面爆破诱发法和超前钻孔应力解除法等提前释放地应力。在岩爆危险地带钻浅孔进行爆破,造成围岩表部松动带,可有效防止破坏性岩爆的发生。开采煤层时,首先开采无冲击地压或一般冲击地压的煤层,作为解放压力层。回采时,要用全面陷落法管理顶板,不要留煤柱;对不易冒落的顶板要采用深孔爆破法或强力高压注水法强制放顶。

·喷水或钻孔注水促进围岩软化:在洞室的易发生岩爆地段,爆破后立即向工作面新出露围岩喷水,既可降尘又可缓释围岩应力。因为注水使裂纹尖端能量降低,裂纹扩张传播的可能性减小,裂纹周围的热能转为地震能的效率随之降低。从而减少剧烈爆裂的危险性。

·选择合适的开挖方式:岩爆是高压力集中的结果,因此,开挖时可采取分步开挖的方式,人为地给围岩岩体提供一定的变形空间,使其内部的高应力得以缓慢降低,从而达到预防岩爆的目的。

·减少岩体暴露的时间和面积:在短进尺、多循环的施工作业过程中,应及时支护,以尽量减少岩体暴露的时间和面积,防止或减少岩爆发生。

·岩爆发生的处理措施:一旦发生岩爆,应彻底停机、躲避,对岩爆的发生情况进行详细观察并如实记录,仔细检查工作面、边墙或拱顶,及时处理、加固岩爆发生的地段。

3)合理选择围岩的支护加固措施:使开挖的洞室周边或前方掌子面的围岩岩体从单向应力状态变为三向应力状态,同时,围岩加固措施还具防止岩体弹射和塌落的作用。主要的支护加固措施有:①喷混凝土或钢纤维喷混凝土加固;②钢筋网喷混凝土加固;③周边锚杆加固;④格栅钢架加固;⑤必要时可采取超前支护。

(三)煤与瓦斯突出

在煤矿地下开采过程中,从煤(岩石)壁向采掘工作面瞬间突然喷出大量煤(岩)粉和瓦斯(CH4,CO2)的现象,称为煤与瓦斯突出。大量承压状态下的瓦斯从煤或围岩裂缝中高速喷出的现象称为瓦斯喷出。突出与喷出均是在地应力、瓦斯压力综合作用下产生的伴有声响和猛烈应力释放效应的现象。煤与瓦斯突出可摧毁井巷设施和通风系统,使井巷充满瓦斯与煤粉,造成井下矿工窒息或被掩埋,甚至可引起井下火灾或瓦斯爆炸。因此,煤与瓦斯突出是煤炭行业中的严重矿山地质灾害。

1.煤与瓦斯突出的特征及其影响因素

煤与瓦斯突出是地应力和瓦斯气体体积膨胀力联合作用的结果,通常以地应力为主,瓦斯膨胀力为辅。煤与瓦斯突出的基本特征是固体煤块(粉)在瓦斯气流作用下发生远距离快速运移,煤、碎块和粉尘呈现分选性堆积,颗粒越小被抛得越远。突出时有大量瓦斯(CH4或CO2)喷出,由于瓦斯压力远大于巷道内通风压力,喷出的瓦斯通常逆风前进;煤与瓦斯突出具有明显的动力效应,可搬运巨石、推翻矿车、毁坏设备、破坏井巷支护设施等。

发生突出的煤层具有瓦斯扩散速度快、湿度小,煤的力学强度低且变化大、透气性差等特点,大多属于遭构造作用严重破坏的“构造煤”。突出的次数和强度随煤层厚度的增加而增多,突出最严重的煤层一般都是最厚的主采煤层。突出的时间多发生在爆破落煤的工序。

煤与瓦斯突出灾害随采掘深度的增加而增加,其主要影响因素有矿区的地质构造条件、地应力分布状况、煤质软硬程度、煤层产状以及厚度和埋深等。一般说来,煤层埋深大,突出的次数多,强度也大。

此外,水力冲孔和震动放炮可使地应力作用下的高压瓦斯煤体在人为控制下发生突出。

2.煤与瓦斯突出的预防措施

预防煤与瓦斯突出的技术措施主要有以下4种:

1)首先开采没有突出危险或突出危险性较小的煤层。由于受采动影响,地应力以弹性潜能得以缓慢释放,煤层因卸压而膨胀变形,透气性增大,或者因层间岩石移动形成裂隙与孔道,有突出危险的煤层中瓦斯缓慢排放而使瓦斯压力和瓦斯含量明显下降,从而避免或降低煤与瓦斯突出的危险。

2)在有突出危险的煤层内均匀布置钻孔并预先抽放一定时间的瓦斯,以降低瓦斯压力与瓦斯含量,并使地应力下降、煤层强度增加。

3)在工作面前方一定距离的煤体内,超前钻探一定数量的大口径钻孔,使煤层内的瓦斯得以提前释放。

4)利用封堵、引排、抽放等综合方法处理洞穴内积存的瓦斯。

为防止煤与瓦斯突出造成严重危害,必须加强煤层顶板管理和地应力监测,加强职工安全教育。

⑻ 地质灾害包括哪些

一、地质灾害按处所进行划分
按致灾地质作用的性质和发生处所进行划分,常见地质灾害共有12类、48种。它们是:
1、地壳活动灾害,如地震、火山喷发、断层错动等;
2、斜坡岩土体运动灾害,如崩塌、滑坡、泥石流等;
3、地面变形灾害,如地面塌陷、地面沉降、地面开裂(地裂缝)等;
4、矿山与地下工程灾害,如煤层自燃、洞井塌方、冒顶、偏帮、鼓底、岩爆、高温、突水、瓦斯爆炸等;
5、城市地质灾害,如建筑地基与基坑变形、垃圾堆积等;
6、河、湖、水库灾害,如塌岸、淤积、渗漏、浸没、溃决等;

7、海岸带灾害,如海平面升降、海水入侵,海崖侵蚀、海港淤积、风暴潮等;
8、海洋地质灾害,如水下滑坡、潮流沙坝、浅层气害等;
9、特殊岩土灾害,如黄土湿陷、膨胀土胀缩、冻土冻融、沙土液化、淤泥触变化、淤泥触变等;
10、土地退化灾害,如水土流失、土地沙漠化、盐碱化、潜育化、沼泽化等;
11、水土污染与地球化学异常灾害,如地下水质污染、农田土地污染、地方病等;
12、水源枯竭灾害,如河水漏失、泉水干涸、地下含水层疏干(地下水位超常下降)等。
地质灾害按动力因素进行划分:
致灾地质作用都是在一定的动力诱发(破坏)下发生的。诱发动力有的是天然的,有的是人为的。
据此,地质灾害也可按动力成因概分为自然地质灾害和人为地质灾害两大类。
自然地质灾害发生的地点、规模和频度,受自然地质条件控制,不以人类历史的发展为转移;人为地质灾害受人类工程开发活动制约,常随社会经济发展而日益增多。所以防止人为地质灾害的发生已成为地质灾害防治的一个侧重方面。
地质灾害的发生、发展进程,有的是逐渐完成的,有的则具有很强的突然性。据此,又可将地质灾害概分为渐变性地质灾害和突发性地质灾害两大类。
前者如地面沉降、水土流失、水土污染等;后者如地震、崩塌、滑坡、泥石流、地面塌陷、地下工程灾害等。渐变性地质灾害常有明显前兆,对其防治有较从容的时间,可有预见地进行,其成灾后果一般只造成经济损失,不会出现人员伤亡。突发性地质灾害突然,可预见性差,其防治工作常是被动式的应急进行。其成灾后果,不光是经济损失,也常造成人员伤亡。故是地质灾害防治的重点对象。

⑼ 桥梁与隧道工程主要研究领域

(一) 桥梁结构工程与抗震分析
以物理和几何非线性分析方法为基础,传统桥梁和新型桥梁结构(如连续梁桥、刚构桥、斜拉桥和组合梁桥等)的受力分析、设计理论和施工技术。
通过桥梁在车辆、地震、风等动力荷载作用下的动力响应分析,研究桥梁结构的安全性、动力可靠性及损伤、失效机理、寿命评估及可靠性设计方法。
(二) 桥隧检测、加固技术与可靠性分析
桥梁及隧道施工信息监测、分析与反馈理论、技术和应用,包括各类桥梁及隧道健康检测方法、加固技术、结构可靠性分析方法和结构可靠性实用设计的原理及方法等。桥梁及隧道运营过程中的可靠性诊断与维护技术理论。
(三) 桥隧工程仿真分析
掌握桥梁隧道设计的基本方法,包括结构尺寸拟定、荷载确定、结构内力分析以及钢筋配置等;运用混凝土理论、钢结构理论、现代非线性分析方法,研究桥梁及隧道施工方法、工艺措施等。
掌握计算机仿真数值模拟分析原理与方法,模拟桥隧施工方法、施工过程、移动荷载、预加应力、混凝土收缩和徐变、支座沉降、温度变化等桥梁隧道结构分析特定问题。
(四) 隧道设计理论与优化
运用结构力学、混凝土理论、现代岩土力学等基础理论,研究地层处理、开挖、支护及衬砌的设计与计算方法。掌握复杂情况下隧道及地下结构分析原理,运用现代非线性分析、优化设计等方法,研究隧道工程的地质环境及其评估方法、硐室开挖后的力学动态、支护结构的力学效应及其特征、隧道支护体系的设计及优化原则和方法等内容。
(五) 隧道施工新技术及信息化
掌握隧道主要施工技术和方法,施工期间的力学动态与行为;掌握隧道施工新方法和新技术,包括盾构隧道的受力特征及主要的设计分析方法、盾构隧道结构形式及最新发展趋势等,并能够对特殊环境条件下的复杂隧道进行综合分析与设计。
研究控制隧道工程的关键技术和方法,隧道与地下工程地质灾害理论体系,隧道防灾控制工程规划与设计理论框架等。运用工程测量、力学、计算机、管理等专业及基础知识,研究隧道与地下工程设计与施工的信息化方法,包括信息监测、分析与反馈理论、技术和应用等。

⑽ 如何理解地下水与地质灾害的关系

地下来水与地质灾害的关系:水自文地质是导致地质灾害发生的主要因素之一,基本所有地质灾害及大部分地质环境问题都与地下水有关,主要有滑坡、泥石流、地面塌陷、地面沉降、海水入侵、土壤盐渍化、土壤荒漠化、水土流失、湿地退化、地下水污染等等,每一个都与地下水有直接或间接的关系。
地下水的地质作用 是地下水对岩层破坏和建造作用的总称。地下水在流动过程中对流经的岩石可产生破坏作用,并把破坏的产物从一地搬运到另一地,在适宜的条件下再沉积下来。因此,地下水的地质作用包括剥蚀作用、搬运作用和沉积作用。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864