甘肃地质灾害insar
❶ 英国的地质灾害防治
英国的地质灾害主要有建筑物下沉、滑坡、地面塌陷、黄土崩塌等。
建筑物下沉为一种“季节性灾害”。在英国,每年有数亿英镑的经费用于修缮下沉的建筑物。引起下沉的原因有:粘土的不均匀膨胀和压缩、采矿、地下物质溶解和变形。在英国,建筑物下沉最容易发生的区域为英格兰的东南部和中部,因为这些地方有年轻的地质单元,如伦敦粘土沉积和Gault粘土沉积。不列颠地质调查局的科学家正在研究与粘土含水量有关的压缩/膨胀的规律。另外,启动了利用干涉孔径雷达(InSAR)技术来监测沉降的新方法。
相对滑坡灾害严重的国家,英国的滑坡灾害不算严重,曾有滑坡发生(已知的有1000多个)。滑坡有自然因素诱发的,也有不科学的土地利用和建设诱发的。对于人为诱发的滑坡,治理起来非常昂贵,但是可以在设计阶段进行滑坡评估来避免诱发滑坡。不列颠地质调查局拥有一个国家滑坡数据库,其中包含有英格兰和威尔士的8000个滑坡的详细资料,并且还在不断地调查补充中。
1993~1997年,英国发生了白垩纪岩层塌陷事件。地下水使得白垩纪碳酸盐岩溶解形成空洞,容易形成不规则的地面下沉或者锥形的塌陷。利用地震探测手段,可以很好地看到地下的碳酸盐岩空洞,从而避免下沉灾害带来的损失。
在英国,赋存于二叠系和三叠系里的盐从罗马帝国时期就开始被人类开采。由于采矿,地下可溶性盐的流失使得地面开始塌陷。目前,新的采矿手段以及对资源和安全的调查正在开展,以缓和资源与环境的矛盾。
❷ 地质灾害调查
按照防灾减灾需要,在县市突发性地质灾害调查与区划、地质灾害高易发区1∶5万地质灾害调查、地质灾害监测预警示范、地面沉降调查与监测、地震地质灾害调查、重大工程建设区地壳稳定性调查、南方岩溶区岩溶塌陷调查等方面取得了大量进展。
完成了我国山区丘陵县(市)地质灾害调查与区划。1999~2008年,开展了全国1640个山区丘陵县地质灾害调查与区划,调查面积650×104km2,涉及人口约7.9亿。调查工作以县(市)为单元开展,通过1∶10万地质灾害调查,在各调查县(市)圈定地质灾害易发区,建立地质灾害群测群防网络,编制重大地质灾害防灾预案,建立县级地质灾害信息系统,编制县级地质灾害防治规划。共调查并确定地质灾害及地质灾害隐患点24多万处,基本摸清了我国山区丘陵区地质灾害及隐患点发育分布现状,摸清了全国山区丘陵区地质灾害的主要类型和分布规律、划分了地质灾害易发区,为地方政府在社会发展和经济建设过程中合理利用土地、主动防范地质灾害提供了重要依据。我国滑坡、崩塌、泥石流高易发区面积约128×104km2,主要分布在黄土高原地区、渝中鄂西黔北地区和川西南滇西地区。中易发区面积约214×104km2,主要分布在东南沿海低山丘陵地区、湘赣粤桂山地丘陵地区、东北东部山地与山东低山丘陵地区和伊犁河谷地区。
推进了地质灾害高易发区1∶5万地质灾害调查与地质灾害监测预警示范。在开展全国县(市)地质灾害调查与区划基础上,在西南山区、西北黄土高原区、湘鄂桂地区地质灾害高发区以县级行政区为单元开展了地质灾害详细调查,提高调查精度,通过地质灾害严重区滑坡、崩塌、泥石流灾害详细调查与测绘,查明地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息系统,建立健全群专结合的监测网络。2011年以来,开展了大渡河流域、雅砻江流域、湟水河流域等流域的地质灾害调查,进一步了解了地质灾害发育的地质背景条件及诱发因素和地质灾害发育分布规律,确定了流域内主要地质环境问题,总结了西部复杂山体地质灾害成灾模式。对四川、重庆、陕西等省特大型滑坡进行了调查和评价,查明了特大型滑坡的数量、类型与分布规律及滑坡形成的主控诱发因素,分析了特大型滑坡的演化模式与稳定性,开展了特大型滑坡灾害风险区划。在四川雅安、重庆巫山和奉节、江西、陕西延安、闽东南、云南哀牢山等地区,建立了典型地质灾害监测预警示范区,应用光纤传感、GPS和INSAR等高新监测技术,开展地质灾害监测数据采集、传输、分析与发布系统等方面的示范研究,开展了群测群防技术研究与示范,取得了一系列地质灾害监测预警仪器和预警信息管理软件等方面的重要进展。
地面沉降调查与监测工作为区域地面沉降防治提供了基础依据。完成了长江三角洲地区、华北平原、汾渭盆地等重点地区地面沉降和地裂缝调查,建立了以基岩标、分层标和GPS、水准测量为主的区域地面沉降立体监测网络,为地面沉降与地裂缝灾害监测、防治提供了坚实的技术依据,为国家和地方地质灾害防治规划、地质环境保护规划提供了技术支撑。在长三角地面沉降区,研制了真三维变系数地下水流与地面沉降耦合模型,开展了地面沉降监测与风险管理研究,针对深基坑降排水引起的工程性地面沉降问题开展了专题调查与地下水人工回灌试验研究。在华北平原地区,对各项控沉措施进行了研究,提出了典型沉降区地面沉降和地下水开采量控制目标。建立了汾渭盆地地裂缝带黄土流变本构模型,在流变实验基础上,开展了地裂缝城镇减灾示范研究。完成了京沪高铁沿线北京至沧州段沿线地面沉降监测。
应对地震灾害开展了地震地质灾害应急排查与次生地质灾害调查研究。汶川地震、玉树地震发生后,迅速组织相关人员启动紧急启动地震灾区的遥感应急调查,及时提供地震灾区遥感影像数据和解译成果以及地质信息资,同时开展地震地质灾害应急调查,为灾区减灾避灾、灾害(隐患)排查、灾情评估、灾后重建规划等提供了翔实的数据资料。围绕汶川地震地质灾害重大科技问题,开展了现场调查、深部地球物理探测、GPS位移监测和相关试验,获得了龙门山构造带主要活动断裂和汶川地震地表破裂发育分布详细调查资料,总结了地震地质灾害的发育特征及分布规律。
根据国家重大工程建设需要,开展了区域地壳稳定性调查评价。针对青藏高原交通基础设施建设,开展了青藏铁路沿线活动断裂调查,摸清了活动断裂基本特征,实现高精度GPS和地应力实时观测,确定了铁路周缘潜在灾害隐患点;编制了滇藏铁路沿线区域地壳稳定评价分区图,梳理了工程建设中需重视的施工灾害问题。完成了河西走廊、秦巴山区和川西高原等地与西气东输、三峡引水济黄、南水北调等重大工程管线相关的地区活动断裂规律研究、地应力测量和区域地壳稳定性评价。2008年以来,开展了北京主要活动断裂工程稳定性评价,对关键构造部位进行了地应力测量与监测,揭示了北京地区主要隐伏活动断裂的深部几何学特征和首都圈地区地壳浅表层现今地应力环境;开展了关中—天水经济区、黄河上游李家峡库区和中巴经济走廊带的活动断裂调查,分析了其地质灾害效应和相关重大工程地质问题;推动了南北构造带南段活动构造体系调查。
探索推进了南方岩溶区岩溶塌陷调查。2010年以来,以珠江三角洲地区为试点,开展了岩溶塌陷调查,提出了岩溶塌陷地质灾害调查工作指南。在此基础上,推进了武汉、湘中、桂中、皖江经济带等地区的岩溶塌陷调查工作,初步查明了岩溶塌陷发育的现状、类型和时空分布特点。参与了重大岩溶塌陷灾害应急调查,为地方政府抢险救灾及时提供技术支撑。
❸ 地质灾害监测重点工程建设
7.4.1 长江三峡库区地质灾害监测预警工程建设
完成长江三峡库区立体式监测预警预报示范网络系统建设。运用现代化的技术、设备,对库区60处以上的地质灾害点建立自动监测网络,实现监测数据的自动采集、实时传输和自动分析;建立全库区的遥感(RS)监测系统和GPS控制网、基准网,为编制与实施防灾减灾预案提供决策支撑。通过该监测预报示范区的建设为全国地质灾害监测预报网络的建立提供最直接的经验。
7.4.2 长江三角洲、华北平原地面沉降监测工程建设
(1)长江三角洲地面沉降监测
长江三角洲包括上海市全部,江苏省的苏州、无锡、常州地区、南通和盐城南部的三个县(市),浙江省北部的杭州、嘉兴和湖州地区,面积近5万km2。
长江三角洲地区在原有监测网络的基础上,按统一的规划、统一的标准建立和完善区域性地面沉降监测网。建立和完善基岩标、分层标组和其他有效的地面沉降监测设施;调整、优化和补充地下水动态分层监测孔;开展全球定位系统(GPS)、干涉合成孔径雷达(InSAR)技术和激光雷达(LI-DAR)技术应用试验研究,使地面沉降监测更加合理和有效。
(2)华北平原地面沉降监测
华北平原包括北京市、天津市、河北平原和山东鲁西北平原,总面积5万多km2。
建立和完善地下水分层监测网络,建立统一的地面沉降监测网,逐步完善分层标和其他有效的地面沉降监测设施。开展全球定位系统(GPS)、干涉合成孔径雷达(InSAR)技术和激光雷达(LI-DAR)技术应用试验研究,使地面沉降监测更加合理和有效。
7.4.3 矿山地质灾害综合监测示范工程建设
建立辽宁抚顺煤矿、黑龙江七台河煤矿、山西太原西山煤矿、贵州开阳磷矿四个具有代表性的国家级矿山地质灾害综合监测示范工程。通过国家级矿山地质灾害综合监测示范工程的建设,探索总结矿山地质灾害监测的工作程序和相应的技术方法,为我国采取快捷、经济的监测办法,初步解决矿山地质灾害对当地经济建设造成的威胁提供技术准备,为实施矿山环境恢复工程提供基础依据。
❹ 五 地质环境保护与地质灾害防治
党中央、国务院提出建设资源节约、环境友好型社会的要求,注重社会经济与资源环境的协调发展,从而研究大区域地下水演化、评价生态地质环境、预报地质灾害等工作显得日益重要,国土资源部在这些领域取得了一批重要的成果。
西部严重缺水地区人畜饮用地下水勘查示范工程
研究了不同类型缺水地区地下水埋藏富集模式与演化的机理,在碎屑岩地区新发现一系列“储水构造”,丰富和发展了“构造控水”理论;在咸淡水交错分布区发现多种地下淡水分布模式;在西南红层丘陵区创造出“小口径浅井”取水新技术和“一户一井”供水新模式;应用了漂砾石和严重漏失地层的钻探成井、基岩钻孔爆破增水、“渗流井”取水新工艺;研制开发了“塑衬贴砾滤水管”和红层地区“微型钻机”,编制了《红层地区地下水勘查评价技术要求》等。这些成果及时转化与推广应用,推动了西部人畜饮用水的解困工作。
巫山新城蓄水前航空影像(2003.3)
秀峰寺滑坡防护及开发利用示范工程
❺ 十二年地质大调查成果回顾“十二五”期间水工环地质调查工作思路及重点工作部署建议
中国地质调查局水文地质环境地质部
一、十二年地质大调查成果回顾
1999年国土资源大调查实施以来,水工环地质工作取得了重要进展,获得了一批重要成果,取得了一批丰硕成果,广泛服务于国土资源管理和经济社会发展。
1.水文地质调查
完成了全国新一轮全国地下水资源评价,按省区评价了地下水资源量和质量状况,为国家水资源综合规划和宏观决策提供了依据。在鄂尔多斯盆地、华北平原、松嫩平原等我国北方11个主要平原(盆地)开展了地下水资源及其环境问题调查评价,进一步查明了含水层结构和地下水循环规律,初步掌握了人类活动对地下水的影响以及环境效应,为我国地下水资源合理利用和含水层保护提供了科学的技术平台。
基本查明了西南8省(区、市)岩溶石山地区地下水资源特征及石漠化状况,完成了1:5万重点岩溶流域水文地质调查15万平方千米,建立了380处地下水开发和石漠化综合整治示范工程,解决了30余万人饮用水、20余万亩耕地的灌溉用水问题,为2010年西南抗旱提供了地下水开发基础资料和示范经验,为国家实施西南岩溶石漠化综合治理提供了技术支撑(图1)。
启动了全国首轮地下水污染调查评价,初步完成了珠江三角洲地区、长江三角洲地区、淮河流域平原区、华北平原区及下辽河平原地下水污染调查,面积约43万平方千米,基本查明了调查区的区域地下水质量与污染状况,为制定《全国地下水污染防治规划》提供了重要依据。开展西部干旱区、西南红层区严重缺水地区和地方病严重地区地下水勘查,在西部干旱和地方病严重地区成井470眼,为330万人解决了饮水困难问题,通过省部合作,在四川红层丘陵山区实施小口径浅井180万眼,解决了700万人的饮水困难问题。
图1 皮家寨岩溶大泉束流调压壅水开发示范工程
初步建立了国家、省(区、市)、地(市)三级地下水监测网络。目前共有各类地下水监测点23800余个,其中国家级点1422个,控制国土面积近100万平方千米,在北京、济南、乌鲁木齐等地下水监测示范区和华北平原共有300余个地下水监测点实现了自动监测、无线传输与网上发布。近年来,通过中国地下水信息网每年向社会公开发布地下水监测信息,为地下水资源评价与开发利用、地质环境保护和生态建设等提供了基础资料。
2.地质灾害调查与监测
完成了1640个山区丘陵县(市)地质灾害调查与区划,覆盖面积约650万平方千米,涉及人口约7.9亿,调查并确定地质灾害及地质灾害隐患点10余万处,基本摸清了我国山区丘陵区地质灾害及隐患点发育分布现状;针对查出的重要隐患点,建立了县、乡、村三级责任制的群测群防监测预警体系,为国家防灾减灾决策提供了重要依据。
在黄土高原区、秦巴山区、川滇山地区、湘鄂桂山地区、新疆伊犁谷地等地质灾害高发区完成127个县近40万平方千米地质灾害详细调查。初步建立了四川雅安、重庆巫山、云南哀牢山等8个代表不同突发性地质灾害类型的监测预警示范区,为全国地质灾害监测预警工作提供了技术支撑和示范。
初步完成长江三角洲地区、华北平原、汾渭盆地等重点地区地面沉降和地裂缝调查10万平方千米,基本建立以基岩标、分层标和GPS、水准测量为主的区域地面沉降立体监测网络,为我国地面沉降防治规划提供了基础依据。
全国汛期突发性地质灾害气象预警预报工作成效显著。2003年以来,成功避让地质灾害近5000起,安全转移20余万人,避免财产损失近30亿元。
3.环境地质调查
完成全国1:50万以地质灾害为主要调查内容的环境地质调查,基本查明了我国主要环境地质问题的分布以及危害程度,进行了地质灾害的多发区、易发区的分区,获得了区域环境地质基础资料,为国土资源宏观规划管理提供了技术资料。
开展了环渤海、东南沿海等沿海地区环境地质调查,基本查明了区域地壳稳定性、海岸侵蚀和淤积、地面沉降等地质灾害状况,并对重点港口和城市主要环境地质问题进行了专项调查,为制定该地区社会经济和城市发展规划提供了地质依据。
开展了长江、黄河等大江大河流域环境地质调查,初步查明上游源区生态地质环境变化状况和中下游地区主要环境地质问题,为我国大江大河源区生态环境治理和中下游地区水患和地质灾害治理提供了基础资料。完成了181个地级以上城市环境地质调查评价,基本摸清了这些城市地质灾害和环境地质问题的发育分布状况,对造成的危害和经济损失进行了评估,提出了地质灾害防治和地质环境保护措施,为城市规划、建设和管理提供技术支撑。
完成了全国以省(区、市)为单元的矿山地质环境调查与评估,共调查矿山11万余个,调查矿山面积580余万公顷,初步摸清了我国矿山地质环境现状,基本查明了我国主要的矿山地质环境问题及其危害,为国家矿山环境保护与恢复治理宏观决策提供了基本依据。开展了三峡工程、青藏铁路、南水北调、西气东输、西电东送等重大工程区活动断裂调查和区域地壳稳定性评价,为国家重大工程的规划、设计、施工和安全运营提供了重要的地质依据。
4.应急救灾和应对气候变化
近年来,我国突发性地质灾害和极端干旱频繁发生,在国土资源部的统一领导下,广大地质工作者积极参加抢险救灾和打井找水工作。
2008年“5·12”汶川地震、2010年“4·14”玉树地震发生后,全国地质系统迅速开展航空遥感解译、地质灾害应急排查及评估、灾后重建资源环境承载力评价,积极服务抗震救灾和灾后重建。在重庆武隆、贵州关岭、甘肃舟曲等特大突发性地质灾害后,第一时间赶赴现场,开展抢险救灾、灾害排查评估、应急处置等。
2010年春夏,云南、贵州、广西部分地区遭受百年罕见干旱,国土资源系统紧急动员抗旱找水打井人员上万名,钻机上千台,物探设备上百套。经过3个多月的艰苦奋战,完成勘探钻孔2703口,成井2348口,总出水量36万立方米/日,解决了520余万人的饮水困难。
充分利用已有资料,全面估算了我国地热资源潜力,分析了开发利用前景,完成了北京、天津浅层地温能调查评价和开发利用规划,全面启动全国省会城市浅层地温能调查评价工作。全国陆域沉积盆地二氧化碳地质储存潜力估算初步完成,鄂尔多斯盆地二氧化碳地质储存示范工程进展顺利。与神华集团合作在鄂尔多斯能源基地成功实施了二氧化碳地质储存示范工程建设,首次在中国建立了深部二氧化碳地质储存监测体系。地质碳汇调查研究得出新的岩溶和矿物碳汇能力估算数据。全球气候变化地质记录研究取得新认识。编制完成了中国国土资源领域应对气候变化政策与行动报告,为中国政府参加联合国气候变化大会提供了基础资料。
二、“十二五”期间水工环地质调查工作思路
以科学发展观为统领,紧密围绕制约我国经济社会可持续发展的重大资源环境问题,按照“夯实基础,强化应用,着力构建以服务为导向的水工环地质工作新格局”的基本要求,统筹部署国家水文地质、地质灾害和环境地质调查工作,依靠科技进步,加强综合研究,构建区域地质环境综合信息平台,进一步增强地质灾害防灾减灾能力和提高地质环境开发利用与保护水平,为国土资源规划和管理提供决策支撑服务。主要工作目标如下:
(1)重点加强全国地质灾害易发区、地下水主要开发利用区、重要经济区等地区中比例尺基础水工环地质调查,显著提高水工环地质调查工作程度;
(2)积极推进城市地质、地热资源调查以及应对全球气候变化地质响应研究,进一步拓展水工环地质服务领域;
(3)完善国家地下水和地质灾害监测网络,综合集成水工环地质调查和监测资料,构建数字地质环境信息平台,进一步提升水工环地质工作对国土资源管理和经济社会发展的支撑能力和服务水平。
三、重点工作部署建议
1.重点地区基础水文地质调查
在我国主要平原(盆地)、岩溶石山地区和国家大型能源基地,开展区域水文地质基础调查,查明区域含水层系统的空间分布与结构及地下水补径排条件,提出含水层保护建议,构建区域水文地质基础资料信息平台,为国土资源规划以及含水层管理、保护和合理利用提供决策支撑服务。
2.全国地下水污染调查评价
在我国东部平原地下水污染调查评价的基础上,完成中西部和东北平原地下水污染调查评价,查明平原(盆地)地下水水质和污染状况,综合评价地下水水质和污染程度及变化趋势,为我国地下水污染防治、地下水资源保护以及保障饮水安全提供科学依据。
3.严重缺水和劣质水地区水文地质勘查示范
在以往严重缺水地区水文地质勘查工作的基础上,开展北方缺水区、饮水型地方病区、南方红层缺水区及水污染区水文地质勘查示范,解决450万~550万人的饮水安全问题。为不同缺水类型地区提供找水方向与勘查经验,探索地质环境与地方病关系,提出解决缺水区人畜饮用地下水开发利用区划,为推进解决群众安全饮水问题提供技术支持。
4.国家地下水监测工程
基本建成较完善的国家级地下水监测站网、北方主要平原盆地地下水动态评价体系和国家地下水监测试验与科学研究基地,有效提升国家地下水环境监管能力和监管水平,满足全面实现小康社会目标对地下水环境的要求,为经济社会可持续发展和环境友好型社会的构建提供支撑。
5.地质灾害详细调查
在我国地质灾害高、中易发区开展地质灾害详细调查,查清滑坡、崩塌、泥石流发生的基础地质条件,阐明其发育、分布规律及形成机理,评价和预测其发展趋势;结合防灾规划,推荐应急搬迁避让新址,并进行地质灾害危险性和建设适宜性初步评估;建立地质灾害信息系统,地质灾害分区评价,圈定易发区和危险区;建立和完善的群测群防的地质灾害预警体系。
6.全国地面沉降、岩溶塌陷调查
继续进行长江三角洲、华北平原和汾渭盆地地面沉降监测,完善地面沉降监测网络,强化InSAR监测技术应用,优化基岩标、分层标和地下水分层监测孔等设施。开展珠江三角洲、东北平原等地区地面沉降调查。开展高速铁路沿线地面沉降与地裂缝详细调查与监测。继续开展武汉、广州等重点地区岩溶地面塌陷调查和监测示范。
7.地质灾害防治技术研发与预警示范区建设
开展地质灾害监测预警仪器研发和防治关键技术研发工作,选择辽东南中低山泥石流区、浙东南低山丘陵滑坡泥石流区、陇中黄土高原滑坡泥石流区、秦巴山地滑坡泥石流区、滇南哀牢山滑坡泥石流区、新疆伊犁河谷滑坡泥石流区,藏东南高山峡谷区开展地质灾害早期预警区建设。
8.重要经济区和城市群地质环境综合调查
选择我国重要经济区和城市群开展环境地质调查,查明区域构造格架和地壳稳定性以及城市群核心区断裂带活动性、工程地质条件和水文地质条件,进行重点城市环境地质安全评价,开展重大环境地质问题专题调查研究,提出对策建议,建立环境地质可视化信息平台,为我国主要城市群规划、建设和安全运行等提供决策支持。
9.全国矿山地质环境调查
开展我国重要矿产资源集中开发区和潜在的矿业基地或重要成矿区(带)的矿山地质环境详细调查与评价,开展重点矿山地质环境监测示范,监测矿产资源开发过程中所产生的矿山地质环境问题以及闭坑后所存在的矿山地质环境问题,建立矿山地质环境调查信息系统,为我国矿山地质环境保护和治理工作提供基础资料和依据。
10.应对全球气候变化地质响应研究
继续实施地热资源调查与开发利用工程、二氧化碳地质储存调查与示范工程、地质碳汇潜力评价与固碳示范工程和全球气候变化地质记录研究,摸清国土资源领域节能减排潜力,提高气候变化规律认识,提升应对全球气候变化能力,服务国家应对全球气候变化和节能减排战略。
❻ 地质灾害危险性评估流程
建设用地地质灾害危险性评估,是有效预防、减轻或避免地质灾害对未来工程设施及其运行环境直接危害和间接危害的一项主动防灾措施。科学合理地开展此项工作,对发现项目建设区潜伏重大地质灾害问题、提供地质灾害防治措施和建议,以及指导建设项目安全实施和运营等方面均有十分重要的意义(黄雅虹等,2007)。
为规范我国建设工程和规划区地质灾害危险性评估工作,切实贯彻《地质灾害防治条例》(国务院令第394号),国土资源部于2004年颁发了 “国土资源部关于加强地质灾害危险性评估工作的通知”(国土资发[2004]69号文件)及附件《地质灾害危险性评估技术要求(试行)》(以下简称《技术要求》),作为目前进行地质灾害危险性评估的规范和依据。
(一)评估的任务
地质灾害危险性评估工作的任务包括:
(1)查明地质灾害的类型、规模、分布特征及其形成的地质环境条件和诱发因素;
(2)分析预测工程项目建设对地质环境的影响;
(3)评价工程建设是否诱发新的地质灾害和工程本身遭受地质灾害的危险性;
(4)划分地质灾害危险区;
(5)进行建设用地适宜性评价;
(6)提出地质灾害防治建议等(郭富赘等,2003)。
(二)评估对象及灾种
《技术要求》规定,凡在全国地质灾害易发区内进行各类建设工程以及进行城市总体规划、村庄和集镇规划时,均要进行地质灾害危险性评估。需要提及的是:一旦受建设单位委托进行地质灾害危险性评估,无论场地是否跨越地方县(市)地质灾害调查划分的所谓易发区和非易发区,均应进行评估。
图2-2 常见的建设项目选址意见书办理流程图(各地行政主管部门办理流程各异.以当地行政主管部门为准)
需要评估的主要地质灾害种类,《技术要求》中有明确的规定。总体可概括为自然因素或者人为活动引发的危害人民生命和财产安全的崩塌、滑坡、泥石流、地面塌陷(含岩溶塌陷和矿山采空塌陷)、地裂缝和地面沉降及不稳定斜坡等与地质作用有关的灾害。
除地质灾害外,还经常遇到一些环境地质问题需要讨论,主要有活动断层、岩溶、冲沟、淤泥、软土和饱和砂土的液化等,一般情况下是将其纳入到相关灾害中进行讨论。如岩溶问题可以并入到地面塌陷或地下水污染灾害中讨论;活动断层、软土、砂土液化等问题可并入到地面变形或不均匀沉降(陷)灾害中讨论(金德山,2004)。
(三)评估的基本要求
1.总体要求
(1)在地质灾害易发区内进行工程建设,必须在可行性研究阶段或者在申请核准、备案前进行地质灾害危险性评估(国务院令第394号,国办发[2001]35号)。
(2)在已进行过地质灾害危险性评估的城镇规划区范围内进行工程建设,建设工程处于已划定为危险性大—中等的区段,还应按建设工程项目的重要性与工程特点进行建设工程地质灾害危险性评估(国土资发[2004]69号)。
(3)地质灾害危险性评估,必须对建设工程遭受地质灾害的可能性和该工程建设中、建成后引发地质灾害的可能性做出评价,提出具体的预防治理措施(国土资发[2004]69号)。
(4)地质灾害危险性评估的灾种主要包括:崩塌、滑坡、泥石流、地面塌陷(含岩溶塌陷和矿山采空塌陷)、地裂缝、地面沉降和冻土沉陷等。
(5)地质灾害危险性评估的主要内容是:阐明工程建设区的地质环境条件基本特征;分析论证工程建设区各种地质灾害的危险性,进行现状评估、预测评估和综合评估;提出防治地质灾害措施与建议,并做出建设场地适宜性评价结论。
(6)地质灾害危险性评估工作,必须在充分搜集利用已有的遥感影像、区域地质、矿产地质、水文地质、工程地质、环境地质和气象水文等资料基础上,进行地面调查,必要时可适当进行物探、坑槽探与取样测试。
(7)地质灾害危险性评估成果,应按照国家有关规定组织专家审查、备案后,方可提交立项、用地审批使用。
(8)地质灾害危险性评估不替代建设工程和规划各阶段的工程地质勘察或有关评价工作。
2.评估的主要内容
地质灾害危险性评估是在查明各种致灾地质作用的性质、规模和承灾对象社会经济属性的基础上,采用定性和定量相结合的方法,对其潜在的危险性进行现状评估、预测评估和综合评估。主要内容包括:(1)阐明工程建设区和规划区的地质环境条件基本特征;(2)调查分析工程建设区或规划区各种地质灾害的现状;(3)简要分析评估对象在建设或运营过程中与地质环境相互作用的范围、方式、强度与持续时间;(4)分析论证建设工程遭受地质灾害的可能性,工程建设中和运营中加剧或引发地质灾害的可能性;(5)进行地质灾害危险性现状评估、预测评估和综合评估;(6)给出建设场地工程建设地质适宜性的评估结论;(7)针对不同建设阶段,提出防治地质灾害的地质工作意见和防治地质灾害的具体措施建议。
3.评估的程序和方法
地质灾害危险性评估的工作程序包括前期野外调查和后期室内分析。地质灾害危险性评估工作流程见图2-3。
(1)野外调查方法:野外调查工作的基本原则是以较低的成本投入,获取较多的基础资料并得到可靠的评价结果。因此,除采用一系列传统方法收集、获取相关基础资料外,需充分利用已有的新技术和新方法,进行高效、可靠的资料获取。如利用空间对地观测的InSAR技术可快速获取大范围、高精度现今地面沉降信息,对传统的水准测量结果进行补充和验证;利用高分辨率数字化航片或卫星图像,可对区域活动构造迹象、滑坡泥石流潜势等进行有效判读,达到事半功倍的效果。
(2)室内分析研究:室内分析研究主要是在野外调查及观测的基础上对地质灾害进行现状分析、未来预测和综合评估。
图2-3 地质灾害评估工作程序图
地质灾害现状评估和预测评估常采用的方法包括:地质历史分析法和工程地质类比法。此外,现状评估有时也采用地质环境条件综合判别法,而预测评估有时会采用多因素分析法等。由于地质灾害评估工作一般投入的实物工作量较少,又与建设项目的选址阶段相对应,而且评估工作的性质是指出问题并提出解决问题的措施,而不是解决问题。因此,评估的工作方法目前多以定性分析或半定量分析方法为主,较少采用定量计算的方法。如滑坡、崩塌、地裂缝、地面塌陷和地面沉降(包括斜坡及工程边坡),一般采用地质类比法定性评估其稳定性;而对泥石流的稳定性多采用地质环境条件综合评判法进行判定,或采用易发性量化指标半定量评估。地质灾害综合评估(地质灾害危险性分区)方法较常见的有信息叠加法、多因素综合判别法、模糊数学评判法和层次分析法等。
4.评估级别
依据建设项目重要性与地质环境条件复杂程度,《技术要求》将评估级别划分为3级。凡重要建设项目,无论地质环境条件属哪类,均划为一级;较重要建设项目和一般建设项目的级别划分是个难点,要根据地质环境条件复杂程度确定评估级别。确定评估级别时应按以下顺序进行:(1)按《技术要求》确定的建设项目重要性类别;(2)按《技术要求》确定的评估区地质环境条件复杂程度;(3)根据这两个判别结果来综合确定评估级别(黄雅虹等,2007)。
5.评估范围的确定
地质灾害危险性评估范围不应局限于建设用地和规划用地面积内,应视建设和规划项目的特点、地质环境条件和地质灾害种类予以适当扩大,确定对工程项目有直接影响和间接影响的区域范围,必要时可对直接影响范围做重要评估,而对间接影响范围做一般性评估(邢岩等,2004)。
地质灾害的空间分布(从形成到成灾)有点状、线状和面状之分,如崩塌、滑坡可以相对理解为点状;泥石流、地面塌陷及地面沉降为面状;地裂缝为线状。因此确定评估范围时,除用地单位申请批复的面积外,要充分认识和预测不同灾种从形成到成灾可能涉及的空间。一般而言,对于滑坡、崩塌,其评估范围应达到 “山坡有多高范围就有多大” 的基本要求;泥石流灾害要追索到泥石流形成区,必须以完整的沟道流域面积(包括冲洪积扇)为评估范围;地面塌陷及地面沉降的评估范围应与初步预测的可能范围相一致;具有线状特征的地裂缝,也应按预测的可能延展范围作为评估范围。对于预测确有困难的灾害类型,评估范围一般应大于现状确定范围的3~5倍。当然,评估范围的确定离不开建设工程的实际布局(王得楷,2002)。
(四)评估报告内容要求
评估报告内容包括:前言、评估工作概述、地质环境条件论述、现状评估、预测评估、综合评估和结论。其中,评估工作概述中涉及的工作方法及完成的工作量,建议用列表的方式比较简明,另外,应尽可能附一张清晰的、包含有建设用地位置、交通和评估工作实际材料(如钻孔、物探线等)的示意图。
1.地质环境条件
地质环境条件综合分析是认识评估区基本环境特征和分析地质灾害形成环境,以及讨论拟建工程环境效应的重要基础。地质环境条件所涉及的内容包括:气象、水文,地形、地貌,地层岩性,地质构造与区域地壳稳定性,工程地质、水文地质条件及人类工程活动对地质环境的影响等。不能仅仅停留于环境现象或环境特征的简单罗列,而应紧密结合工程布局,突出与地质灾害发育规律分析和危险性评估有联系的环境要素或环境特征,重视区域地质环境的研究,并从区域环境条件中分析地质灾害体的演化过程和主要控制及诱发因素。为了给后续分析论证提供必要的资料支撑和逻辑铺垫,应以详细描述的方式突出与地质灾害发育规律分析和危险性评估有联系的环境要素或环境特征,而与地质灾害发育规律分析和危险性评估无关的环境描述,要尽量简略(金德山,2004)。地质环境条件复杂程度的总体评价应用“复杂、中等、一般” 来定位。跨度大的复杂地区或环境地质条件分区、分段明显的,可以用分段分片评价。
2.地质灾害危险性评估
地质灾害危险性评估是灾害易发程度、危险程度和危害程度的综合反映。其实质是对建设项目区,在地质环境现状条件和未来工程活动条件下,地质灾害的空间预测和成灾可能性的预测,是地质灾害危险性评估的核心内容。
(1)现状评估和预测评估:现状评估除按《技术要求》的规定进行外,还应注意其着重点是对现有灾害的分析和评述。分析和评述内容应包括:灾害发育基本规律的归纳;代表性灾点的重点剖析;各种灾害(点)历史危害情况、现实活动特征及稳定状况的评价(金德山,2004)。危险性一律用大、中、小描述,避免使用 “较” 字。
在现状评估中如果没有地质灾害就不评估,切忌画蛇添足;对现状地质灾害不发育,但工程建设和运行中有可能诱发地质灾害的地区,可开展评估工作;对有液化发生的区域及地段,液化评估时要依据相应的国家规范,如区域性评估可按建筑规范进行评估等。
预测评估的侧重点是在评估区叠加了拟建工程影响后,拟建工程和环境可能遭受地质灾害危害的危险性程度的预测评价。一般情况下,按可能遭受地质灾害的次序进行分灾种危险性评估,而对于有些复杂工程也可按功能区分别论述。
需要指出的是,由于地质灾害的危险性评估是一种风险评估,所以应借鉴已有的同类型工程在建设过程中诱发或遭受地质灾害的经验,这将为在建工程的地质灾害评估提供有效的信息,为地质灾害的预测评估提供可靠的依据,减少预测的风险性。
(2)合理区分现状评估和预测评估:综合评估和最终结论主要是依据现状评估和预测评估结论而定。根据笔者的体会,在评估报告中往往易出现二者重复性大、重点不突出和结论不够明确的问题。因此,处理好二者的关系十分重要。从现状评估、预测评估的内容看,二者的关系比较清楚:即现状评估是预测评估的背景;而预测评估不但要紧紧围绕工程布局和施工特点进行,而且还应与现状评估结果相互叠加后,共同形成危险性预测评估的最终结论(王得楷,2003)。
3.综合分区评估及防治措施
(1)综合评估原则与量化指标:地质灾害危险性综合评估应遵守“区内相似、区际相异、并置取大” 的原则。评估工作以说清问题为原则,其量化指标的确定可以以地质分析方法为主,定量评价为辅。如果资料充分,有条件的可进行定量分析评价。
(2)综合评估内容:地质灾害危险性综合评估包括:(1)危险性分区;(2)建设场地适宜性分区评估;(3)防治措施。这些内容应按区段评估,并配以相应的说明。
综合评估的侧重点是在现状评估和预测评估的基础上,根据现有和潜在地质灾害成灾的可能性和成灾后果的严重性,对工程建设区和规划区进行分区(或分地段、分工程部位)的综合评估(金德山,2004)。
危险性分区可根据评估区地质灾害危险性综合评价结果进行划分,符合哪一级就划为哪一级。如只有危险性大区和危险性小区,就没有必要在它们中间再划分一个危险性中区;又如只有危险性中区,就没有必要再划分一个危险性小区等。另外,要防止危险性分区随意扩大或缩小化,如由于工程施工开挖造成边坡失稳时,地质灾害危险程度较重区将主要集中在工程沿线或仅限于河谷等特殊地带,有时在进行危险性分区划分时,往往可能将划分范围扩大到外围,这样是不合理的(邢岩等,2004)。
综合评估应简明扼要,只要把现状评估和预测评估的主要认识反映出来即可,避免对上述评估的简单重复。对地质灾害危险性大的或中等的,要提出防治地质灾害的措施与建议;对重大地质灾害防治,尤其是提出避让或改变建设工程选择的,要提出论证,并给出建设场地适宜性评价结论。
(3)建设场地适宜性评价与地质灾害防治措施:建设场地适宜性评价结论是评估工作的目的,最终结论的得出应该建立在2个判据之上:一是地质灾害危害后果的严重程度,对此不能仅局限于灾害对拟建工程影响的分析,还要考虑拟建工程对加剧和诱发地质灾害的影响和对环境带来的危害;二是地质灾害防治的难易程度,此评价既要考虑技术上进行防治的难易程度,还要考虑防治费用的投入及经济上的合理性(金德山,2004)。
建设项目地质灾害危险性评估的最终目的是防止地质灾害发生,即获得“防” 和 “治” 的具体措施。因此,选择的工程防治技术类型越简单,越易于实现越好,通常经济实用的技术是应该首先推荐的(具有特殊目的的工程项目除外);对于地质灾害危险性大,现有经济技术条件难以达到防治要求的场地,从“防” 的角度,应态度明确,坚决提出 “躲避”、“另选场地” 和 “局部改选” 的建议,不应迁就局部和地方利益,铸成潜伏重大灾害隐患工程的大错(王得楷,2002)。
(五)评估报告评审要求与备案
评估报告完成后,需按照国土资源行政主管部门的有关规定组织专家进行报告评审,评审完待评估报告提交委托单位后,还要对评估成果进行备案。
❼ 国土资源部新构造运动与地质灾害重点实验室
(一)实验室简介
国土资源部新构造运动与地质灾害重点实验室于年9月30日得到国土资源部正式批复成立,其前身为中国地质科学院地壳变形与地质灾害重点实验室。重点实验室主要从事5个领域的科学研究:新构造运动及其引发的地质灾害与地质环境过程研究,地应力监测技术与地质灾害预测评价技术方法研究,中国大陆主要活动构造带地应力测量及其构造应力场研究,国家重大工程、重大城市和重要经济区带的地壳稳定性和地质环境安全研究。
图46 退化与废弃地遥感信息提取和监控信息系统开发及其应用研究技术流程
(二)2013年度重要科研成果
1. “汶川地震地质灾害调查评价”入选地质学会十大地质科技进展
入选地质学会十大地质科技进展的“汶川地震地质灾害调查评价”项目是由中国地质科学院地质力学研究所、中国地质环境监测院等单位共同承担完成的。殷跃平、张永双研究团队紧密围绕汶川地震地质灾害等重大科学问题和关键技术,在理论、方法和技术方面取得了多项创新性成果,特别是集成创新地面测绘、综合物探和InSAR技术,修正了强震区逆冲型工程活动断裂和地震破裂带安全避让公式;首次开展了斜坡地震动特征监测和地脉动特征测试,获得了山体斜坡地震动放大规律,提出了竖向地震力对峡谷区山体稳定性的放大效应;建立了基于天空地一体化应急调查技术的汶川地震灾后快速编图与评估方法,以及地震滑坡-碎屑流的成灾机理和震后高位泥石流早期识别的特征指标,为制定行业标准提供了理论支撑。项目成果集成出版了《汶川地震工程地质与地质灾害》一书,在“5·12”汶川地震发生5周年到来之际,由科学出版社出版发行。本书对汶川8.0级地震区的地震工程地质和地质灾害进行了系统研究,涉及汶川地震区域地质构造、地震工程地质、斜坡地震动监测与试验方法、地震地质灾害等关键科学问题(图47)。
图47 《汶川地震工程地质与地质灾害》
2.《泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题》出版
“泛亚铁路云南大理至瑞丽沿线地质构造综合研究”项目组及时对计划项目成果进行了综合集成,编著完成了《泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题》专著并出版发行(图48)。
被誉为“钢铁丝绸之路”的云南大理-瑞丽铁路(简称“大瑞铁路”)全长约336km,是连接中国大陆与东南亚各国的泛亚铁路网中的咽喉工程。但由于铁路需要穿越水文网密度大,且山高谷深的横断山脉南段,因此,桥隧工程将占整个线路的70%左右,尤其是隧道工程的最大长度与埋深都大大超出了已有铁路工程,建设难度极大,亟须扎实可靠的高精度基础地质与工程地质资料支撑,并为铁路选线和设计提供科学决策依据。
图48 《泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题》
为主动配合和服务于国家重大工程建设,尽快打通我国西南地区中缅国际铁路通道。在中国地质调查局基础地质部的精心部署下,由地质力学研究所和成都地质调查中心共同组织实施的“云南大理至瑞丽基础地质综合调查”计划项目,及时完成了沿线22个图幅的1:5万基础地质调查工作和铁路优选线两侧各2k m廊带区的1:2.5万基础地质和工程综合调查任务。为更好地将基础地质工作服务于国家重大工程应用,专著综合了铁路沿线最新的1:2.5万综合地质调查资料,以及新构造和活动构造研究等成果,全面介绍了滇西横断山南段大理至瑞丽地区,包括:岩石地层与地质构造、主要岩土体与特殊岩性体、水文地质、地热活动、新构造运动与活动断层和地震活动等工程地质条件,并在此基础上,进一步梳理总结了铁路沿线各主要工程地段的工程地质环境及特征,全面剖析了在施工建设中主要面临的九大重要工程地质问题,包括:外动力地质灾害、岩溶作用导致的工程地质问题、特殊岩性体(主要包括二叠纪“破灰岩”和上新世“软岩”)的工程地质问题、顺层问题、活动断裂与强震活动、高温热害、岩爆与软岩大变形、隧道涌水突泥和弃渣环境问题等,确定了不同类型工程地质问题最易发生的地段,并提出了防范建议。另外,重点分析总结了影响该区地壳稳定性的主要区域活动断裂带的晚第四纪活动及其未来大地震危险性,并结合历史强震资料重新确定了铁路沿线的大于等于Ⅸ度的高地震烈度区。最后针对高黎贡山越岭段超长超深铁路隧道的围岩稳定性,结合岩石力学测试分析资料和原地地应力测量结果,分别开展了二维和三维数值模拟研究,对隧道工程的围岩稳定性进行了综合评价,并圈定了隧道的强岩爆区和软岩大变形区。
专著资料翔实,将基础地质工作成果与工程应用紧密结合,因此,对进一步深入认识滇西横断山地区的工程地质环境具有重要参考价值,对于相邻地区的重大工程建设也可起到重要借鉴作用,并且相关研究成果可供从事区域地质、工程地质、活断层与地震地质、地质灾害、数值模拟和岩土工程等多方面的科研技术人员参考。
3.重大工程扰动区特大滑坡灾害防治技术研究取得初步进展
2013年是“十二五”国家科技支撑课题“重大工程扰动区特大滑坡灾害防治技术研究与示范”执行的第二个年度,也是课题攻关关键的年度,在关键科技问题、技术方法和示范基地研究取得阶段性成果,主要包括下列5方面:跟踪对比分析国内外工程滑坡防治进展,初步建立灾难性工程滑坡数据库格架;初步探索研究工程滑坡防治3个关键科技问题;工程滑坡机理实验及模拟研究有所进展;工程滑坡快速防治关键技术方法研究和示范基地建设初见成效,相关研究成果以学术论文的形式在“地质通报”出版专辑(图49),相关的发明及技术专利正在申请受理过程中。
图49 《工程滑坡防治成果专辑》
4. “新型压磁应力测量与监测系统研制”取得重要成果
吴满路研究员负责的“原地应力测试技术方法试验研究”项目自2008年实施以来,一直致力于试验应用研究,在地应力测量及监测台站建设、监测仪器研制、专利及人才培养等方面取得了一系列成果。
压磁法地应力测量及监测一直是地质力学所的特色和优势科研方向。“原地应力测试技术方法试验研究”团队以压磁应力测量与监测技术方法为主要研究对象,完成了对压磁法地应力测量和监测仪器结构的全面改造升级,同时,研发的三分量压磁应力解除系统在孔深213m处成功地获得了有效应力数据,是同类技术方法中达到的世界最深的地应力测量;研制的新型四分量压磁应力监测系统已在青藏高原东南缘、龙门山断裂带、河北紫荆关等地应力测量及监测实验基地,首都圈、郯庐断裂带、东南沿海海岸带等地壳稳定性评价及活动断裂监测中得到了大量应用,在相关地区建立的地应力综合监测站成功捕捉项目执行期间强烈地震前后应力变化的信息,丰富了应力实测数据和大量应力监测数据。
新型压磁应力测量与监测系统获得的数据成果已经或即将公开发表。项目研发的“无线深井地应力绝对测量压磁传感器”和“深井地应力监测压磁传感器定向及自控加载安装系统”获得了2项国家实用新型专利授权,为中国地壳探测计划提供了必要的关键技术储备。
5.获芦山地震发震构造与次生地质灾害致灾特征研究初步成果
2013年4月20日,四川省芦山县发生了里氏7.0级地震。根据国土资源部统一部署和地质力学研究所的安排,重点实验室完成了地震地质和地质灾害应急排查,并将初步研究认识发表在《地质学报》(英文版)上。
初步认识之一的Seismogenic Structure of the April 20,2013,Lushan Ms7 Earthquake in Sichuan(《四川芦山2013年4月20日Ms7.0地震发震构造初步研究》),通过高分辨率遥感图像解译、主余震分布、震源机制解释等综合分析认为,芦山地震震中位于芦山县太平镇和双石镇之间,震源深度13~14km,震中最大烈度达IX级。野外调查发现,尽管震中区房屋建筑损坏较严重,但这次地震没有产生明显的地表破裂构造,仅见少量的地裂缝和喷砂冒水现象。芦山地震是龙门山断裂带西南段一次独立的破裂事件,属于逆冲型地震。科研人员从新构造和活动构造角度,通过将精确定位的主震和余震震中投影在地形图、遥感影像图上,得出了芦山地震余震的分布特征,阐述了双石-大川断裂特征型地震特点,推断芦山地震与龙门山构造带底部滑脱带(13~19km)断坡构造活动有关。同时对未来强震发展趋势进行了分析:虽然这次地震使这条断裂的应变能得到释放,但地应力监测结果指示该断裂带的应力释放尚不完全,未来地震发生的可能性尚值得进一步关注。
初步认识之二的Geohazards Inced by the Lushan Ms7.0 Earthquake in Sichuan Province,Southwest China:Typical Examples,Types and Distributional Characteristics(《四川芦山Ms7.0级地震地质灾害基本特征》),基于遥感解译和野外调查结果,简要论述了地震诱发的崩塌、滑坡、碎屑流和砂土液化等次生地质灾害的发育特征及其危害,地震地质灾害主要受控于强震触发作用、陡峻的地形地貌、地形放大效应以及软弱的岩性和强烈的风化卸荷作用;研究表明,地质灾害的发育分布规律主要体现在震中效应和地貌效应明显、活动断裂上盘效应不显著,断裂端点效应较明显,与岩性和岩体结构的关系较密切。芦山地震诱发的地质灾害以及地震对山体造成的损伤存在隐蔽性,在灾后重建中应引起重视。
6.乌江流域重大地质灾害研究新进展
“重庆地区地质灾害成灾机理与防治研究”项目负责人为李滨副研究员,参加单位有长安大学、重庆市地质矿产勘查开发局107地质队、中国地质环境监测院、重庆市地质环境监测总站。项目完成了乌江流域复杂地貌环境下三维激光扫描技术和机载激光雷达扫描技术在地质灾害调查与监测中的应用,通过覆盖研究区域DEM、SAR等多种数据,结合InSAR和GNSS监测结果,形成一套适合于乌江流域复杂地质环境下大范围识别地质灾害形变的理论方法。此外,在特大型地质灾害特征识别和地质模型分析基础上,项目组结合室内力学试验,通过数学模拟和物理模型试验,提出了岩溶、采矿等因素影响下,特大型层状滑坡的变形机理和失稳模式,并提出了稳定性评价方法和灾害发生后崩滑体的运动特征分析模型,该套分析方法及结果可在西南岩溶地区进行推广应用(图50,图51)。
图50 InSAR技术在区域地质灾害调查中的应用
图51 鸡尾山滑坡累计形变图(184天)
7.首都圈地区关键构造部位地应力监测新成果
(1)初步揭示了邢台—唐山主要发震构造带北端迁安及其外围地区现今构造活动性及其灾害效应,认为华北平原地质构造以块断结构为主要特征,构造体系走向多为NNE向,以压扭性断裂为主,现今活动性显著,5级以上地震活动通常沿NNE、NE和NWW向断裂带分布,特别是不同方向断裂带的交会部位(图52)。
(2)探讨分析了唐山—滦县—昌黎一带现今地应力环境变化特征及其地震地质研究意义。河北昌黎地应力实时监测台站地应力监测结果表明,日本9.0级大地震所诱发的华北地区产生同震位移,区域构造作用表现为近EW向拉张作用,最大水平主压应力为近南北方向。而2012年6月6日以来,华北地区表现为近EW向主要为构造挤压作用,最大水平主压应力为近EW方向,说明区域构造应力作用恢复到日本9.0级大地震之前华北地区最大水平主应力方向,并且在区域构造应力作用方向转换的过程中会导致地震的发生(如2012年5月28日和29日及6月18日在唐山及其周围地区还分别发生了4.8级、3.2级和4.0级地震)(图53)。
图52 迁安市陈官营村地应力测量与监测钻孔区域构造地质图
图53 河北昌黎地应力实时监测台站监测结果
❽ 服务北京主动作为努力做好地质环境管理工作
北京市国土资源局
近年来,我们深入贯彻落实科学发展观,本着主动服务北京经济社会发展,努力为建设“人文北京、科技北京、绿色北京”作贡献的理念,坚持迎难而上,积极作为,扎实做好地质环境管理工作,取得了初步成效。
一、强化防灾意识,切实做好地质灾害防治工作
为做好汛期地质灾害防治工作,北京市结合全市防汛体系,建立健全了地质灾害群测群防网络,对重要灾害隐患点、险村险户做到“四包七落实”。对村庄、旅游景点、矿山、学校、重要道路进行了全面地质灾害调查和区划工作,基本查清了人口较为密集区域的地灾隐患情况,对涉及的64个乡镇、242个村、32条道路、17个度假村、19个矿山全部建立台账,实施一对一管理。在隐患点竖立地质灾害隐患警示牌500余块,提示过往人员和车辆注意安全;每年发放地质灾害防灾“明白卡”近万张。在汛期,组织地质专家及科研人员组成地质灾害应急调查大队,执行24小时值班制度;组织北京市地质研究所和市气象台的专家通过会商,及时发布地质灾害预报预警,为提高地质灾害的防治水平、减轻地质灾害可能造成的损失起到了重要作用。编制了《北京市突发性地质灾害科普宣传手册》,普及地质灾害防治知识。
地面沉降是北京市平原区主要地质灾害之一,为减少地面沉降造成的危害和经济损失,全市于2001年、2005年先后启动北京市地面沉降监测网站预警预报系统建设一期工程、二期工程并投入使用。两期建成的北京市地面沉降监测网站预警预报系统包括地面沉降监测站网、地面沉降专门测量网、地下水动态监测网、GPS测量网和InSAR测量网。监测网络运行以来,各监测仪器设备运行正常,监测数据连续可靠,积累了大量的监测数据,实时掌握了北京市地面沉降的现状,有效预测了全市地面沉降的发展趋势,提出了科学有效的防治措施,为首都防灾减灾和实现可持续发展做出了重要贡献。
从2010年开始,在中央财政的支持下,全市开展了“门头沟区雁翅镇田庄村北不稳定斜坡治理项目”等3个地质灾害治理项目,累计投入资金868万元。通过削坡、挡土墙、护坡等工程措施,改善区域地质环境,保证了人民群众生命财产安全。
二、坚持主动作为,加大关闭矿山环境治理力度
近年来,北京市按照“控制总量、调整结构、提高质量、增加效益、减少污染”的方针,提前超额完成“十一五”减少固体矿山数量90%的任务。辖区内800余家固体矿山企业经逐一进行整合、整顿,到目前为止仅保留39家矿山,关闭比例达95.7%。为治理和改善已关闭矿山的矿区环境、消除或减轻灾害隐患、调整当地产业结构,北京市积极主动地向财政部、国土资源部申请项目,到2011年底,累计获批准的项目48个,批复资金总额3.23亿元。据统计,已完工的45个矿山环境治理项目总的治理面积达到2万余亩,种植经济林木25万余株(图1至图3)。与此同时,为提高采矿权人环境保护意识,2009年,北京市建立了矿山环境恢复治理保证金制度,截至2011年底,累计缴存保证金2.1亿元左右。矿山企业积极编制恢复治理方案,并按照方案开展环境恢复治理工作(图1至图3)。截至目前,矿山企业开展矿山环境恢复治理工作投入的资金达1.07亿元,其环境治理工程已通过验收。这些项目的实施,降低了矿山开采遗留的矿渣对大气和水土体的污染程度,恢复了受破坏的土地资源和地形地貌景观,对当地环境保护和生态平衡起到了积极的作用。新增的农业用地和经济作物,促进了当地村民生活条件的改善,项目的实施直接给当地提供了部分农村人口的就业机会,相应提高了农民收入。
图1 北京市丰台区王佐镇西庄店极峰矿山地质环境治理项目
图2 北京市怀柔区崎峰茶金矿区地质环境治理项目
图3 北京市昌平区黑山寨大沙地-分水岭金矿环境治理项目
三、履好职尽好责,努力加强地质遗迹保护和地质公园建设
保护北京市不可再生的地质遗迹资源,是我们义不容辞的责任。近年来,为了更好地贯彻落实地质公园“保护地质遗迹,普及地球科学知识,促进地方经济发展”的理念和目标,截至2011年底,北京市已建立7处地质公园,其中1处世界地质公园、5处国家地质公园、1处市级地质公园,以及3处国家矿山公园,共获得地质遗迹保护项目资金5140万元,主要来自中央财政资金,全部投入遗迹保护工作。这些工程的实施,在很大程度上改善了保护区的自然生态环境,实现了地质资源的永续利用,同时带动了旅游等相关产业的发展与繁荣。2010年7月,中国房山世界地质公园受到联合国教科文组织世界地质公园网络执行局的高度肯定,认为公园的保护与建设引领了世界地质公园的发展态势,可以成为亚太地区世界地质公园的表率和其他国家世界地质公园学习的榜样。
四、提高服务效能,深入搞好活动断裂和沟域经济调查
为了给北京的城市规划、建设提供保障,减少或避免因活动断裂的破坏而引起的地质灾害造成的人员和经济损失。2008年开始,北京市组织开展了平原区活动断裂监测专项地质调查工作。市财政投入上亿元资金,通过分析历史积累的资料和开展野外地质工作,基本摸清了主要活动断裂具体走向,并精确定位,为下一步开展监测工作、分析活动趋势、研究影响范围打下了坚实的基础。到目前为止,共完成调查面积912.4平方千米,定点3888个。与此同时,为积极响应北京市“绿山富民”政策,促进山区生态涵养建设和经济发展,从2010年开始,针对近年来山区沟域经济发展特点,对昌平高口沟域、怀柔天河川沟域等7条沟域经济发展区进行了区域地质灾害调查和区划,调查面积1100平方千米,灾害点268处,为相关区县政府制定规划提供了基础数据和图件。
❾ 三峡库区万州—巫山段地质灾害监测预警研究
欧阳祖熙张宗润陈明金师洁珊陈征韩文心
(中国地震局地壳应力研究所,北京,100085)
【摘要】为了较好地解决滑坡监测中高度的不确定性问题,需要配合使用多种类型的监测系统。本文系统介绍了三峡库区万州、奉节、巫山等地开展的地质灾害监测预警研究工作,包括基于3S技术和地面变形监测台网建立的研究区典型地段滑坡监测网、研制的新型滑坡无线遥测台网,以及流动倾斜仪、激光测距仪等专用设备。通过近年来获得的一些典型监测结果剖析了不同技术和方法在地质灾害监测预警相关方面应用的有效性。
【关键词】三峡库区滑坡监测预警系统3S技术
1引言
自1998年以来,中国地震局地壳应力研究所(以下简称地壳所)三峡库区地质灾害项目组依托国务院三峡建设委员会移民局“三峡工程万州库区GPS滑坡监测示范研究”,科技部“十五”攻关项目“示范区新型、高效地质灾害遥测台网技术系统研究”,重庆市政府和移民局下达的“奉节、巫山高边坡与高挡墙稳定性监测”,以及地壳所与德国地球科学研究中心和英国伦敦大学学院关于“应用PSInSAR遥感技术监测三峡库区滑坡及库岸变形”等项目的支持,在万州、巫山、奉节三地移民局和国土局的配合下,广泛深入地开展了库区地质灾害监测预警系统的研究。监测的对象由滑坡、危岩与库岸变形,扩展到高挡墙、高边坡和移民楼房基础的稳定性,监测技术体现了多学科的融合。
几年来,在进行地质调查的基础上,项目组运用3S技术,建立地质灾害地理信息系统(GIS);开展全球卫星定位(GPS)滑坡变形监测及多手段仪器监测;并整合现今成熟的、先进的传感器与测量技术、计算机信息处理技术与通讯技术,以 GSM/GPRS为通讯平台的无线遥测台网,可以选择连接不同的传感器来监测崩、滑体地表变形、深部位移、地下水动态、声发射、裂缝变化、雨量,以及库岸及抗滑桩等工程构筑物内部应力及所受的推力等;在遥感(RS)技术应用方面,将国际上新近提出的角反射器技术用以辅助进行InSAR信号处理,建立了试验台网。迄今,项目组在库区库岸与滑坡变形监测及灾害预警系统的工作中已获得了多项阶段性成果,一些典型地区的监测成果为政府减灾决策提供了重要依据。
2库区地质灾害监测网设计的指导思想
库区崩塌、滑坡监测的主要目的是:全面了解和掌握崩、滑体的演变过程,及时捕捉崩、滑体灾变的特征信息,为崩塌、滑坡灾害的正确评价分析、预测预报及治理工程等提供可靠的资料和科学依据。同时,监测结果也是检验崩塌、滑坡分析评价及滑坡工程治理效果的尺度。
为了达到上述目的,库区地质灾害监测系统总体设计思想为:
(1)针对不同崩、滑体的地质构造与变形阶段特征,应采用不同的方案、手段进行监测;
(2)鉴于崩、滑体变形破坏过程的高度不确定性,同一崩滑体上宜采用多种手段监测,形成点、线、面、地表与地下相结合的立体监测网,使其互相补充、检核;
(3)在群测群防工作的基础上,发展常规人工仪器观测与无线自动遥测的技术、建立静态和动态监测相结合的监测预警网络,分别服务于地质灾害的长期、中期预测和短期预警。
3地质灾害监测方法与技术
依据崩、滑体变形监测的物理量,兼顾变形测量对精度的要求和监测工作的效率,结合当前国内外监测技术和方法的发展水平,在实际应用中采用GPS、InSAR、激光测距、流动倾斜、裂缝监测技术测量地表形变,一些地段也采用了传统方法如全站仪和水准测量;钻孔测斜仪监测深部位移;孔隙水压力计监测地下水动态变化;钢筋应力计与锚索(杆)应力计,分别用于监测抗滑桩内部钢筋和锚索、锚杆的受力变化;同时,采用遥测台网技术采集包括地表变形、深部位移、地下水、钢筋计、危岩声发射等在内的各种动态监测数据。下面简要评述这些方法的特点与适用领域。
3.1GPS(全球卫星定位系统)大地测量网
全球卫星定位系统(GPS)是美国国防部研制的导航定位授时系统,由24颗等间隔分布在6个轨道面上、大约20000km高度的卫星组成。在地球上任何地点、任何时刻,在高度角15。以上天空至少能同时观测到4颗以上的卫星。用户在地面用接收机接收这些卫星发射来的信号,测定接收机天线到卫星的距离,就可以计算出接收点的三维坐标。近年来,我国开发和应用GPS定位技术的发展速度很快,如在长江三峡工程坝区已建立了GPS监测网,实践证实,高性能配置的GPS水平定位精度可达毫米级,完全可用于崩塌、滑坡的位移监测。
相对于传统的大地测量方法,GPS测量技术应用于滑坡监测有以下优点:①观测点之间无需通视,选点方便;②不受天气条件限制,可以进行全天候的观测;③观测点的三维坐标可以同时测定;④新一代 GPS接收机具有操作简便、体积小,耗电少的特点。所以,这种方法已广泛运用于滑坡变形监测、施工安全监测以及滑坡工程治理效果监测之中。但是,由于监测站建设和获取数据周期较长,在灾害的短期预警中该方法用得较少。
3.2专用仪器监测网
在此类测量方法中,有多种传统的测量仪器目前仍在广泛使用,如经纬仪、全站仪、水准仪和钻孔测斜仪等,它们主要用于各种工程治理项目的施工安全监测中。除了前述的仪器外,我们还从三峡库区的具体环境条件出发,结合地质灾害其他方面监测工作的需要,开发了便携式倾斜仪、流动激光测距仪等设备,弥补GPS观测受房屋、山坡遮挡而不便施测的不足,以便对位于河谷斜坡地形上的库区移民新城镇的滑坡地表变形、房屋及地基基础变形进行全面监测。在一些经过工程治理的重点滑坡、变形体上,结合治理效果监测,还大量运用了钢筋计和锚杆(索)计以监测抗滑桩内部应力及滑坡的推力。
在地表开展各种流动仪器观测具有监测参量多,灵敏度高,测量范围较大,效率高,成本低,操作简单等特点,因此这类测量方法适用于滑坡治理施工安全监测和效果监测,与前一种GPS流动站观测法相同,也大量应用于多种地质灾害的中、长期监测预报中。
3.3地质灾害无线遥测台网
目前,国外崩塌、滑坡监测预警技术已发展到一个较高的水平。首先是较普遍采用了全自动、多参数监测的遥测台网;其次,在地质灾害模型预报和预警系统方面,已运用3S(GPS、GIS和RS)技术进行地质灾害空间分析、模型预报和预警系统研究。国内在上述方面尽管还存在较大的差距,但近年来,铁道部、交通部等个别研究所及少数矿区已尝试采用小型遥测台网进行滑坡灾害的监测预报;2002年,中国地震局地壳所在三峡库区又率先建立了用于地质灾害监测预警的多参数无线遥测台网。
“RDA型地质灾害无线遥测台网”系地壳所开发的基于GSM/GPRS技术的新型无线遥测台网。该系统主要由监测子站群、监测预警数据中心和GPRS数据通讯公网等三部分组成(系统构成见图1)。GPRS是在GSM基础上发展起来的一种无线分组交换的数据承载业务。相对于GSM/SMS的电路交换数据传送方式,GSM/GPRS采用分组交换数据传送方式,提高了传输速率,有效利用无线网络信道资源,全面实现了移动Internet功能,对于每个用户永远在线等方面具有非常明显的优势。
图1GPRS滑坡无线遥测系统构成
根据单体滑坡监测的需要,可以确定所需遥测子站的个数,各遥测子站可以选择连接不同的传感器来监测滑坡地表位移、深部位移,或者地表倾斜、裂缝变化、雨量,以及监测护岸、抗滑桩等工程构筑物内部应力和所受的推力等。监测预警数据中心系统软件功能包括接收各地质灾害点遥测子站的数据、数据入库、显示变形趋势曲线和超限自动报警等功能。同时,数据中心站可对各遥测子站发出指令,改变其工作参数,如数据采样间隔(5分钟、1小时、24小时等)。系统可接入地区监测预警中心微机局域网,支持运行基于GIS的减灾决策支持系统。市、县级地质灾害监测指挥中心的计算机屏幕上可以准实时地密切监视滑坡加速变形趋势,支持对库岸和滑坡破坏事件进行短期及临滑预报,也可以对发生的地质灾害事件进行现场监测和救助指挥。从2002年我们在万州WJW滑坡建成第一个遥测台网以来,在万州和巫山运用“RDA型地质灾害无线遥测台网”监测的崩、滑体已有近20处,积累了丰富的数据。该地质灾害无线遥测系统主要具有以下特点:
(1)监测参量多,精度高
系统集成了包括:滑坡地表变形(位移、沉降)、倾斜变形测量仪、裂缝测量仪、崩滑体微破裂声发射信号记录仪、钻内地层滑移变形测斜仪、孔隙水压测量仪、钢筋测力计、锚索(杆)拉力计等8种滑坡监测仪器。这些测量仪器均具有较高的测量精度和较大的动态范围。
(2)自动遥测,无人值守
遥测仪器均内置微处理器和无线数据传输模块,动态范围大,全自动监测,无线传输,可用交流电源或太阳能电池供电。
(3)无障碍设计
所研制的仪器在测量、数据传输等方面均符合无障碍设计要求,因而有安装方便,环境适应性好等优点。
(4)依托先进的通讯技术
本遥测台网综合运用了最新发展的GSM/GPRS通讯技术,既适应三峡库区的地形条件,便于安装和维护,又具有高容量、覆盖范围广以及成本较低等特点。
3.4崩塌滑坡应急监测系统
以往,无论在三峡库区还是我国其他地方,发现有崩塌滑坡迹象时,常因缺乏应急监测手段,未能详细积累数据,错失研究的机会且不论,有时终因措施不力造成人民生命的损失。我们在RDA型遥测台网的基础上,将通讯改为GSM/SMS,即短信息方式,目的是使系统对通信公网的适应能力更强,架设更简便可靠。在监测环境偏远以及应急监测的场合,这一点显得尤为重要。
应急监测系统优选了地表倾斜、激光测距、裂缝测量仪等手段。一旦有群众报告或者通过仪器监测发现某地滑坡有加速变形迹象,便能急速赶赴现场,及时安装台网,实施24小时连续监测。既能有效避免不测事件的发生,还可积累研究滑坡变形破坏阶段的宝贵资料。2003年,应万州地方政府的要求对公路、桥梁开展的应急监测便收到了良好的效果。
3.5合成孔径干涉雷达InSAR测量技术
合成孔径雷达干涉(InSAR InSAR—Interferometry Synthetic Aperture Radar的缩写。
干涉雷达优点较多:具全天候工作能力,发射的微波对地物有一定穿透能力,能提供光学遥感所不能提供的信息,且为主动式工作方式。对于欧洲雷达卫星 ERS-1/2和加拿大雷达卫星RADRSAT-1,采用干涉技术来产生 DEM,监测地面位移变化,精度可以达到毫米量级。因此,该技术手段特别适用于大面积的滑坡、崩塌、泥石流以及地裂缝、地面沉降等地质灾害的监测预报,是一项快速、经济的空间探测高新技术。
三峡地区植被茂盛,雨水充沛,地貌差异较大,不利于干涉雷达信号的处理,曾有人在该地区做过尝试未获成功。为此,地壳应力研究所与德国地球科学研究中心(GFZ)合作,采用了国际上新推出的角反射器技术以辅助进行 InSAR信号处理。角反射器是用三块角形金属板制作的一种装置,它对照射其内的雷达波可按原方向反射回去,反射信号相对于周围环境有显著的增强。通过在工作区范围内均匀布设人工角反射器,并确定一些稳定的点作为天然反射点,便于图像的配准和精确计算角反射器的位移。对于三峡库区如此大的范围,仅仅利用有限的点位进行 GPS或其他仪器设备测量滑坡体形变是有局限的,因此,探索利用InSAR技术开展三峡库区滑坡监测,具有重要的意义。2003年,我们已经在万州和巫山两地安装了14个角反射器,进行试验监测和研究,同时还联合进行 GPS变形监测作为对比。
4用于地质灾害监测预警的GIS系统
地质灾害监测地理信息系统是一个能够有效管理各种四维空间(含地理坐标和时间变化)数据的信息系统。它以崩滑体等监测对象为基础,把地形、城市规划、监测点分布等空间数据,按其空间位置存入计算机;通过数据库模块、曲线显示模块与数据分析模块,实现监测数据的存储、更新、查询、趋势分析、绘图显示及图、表输出等功能。
系统主要由四部分组成:地理信息子系统、地质基础资料文献管理子系统、地质灾害监测数据库子系统和监测数据分析子系统。
地壳所自1998年在重庆市万州区开展地质灾害的监测与研究工作以来,首先致力于建立基于GIS的地质灾害数据和资料管理平台,在2000年研制成功“万州库区移民工作地理信息系统”。之后,又逐步完善相关的数据库管理系统,充实数据分析模块,增加自动报警功能,实现了含数据管理、分析于一体的滑坡监测预警GIS系统,并相继推广到巫山、奉节两县。
系统采用面向对象的编程语言Visual C++6.0为开发工具,以MapInfo为基本开发平台;地质灾害监测数据库利用Microsoft SQL Server 2000创建,通过ADO技术进行数据库连接、访问。地质灾害监测预警GIS系统以大比例尺电子地图作为工作用图,可以任意缩放、漫游、能够自动查找地图目标,并与数据库相关联。该系统为管理各种工程地质、水文地质资料,为管理上述几类地质灾害监测网和监测数据,为数据的分析与结果显示,包括为群测群防工作的管理均提供了一个有效的平台,进而为滑坡稳定性的研究打下了很好的基础(系统总体结构如图2)。
图2地质灾害监测预警GIS系统总体结构框图
根据前述功能的要求,该系统可以输出多种表达数据处理及空间分析结果的图形、图表与三维模拟图等可视化形式。图3显示了巫山县GIS系统的一个界面,显示出滑坡、道路及四类监测站的分布,即为一例。
图3巫山GIS系统显示的GPS和倾斜监测站分布图
1.GPS静态监测站;2.GPS动态监测站;3.流动倾斜监测站;4.GPS坐标控制点
数据分析流程基本上有如下的3个方面:
(1)整个监测系统获得的数据,包括自动传输与流动观测的,经过校核确认无误后,即可存入当地地质环境监测站基础数据库。
(2)基于地理信息系统的地质灾害趋势分析及预警技术研究,包括进行监测结果的统计分析、时间序列分析、地表位移矢量图分析、滑坡的深度—位移曲线分析、位移—降雨量分析等,并进而确定在不同的地质环境下滑坡预警的阈值。
(3)所获得的滑坡变形时间变化曲线及其二维平面分布图像的结果,可用于做进一步的滑坡稳定性分析研究。
5各类监测技术的应用与典型监测结果
5.1GPS技术用于滑坡变形监测
自1999年底万州库区建成含120余个流动站的GPS滑坡变形监测网,到2002年底,共完成了8期测量。结果显示,多数滑坡近期变形速率较低,在5mm/a以下;但半边石坝与实验小学等少数滑坡年变形速率分别达84mm和49mm;关塘口、青草背等滑坡也有明显变形。图4显示了万州城区滑坡现今变形的分区特点:变形大的地区多为陡坡,有的是古滑坡分布地区;近期的变形主要和人类工程活动以及强降雨等因素有关。
图4万州城区滑坡变形分布示意图
1.GPS滑坡监测点;2.滑坡;3.滑移矢量;4.变形较小的稳定地区
上述结果对于库区城镇的建设规划有指导意义。据了解,有的基础设施项目选在上述变形区域内,自2002年初开工,场平屡屡受阻,历时3年无法开展基本建设,付出了沉重的代价。对这几处稳定性差的滑坡体,加强了跟踪监测和研究。例如万州 SMB滑坡2003年继续发生变形垮塌,其北部区域5月以来曾发生严重变形。图5给出了3条有代表性的基线变化情况,纵坐标表示日降雨量以及GPS基线长度变化,单位为mm。由图中可以看到,2003年一季度该区变形速率不高,4月18日(即图中第108日)降大雨84mm后,滑坡变形明显加速。G123-134是接近主滑方向的测量基线,到6月累计变形量达到400m左右。除了该区是因人类工程活动触发滑坡变形因素外,强降雨的影响不可低估。
又如奉节新县城地区有大小崩塌、滑坡50余处,其中以三马山、宝塔坪、白衣庵、南竹园等大型滑坡对新建县城的影响最大。由于新县城地处复杂的地质构造部位,岩层较为破碎,冲沟发育,高阶地较窄,且连续性差。新建移民区大多分布在地势较陡的沟、谷坡上,人工开挖的高陡边坡随处可见,并以高度大、连续分布长为特点,边坡高度可达30~40m,长度数百米。高边坡的稳定性问题是奉节县城最大的潜在地质灾害问题之一。
2002年我们在奉节建立了含290个监测桩的GPS和地表倾斜变形监测网。到2003年中,整个县城近8km2范围的变形分布如图6所示,发生最大变形的地区是西部朱衣河谷坡一带的高边坡。这些地带大多是高阶地、陡坡,表现的主要地质灾害问题是建筑载荷导致的自然高、陡边坡、古滑坡失稳;因平整建筑场地而切削边坡,填平坡脚、沟谷,产生的高边坡与回填边坡的失稳等。
图5SMB滑坡地表变形 GPS测量成果
图62003年奉节新县城变形等值线图
5.2在滑坡工程治理安全施工阶段运用的监测技术
本阶段的监测工作主要用于评价滑坡(危岩)治理施工过程中滑坡的稳定程度,及时反馈、跟踪和控制施工进程,对原有的设计与施工组织的改进提供最直接的依据,对可能出现的险情及时发出报警信号,以便调整有关施工工艺和步骤,避免恶性事故的发生。做到信息化施工,以期取得最佳的经济效益。目前,在安全监测中使用了大量的专用仪器布设监测网,这已为广大工程技术人员所熟悉,这里仅举一例说明“RDA型地质灾害无线遥测台网”的应用成果。从2002年5月起在万州 WJW滑坡建立了无线遥测台网。该滑坡为三峡库区二期地质灾害工程治理计划项目,从2002年11月开始施工,2003年2月完成。图7所示为沿滑坡主滑方向激光测距遥测仪获得的结果。尽管施工包括59个抗滑桩的开挖与浇注,但由于设计与施工合理,整个施工期间滑坡体位移仅几个毫米,可见通过遥测台网连续监测,可以及时准确掌握滑坡变形动态,确保施工安全。
5.3 工程治理效果监测
仍以万州WJW滑坡为例。该滑坡治理工程采取以预应力锚拉抗滑桩为主,地表排水及生物工程为辅的综合治理方案。治理效果监测网采用了GPS、深部位移、孔隙水压力测量和钢筋应力计等仪器监测方法,在关键部位还设置了遥测台网进行连续监测。
图7万州 WJW滑坡工程治理施工安全监测位移曲线
图8 为A2号抗滑桩上3002遥测子站2003年8月到12月观测结果的日变化曲线。由图可见:锚拉抗滑桩内力(钢筋计、锚杆计观测)和滑坡深部位移的变化与地下水孔隙压力(渗压计观测)的变化呈明显的相关关系;根据气象资料,滑坡孔隙水压力的变化与降雨亦有直接关系。但是从总趋势看,抗滑桩内力、深部位移变化不大,说明 WJW滑坡经过治理后基本上处于稳定状态,这与其他监测点仪器巡测的结果基本一致。
图83002遥测子站观测结果曲线显示
图9 为巫山GIS系统上分析、显示的WZB边坡倾斜变形矢量图,是使用仪器监测网进行工程治理效果监测的实例。如矢量图所示,4个测点的倾向均与坡向大体一致,2003年累计角变量≤0.02°,说明经过治理后的边坡稳定性良好。
5.4滑坡变形应急监测
巫山县残联滑坡位于巫山新县城中心地带,滑坡区内高程在278~492m之间,为河流谷坡地形,坡角在10°~30°之间。滑坡体为第四纪坡积物,含碎石、粉质粘土,厚度0~12m,总体积约15万m3。由于本区域为斜坡区,公路及房屋等建设须对原始边坡不同程度的开挖、切坡,2001年已发现有变形发生。地勘资料表明残联滑坡周界明显,滑面渐趋形成,属推移式滑坡。2002年虽经两度治理,其西区在2003年仍有明显变形,危及其下的公路和移民楼房的安全。
图9巫山县 WZB边坡倾斜变形矢量图
图10巫山残联滑坡激光测距曲线(2003年9月~2004年2月)
应巫山县国土局要求,2003年9月安装了遥测台网。残联滑坡遥测台网安装在最能反映滑体变形特征的部位,四台遥测子站沿主滑方向形成一条测线。
激光测距的监测数据随时间的变化如图10所示。上条曲线为测距结果,测线长51.3m,滑坡向下滑移对应测线缩短,单位为mm;下条为环境温度曲线,单位为℃,横坐标为测量时间,按-年-月-日时:分格式显示。
从2003年9月12日至2004年2月3日,可大体分为两个阶段:
第一阶段:9月12日到9月27日为滑坡体中部抗滑桩完工之前,由于开挖引起边坡内部应力调整。受滑坡体上部载荷的影响,土体向前挤压。滑坡体中、下部向临空面的蠕滑变形明显,下滑速率大致均匀,约2mm/d,16天总计变化量达30mm。
第二阶段:在滑体中部的部分抗滑桩竣工后,位移速率变缓,降至0.5~1mm/d;到2004年2月上旬,变化量仅0.1mm/d。这说明抗滑治理工程对滑体变形起到了遏制作用,达到了抢险治理的目的。
6结论
(1)基于3S技术和地面变形监测台网,基本建立了研究区典型地段滑坡监测系统。运用GPS等空间技术可以获得滑坡变形区域分布状况,不但有利于确定需要重点监测的滑坡,而且对库区城镇改造规划有指导意义。遥测台网可快速测定变形速率,是掌握滑坡动态变形趋势与开展应急监测的有效工具。
(2)为了较好地解决滑坡监测中高度的不确定性问题,需要配合使用多种类型的仪器。作者等为此研制的新型滑坡无线遥测台网和流动倾斜仪、激光测距仪,精度高,性能稳定,有较大的推广价值。
(3)由于滑坡、高边坡所处地质环境差异以及影响因素的不同,其破坏机理和危险性程度也不尽相同。正确认识、区分滑坡与高边坡的地质环景,合理布置稳定性监测点位,对其稳定性监测、分析及评价具有十分重要的意义。
在此,对参加过此项工作的杨旭东、陈诚、范国胜、李涛等同志表示感谢。
参考文献
[1]卓宝熙.“三 S”地质灾害信息立体防治系统的建立及其实用意义[J].中国地质灾害与防治学报,1998,9(4):252~257
[2]崔政权,李宁.边坡工程——理论与实践最新发展[M].北京:中国水利水电出版社,1999
[3]欧阳祖熙,张宗润,张路等.重庆市万州区三峡工程移民地理信息系统.见:地壳构造与地壳应力文集(12).北京:地震出版社,1999:140~146
[4]欧阳祖熙,张勇,张宗润等.全球卫星定位技术在三峡库区滑坡监测中的应用.见:地壳构造与地壳应力文集(13).北京:地震出版社,2000:185~191
[5]欧阳祖熙,丁凯,师洁珊等.一种新型地质灾害无线遥测台网.中国地质灾害与防治学报,2003,14(1):90~94
[6]欧阳祖熙,王明全,张宗润等.用 GPS技术研究三峡工程万州库区滑坡的稳定性.中国地质灾害与防治学报,2003,14(2):76~81
[7]欧阳祖熙,师洁珊,王明全等.RDA型滑坡变形无线遥测台网.见:中国土木工程学会第九届全国土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003:1261~1266
[8]陈明金,欧阳祖熙,师洁珊等.基于GPRS技术的地质灾害无线遥测系统.自然灾害学报,2004,13(3):65~69
[9]陈明金,欧阳祖熙.预应力锚索抗滑桩内力反演计算.见:地壳构造与地壳应力文集(17).北京:地震出版社,2004:139~145
[10]欧阳祖熙,张宗润,丁凯等.基于3S技术和地面变形观测的三峡库区典型地段滑坡监测系统.岩石力学与工程学报,2005(待刊)
❿ 监测地质灾害需要用到哪些仪器
地质灾害监测方法地质灾害的监测方法可用简易监测和仪器监测。重要危险回隐患点应答采用仪器监测。
地质灾害监测方法主要有卫星与遥感监测;地面、地下、水面、水下直接观测与仪器台网监测。矿山之星地质灾害监测仪器包含传感器、接收机等。