工程地质与动态监测
❶ 地下水动态与均衡的监测项目
一、地下水动态监测项目
对大多数水文地质勘查任务来讲,地下水动态监测的基本项目都应包括地下水水位、水温、水化学成分和井、泉流量等。对与地下水有水力联系的地表水水位与河流流量,以及矿山井巷和其他地下工程的出水点、排水量及水位标高也应进行监测。
水质的监测,一般是以水质简分析项目作为基本监测项目,再加上某些选择性监测项目。选择性监测项目是指那些在本地区地下水中已经出现或可能出现的特殊成分及污染质,或被选定为水质模型模拟因子的化学指标。为全面掌握区内水文地球化学条件变化的基本趋势,可在每年或隔年对监测点的水质进行一次全分析。
地下水动态资料,通常随着观测资料系列的延长而具有更大的使用价值,故监测点一经确定后,不要轻易变动。
二、地下水的均衡项目
地下水的均衡包括水量均衡、水质均衡和热量均衡等不同性质的均衡。不同性质均衡方程的均衡项目(均衡要素)也就必然有所区别。在多数情况下,人们首先关注的还是水量问题,而水量均衡又是其他两种均衡的基础。因此,应着重于水量均衡项目的研究。
分析各种水量均衡方程的均衡项目组成,可清楚地看到:一切水量均衡方程均由三部分组成,即均衡期内水量的变化量、地下水系统的补给量和消耗量。在补给量中,最重要的是降水入渗量(Xf)、地表水入渗量(Yf)、地下径流的流入量(W1);在某些情况下,越流补给量(E1)和人工注入量(R′1)也有较大意义;在消耗量中,最重要的是潜水的蒸发量(Z′1)、地下径流的流出量(W2)、地下水的人工排泄量(R2和R2k);有时,泉水的溢出量(Ws)和越流流出量(E2)也很有意义。此外,各种均衡方程中都少不了地下水贮存量的变化量。以上便是基本的水量均衡项目。
❷ 工程地质测绘与调查的区别,是不是前者包括了后者
不包括。
1、工程地抄质测袭绘将测区实地调查搜集的各项地质成果,经过分析整理,按一定比例尺填绘在地理基础底图或地形图上的工作。
2、工程地质调查主要是查明区内工程地质条件。在各种主要地质因素影响下,区内工程地质条件的变化情况,人类工程-经济活动对区内地质环境的作用与影响,对区内主要矿产资源、天然建筑材料和景观资源的类型和分布状况、主要环境地质工程问题的评价等。
由此可见,基本工作顺序为调查在前,测绘在后。
❸ 工程地质勘察与岩土工程勘察有什么区别
工程地质勘察:是为查明影响工程建筑物的地质因素而进行的地质调查研究工作。所需勘察的地质因素包括地质结构或地质构造:地貌、水文地质条件、土和岩石的物理力学性质,自然(物理)地质现象和天然建筑材料等。这些通常称为工程地质条件。查明工程地质条件后,需根据设计建筑物的结构和运行特点,预测工程建筑物与地质环境相互作用(即工程地质作用)的方式、特点和规模,并作出正确的评价,为确定保证建筑物稳定与正常使用的防护措施提供依据。
岩土工程勘察:是指根据建设工程的要求,查明、分析、评价建设场地的地质、环境特征和岩土工程条件,编制勘察文件的活动。
❹ 水文地质、工程地质和环境地质调查的发展趋势
一、水工环调查新领域的拓展和商业化
国际水工环新领域的调查工作,潜在的领域十分广阔,内容极其丰富,正逐步开拓。当前,除继续进行已开展的工作外,为专门利用目的提供服务的水工环新领域的调查工作越来越多,由于这些服务大多为小的地域或企业,在发达国家商业化水工环调查将得到进一步发展,既提高了水工环新领域的调查工作的服务范围又使地质调查单位得到发展。
二、加强调查与研究的紧密结合
世界各国都非常重视资源环境地质调查工作,在查明地质环境的质量及其与工程-经济活动之间的相互作用的基础上,研究这种作用的发展趋势与作用程度,并从环境地质学的角度,评价地区开发、工程建设和环境改善的可行性与最优方案,提出意见与建议。加强基础水工环调查和研究工作的结合,会大大增强水工环地质调查在建设中的作用。
三、水资源管理与地下水污染专门调查
水文地质工作有向水资源管理与地下水污染专门调查发展的趋势,在发达国家,地下水作为最大的资源环境因素,既要考虑资源的充分利用问题,也要考虑开发后可能产生的环境后果,这对于水资源紧张、环境脆弱的那些地区尤其重要。专门调查的目的是为了在一个地质环境单元内,最大限度地开发利用水资源,取得最优的社会经济效益,对生态环境的影响保持在允许限度。
四、水工环地质调查与土地资源利用调查的协调发展
土地的开发利用有时未很好地考虑对生态环境的影响,致使环境质量下降,土地资源紧张。在土地的利用调查中水工环地质工作可以发挥重要的作用。几乎所有国家在国土整治、流域或区域的综合开发,都要涉及土地的合理利用和环境保护问题,水工环地质调查与土地资源利用调查的协调发展具有极其广阔的发展前景。
五、地质灾害调查与灾害监测相结合
地质灾害调查是了解过去发生过的静态灾情,掌握地质灾害的环境信息;灾害监测是记录现在地质灾害的发生-发展的动态变化,两者结合会大大提高地质灾害预测、预报精度,更有利于灾害的防治和地质环境的保护。这在经济开发区、城市区和大型工程建设地区、以及动力地质作用强烈发育的其它建设地区尤为重要。这是国内外发展的趋势。
六、多种先进技术的综合运用
随着科学技术的不断发展,水工环地质调查工作普遍运用“3S”技术即地理信息系统(GIS)、全球定位系统(GPS)、遥感系统(RS)和先进的物探及测试等高新技术,从野外调查电子手簿到成果使用全程计算机化,向调查成果成图的数字化、调查信息传输的网络化及地质体空间分析三维分析可视化等先进技术综合运用方面发展。
❺ 地质环境监测的内容与类型
一、地质环境监测分类
按照地质环境物质构成要素(水、气、土壤、岩石、生物),地质环境主要分为水环境、岩石环境和土壤环境。
1.按监测对象分类
按地质环境监测对象(或者地质环境要素)可分为地下水环境监测、岩石环境监测、土壤环境监测、其他相关要素监测(表1-1)。
(1)地下水环境监测。广义的水环境包括地表水环境与地下水环境两部分。本书讨论的监测主要是地下水环境监测。重点是针对地下水的资源量和质量监测,主要监测内容包括地下水水位、水温、水量和水质等。
(2)岩石环境监测。岩石环境指岩石圈中的岩石部分(包括坚硬岩石与松散岩石),它源源不断地向外部环境输送物质和能量,丰富的矿物资源和岩石圈的稳定是人类赖以生存的物质基础,其结构和动力作用与人类生存和发展密切相关。因此,岩石环境监测的重点是岩石的变形和移动,主要监测内容包括地表位移形变、深部位移、分层土体变形、岩土体物理性质与力学指标等。
(3)土壤环境监测。土壤环境指岩石圈的表部土壤层,它与人类的繁衍关系密切,是大气圈、水圈、生物圈、岩石圈所共同作用的部分。土壤环境的监测重点是土壤质地和土壤重金属含量,主要监测内容包括土壤盐分、土壤有机质、土壤化学元素和土壤物理性质指标等。
(4)其他相关要素监测。除了地下水环境、岩石环境以及土壤环境3 类监测要素之外,还有其他一些不属于岩石圈,但对地质环境的变化同样起到了至关重要作用的要素。这些监测要素主要包括降水量、损毁植被面积、地声、泥位等。
表1-1为地质环境监测分类表。
表1-1 地质环境监测分类表
2.按地质环境问题和管理分类
按地质环境问题和管理可分为地质灾害监测、地下水地质环境监测、矿山地质环境监测、地质遗迹监测和其他相关地质环境监测。
(1)地质灾害监测。针对滑坡、崩塌与泥石流、地面塌陷、地面沉降和地裂缝等地质灾害的特点,对地表形变、深部位移、分层土体变形、力学特征、声学特征、地下水特征等灾害体自身状况,以及降雨、气温、地表水体等与地质灾害相关的环境要素,采用直接观察、仪器测量、遥感等方法,进行反复观察和测量,分析其发展趋势,预报其失稳所造成的灾害。
(2)地下水地质环境监测。针对区域地下水超采、地下水水位上升和地下水污染等问题,选择有代表性的钻孔、水井、泉等,按照一定的时间间隔和技术要求,开展地下水的水位、水温、水量、水质等要素随时间变化的监测,以反映地下水环境的动态变化过程。
(3)矿山地质环境监测。矿山地质环境监测是在矿山基础建设、开采阶段,以及闭坑以后,布设专门性的监测网(点),定期观测地质环境和各类矿山地质环境问题在时间上、空间上的变化情况,以减缓矿山地质环境的恶化,减少矿山地质灾害的发生。矿山地质环境问题主要有矿山建设及采矿活动引发或可能引发的地面塌陷、地裂缝、崩塌、滑坡、含水层破坏、水土污染、地形地貌景观破坏等。
(4)地质遗迹监测。地质遗迹监测主要是在调查的基础上,定期观测地质遗迹随时间的变化情况,提出地质遗迹保护对策。
(5)其他相关地质环境监测。其他相关地质环境监测主要有水土污染、地热、矿泉水等方面的监测。
3.按动力作用主体分类
按动力作用主体可分为自然地质环境监测、受工程建设影响的地质环境监测。
(1)自然地质环境监测。地质环境主要是由地下水环境、土壤环境、岩石环境3个要素组成的。自然地质环境监测就是针对三者在自然状态下的变化以及其他一些影响地质环境的因素而进行的监测,从而确定地质环境质量及其变化趋势。主要监测地下水水位、地下水水质、土壤质量、岩石土层变形(如地表变形、地下变形)、降雨量等。一般是通过分析地质条件或者社会发展的需求来部署监测工作。
(2)受工程建设影响的地质环境监测。受工程建设影响的地质环境监测是指在工程施工过程中,采用监测仪器对地质环境关键部位要素进行的监测。这类监测的内容包括如由于抽汲地下水导致的地下水水位变化,道路、建筑物施工时坡脚开挖导致的边坡失稳和矿山开采造成的采空区塌陷、水资源及土地资源破坏,等等。主要通过工程建设活动的具体位置及其影响范围来指导监测。
二、地质环境监测技术方法类型
地质环境监测技术是地质环境保护的基础,是随地质环境科学的形成和发展而产生、发展的。它运用现代科学技术方法测取地质环境变化数据资料,监视和监测地质环境质量及其变化趋势的过程,同时具有综合性、发展性等特点。综合分析现有地质环境监测工作采用的仪器设备,又可以分为3类:接触式监测、非接触式监测和采样测试式监测。
1.接触式监测
接触式监测是指仪器设备与监测对象直接接触,在监测对象中布设或埋置仪器设备,通过仪器传感系统获取监测对象动态变化数据的监测方式,包括基础测量、埋设仪器设备等。如地面沉降分层标监测、地裂缝计监测,以及各类手动测量方法等。
2.非接触式监测
非接触式监测是指监测设备并不直接接触监测对象,而是远距离感知并获取监测对象动态变化数据的监测方式,如遥感监测、视频监测等。
3.采样测试监测
采样测试监测是指在野外按技术要求采集地下水、土壤等样品,通过实验室测试获取其物理和化学等特征动态变化数据的监测方式。
三、地质环境监测技术方法汇总
目前比较常用的地质环境监测技术方法汇总见表1-2至表1-5。
表1-2 地下水环境(含地热)监测技术方法一览表
表1-3 岩石环境监测技术方法一览表
表1-4 土壤环境监测技术方法——采样测试法一览表
表1-5 其他相关要素监测技术方法一览表
❻ 试论述工程地质勘察工作建设中的地位与作用,工程地质勘查基本内容有哪些 求高手解决
为查明影响工程建筑物的地质因素而进行的地质调查研究工作。所需勘察的地质因素包括地质结构或地质构造:地貌、水文地质条件、土和岩石的物理力学性质,自然(物理)地质现象和天然建筑材料等。这些通常称为工程地质条件。查明工程地质条件后,需根据设计建筑物的结构和运行特点,预测工程建筑物与地质环境相互作用(即工程地质作用)的方式、特点和规模,并作出正确的评价,为确定保证建筑物稳定与正常使用的防护措施提供依据。
按工程建设的阶段,工程地质勘察一般分为规划选点至选址的工程地质勘察、初步设计工程地质勘察和施工图设计工程地质勘察。
工程地质勘察方法或手段,包括工程地质测绘、工程地质勘探、实验室或现场试验、长期观测(或监测)等。
工程地质测绘 在一定范围内调查研究与工程建设活动有关的各种工程地质条件,测制成一定比例尺的工程地质图,分析可能产生的工程地质作用及其对设计建筑物的影响,并为勘探、试验、观测等工作的布置提供依据。它是工程地质勘察的一项基础性工作。测绘范围和比例尺的选择,既取决于建筑区地质条件的复杂程度和已有研究程度,也取决于建筑物的类型、规模和设计阶段。规划选点阶段,区域性工程地质测绘用小比例尺(1:10万,1:5万);设计阶段,水库区测绘大多用中比例尺(1:2.5万,1:1万),坝址、厂址则用大比例尺(1:5000,1:2000,1:1000,1:500)。工程地质测绘所需调研的内容有地层岩性、地质构造、地貌及第四纪地质、水文地质条件、天然建筑材料、自然(物理)地质现象及工程地质现象。对所有地质条件的研究,都必须以论证或预测工程活动与地质条件的相互作用或相互制约为目的,紧密结合该项工程活动的特点。当露头不好或这些条件在深部分布不明时,需配合以试坑、探槽、钻孔、平洞、竖井等勘探工作进行必要的揭露。
工程地质测绘通常是以一定比例尺的地形图为底图,以仪器测量方法来测制。采用卫星像片、航空像片和陆地摄影像片,通过室内判读调绘成草图,到现场有目的地复查,与进一步的照片判读反复验证,可以测制出更精确的工程地质图。并可提高测绘的精度和效率,减少地面调查的工作量。
工程地质勘探 包括工程地球物理勘探、钻探和坑探工程等内容。
①工程地球物理勘探。简称工程物探,其目的是利用专门仪器,测定各类岩、土体或地质体的密度、导电性、弹性、磁性、放射性等物理性质的差别,通过分析解释判断地面下的工程地质条件。它是在测绘工作的基础上探测地下工程地质条件的一种间接勘探方法。按工作条件分为地面物探和井下物探(测井);按被探测的物理性质可分为电法、地震、声波、重力、磁法、放射性等方法。工程地质勘察中最常用的地面物探为电法中的视电阻率法,地震勘探中的浅层折射法,声波勘探等;测井则多采用综合测井。
物探的优点在于能经济而迅速地探测较大范围,且通过不同方向的多个剖面获得的资料是三维的。以这些资料为基础,在控制点和异常点上布置勘探、试验工作,既可减少盲目性,又可提高精度。测井则可增补钻探工作所得资料并提高其质量。开展多种方法综合物探,根据综合成果进行对比分析,可以显著提高地质解释的质量,扩大物探解决问题的范围,缩短工程地质勘探周期并降低其成本。由于物探需要间接解释,所以只有地质体之间的物理状态(如破碎程度、含水率、喀斯特化程度)或某种物理性质有显著差异,才能取得良好效果。
②钻探和坑探。采用钻探机械钻进或矿山掘进法,直接揭露建筑物布置范围和影响深度内的工程地质条件,为工程设计提供准确的工程地质剖面的勘察方法。其任务是:查明建筑物影响范围内的地质构造,了解岩层的完整性或破坏情况,为建筑物探寻良好的持力层(承受建筑物附加荷载的主要部分的岩土层)和查明对建筑物稳定性有不利影响的岩体结构或结构面(如软弱夹层、断层与裂隙);揭露地下水并观测其动态;采取试验用的岩土试样;为现场测试或长期观测提供钻孔或坑道。
钻探比坑探工效高,受地面水、地下水及探测深度的影响较小,故广为采用。但不易取得软弱夹层岩心和河床卵砾石层样品,钻孔也不能用来进行大型现场试验。因此,有时需采用大孔径钻探技术,或在钻孔中运用钻孔摄影,孔内电视或采用综合物探测井以弥补其不足。但在关键部位还需采用便于直接观察和测试目的层的平洞、斜井、竖井等坑探工程。
钻探和坑探的工作成本高,故应在工程地质测绘和物探工作的基础上,根据不同工程地质勘探阶段需要查明的问题,合理设计洞、坑、孔的数量、位置、深度、方向和结构,以尽可能少的工作量取得尽可能多的地质资料,并保证必要的精度。
实验室试验及现场原位测试 获得工程地质设计和施工参数,定量评价工程地质条件和工程地质问题的手段,是工程地质勘察的组成部分。室内试验包括:岩、土体样品的物理性质、水理性质和力学性质参数的测定。现场原位测试包括:触探试验、承压板载荷试验、原位直剪试验以及地应力量测等(见岩土试验、工程地质力学模拟)。
设计建筑物规模较小,或大型建筑物的早期设计阶段,且易于取得岩、土体试样的情况下,往往采用实验室试验。但室内试验试样小,缺乏代表性,且难以保持天然结构。所以,为重要建筑物的初步设计至施工图设计提供上述各种参数,必须在现场对有代表性的天然结构的大型试样或对含水层进行测试。要获取液态软粘土、疏松含水细砂、强裂隙化岩体之类的、不能得到原状结构试样的岩土体的物理力学参数,必须进行现场原位测试。
长期观测 用专门的观测仪器对建筑区工程地质条件各要素或对工程建筑活动有重要影响的自然(物理)地质作用和某些重要的工程地质作用随时间的发展变化,进行长时期的重复测量的工作。观测的主要内容有:岩、土体位移范围、速度、方向;岩、土体内地下水位变化;岩体内破坏面上的压力;爆破引起的质点速度;峰值质点加速度;人工加固系统的载荷变化等。此项工作主要是在论证建筑物的施工设计的详细勘察阶段进行,工程地质作用的观测则往往在施工和建筑物使用期间进行。长期观测取得的资料经整理分析,可直接用于工程地质评价,检验工程地质预测的准确性,对不良地质作用及时采取防治措施,确保工程安全。
❼ 环境地质与工程地质监测技术的任务和作用
9.1.1 环境地质和工程地质监测的内容
人类生存在由大气圈、水圈、生物圈和岩石圈组成的地球表层环境中,环境监测的对象就是组成地球表层环境系统的各个部分或局部,监测的内容是监视和检测影响人类生存环境的各种有害物质和因素的变化趋势及对环境质量的影响程度。
9.1.1.1 环境地质与工程地质监测的对象
在相对稳定的生态环境系统中,任一种因素的变化都可能引起生态环境系统的平衡失调或破坏。由于环境系统具有一定的稳定性和适应外界变化的能力,当外界变化较小时,环境系统能自动调节恢复平衡。通常把环境所具有的自动调节和恢复系统动态平衡的能力称为自净能力(self-purification ability)。环境的自净能力不仅与进入环境的有害物的量有关,还与环境的容量有关。环境容量和环境的自净能力都有一定的限度。当地质作用或人类活动使环境因素的变化超过了环境生态系统动态平衡的恢复能力时,环境系统恢复不到原来的动态平衡状态,这种超过部分即构成了对环境系统的污染(或危害)。环境学中把产生(或排放)物理的、化学的和生物的有害物质和因素的发生源称为污染源(pollution source)。每一种对环境产生污染(或危害)的物质或因素称为污染物或污染因子。
环境监测的目的是及时、准确、全面地反映环境质量和污染现状及发展趋势为环境管理、环境规划和环境治理提供依据。环境地质与工程地质监测是环境监测的重要组成部分。其监测的对象是岩石圈浅表层地质环境,监测的内容是监视和检测导致地质环境恶化和地质灾害发生的天然污染源和人类工程活动引发的污染源的变化趋势及对环境质量的影响程度。
环境地质与工程地质监测的内容,以其监测的介质(或环境要素)可归纳为以下三个方面。
(1)环境介质污染监测(pollution monitoring of enviromental media):包括对大气污染监测,水质污染监测,土质污染监测,生物污染监测,振动、放射性等物理污染的监测。
(2)地质灾害监测(monitoring of geological calamity):包括对火山、地震、崩塌、滑坡、泥石流等地球内力和外力地质作用造成的地质灾害的监测。
(3)岩土工程环境监测(enviromental monitoring in geotechnical engineering):包括对地基变形、地面沉陷、边坡变形、围岩变形、坝体安全、诱发地震等人类工程活动引发的地质环境效应的监测。
在上述各对象的监测中,都包括有许多项目。例如,水质污染监测的主要监测项目可分两类:一类是反映水质污染的综合指标,如温度、色度、浊度、pH、电导率、悬浮物、溶解氧、化学耗氧量和生化需氧量等;另一类是有毒物质,如酚、氰、砷、铅、铬、镉、汞、镍等。此外还有水体流速、流量的测定等。在实际工作中因人力、物力、技术条件及环境条件等限制不可能对所涉及的项目全部监测,须根据监测的意图、污染物的性质和危害程度,对监测项目进行必要的筛选,从中挑选最关键和最迫切需要解决的项目实施监测。
9.1.1.2 环境监测的类型
9.1.1.2.1 监视性监测(general monitoring)
又称常规监测或例行监测,是按一定的要求和计划,定时、定点地测定污染源的变化情况,分析污染物超标程度和频率,评价环境质量,预测环境变化趋势。这是一项经常性的监测工作,使管理部门和研究机构可及时掌握环境要素的受害现状和变化趋势,以便随时调整控制措施和实施治理方案。
9.1.1.2.2 特定目的性监测(special monitoring)
又称应急监测或特例监测,是为完成某项特种任务而进行的专门监测。有如下方面。
(1)事故监测:在危害环境事件发生后进行现场追踪监测,测定危害的影响范围和程度,为防止事态发展提供监测依据。此外,通过监测可发现事故的苗子,预报事故再次发生的可能性。这种监测对查清事故的原因、控制事故的发展及善后处理起着重要作用。如核电站泄漏事故引起放射性对周围环境的污染、地质灾害和岩土工程事故等突发性危害的监测等均属此类。
(2)仲裁监测:是为解决执行环境法规过程中所发生的矛盾和纠纷,而向管理部门或司法部门提供仲裁意见的监测。
(3)考核验证监测:为检查环境管理制度和措施的实施情况而进行的监测,以及建设项目的竣工验收监测、治理项目的竣工验收监测等。
9.1.1.2.3 研究性监测(scientific monitoring)
又称科研监测,属高层次、高水平、技术比较复杂的监测,是探索危害环境的因子和因素的形成原因和发展规律,研究危害环境事件对人体和自然环境的危害性质及影响程度,研究如何提高环境监测和环境治理的水平,以及对某个环境工程或建设项目的开发预评进行综合性研究等。
环境监测在环境管理中起重要作用,占有主要地位。随科技进步和生活水平的提高,在环境管理中科学化、定量化的要求将更为严格,从而将更加依赖环境监测。
9.1.2 环境地质和工程地质监测技术的任务和作用
环境地质和工程地质监测技术是实施环境地质和工程地质监测任务的手段和保证。随科学技术的进步,环境监测技术迅速发展,仪器分析、计算机控制等现代化手段在环境监测中已广泛应用。环境监测技术从以化学分析为主的单一环境分析发展到物理监测、生物监测、流动监测及卫星遥感监测等。监测的范围从一个断面发展到一个城市、一个国家乃至全球。监测的过程从间断性监测逐步过渡到自动连续监测,各种连续监测系统相继问世。地理信息系统(GIS)、大地定位系统(GPS)和遥感技术(RS)的3S技术用于区域性地质灾害及地质环境的监测与评价,已在国民经济建设中发挥了重要作用。
9.1.2.1 环境地质和工程地质监测技术的任务
环境地质和工程地质监测技术的任务是运用现代科学技术方法,间断地或连续地监视和检测,导致地质环境恶化和地质灾害发生的自然地质作用或人类工程活动的现状、变化趋势及对环境质量的影响程度,为环境管理、环境规划、环境治理和保证工程质量与安全提供科学依据。地质环境的监测技术不仅仅是各种测试技术,还包括布点技术、采样技术、数理技术和综合评价技术等,所涉及的知识面广、专业面宽,需要化学、物理学、生物学、生态学、气象学、地质学、工程学等多方面的知识。此外,环境质量综合评价时还必须考虑社会性问题。据统计,发展中国家每年由地质灾害和地质环境恶化所造成的经济损失,达国民生产总值的5%以上。在我国由地质灾害造成的损失约占整个灾害损失的35%,其中,崩塌、滑坡、泥石流及人类活动诱发的地质灾害所造成的损失约占55%。自上世纪80年代以来,这类灾害已造成千余人死亡,直接经济损失达数亿元,事故的善后处理和整治费用高达数十亿元。而由此给社会带来的间接损失,则更无法估量。近十年来,直接由工程建设活动诱发的地质灾害造成的工程处理费用达数千万至上亿元的有近十起。随着进一步的开发,必将带来更大规模、更大范围的灾害与环境问题。正确评价和监测地质环境的恶化、及时预测地质灾害的发生、严格控制和规范人类工程建设活动,以提高地质环境的质量,减轻灾害对人类的威胁,从而保持人类文明的可持续发展。因此,不断提高环境地质和工程地质监测技术水平,已不仅是学科发展的需要,而是提高人类生存环境质量的需要,更是维护人类社会可持续发展的迫切需要。
9.1.2.2 环境地质和工程地质监测技术的作用
环境地质和工程地质监测技术有如下主要作用:
(1)地质环境质量信息的获取必须依靠环境地质和工程地质监测技术。及时、准确的环境质量信息是确定环境管理目标,进行环境决策的重要依据。而信息的获取必须依靠监测技术,否则难以实现科学的目标管理。
(2)强化环境管理和保护制度的贯彻执行必须依靠监测技术。因为没有监视和督察,制度和措施将流于形式。
(3)评价和检验环境管理和保护的效果必须依靠监测技术,否则难以提高科学管理水平。
(4)环境地质和工程地质监测技术工作在防范地质灾害、避免工程事故方面的社会效益和经济效益是不可估量的。
❽ 工程地质堪查与工程测量技术有何区别就业前景如何
这个工作抄简单重复,辛苦任劳袭,无聊高薪
工程地质堪查与工程测量技术,像我一个同学在水泥厂做测量,那么,做水泥的原料矿石所在就需要他来勘查,主要运用点全站仪测测矿山沉降、高差、范围,不知道你做什么单位,我同学一个月也不需要去测几次。
工程测量就很笼统了,一般就两样:放样和地形测量,外带一些很少的竣工测量和管道测量等。
一般来说测量是很苦的,你自己看看身体如何,但工资不错。外加一点,好像不怎么能升官,这我点也是听别人说的
❾ 地质工程和工程地质的区别
1、概念不同
工程地质学是一门应用地质学的原理为工程应用服务的学科。
地质工版程权利用工程手段来解决问题的科学。
2、研究方向不同
地质工程的目的在于研究地质问题。
工程地质主要研究内容涉及地质灾害,岩石与第四纪沉积物,岩体稳定性,地震等。
3、侧重点不同
地质工程侧重于对地质现象、地质成因和演化、地质规律、地质与工程相互作用的研究;工程地质学则是应用地质学的基本原理为工程建设服务的应用学科。
4、目的不同
它以现代钻、掘工程技术、现代测试和计算机技术为手段,以工程涉及的地质体及工程所在的地质环境为研究对象,服务于矿产资源勘查与开发,土木、水利工程的规划、设计、施工,水文工程、环境地质的评价、监测与保护,地质灾害预测与防治和地下深部探测等领域。
工程地质的目的是为了查明各类工程场区的地质条件,对场区及其有关的各种地质问题进行综合评价,分析、预测在工程建筑作用下,地质条件可能出现的变化和作用,选择最优场地,并提出解决不良地质问题的工程措施,为保证工程的合理设计、顺利施工及正常使用提供可靠的科学依据。
❿ 动态监测目的及现状
1.动态监测的意义和目的
沉积盆地型地热资源储量丰富,分布范围广,其地下热流体系统动态主要有渗流场、化学场、应力场、温度场的分布和变化。影响动态分布和变化的主要因素有自然因素和人工活动。
在自然条件下,控制地热流体动态特征的主要因素是地质条件,即地质构造特征、深部温度场结构是地热水动态变化的关键。但是,由于地热水埋藏深,补给条件较差,在自然环境下宏观变化十分缓慢。除去地震、火山和滑坡等突发性事件外,地质作用都是相对稳定和变化缓慢的,其明显的变化只有通过大尺度地质历史研究才能发现。
而人工活动,包括大规模的地下热水开采和回灌,往往是促使大多数地下热水系统改变其天然稳定状态最直接、最重要的原因。既然如此,那么人类就有必要对地下热水系统动态进行监测,掌握一定时间、空间范围内的动态变化规律,以服务于人类地下热水的开发利用,为生产、科研、管理以及我国的地下热水动态研究作出贡献。
开展地热水动态监测主要目的如下:
1)地下热水动态监测是地热地质、水文地质和环境地质调查的重要工作内容之一,是获取水、工、环地质信息最有效的方法。
2)动态监测资料是地热资源均衡与评价的基础,地热资源动态与均衡是一个有机联系的整体,动态是均衡的外部表现,均衡是导致动态改变的内部因素。
3)实施回灌的地热田,监测回灌冷水扩散轨迹和主要赋存位置,对热储层温度场、化学场的影响变化进行研究和预测,是实现地热资源可持续开发的科学依据。
4)判断断层活动性的方法之一。
5)评价地热资源开发与地质环境影响的重要依据。随着环境问题的日趋严重,地热资源动态监测内容和质量要求将越来越高,监测任务也将会越来越重,该项工作只有加强,不能削弱。
2.动态监测现状
国际上,以美国、冰岛等高-中温地热资源开发利用发达的国家,无论从监测要求,还是自动化程度,均已形成一套较系统的动态监测方法。监测内容不仅有热储压力、温度、流体化学场,而且细致到微量元素、气体含量、地热田地球物理场的动态变化等,从而更加全面地了解地热开发动态,为地热资源评价、开发管理服务。
俄罗斯的井网以撒网式大间距布设为特点;日本的井网以重点地震监测区内集中布设为特点;美国的井网是沿断裂条带状高密度布设为特点。它们都有一个共同特点是开展地下热水的压力、温度、流量、混浊度等物理动态综合监测,在有条件的井孔中同时布设水压、水位、水温、水氡、测震、应变等多种手段的监测仪器。这些国家地热资源动态监测都还坚持定期手测(一般是每月2~4次)与仪器连续自动记录同时并举,但在重点监测与研究地区多已实现了数字化监测,并在此基础上实现了监测数据有线、无线、卫星等自动传输与计算机集中储存与处理。
地热水动态监测是一个时间连续性要求很高的工作,我国目前尚无地热动态监测的规范性要求或技术标准,主要是由于地热资源规模化的开发历史相对较短,尚未形成独立动态监测的系统程序。但在国内地热开发较早、规模较大的重要城市,也都开展了一系列的地下热水动态监测工作。如北京市2004年进行了《北京市地下热水动态监测系统示范工程研究》,通过示范工程建设,建立起一套地下热水水位和开采量自动监测的管理系统,极大地提高了管理的时效性和准确性,为地下热水可持续开发利用和保护提供科学依据。天津市地热动态监测工作起始于20世纪80年代,其后不断改进监测手段和监测网布局,至20世纪90年代中期已建立起较完善的地热动态监测系统,监测手段不断更新,监测队伍逐步走向专业化,至今获得了大量的、较为连续的地下热水动态监测资料。目前,单纯的地热资源勘探开发已不再是天津地热工作的主流,科学合理、保护性地开发地热资源已迫上眉梢,其主要措施是实施人工回灌,因此,天津目前的动态监测除地热开采动态监测以外,还包括回灌水温、水位、水量、水化学变化的动态监测。
根据多年动态监测工作经验,尽量总结出一些行之有效的监测方法,但由于缺乏依据、标准,常常出现野外监测数据不规范,室内数据处理方法不统一的情况。比如不同温度下液面埋深换算的方法不同,导致同样的原始数据经处理后结果不同,给地热开发管理带来一定困难。因此一个适宜于中低温沉积盆地,兼顾其他类型地热资源动态监测的操作规程急需制定出来,使地热资源动态监测工作实现标准化。