地质灾害监测业务系统
Ⅰ 开放式地质灾害监测系统的研究
史彦新
(中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】本文介绍了一种开放式地质灾害监测系统的构建方案。首先简要叙述了开放式监测系统的概念,随后从监测系统的形成、硬件组成和软件设计3个方面进行了阐述,突出了监测系统开放、灵活的特点。
【关键词】开放式系统地质灾害监测地质灾害预警
1前言
地质灾害监测预警是一项复杂的系统工程,具有多学科交叉、应用性强、不断发展变化等诸多特点,随着高新技术和计算机网络技术的迅速发展,地质灾害监测预警技术也有了很大发展,系统化、网络化的开放式地质灾害监测系统成为地质灾害监测发展的必然趋势。
所谓开放式监测系统,即采用开放的结构模式,采用统一标准或协议的一种软件或硬件的平台。在硬件方面,只要符合统一标准的模块,都可以接入该系统;在软件方面,运用模块化编程技术,结合模糊数学、专家系统、人工神经网络、小波分析等先进理论,根据不同的监测模型,采取不同的算法,并制定统一的通讯协议,实现对各监测模块的管理、监测数据的采集、监测信息的远程传输、系统通讯等功能[1]。
最近在地质灾害预警关键技术方法研究与示范项目中,项目组在构建地质灾害监测系统时进行了大胆的尝试,在巫山地质灾害监测预警示范站建立了基于钻孔倾斜仪深部位移监测、GPS地表变形监测、TDR滑坡位移监测、孔隙水压力监测等手段的开放式地质灾害监测系统。该监测系统可实现一天24小时连续监测,监测数据可以从现场发送到数据处理中心,及时获得监测结果,并实时发布[2]。
2监测系统的形成
目前常用的地质灾害(滑坡)预报方法,多为对位移监测数据序列进行数学方法处理,作趋势性外推,这种处理方法受监测点选择的随机性和多种相关因素的综合影响,准确性较低,在实际应用中往往不能达到预期效果。为了提高地质灾害预测预报的准确性,必须对灾害体进行多手段、全方位的监测,对监测信息进行综合分析处理。
随着科学技术的发展及对地质灾害机理的深入研究,国内外地质灾害监测技术方法已逐渐向系统化、智能化方向发展,监测内容、方法、设备日趋多样化,不只局限于对位移的监测,且已涉及地质灾害诱发因素的监测及地温、地声、射气浓度等地质灾害间接因素类的监测。只有对灾害体进行全方位的监测,并对监测信息进行综合分析,才能极大地提高监测的有效性与准确性,为地质灾害的预警预报提供坚实的数据基础。
因此,为了全面了解灾害体的位移变化情况及其他特征值,如孔隙水压力等,在巫山监测预警示范站构建了一套开放式地质灾害监测系统,该系统对几种监测仪器进行集成,从地表位移、地下位移、孔隙水压力3个方面对灾害体进行监测,完成各监测模块的管理、监测数据的采集、传输,为综合分析处理及实时发布监测结果奠定了基础。
3监测系统的硬件组成
该监测系统在巫山监测现场安装有4种传感仪器,4个监测模块分别是:
(1)固定式钻孔倾斜仪,监测钻孔内地下形变位移;
(2)TDR滑坡位移监测仪,该仪器由自行研制,监测钻孔内形变位置与位移;
(3)孔隙水压力监测仪,该仪器由自行研制,监测钻孔内土体的孔隙水压力;
(4)高精度GPS,监测地表相对位移。
用于数据存储、仪器管理及信息传输的是我们自行研制的TDR滑坡位移监测仪。该仪器既完成本模块的监测任务,又兼当整个监测系统的数据采集装置。其采用开放式工业控制的设计思想,以Windows作为操作系统,采用RS-232进行数据通讯,对各监测模块进行管理,完成数据的采集、存储,最后利用GPRS无线传输技术,将监测信息远距离传送到数据处理中心,存入上位计算机中,在数据处理中心完成监测数据的综合分析处理,并实时发布监测结果。
该监测系统的硬件结构如图1所示。
图1开放式地质灾害监测系统硬件结构示意图
4监测系统软件设计
4.1各监测传感模块自控软件设计
各模块自控软件将控制模块的定时工作和通讯协议的建立。各模块自控软件相对独立,分头设计,根据监测对象的不同,采用不同的算法,完成监测、采集任务,同时负责本模块通讯协议的建立。
4.2制定标准的通讯协议和特定的数据格式
通讯协议是现场监测传感仪与数据采集装置及数据采集装置与数据处理中心沟通的桥梁,当数据处理中心需要查看各模块的监测数据及设定监测参数时,均需通过数据采集装置,按照通讯协议上传下达。
针对地质灾害监测的实际情况,采用了主从机通讯方式,将数据处理中心计算机作为主机,监测系统的数据采集装置作为从机,实现一发一收联机通讯。在设定协议中,制定了4个字节的控制状态字,其中第一个字节是前端站点呼叫控制字,保证每个站点上数据的独立性;第二个字节是设备号控制字,能准确地调用各个监测模块的监测数据;第三个字节是读写控制字;第四个字节是握手应答控制字,呼叫并握手成功后,主从机之间即能相互传送或接收数据。传送数据过程中,设定一个表头文件。在表头文件中,首先用1个字节表示仪器设备号,再用5个字节表示数据时间,然后用3个字节代表点号、孔号和孔深,最后用8个字节存放监测数据。另外在修改各监测传感模块的参数时,可以通过主机发送一个配置文件(*.dat)到从机,从机(数据采集装置)接到这个配置文件,就会自动地去修改仪器参数,使各监测传感模块按设定方式采集监测数据。
通讯协议简述如下:
当监测系统启动通讯程序后,接收数据处理中心的命令并按以下格式进行数据字头文件的上传。
地质灾害调查与监测技术方法论文集
当数据处理中心下传监测参数时,以配置文件的方式进行通讯,系统接收命令后,按数据字头文件格式下传给各监测传感模块。其中的第2、3项改为下次监测的启动时间,第7项改为时间间隔,各监测传感模块接到指令后,其自控软件会控制监测仪按设定方式进行工作。
5结束语
以上所述的开放式地质灾害监测系统已在巫山地质灾害监测预警示范站项目中得以实现,运行效果良好,并且随着示范站的建设,基于其开放式的结构模式,会有更多的监测模块接入到该监测系统中,使其技术更加成熟,功能更加完善。
参考文献
[1]张青,史彦新.三峡库区地质灾害监测仪器的前景展望.环境与工程地球物理国际学术会议,2004,6
[2]中国地质调查局水文地质工程地质技术方法研究所.地质灾害预警关键技术方法研究与示范项目设计书,2002,11
Ⅱ 地质灾害管理信息系统
地质灾害管理信息系统是进行灾害管理的重要手段。它是在广泛收集和整理研究区已有的地质灾害调查、勘查、防治信息,社会经济环境状况,统计信息等资料的基础上,形成为决策提供服务的数据库系统。该系统具有信息录入功能、检索查询功能和打印输出功能等模块。
一、系统结构设计
(一)运行环境
1.硬件环境
IBM-PC/XT、AT486以上微机,至少一个高密软驱动及一个硬盘,VGA以上显示方式。
输出设备为各种型号打印机。
2.软件环境
DOS环境:6.2以上DOS版本。
汉字环境:25行汉字操作系统,如UCDOS、XSDOS或其它汉字图形卡。
(二)系统结构
1.系统界面
启动DZPX后,屏幕上出现系统界面。
2.菜单
在主窗口的顶层,主要由信息录入、检索查询、项目管理、代码标准、打印输出等五项主菜单构成(图10-1)。在每个主菜单,有各自的下拉式菜单。本系统的功能均通过这些菜单完成。
3.下拉菜单的主要内容
信息录入:信息录入、信息修改、信息恢复。
检索查询:普查查询、勘查查询、防治查询、当年查询、环境查询、统计查询。
项目管理:项目录入、文档录入、项目修改、文档修改、项目查询、文档查询。
图10-1地质灾害管理信息系统菜单框图
代码标准:代码录入、代码修改、代码查询。
打印输出:专用表、汇总表、任意表。
(三)系统功能
DZPX系统的功能设计应当与地质灾害的管理需要紧密结合,经设计人员与管理部门的多次蹉商,拟定系统功能如下。
1.功能框架设计
地质灾害管理信息系统的几大模块为一个整体,其基本结构如图10-2:
图10-2地质灾害管理信息系统结构图
2.系统功能
(1)信息录入功能它主要包括信息录入、信息修改和信息恢复三个功能模块。
①信息录入模块本系统将地质灾害普查信息、勘查信息、防治信息、当年地质灾害发生信息、重要地灾点评价信息、重要地灾区域评价信息、社会经济环境状况信息和地灾统计、地灾分布数统计、地灾灾种分布统计、地灾分级数统计、地灾频次统计、地灾项目数统计、地灾项目类型统计、地灾项目灾种统计共八种统计信息录入,需要录入的管理数据还有地灾项目管理数据、地灾文档管理数据、图例代码、图形代码、信息代码等数据库。
②信息修改模块在对以上信息录入的数据进行检查时,若发现录入的信息有误或需追加一些内容,可用此模块根据屏幕对数据进行操作。
③信息恢复模块为保证数据存贮的安全性,该系统对数据实行备份和恢复操作。
a.数据备份可以对数据库逐个备份或成批备份。
b.数据恢复将备份文件恢复到指定数据库中,指定数据库将被覆盖。
(2)检索查询功能可以进行单笔记录查询和多笔记录同屏查询。查询条件可以是单一条件也可以是复合条件。
(3)打印输出功能系统提供了两种数据输出方式:
①屏幕显示输出屏幕显示输出是数据输出的一种最基本的形式,为用户提供随机查询和浏览查询两种方式。
②报表打印输出数据信息的打印输出按预先设计好的报表格式输出。
二、数据库设计
地质灾害管理信息数据库建库的主要目的是为地质灾害的管理提供基础资料。所以,在数据库的设计过程中要充分考虑系统对信息资源的要求。
(一)地质灾害管理的数据信息
在进行地质灾害宏观管理、预测防治的研究中,需要大量的信息数据作决策支持。下面按地质灾害的管理、预测、防治来分析所需要的数据信息资料,将信息源共分为七大类:
1.行政区划资料
包括所在省(市)的城市规划(居民用地、工矿用地、交通用地等)、社会经济概况(工农业经济、人口、国民总产值等)资料。
2.地质背景资料
包括地质灾害体的物质成分、结构、构造、地层等方面的基础地质资料。
3.气象资料
指气象观测站观测的年平均降水、年平均温度、气候类型等气象资料。
4.水文地质资料
包括河流的水文观测资料、地下水类型及水位随季节的变化特征,为地质灾害防治研究过程中水的优化管理提供基础数据。
5.各灾种的地质资料
指发生的为何种灾害;灾害体形态、估算面积、体积、范围及其成因;灾害发生后如何处理、稳定性分析、适宜性评价及防治建议等资料。
6.各种统计资料
包括:①全国、各省地质灾害数量的统计;②灾种分布(种类、面积、体积、数量等)统计;③灾害分级数量统计(大中、一般灾害的比例);④全国、各省地灾发生频次的统计(发生次数,所占比例);⑤全国、各省所立项目数统计;⑥全国普查、勘查、防治项目费用及所占比例的统计;⑦各灾种项目费及所占比例的统计。
7.项目、文档资料
(二)地质灾害数据库的建立
在确定系统数据信息源基础之上,我们本着反映地质灾害属性(自然属性、社会属性)、时间(历史灾害、正在发生和尚未发生灾害)、空间(点或区域性灾害)、灾害防治工作流程(普查-勘查-防治)几个方面特征的设计原则,建立如下17个灾害体数据库。即:①地质灾害普查信息数据库;②地质灾害勘查信息数据库;③地质灾害防治信息数据库;④当年地质灾害发生信息数据库;⑤重要地质灾害点评价信息数据库;⑥重要地质灾害区域评价信息数据库;⑦社会经济环境状况信息数据库;⑧地质灾害统计数据库;⑨地质灾害分布统计数据库;⑩地质灾害灾种分布统计数据库;⑩地质灾害分级数统计数据库;(12)地质灾害频次统计数据库;⑩地质灾害项目数统计数据库;⑩地质灾害项目类型统计数据库;⑩地质灾害项目灾种统计数据库;⑩地质灾害项目管理数据库;(17)地质灾害文档管理数据库。
除上述数据库外,根据数据库系统的需要,还建立了信息代码、图形代码、图例代码等数据库。
(三)地质灾害数据库的结构
在反复酝酿,不断修改的基础上,以尽量简单,减少库中多余数据,方便数据检索为原则,给出了20个数据库的库结构,包括有字段名称、字段类型、字段宽度、小数位数等内容。各数据库结构一方面要与实际相结合,合理地确定各字段名称、字段类型、字段宽度、小数位数;更为重要的是,设计各库结构时必须反映出该数据库为方便实用于灾害管理所必须包括的字段内容。从这两个方面出发,我们确定出各数据库的结构。限于篇幅,仅以地质灾害普查数据库为例(表10-5)。
表10-5地质灾害普查数据库数据结构设计表
三、系统实现
利用雅奇MIS Ver 3.0及Fox25B FOR DOS(中文版)实现上述功能设计和数据库设计。按照设计,通过多级下拉菜单分次实现各功能,各数据也按预先设定内容及格式建立。在此基础上,我们录入了部分实际资料进行系统测试。
四、应用示范研究
在建立地质灾害信息数据库的基础上,我们以重庆市为实例,进行了初步的应用。录入了五个数据库的信息资料。
(一)地质灾害普查信息数据库
在这个库中,根据调查所填的卡片,对重庆市各区县所发生的共计86个灾害的灾害种类、形态、估算面积、估算体积、地质背景、灾体成因、规划情况、稳定性分析、适宜性评价及建议措施等信息进行了摘录、整理。
(二)地质灾害勘查信息数据库
本库根据重庆醪糟坪滑坡的勘查录入了勘查范围及面积、形态,灾害面积、体积、稳定性评价和防治措施。
(三)地质灾害防治信息数据库
在本数据库中,摘录了四川重庆醪糟坪泥石流、滑坡群的防治原则及防治方案,防治效果论证,以及防治所带来的经济效益和环境效益分析。
(四)社会经济环境状况信息数据库
根据重庆95年统计年鉴,对重庆市共计20个区县的国民经济、社会发展情况资料进行了整理,录入了重庆市各区县的自然地理情况,土地、耕地面积、居民、工矿、交通用地、人口、人口密度、企业数及工农业总产值、固定资产投资等信息数据。
(五)地质灾害统计信息数据库
根据对重庆市各区县灾害的统计卡片,记录了重庆各区县所发生的地质灾害共计627处。统计了地质灾害的灾害类型、面积、体积、主要特征、稳定性及建筑适宜性。
以上几个数据库基本上覆盖了运用该系统进行灾害管理的主要内容。在此基础上,我们对系统功能进行了全方位的测试,认为该系统具备以下几个特点:①针对地质灾害管理的需要,设计出合理而充实的数据库系统;②各数据库结合当今地质灾害调查的实际情况,结构设计合理;③系统功能完备,运行流畅,基本能满足地质灾害管理的需要;④整系统界面具备较好的用户友好性。
Ⅲ 地质灾害灾情评估系统
一、地质灾害灾情评估类型
地质灾害灾情评估有多种类型。根据地质灾害灾情评估时间,分为灾前预评估、灾中跟踪评估、灾后总结评估。其评估目标虽然基本相同,但评估的特点和方法不完全一致。
灾前评估是对一个地区或一个潜在的地质灾害事件的危险程度和可能造成的破坏损失程度的预测性评价。它的目的除了为减灾决策和防治工程提供依据外,还可以对地区经济发展规划、城市建设规划以及土地资源合理开发利用等提供参考依据。由于地质灾害,特别是崩塌、滑坡、泥石流等突发性地质灾害是具有很大不确定性的随机事件,所以一般采用风险分析方法核算灾害的期望损失,据此评价灾害的风险水平。其具体方法和过程是:在分析地质灾害历史活动程度和形成条件的基础上,通过危险性评价,确定地质灾害事件的发生概率和成灾范围;通过易损性评价,核算危害区内各种受灾体的数量和可能损毁程度;通过破坏损失评价,核算灾害的期望损失,划分风险等级;通过防治工程评价,分析灾害的可防治性和可能效益,提出防治灾害的最优方案。
灾中跟踪评估和灾后总结评估都是在灾害发生以后,对已经出现的灾情进行调查、统计、分析,其主要目的是为及时,有效地进行救灾、抗灾提供依据。灾中跟踪评估是对那些规模巨大、破坏严重、成灾活动有一定时间过程的地质灾害进行适时评估。其基本要求是,在灾害发生后的一定时限内,迅速对灾情作出首次评估;随着灾害的发展,每隔一段时间,及时将最新灾情作出适时评估;直至最后灾害过程结束后再作总结评估。灾后总结评估是指在灾害过程结束以后,对灾害情况进行的全面评估。灾中跟踪评估和灾后总结评估的基本方法是调查、统计,对于灾害规模较小,成灾范围有限的地质灾害,一般通过全面调查,获得灾情要素;对于成灾范围较大,受灾体数量很多的地质灾害,可以采用抽样调查统计方法实现灾情评估。
根据地质灾害灾情评估范围或面积,将地质灾害灾情评估分为点评估、面评估、区域评估。
点评估是指对一个地质灾害体或一个具有相同活动条件和特征的相对独立的灾害群的灾情进行的评估。如一个滑坡或滑坡群、一条泥石流沟或同地区紧邻发育的泥石流群等。点评估的范围一般不超过几十平方公里。其行政区范围一般不超过几个乡(镇)或一个县(市)。面评估是对一个具有相对统一特征的自然区域或社会经济区域(如一个小流域或一个城市)进行的地质灾害灾情评估。评价区面积一般从几十平方公里到几千平方公里。其行政范围一般为一个县(市)或几个县(市)。由于进行面评估的地区都是地质灾害危害比较严重的地区,所以地质灾害一般有几十处或几百处,而且常常不是一种地质灾害,而是几种地质灾害的综合评估。区域评估是指跨流域、跨地区的大面积的地质灾害灾情评估。其评估范围为一省或几省乃至全国区域,面积达几万到几百万平方公里。区域评估区内灾害点成千上万,常常难以准确计数,涉及的灾种几乎包括所有类型的地质灾害。
不同范围地质灾害灾情评估的目的、基础、途径和方法不尽一致。点评估的对象是具体的单一的灾害体或灾害事件,通过评估能比较准确地量化它的损失水平和风险程度,为具体的防治工程提供依据。点评估是在对灾害活动条件和受灾体易损性进行深入研究的基础上进行的,其基本手段除了专门性调查统计外,还需要进行必要的测试和实验。它所使用的各种指标以及得出的不同层次的评价结果,基本上达到绝对的量化程度。面评估的目标是认识一个有限地区的地质灾害的破坏损失程度或风险水平,其意义除了指导灾害防治工程外,还将为地区规划和资源开发提供依据。面评估的基本内容与点评估基本一致,仍然是危险性评价、易损性评价、破坏损失评价和防治工程评价。但其所采取的调查方法一般限于全面调查统计,辅以必要的重点深入调查;所使用的指标和各层次的评价结果虽然达到绝对量化程度,但精度要低于点评估。区域评估的目标是对大面积区域性地质灾害的破坏损失或风险程度进行评价,其意义是为宏观减灾决策和区域经济规划提供依据。区域评估仍以“四评价”为中心内容,采取的基本方法是区域性调查和相应的统计分析;所使用的指标和各层次的评价结果一般达到相对的量化程度;所取得的评价结果主要体现在风险区划上。
综合上述,将点评估、面评估、区域评估的基本特点总结于表4-1。
表4-1地质灾害评估范围分类及其特征表
二、地质灾害灾情评估系统
总结本章以上内容,根据评估时间,地质灾害灾情评估分为灾前预评估、灾中跟踪评估、灾后总结评估;根据地质灾害灾情评估范围分为点评估、面评估、区域评估;各种类型灾情评估的基本内容为危险性评价、易损性评价、破坏损失评价、防治工程评价。这些结合在一起,构成了立体的地质灾害灾情评估体系,它反映了地质灾害灾情评估的总体构成(图4-3)。
图4-3地质灾害灾情评估体系示意图
本课题根据这一评估体系,进一步探讨地质灾害灾情评估的理论基础,并结合典型实例,以“四评价”为基本内容,进行崩塌-滑坡、泥石流、岩溶塌陷、地裂缝、地面沉降、海水入侵、膨胀土等地质灾害的点评估、面评估以及综合地质灾害的区域评估。鉴于灾中跟踪评估和灾后总结评估基本上是属于灾情统计范畴,可以应用一般统计原理和方法进行分析评价。所以,本课题在对历史地质灾害灾情进行统计评价的基础上,重点研究灾害预评估的理论与方法。所有这些内容将在后面的章节进行进一步论述。
Ⅳ 地质灾害预警系统研发
3.1.1 总体思路
3.1.1.1 基本认识
中国地域广大,地质环境类型复杂多样,斜坡岩土体含水状态与滑坡泥石流事件发生的对应关系是复杂的,滑坡泥石流事件与降雨过程的关系具有离散性。因此,尽可能细化预警区域的划分,对每个预警区的斜坡坡角、坡积层工程地质特征、植被类型和人类活动方式进行系统研究,得出特定环境地质条件(地层岩性、地质结构、地貌形态、地表植被和人类工程经济活动等)下引发地质灾害的大气降雨量临界值,作为地质灾害区域预警判据是可行的。
3.1.1.2 预警对象与预警重点区
降雨引发的区域突发性群发型地质灾害:崩塌、滑坡、泥石流等。
预警重点区是:
1)威胁山区的乡镇、居民点,且无力搬迁的地区;
2)威胁重要工程如桥梁、水坝和电站等地区;
3)威胁线状工程如公路、铁路、输油(气)管线和输电线路以及水上交通线等地区;
4)重要经济区(发达经济区、工矿区和农业区等);
5)重要自然保护区、自然景观和人文景观地区;
6)区域生态地质环境脆弱,且又必须开发的地区。
3.1.1.3 预警类型
突发性地质灾害气象预警可分为时间预警和空间预警两种类型。
空间预警是比较明确地划定在一定条件下(如根据长期气象预报),一定时间段内地质灾害将要发生的地域或地点,主要适用于群发型;
时间预警是在空间预警的基础上,针对某一具体地域或地点(单体),给出地质灾害在某一时段内或某一时刻将要发生的可能性大小,主要适用于单体如大型滑坡,并有群测群防网络或专业监测网络相配合。
空间预警是减轻区域性、全局性地质灾害的有效手段。空间预警是基于地质灾害的主要控制因素(如地层岩性、地质结构、地貌形态、地层突变等)和引发因素(如降雨、地震、冰雪消融、人为活动)开展工作,控制因素是基本条件,引发因素在不同地区或同一地区的不同地段常常表现出极大差异。
3.1.1.4 预警等级
根据《国土资源部和中国气象局关于联合开展地质灾害气象预报预警工作协议》,地质灾害气象预报预警分为5个等级:
1级,可能性很小;
2级,可能性较小;
3级,可能性较大;
4级,可能性大;
5级,可能性很大;
国家层次发布地质灾害预警按以下考虑:
1~2级不发布预报,用绿色和蓝色表示;
3级发布预报,用黄色表示;
4级发布预警,用橙色表示;
5级发布警报,用红色表示。
3.1.1.5 预警时段与地域
预报预警时段是当日20时至次日20时。
预报预警地域是中华人民共和国领土范围,暂不包括香港特别行政区、澳门特别行政区和台湾省。
3.1.1.6 技术路线
1)把全国划分为若干预警区域。
2)确定预警判据。对每个预警区的历史滑坡、泥石流事件和降雨过程的相关性进行统计分析,分别建立每个预警区的地质灾害事件与临界过程降雨量的统计关系图,确定滑坡泥石流事件在一定区域暴发的不同降雨过程临界值(低值、高值),作为预警判据。
3)判定发生地质灾害的可能性。接收到国家气象中心发来的前期实际降雨量和次日预报降雨量数据后,对每个预警区叠加分析,根据判据图初步判定发生地质灾害的可能性。
4)判定预报预警等级。对判定发生地质灾害可能性较大或以上等级的地区,结合该预警区降雨量、地质环境、生态环境和人类活动方式、强度等指标进行综合判断,从而对次日的降雨过程引发地质灾害的空间分布进行预报或警报。
5)制作地质灾害预警产品。
6)发送预警产品。将预警产品报请有关领导签发后,发送国家气象中心。
7)发布预警产品。国家气象中心收到预警产品后,以国土资源部和中国气象局的名义在中央电视台播出。同时,地质灾害预警结果在中国地质环境网站上进行发布。
8)发布预警后,预警人员跟踪校验预警效果,总结提高预警准确率。
3.1.2 科学依据
根据1990~2002年对突发性地质灾害的分类统计,发现持续降雨引发者占总发生量的65%,其中,局地暴雨引发者约占总发生量的43%,占持续降雨引发者总量的66%。也就是说,约2/3的突发性地质灾害是由于大气降雨直接引发的或是与气象因素相关的,地质灾害气象预警工作是有科学依据的。
3.1.2.1 气象因素引发地质灾害的特点
1)区域性:一般在数百至数千平方公里内出现;单条泥石流的流域面积:≤0.6km2者11.9%;0.6~10km2者61.6%;10~50km2者22.4%。
2)群发性:崩塌、滑坡、泥石流等在某一区域多灾种呈群体出现。
3)同时性:巨大灾难在数十分钟—数小时内先后或同时出现。
4)暴发性:滑坡、特别是泥石流的发生具有突然暴发性,宏观上完好的坡体突然滑塌或“奔流”;当地人称为“涡旋炮”或“山扒皮”。如陕西省紫阳县同一地点伤亡人员最多的联合乡鱼泉村7组(瞬间造成37人遇难)是5个“涡旋炮”同时击中的结果。
5)后续性:大型滑坡一般出现在降雨过程后期,甚至降雨结束后数天。
6)成灾大:造成重大人员伤亡和各种财产损失。
3.1.2.2 气象因素引发地质灾害的成因
1)区域性持续降雨或暴雨使松散堆积层达到过饱和状态。
2)成灾地区地形陡峻,坡形变化复杂,坡度25°~70°。
3)地质上具备二元结构,上为松散堆积层,下为坚硬基岩,容易在二者的接触处形成强大渗流带。
4)松散堆积层厚度1~10m,一般1~4m。
5)一般植被覆盖率较高,在强烈暴雨持续作用下起到滞水作用。
6)居民防灾意识薄弱,房屋结构简易,抗灾强度低。房屋大多建在溪沟出山口地段,属于泥石流的流通路径。调查发现,虽然滑坡、泥石流灾害具有暴发性,但多数地点仍有数小时至数分钟的躲避时间,因防灾基本知识缺乏,以致有的村民在抢运财物过程中丧生。
7)对大型滑坡滞后于降雨过程的机理缺乏科学认识。
3.1.2.3 来自统计学的认识
地质灾害具有自然和社会的双重属性。理论研究与科学实践均证明,地质灾害具有可区划性、可监测预警性。
1)分析发现,滑坡的发生在过程降雨量和降雨强度两项参数中,存在着一个临界值,当一次降雨的过程降雨量或降雨强度达到或超过此临界值时,泥石流和滑坡等地质灾害即成群出现。
2)不同地区具体一条沟谷的泥石流始发雨量区间为10~300mm,差异之大反映了地质条件、气候条件等的差异。
3)在降雨过程的中后期或局地单点暴雨达到临界值时出现突发性群发型泥石流、滑坡等地质灾害,滑坡以小型者居多。
4)大型滑坡常在降雨过程后期或雨后数天内出现。
3.1.2.4 区域地质灾害的时空分布
据20世纪90年代的调查,我国泥石流的时空分布频率具有以下特点:
(1)泥石流频率与地貌
3500m以上的高山占9%;1000~3500m的中山占56%;小于1000m的低山占15%;黄土高原区占11%。
(2)泥石流频率与工程地质岩组
变质岩区占43%;碎屑岩区占32%;黄土区占11%;岩浆岩区占9%;碳酸盐岩区占7%。
(3)泥石流发生频率与年平均降雨量(mm/a)
<400区域占10%;400~600区域占16%;600~800区域占18%;800~1000区域占24%;1000~1400区域占22%;>1400区域占10%
(4)泥石流暴发时间(月份)分布频率
5月:9%;6月:18%;7月:34%;8月:24%;9月:10%
上述统计说明,泥石流主要分布在中低山地区;多出现在易于风化破碎的岩土分布区;年均降雨量过高或过低都不会暴发泥石流;发生时间主要出现在每年的6~8月。
3.1.3 中国地质灾害气象预警区划
基于我国地质灾害类型分布、全国气候区划和滑坡泥石流与区域降雨关系的各类研究文献,编制中国地质灾害气象预警区划图。
3.1.3.1 资料依据
基于气象因素的《中国地质灾害气象预警区划图(1∶500万)》的编制主要依据以下资料:
1)中国泥石流及其灾害危险区划图(1∶600万),
中国科学院成都山地灾害与环境研究所,1991
2)中国滑坡灾害分布图(1∶600万),
中国科学院成都山地灾害与环境研究所,1991
3)中国地质灾害类型图(1∶500万),
地质矿产部成都水文地质工程地质中心,1991
4)中国泥石流灾害图(1∶600万),
地质矿产部成都水文地质工程地质中心,1992
5)中国滑坡崩塌类型及分布图(1∶600万),
地质矿产部环境地质研究所,1992
6)中国特殊类土及危害图(1∶600万),
中国地质科学院水文地质工程地质研究所,1992
7)中国地形图(立体,1∶600万),地图科学研究所,1999
8)中华人民共和国气候图集,气象出版社,2002
9)区域降雨资料与滑坡、泥石流关系的各类文献
3.1.3.2 预警区划分原则
根据研究需要,在此提出斜坡划分原理:
1)滑坡和泥石流是在斜坡地区发生的;
2)区域分水岭的两坡气象降雨条件和生态环境是不同的;
3)我国的最大斜坡是帕米尔高原—东海大陆架的多级多层次斜坡;
4)区域斜坡可分为三类:一类是分水岭到海滨,如后界燕山—鲁儿虎山,左界辽河,右界永定河/海河和前界渤海圈闭的区域;二类如大别山—淮河—黄河圈闭的区域;三类如四川盆地周缘区域。
一级区以全国性分水岭或雪线为界,考虑长时间周期、大空间尺度的气候区划和地质地貌环境条件;
二级区主要以重大水系、区域分水岭、区域气候、历史滑坡泥石流事件分布密度、地质环境条件、斜坡表层岩土性质和年均降雨量分布。
3.1.3.3 预警区域划分
本研究立足全国范围,暂时提出两级区划,共划分7个一级预警区,28个二级预警区,可以满足初步工作要求(图3.1)。
(1)预警区的地质灾害特征
A东北山地平原区
A1三江地区
图3.1 中国地质灾害气象预警区划图(28个区)(台湾省专题资料暂缺)
佳木斯/牡丹江地区,气象因素引发地质灾害微弱。
A2东北平原
桦甸/敦化地区以及大兴安岭东麓,气象因素引发地质灾害较弱。
B大华北地区
B1辽南地区
辽东半岛地区(千山),气象因素引发地质灾害较严重。
B2京承地区
北京北部和河北承德地区,气象因素引发地质灾害严重。
B3晋冀地区
太行山东麓地区,气象因素引发地质灾害较严重。
B4山东丘陵
泰山和胶东地区,气象因素引发地质灾害在小范围较严重。
B5豫西地区
灵宝/许昌之间和伏牛山北麓地区,气象因素引发地质灾害较严重—轻微。
B6皖苏地区
大别山北麓和张八岭地区,气象因素引发地质灾害较严重—轻微。
B7江浙地区
临安/嵊州地区,气象因素引发地质灾害在小范围较严重。
C中南山地丘陵区
C1闽浙地区
武夷山/九连山以东地区,气象因素引发小规模地质灾害严重。
C2江西地区
九岭山和赣南地区,气象因素引发小规模地质灾害严重。
C3豫鄂地区
南阳、神农架、大洪山和大别山南麓地区,气象因素引发地质灾害较严重。
C4湖南地区
湘西和湘南(雪峰山)地区,气象因素引发地质灾害严重。
C5桂粤地区
桂西和两广北部地区,气象因素引发小规模地质灾害严重。
D西南中高山区
D1陕南地区
秦岭南麓和大巴山北麓地区,气象因素引发地质灾害严重。
D2四川盆地
成都平原外的其他地区,气象因素引发地质灾害严重。
D3黔渝地区
黔北和重庆地区,气象因素引发地质灾害严重。
D4滇南地区
滇南和黔南部分地区,气象因素引发地质灾害严重。
D5川滇地区
川西、滇西和滇中地区,气象因素(含高山融水)引发地质灾害极严重。
E黄土高原区
E1吕梁地区
大同—太原—临汾一线地区,气象因素引发地质灾害较严重—轻微。
E2陕北地区
陕北黄土高原地区,气象因素引发地质灾害严重。
E3陇西地区
陇西和海东地区,气象因素引发地质灾害极严重。
F北方干旱沙漠区
F1内蒙古东部地区
气象因素引发地质灾害轻微。
F2阿拉善地区
祁连山北麓、玉门/武威地区,气象因素(高山融水)引发地质灾害较严重。
F3南疆地区
天山南麓、阿尔金山北麓气象因素(高山融水)引发地质灾害较严重。
F4北疆地区
天山北麓气象因素(暴雨和高山融水)引发地质灾害严重。
G青藏高原区
G1藏北地区
气象因素引发地质灾害轻微。
G2藏南地区
雅鲁藏布江及支流流域气象因素(暴雨和高山融水)引发地质灾害较严重;藏东南
暴雨引发地质灾害严重。
(2)一级区域界线标志
A/F大兴安岭—七老图山
漠河—凤水山(1398)—古利牙山(1394)—太平岭(1712)—兴安岭(1397)—巴代艾来(1540)—罕山(1936)—黄岗梁(2029)—七老图山
A/B云雾山—长白山
小五台山(2882)—赤城—云雾山(2047)—七老图山—阜新—铁岭—莫日红山(1013)—白头山
B/E太行山—中条山
小五台山(2882)—恒山(2017)—北台顶(3058)—阳曲山(2059)—历山(2322)—华山(2160)
E/F毛毛山—靖边—东胜—小五台
海晏—仙密大山(4354)—毛毛山(4070)—景泰—定边—靖边—榆林—东胜—丰镇—小五台山(2882)
EB/DC秦岭—伏牛山—大别山—括苍山
海晏—龙羊峡—同仁—鸟鼠山(2609)—武山南—凤县—太白山(3767)—首阳山(2720)—秦岭—华山(2160)—全宝山(2094)—老君山(2192)—太白顶(1140)—鸡公山(744)—霍山(1774)—安庆—九华山(1342)—黄山(1873)—桐庐—括苍山(1382)—北雁荡山(1057)
F/G阿尔金山—祁连山
公格尔山(7649)—慕士塔格山(7509)—赛图拉—慕士山(6638)—乌孜塔格(6250)—九个达坂山(6303)—阿卡腾能山(4642)—阿尔金山(5798)—大雪山(5483)—祁连山(5547)—冷龙岭(4849)—毛毛山(4070)
C/D老君山—梵净山—岑王老山
老君山(2192)—武当山(1612)—大神农架(3053)—建始—来凤(>1000)—酉阳—梵净山(2494)—佛顶山(1835)—雷公山(2179)—岑王老山(2062)—富宁
D/G九寨沟—察隅
武山—九寨沟—雪宝顶(5588)—马尔康—炉霍—新龙—巴塘—察隅
(3)二级区域界线
A1/A2小兴安岭—张广才岭—白头山
呼玛—大黑顶山(1047)—平顶山(1429)—大青山(944)—大秃顶子山(1690)—大石头(1194)—甑峰山(1677)—白头山
B1/B2下辽河
B2/B3永定河—海河
B3/B4黄河
B4/B5黄河故道
B5/B6淮河—黄河故道
B6/B7长江
C1/C2武夷山—九连山
黄山(1873)—玉京峰(1817)—黄岗山(2158)—白石峰(1858)—木马山(1328)—九连山(1248)—龙门
C2/C34霍山—幕阜山—罗霄山脉
霍山(1774)—九江—九宫山(1543)—幕阜山(1596)—连云山(1600)—武功山(1918)—井冈山—八面山(2042)—石坑埪(1902)
C3/C4长江
C124/C5南岭山脉
雷公山(2179)—猫儿山(2142)—韭菜岭(2009)—石坑埪(1902)—雪山嶂(1379)—龙门—飞云顶(1282)—莲花山(1336)—神泉港
D1/D23米仓山—大巴山
九顶山(4984)—广元—米仓山—大巴山—大神农架(3053)
D2/D3长江—重庆—华蓥山—万源北
D123/D5夹金山—大凉山
雪宝顶(5588)—九顶山(4984)—二郎山(3437)—贡嘎山(7556)—铧头尖(4791)—大凉山(3962)—长江—五莲峰(2561)—陆家大营(2854)
D3/D4苗岭山脉
陆家大营(2854)—黄果树瀑布—惠水—雷公山(2179)
D4/D5乌蒙山—哀牢山—高黎贡山
陆家大营(2854)—黎山(2678)—马龙—玉溪—哀牢山(3166)—猫头山(3306)—高黎贡山—(3374)—尖高山(3302)
E1/E2吕梁山脉
岱海—管涔山—荷叶坪(2784)—黑茶山(2203)—关帝山(2831)—禹门口
E2/E3屈吴山—六盘山脉
景泰—屈吴山(2858)—六盘山(2928)—太白(2819)
F1/F2
古尔班乌兰井—呼和巴什格(2364)—贺兰山(3556)—香山
F2/F3
马鬃山(2583)—大雪山(5483)
F3/F4天山山脉
托木尔峰(7443)—比依克山(7443)—天格尔峰(4562)—博格达峰(5445)—巴里坤山—托木尔提(4886)
G1/G2冈底斯山—念青唐古拉山脉
扎西岗—冈仁波齐峰(6656)—冷布冈日(7095)—念青唐古拉峰(7111)—嘉黎—洛隆—邦达—巴塘。
3.1.4 地质灾害气象预警判据研究
3.1.4.1 判据确定原则与资料依据
根据有限研究积累和历史经验,滑坡、泥石流的发生不但与当日激发降雨量有关,而且与前期过程降雨量关系密切,本项研究选定1d,2d,4d,7d,10d和15d过程降雨量等6个数据进行统计分析,期望对一个地区气象因素引发滑坡、泥石流地质灾害的原因与临界雨量判据的确定具有全面认识。
本次研究的资料依据主要有两方面:
1)中国地质环境监测院建立的全国地质灾害调查数据库中气象因素引发的历史滑坡泥石流灾害数据(999个);
2)国家气象中心根据中国地质环境监测院提供的滑坡、泥石流数据,整理提供了731个相关站点15d内历史降雨量数据。
3.1.4.2 预警区的临界降雨量判据研究
(1)不同降雨过程代表数据的选定
中国气象局系统对日降雨量(Q)的预报是按当日20时到次日20时计算,而滑坡、泥石流事件可能发生在此24h的任一时段。
若灾害事件在接近24时发生,则基本可对应1d(即当日)过程降雨量;若灾害事件在次日0时以后的夜间发生,则对应前一日(2d)过程降雨量更符合实际。因此,本项研究选定的数据代表时段(日:24h)是:
1d过程降雨量:0≤Q1≤1
2d过程降雨量:1≤Q2≤2
4d过程降雨量:3≤Q4≤4
7d过程降雨量:6≤Q7≤7
10d过程降雨量:9≤Q10≤10
15d过程降雨量:14≤Q15≤15
(2)临界过程降雨量预警判据图的建立
根据滑坡泥石流与降雨关系的研究,制作滑坡泥石流与不同时段临界降雨量关系散点图,发现散点集中成带分布,其上界可用β线表示,下界可用α线表示。因此,利用1d,2d,4d,7d,10d和15d等过程降雨量,可以建立地质灾害预警判据模式图(图3.2)。
图中横轴是时间(1~15d),纵轴是相应的过程降雨量(mm)。我们规定,α线和β线为两条滑坡、泥石流发生的临界降雨量线,α线以下的A区为不预报区(1,2级,可能性小、较小),α~β线之间的B区为地质灾害预报区(3,4级,可能性较大、大),β线以上的C区为地质灾害警报区(5级,可能性很大)。
(3)预警区临界降雨判据图研究
在28个气象预警区中,18个预警区可以形成完整的滑坡、泥石流发生的临界降雨预警判据图(上限值β线、下限值α线);10个预警区因缺乏资料尚不能形成判据图,其中,A1,B5,F1和G24个区完全缺数据;B4,B6,E1,E2,F3和F46个区数据不全(只能形成α线或β线,甚至散点)。这10个区主要为滑坡、泥石流不发育区或人口稀疏地区,暂时对全国的预警工作效果影响不大。
图3.2 预报判据模板图
代表性数据及曲线举例
A2东北平原
中国地质灾害区域预警方法与应用
*3个样本。
A2气象预警区判据图
B1辽南地区
中国地质灾害区域预警方法与应用
*9个样本。
B1气象预警区判据图
C1闽浙地区
中国地质灾害区域预警方法与应用
*50个样本。
C1气象预警区判据图
D1陕南地区
中国地质灾害区域预警方法与应用
*45个样本。
D1气象预警区判据图
D5川滇地区
中国地质灾害区域预警方法与应用
*60个样本。
D5气象预警区判据图
E3陇西地区
中国地质灾害区域预警方法与应用
*50个样本。
E3气象预警区判据图
F2阿拉善地区
中国地质灾害区域预警方法与应用
*8个样本。
F2气象预警区判据图
G1藏北地区
中国地质灾害区域预警方法与应用
*15个样本。
G1气象预警区判据图
3.1.4.3 预警判据校正
为了提高预警精度,依据以下资料对预警区判据图进行了校正:
1)中国大陆滑坡、泥石流与降雨关系的各类科技文献;
2)历年中国地质灾害公报;
3)部分省(区、市)的地质灾害年报;
4)全国县(市)地质灾害调查区划成果资料(主要是福建省);
5)重点地区地质灾害专项研究报告等。
检索发现有13个预警区具有部分滑坡、泥石流与临界过程降雨量研究资料,有15个预警区暂未收集到或完全缺乏研究资料。
13个具备部分研究资料的预警区分别整理成图、表,可供确定相应预警区预警级别时参考,或与预警判据图配合使用。
以C1区为例,见下表(图3.3):
图3.3 C1区地质灾害点分布与临界降雨量统计关系
3.1.5 预警尺度精度评价
3.1.5.1 预警尺度
(1)空间预警尺度
图面表示3000km2(基于1∶500万~1∶600万地质灾害预警区划图)。
(2)时间预警尺度
地灾预警与气象预警时间尺度同步。
3.1.5.2 预警精度评价
1)取决于气象预报精度。目前全国性的气象预报精度尚不高,特别是对引发泥石流影响明显的局地单点暴雨的预报有待加强。
2)雨量站点代表性精度。地质灾害气象预警判据图依赖于气象站点经(纬)度和地质灾害发生点的经(纬)度(距离)的接近程度。
本次资料地质灾害灾情点的经(纬)度与相邻气象站点的经(纬)度之差在0.3°~1.0°之内,也即相差40~50km,反映在平面上即存在约2000km2的误差。
3)地质环境-气象因素耦合机制的研究精度。地形坡度、植被、岩土类型、含水状态、地表入渗和产流等的研究尚很薄弱。
4)人类活动方式、强度与斜坡变形破坏模式尚缺乏科学界定。
3.1.6 地质灾害预警产品制作与发布
3.1.6.1 预警产品制作、签批与发布
1)国家气象中心提供全国每次降雨过程的天气预报资料,每天16:00通过适当方式(E-mail)发送前期实际降雨量和次日预报降雨量数据;
2)中国地质环境监测院接到降雨量数据后,根据此数据和预警判据图对各预警区发生地质灾害的等级进行逐个分析和判定;
3)专家会商、分析判定预报预警结果,根据会商后的结果,做出空间预警,在预警图上划出预报或警报区,此称预警产品;
4)领导审定、签批预警产品;
5)经签批的预警产品于当天16:30通过适当方式(E-mail)发回国家气象中心;
6)国家气象中心接收预警产品,并和天气预报产品统一制作,配音;
7)中央电视台在当天晚上19:30新闻联播后播出地质灾害气象预报或警报及等级;
8)预报或警报地区的有关省级地质环境监测总站应在预警发出24h至48h内,向中国地质环境监测院反馈预警效果校验结果;
9)中国地质环境监测院分析研究预警效果校验结果,改进预警判据,逐步提高预警精度。
3.1.6.2 预警产品发布形式
(1)中央电视台发布播出
预警产品署名:国土资源部
中国气象局
模拟预报词:
今天晚上到明天白天,××地区发生地质灾害的可能性较大,请注意防范。
(2)中国地质环境信息网站发布
主要供专业人士和政府管理部门参考,跟踪研究预警效果,讨论研究预警方法与对策。
设计制作了地质灾害气象预警预报专用“符号”(图3.4)。
图3.4 地质灾害气象预报预警专用“符号”
从2005年开始,在中央电视台发布地质灾害气象预警预报信息图片时,同时配发崩塌、滑坡和泥石流动画,增强了地质灾害预警信息的视觉冲击力,也提高了地质灾害气象预报预警的社会影响力。
3.1.7 地质灾害预警软件系统
3.1.7.1 基于C语言的预警预报软件
2004~2006年,模型采用第一代临界雨量判据法,基于C语言的预警预报软件。具备自动生成降雨等值线、雨量站点上自动计算预报等级、查看雨量站点雨量等功能(图3.5)。缺点是无法自动成区、不具备GIS图层操作功能。
图3.5 基于C语言的第1套预警软件Predmap抓图
3.1.7.2 基于ArcGIS开发了第2套预警预报软件
2007年,基于ArcGIS开发了第2套预警预报软件,模型仍采用第一代临界雨量判据法(图3.6)。主要改进在于将软件系统升级为基于GIS开发,且实现预警区的自动圈闭。缺点是ArcGIS软件庞大,软件操作、升级等方面不便。
图3.6 基于ArcGIS的第2套预警软件抓图
Ⅳ 地质灾害信息系统
整理集成全国地质环境与地质灾害调查、监测和研究成果,编制全国地质灾害气象预警预报信息图层30个,建立全国地质灾害气象预警预报信息系统。
5.2.1 信息图层编制原则
在地质灾害气象预警信息图层编制过程中,充分考虑到影响地质灾害发生的各种地质环境背景条件因子、历史地质灾害点分布、社会经济条件、人类工程设施等因素。依据如下几个原则:
1)全面性。将目前能够收集到的影响地质灾害发生的各种因素,尽可能地考虑全面,至于每种因素的影响贡献大小在权重计算部分考虑。
2)时效性。每个信息图层的编制中,尽可能以最新最翔实的数据资料为基础,从而保证对最新资料信息和研究成果的及时利用和更新。
3)适用性。收集到的数据资料,根据全国地质灾害气象预警预报的具体工作实际需要,进行相应的改编处理。
4)最大可能使用数据。全国地质灾害气象预警预报的基本比例尺定位为1∶100万,一些关键的图层数据,如地理底图、地质底图、土地利用底图均可达到1∶100万的比例尺需求,但部分信息图层无法达到1∶100万的比例尺,本项目本着最大可能使用数据的原则,暂且采用小比例尺的图层直接投影变换代替,以后工作中再逐步更新。
5.2.2 信息图层概况
信息图层的投影参数如下:
比例尺:1∶100万
投影类型:亚尔博斯等积圆锥投影坐标系;坐标单位:mm
第一标准纬度:25°00༼″;第二标准纬度:47°00༼″
中央子午线经度:105°00༼″;投影原点纬度:0°00༼″
地质灾害气象预警预报信息图层基本情况见表5.1。
5.2.3 信息图层说明
各信息图层编制按照各因子的分布特点进行分级。
5.2.3.1 年均雨量
全国年均雨量分为11个级别,各级别年均雨量分段:<50mm,50~100mm,100~200mm,200~400mm,400~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1600mm,1600~2000mm,>2000mm。
5.2.3.2 年均气温
根据《中国自然地理图集》(2004),将全国年均气温分为9个级别,各级别年均气温分段如下:<-4℃,-4~0℃,0~4℃,4~8℃,8~12℃,12~16℃,16~20℃,20~24℃,>24℃。
5.2.3.3 年蒸发量
根据《地下水资源与环境图集》(2004),将全国年蒸发量分为10个级别,各级别分段如下:<500mm,500~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1400mm,1400~1600mm,1600~2000mm,2000~2400mm,>2400mm。
表5.1 全国地质灾害气象预警预报信息图层简表
5.2.3.4 年干燥度
干燥度,又称干燥指数或干燥因子。描述气候干燥程度的指数,与湿润系数互为倒数,一般用水分的可能消耗量与收入量的比值表示。它是表征一个地区干湿程度的指标。
根据《地下水资源与环境图集》(2004),将全国年干燥度分为12个级别,各级别分段如下:<0.5,0.5~0.75,0.75~1.0,1.0~1.5,1.5~2.0,2.0~3.0,3.0~5.0,5.0~10,10~25,25~50,50~100,>100。
5.2.3.5 地震烈度
采用第三代《中国地震烈度区划图》(1990),将全国地震烈度按5级区划:Ⅴ度区、Ⅵ度区、Ⅶ度区、Ⅷ度区、Ⅸ度区。
5.2.3.6 历史地震点
来源于科学数据共享工程,中国地震局共享数据网,近年来(1999年1月1日至2006年11月2日)的已发地震点数据,共203个。
5.2.3.7 地层岩性
根据“中国地质科学院地质研究所,1∶100万地质图”重新进行编制划分。
(1)划分原则
地质灾害的产生与地层岩性关系密切。地层岩性是地质灾害形成的内在因素,对地质灾害的产生起着主导和控制作用,岩性及其组合特征的控制作用决定着地质灾害的区域分布。从沿海向内陆,地层岩石由火成岩为主变为变质岩、碎屑岩相间分布,进而变为碳酸盐岩、碎屑岩、变质岩相间分布。
斜坡岩土体的性质及其结构是形成滑坡、崩塌的物质基础。一般易形成滑坡、崩塌的岩体,大都是碎屑岩、软弱的片状变质岩,岩性多为泥岩、页岩、板岩、含碳酸盐类软弱岩层、泥化层、构造破碎岩层。这些软弱岩层经水的软化作用后,抗剪强度降低,容易出现软弱滑动面,形成崩滑体。
黏性土滑坡在四川分布密集,在中南、闽、浙、晋西、陕南、河南等地也较密集,在长江中下游、东北等地也有一定分布;半成岩类粘土岩滑坡在青海、甘肃、川滇地带、山西几个断陷盆地中分布密集;黄土滑坡在黄河中游、青海等省较密集;泥岩、千枚岩、砂质板岩形成的滑坡在湖南、湖北、西藏、云南、四川、甘肃等地十分发育。
泥石流主要发育在变质岩区和黄土区,火成岩区和碎屑岩地区次之,碳酸盐岩地区泥石流相对不发育。
根据全国地质灾害发育的普遍规律并结合不同地区地质灾害发育的特殊性,主要考虑以下几个方面的原则划分地质灾害敏感性岩组。
1)地层岩性与地质灾害分布的关系;
2)地层岩性的成因、物质组成与空间分布特征;
3)地层岩性的时代;
4)岩土体(不同时代地层)的工程地质性质;
5)水岩相互作用的敏感性;
6)1∶100万中国地质图的精度。
(2)划分方案
根据地质灾害发育的普遍规律以及地层岩性对地质灾害的敏感程度,将地质灾害敏感性岩组划分为10种类型。敏感性指数值越高,则相应的岩组对地质灾害的发生也越敏感。
Ⅰ类:主要为水体、粉砂质食盐、食盐壳、盐碱壳、风积物砂等区域,这些区域不会发生滑坡、崩塌、泥石流等地质灾害。
Ⅱ类:主要是火成岩类。岩性为闪长岩、石英闪长岩、辉长岩、花岗岩、辉绿岩等,岩性坚硬,力学强度大,是很好的地基和建筑材料。
Ⅲ类:主要是火成岩类。岩性为钾长花岗岩、二长花岗岩、碱长花岗岩、片麻状花岗岩、斜长花岗岩、紫苏花岗岩、正长岩、石英正长岩、煌斑岩、白岗岩、花岗闪长岩、英云闪长岩、辉石闪长岩、辉长闪长岩、花岗斑岩、英安斑岩、辉绿岩、橄榄岩、橄榄辉绿岩、玄武岩、橄榄玄武岩、苦橄玄武岩、石英二长岩、石英二长斑岩、辉石岩、角闪正长岩、闪长玢岩、英安玢岩、辉绿玢岩、苦橄玢岩、安山玢岩、超基性岩、安山岩、碱性岩、英安岩、粗面岩、科马提岩、云辉二长岩、白榴岩、霓霞岩、碎斑熔岩、细碧岩、石英钠长斑岩、霏细斑岩、辉长苏长岩等,岩性坚硬,力学强度较大。
Ⅳ类:主要是变质岩类和部分火成岩及沉积岩。岩性为白云质灰岩、灰岩、白云岩、黑云母花岗岩、白云母花岗岩、黑云斜长花岗岩、二云母花岗岩、流纹岩、变粒岩、片麻岩、角闪岩、砂砾岩、砾岩、变质橄榄辉长岩、糜棱岩、蛇纹岩、大理岩、珍珠岩、硅质岩、蛇绿岩、浅粒岩、岩溶角砾岩、铝铁岩系、黑云角闪闪长岩、斑状云母橄榄岩、榴辉岩、黑云母霞石白榴岩、霏细岩等,岩性较坚硬,力学强度较大。
Ⅴ类:主要是沉积岩类。岩性为页岩、夹页岩、火山碎屑岩、生物碎屑岩、片岩、千枚岩、板岩、砂岩、粉砂岩、碳酸盐岩、凝灰岩、糜棱岩等,半坚硬岩组,力学强度较低,易风化,遇水软化,是地质灾害较易发生的地层。
Ⅵ类:主要是沉积岩类。岩性为泥岩、钙质泥岩、泥灰岩、夹泥岩、粘土岩、泥页岩、煤系、泥质粉砂岩、冰碛泥砾岩等,半坚硬岩组,力学强度低,遇水泥化,是地质灾害容易发生的地层。
Ⅶ类:岩性为黄土、黄土状土,黄土的地层年代为Q1p,Q2p,渗透性弱、抗剪强度高。
Ⅷ类:主要为冲海积物、海积物、冲湖积、湖积、沼泽堆积、石英斑岩风化层、花岗斑岩风化层等松散层。
Ⅸ类:主要是冲积物、冲洪积物、洪冲积物、残坡积物、坡冲积物、冰碛物、苦橄玄武岩风化层、辉绿岩风化层、花岗岩风化层、冰积物等松散堆积物,是产生地质灾害的主要物源。
Ⅹ类:岩性为黄土,地层年代为Q3p,Qh,疏松、大孔隙,垂直节理发育,渗透性强、抗剪强度低、具湿陷性(表5.2)。
5.2.3.8 断裂分布
根据“中国地质科学院地质研究所,1∶100万地质图”编制。考虑到网格单元的大小和断层断裂的影响范围,计算时采用网格区内断层断裂的密度进行计算。
5.2.3.9 第四系成因时代
根据1∶250万第四纪地质图编制,将第四系的成因时代分为7类:N2-Q1p,Q,Qp,Q1p,Q2p,Q3p,Qh。
5.2.3.10 岩土体类型
来源于1∶400万岩土体类型图,将岩土体类型分为7类:火成岩、变质岩、碎屑岩、碳酸盐岩、砂质土、黄土、其他土。
5.2.3.11 第四系成因类型
根据1∶250万第四纪地质图编制,将第四系成因类型分为19类:冰碛、冰水沉积、冰水-洪积、冰水-湖积、洪积、残积、残坡积、冲积、冲积-洪积、冲积-湖积、寒冻风化残坡积、红土化残积、黄土堆积、风积、湖积、坡积、岩溶化残坡积、火山堆积、海陆交互相及海相堆积。
表5.2 中国工程地质岩组划分表
5.2.3.12 水文地质类型
将水文地质类型分为5大类、18亚类:
1)松散沉积孔隙水(滨河平原冲海积层孔隙水、堆积平原冲洪积层孔隙水、黄土高原黄土层孔隙水、内陆盆地冲洪积层孔隙水、沙漠风积沙丘孔隙水、山间盆地冲积层孔隙水);
2)基岩裂隙水(丘陵高原碎屑岩裂隙水、熔岩孔隙裂隙水、山地丘陵岩浆岩裂隙水、山地变质岩裂隙水);
3)多年冻土冻结层上水(高纬度山地基岩冻结层上水、中低纬度高原基岩冻结层上水、中低纬度高原松散沉积冻结层上水);
4)碳酸盐岩裂隙溶洞水(峰丛峰林裂隙溶洞水、岩溶丘陵裂隙溶洞水、岩溶山地裂隙溶洞水);
5)其他(湖泊、雪被)。
5.2.3.13 海拔高度
从1∶100万地理地貌底图中提取,将海拔高程分为6类:极高海拔(>6000m)、高海拔(4000~6000m)、中高海拔(2000~4000m)、中海拔(1000~2000m)、低海拔(<1000m)、其他(非山地丘陵)。
5.2.3.14 起伏程度
从1∶100万地理地貌底图中提取,将地形起伏分为6类:极大起伏(>2500m)、大起伏(1000~2500m)、中起伏(500~1000m)、小起伏(200~500m)、丘陵(<200m)、其他(非山地丘陵)。
5.2.3.15 地貌类型
从1∶100万地理地貌底图中提取,并重新归类,将地貌类型分为11类:山地、黄土梁峁、黄土台塬、黄土塬、风蚀地貌、台地、平原、冲积扇平原、低河漫滩、现代冰川、湖泊。
5.2.3.16 土壤侵蚀
根据“中国土壤侵蚀图”,将土壤侵蚀类型及侵蚀强度分为3大类、15亚类:
1)水力侵蚀(剧烈侵蚀、极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀、无明显侵蚀、微度侵蚀);
2)冻融侵蚀及冰川侵蚀(强度侵蚀、中度侵蚀、轻度侵蚀、微度侵蚀);
3)风力侵蚀(极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀)。
5.2.3.17 水系
从1∶100万地理底图中提取的线形河流。实际计算时,采用网格单元内水系密度参加计算。
5.2.3.18 植被
从1∶100万地理地貌底图中提取,将植被覆盖分为6类:红树林滩、森林、经济林与竹林、灌木林、草地、其他。
5.2.3.19 土地利用
根据“1∶100万土地利用类型图”编制,将土地利用类型分为6大类、13亚类。分别是:①耕地(水田、旱地);②林地(有林地、灌木林、疏林地、其他林地);③草地(高覆盖度草地、中覆盖度草地、低覆盖度草地);④水域;⑤城乡工矿居民用地(城镇用地、农村居民点、其他建设用地);⑥未利用土地。
5.2.3.20 公路
从1∶100万地理底图中提取的线形公路,又分为5类,即高速公路、主要公路、一般公路、大路、小路。实际计算时,采用网格单元内所有公路密度参加计算。
5.2.3.21 铁路
从1∶100万地理底图中提取的线形铁路,补充青藏铁路线路。实际计算时,采用网格单元内铁路密度参加计算。
5.2.3.22 矿山点
全国矿山调查点共11万多个。
5.2.3.23 分县人口密度
根据2003年人口普查数据,分县计算人口密度,分为5类:>750,450~750,150~450,50~150,<50。单位:人/km2。
5.2.3.24 水坝分布
从1∶100万地理底图中提取,水坝工程点共885个。
5.2.3.25 塔庙宇文化要素分布
从1∶100万地理底图中提取,包括塔、庙宇和其他文化设施,计193个点。
5.2.3.26 灾害点—滑坡
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的滑坡灾害点数据。合计45917个点。随着更新的数据成果,将继续更新。
5.2.3.27 灾害点—泥石流
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的泥石流灾害点数据。合计9253个点。随着更新的数据成果,下一步将继续更新。
5.2.3.28 灾害点—崩塌
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的崩塌灾害点数据。合计13094个点。随着更新的数据成果,下一步将继续更新。
5.2.3.29 地震动参数
根据“中国地震动参数图GB18306-2001”,分为7个级别:≥0.40,0.30,0.20,0.15,0.10,0.05,<0.05。单位:g。
5.2.3.30 中国第四纪岩性图
根据1∶250万第四纪地质图编制,将第四系岩性分为11类:
砾质土;砂质土;黏质土;黄土类土;盐类为主;砾质土、黄土类土;黏质土、砂质土、砾质土;砂质土、黏质土;黏质土、砾质土;砂质土、砾质土。
Ⅵ 四信地质灾害监测预警系统主要功能有哪些
主要作用是:通过野外监测站对降雨量、表面位移、泥水位、地声、次声内、孔隙水压力容、视频、深部位移、土压力等要素进行实时监测,使用GPRS/LoRa/3G/4G等通信方式将数据传输到管理及监测预警云平台,为防灾减灾提供实时信息服务。
广泛应用于滑坡监测预警、泥石流监测预警、地面沉降监测预警、崩塌监测预警等,有效保障地质灾害多发地区人民群众的生命与财产安全。
Ⅶ 地质灾害数据监测系统分析软件有哪些
青岛海徕天创公司的4Dmos—pointcloud变形监测软件,预测各种地表活动,滑坡、塌陷等,可以咨询
Ⅷ 全国地质灾害监测预警体系建设的主要任务
全国地质灾害监测预警体系建设的总体规划如图7.1所示。
7.3.1 国家、省、市、县级地质灾害监测预警站网建设
县级以上国土资源行政主管部门建立地质灾害监测预警体系,会同建设、水利、交通等部门承担地质灾害监测任务,负责业务技术管理,并可受政府委托行使部分地质灾害监测管理职能,发布地质灾害监测预警信息。地质灾害监测机构是公益性事业单位。
(1)国家级地质灾害监测站
国家级地质灾害监测站负责全国性地质灾害专业监测网、信息网的建设与运行工作,并承担国家级地质环境监测任务;承担全国地质灾害预警预报和相关的调查研究工作;拟编全国地质灾害监测规划、计划、工作规范和技术标准;开展科技交流与合作,研究和推广新技术、新方法;承担全国地质灾害监测数据、成果报告的汇总、分析、处理和综合研究,为政府决策部门和社会公众提供信息服务;负责对省(区、市)级地质灾害监测业务的指导、协调和技术服务。
(3)地质灾害监测预警研究试验区
针对我国突发性地质灾害具有区域性、同时性、突然性、暴发性和危害大等特点,结合国土整治规划和资源能源开发,在代表性地区开展地质灾害监测预警示范。在试验区建立自动遥测雨量观测站网,逐步建立试验区滑坡、崩塌和泥石流区域爆发的降雨临界值,为突发性灾害的区域预警提供依据。同时,在试验区开展降雨期斜坡岩土体渗流观测,研究降雨诱发滑坡、崩塌和泥石流的机理。
2010年前,进一步完善和建设三峡库区立体式监测预警示范区。完成三峡库区滑坡、崩塌、泥石流灾害的立体监测网建设,在库区60处地质灾害点实现监测数据的自动采集、实时传输和自动分析;完善库区20个县级监测点建设;完成1∶1万航摄飞行;建立全库区的遥感(RS)监测系统,完成全球定位系统(GPS)控制网、基准网建设。
2010年以前重点在重庆市区、北京市、甘肃兰州市、陕西安康市、四川雅安、云南新平、云南东川、浙江金华市、江西宜春市等地区开展突发性地质灾害监测预警试验研究。
(4)地面沉降和地裂缝监测网
1)国家级地面沉降监测网选址原则:①跨省区的地面沉降灾害区域;②有一定的监测工作和设施基础;③地方政府有积极性,并提供配套资金;④具有较为完善的法规和管理体系。
2)工作部署:2010年之前,重点开展长江三角洲、华北平原、关中平原、淮北平原和松嫩平原地面沉降和地裂缝监测网的建设;2010年以后逐步开展汾河谷地、辽河盆地、珠江三角洲以及全国其他主要城市地面沉降和地裂缝的调查及监测网的建设。
长江三角洲地面沉降和地裂缝监测网包括上海市全部,江苏的苏锡常地区、南通地区和盐城地区南部的三个县(市),浙江的杭嘉湖平原,控制面积近5万km2。
华北平原地面沉降和地裂缝监测网包括北京、天津市的平原区,河北省的环渤海平原区和山东的鲁西北平原,控制面积5万多km2。
关中平原和汾河谷地地面沉降和地裂缝监测网的覆盖范围自六盘山南麓的宝鸡,沿渭河向东,经西安到风陵渡转向北东,沿汾河经临汾、太原到大同,宽近100km,长近1000km,包括渭河盆地、运城盆地、临汾盆地、太原盆地、大同盆地等,涉及近50个(县)市。
7.3.3 群测群防体系建设
突发性地质灾害群测群防网主要针对地质灾害较严重的山区农村,以县为单位,在专业队伍指导下,建立由当地政府领导下的县、乡、村三级群测群防体系。在各级地方政府的组织和领导下,充分发挥各级监测站的技术优势,提高群众的防灾意识和参与程度,完善监测预报制度,到2010年,建成1400个县(市)突发性地质灾害易发区的群测群防网络体系。
(1)群众监测网络建设
1)监测点选定原则:①危险性大、稳定性差、成灾概率高,会造成严重灾情的地质灾害隐患体;②对集镇、村庄、工矿及重要居民点人民生命安全构成威胁的地质灾害隐患体;③一旦发生将会造成严重经济损失的地质灾害隐患体;④威胁公路、铁路、航道等重要生命线工程的地质灾害隐患体;⑤威胁重大基础建设工程的地质灾害隐患体。
2)监测点的建设:根据上述原则确定需要监测的地质灾害隐患点后,由专业调查组及时向当地政府提出监测方案,同时协助搞好监测点的建设工作。①监测范围的确定:除对地质灾害隐患点和不稳定斜坡本身的变形迹象进行监测外,还应把该灾害点威胁的对象和可能成灾的范围,纳入监测范围。②监测方法与要求:对当前不宜进行治理或暂时不能进行治理的隐患点,危害大的应建立简易监测点,同时要对宏观地面变形、滑坡体内的微地貌、地表植物和建筑物标志等进行观察。以定期巡测和汛期强化监测相结合的方式进行。定期巡测一般为半月或每月一次,汛期强化监测将根据降雨强度,每天或24小时值班监测。③监测点的设置:简易监测点一般采用设桩、设砂浆贴片和固定标尺,对滑坡体地面裂缝相对位移进行监测,对危害大的隐患点,如有条件也可用视准线法测量监测点的位移。
3)监测网点的管理与运行:①监测责任落实到具体的单位与个人。被监测的地质灾害隐患点所在的乡(镇)、村和有关单位为监测责任人,在其领导下,成立监测组,监测组由受危害、威胁的居民点或有关单位的群测人员组成。②建立岗位责任制,县、乡(镇)、村应逐级签订责任书。调查过程中,采取多种方式进行宣传与培训,教会监测责任人、监测组成员和群众,如何监测、如何判断灾害可能发生的各种迹象和灾情速报及有关应急防灾救灾的方法。③信息反馈与处理。县(市)国土资源主管行政部门负责监测资料与信息反馈的收集汇总,上报到市(地、州)国土资源行政部门(或地质环境监测站)进行综合整理与分析,省国土资源厅地质环境处(或省地质环境总站)将上报的资料与信息录入省地质灾害空间数据库,进行趋势分析,同时对下一步监测工作提出指导性意见。④预测有重大险情发生时,当地政府和有关单位应立即采取应急防灾减灾措施,同时应立即报告省、市、县政府和国土资源主管部门,派出专业人员赴现场协助监测和指导防灾救灾。⑤建立地质灾害速报制度,按国土资发[1998]15号文附件执行。
4)资料的收集与监测数据的整理:①监测数据包括地质灾害点基本资料、动态变化数据、灾情等。②所有监测数据均应以数字化形式储存在信息系统中,同时,必须以纸介质形式备份保存。③监测点必须进行简易定量监测,并须整理成有关曲线、图表等。应编制有关月报、季报和年报,同时,对今后灾害发展趋势进行预测。④监测数据应按有关程序逐级汇交。
(2)群专结合的预报预警系统建设
1)县(市)国土资源行政主管部门归口管理和指导群众监测网络,负责监测资料与信息反馈的收集汇总。
2)县(市)国土资源行政主管部门的地质环境职能部门应根据气象、水文预报和监测资料进行综合分析,预测地质灾害危险点,并及时向有关乡(镇)、村和矿山及负有对重要设施管理的有关部门发出预警通知。
3)县(市)国土资源行政主管部门负责组织各乡(镇)、矿山、重要设施主管部门编制汛期地质灾害防灾预案。编制全县(市)汛期地质灾害防灾预案,并负责组织实施。
4)县(市)国土资源行政主管部门负责组织地质灾害防治科普宣传活动和基层干部培训工作。
7.3.4 地质灾害监测预警信息网建设
地质灾害监测预警与防治数据是国家与地方进行地质灾害防治,保障社会与经济建设的重要信息,具有数量大、更新快、用途广等特点。通过信息网的建设,实现数据的采集、存储、分析和发布,切实做到为政府、研究人员和社会提供所需的地质灾害信息,为国家经济建设宏观决策提供基础的科学依据。
到2010年,在完善中国地质灾害信息网与各省地质灾害信息网及部分地(市)地质灾害信息网的同时,建成集地质灾害监测、地下水环境监测等为一体的全国地质灾害监测信息系统,实现地质灾害监测数据的自动采集、传输、存储、数据管理、查询、应用和信息实时发布系统。
到2020年,以科学技术为先导,不断完善全国地质灾害监测信息系统,结合气象、水文、地震等相关因素,建成多专业领域、多信息处理技术的信息系统;全面提升我国地质灾害监测信息水平,满足社会和民众对地质灾害信息的需求,实现远程会商、应急指挥等重要决策功能。
地质灾害监测预警信息系统建设依托于各级地质灾害监测机构,具有统一要求、统一流程、分级管理等特点,是一个与现代计算机技术紧密结合的系统工程。本书在第11章(全国地质灾害防治信息系统建设规划研究)全面讨论了包括地质灾害监测预警信息系统在内的整个地质灾害防治信息系统的建设问题,本节不再赘述。
7.3.5 突发性重大地质灾害应急反应机制建设与远程会商应急指挥系统建设
(1)应急反应机制建设
从现在(2004年)起,国家、各省(区、市)要组建以省国土资源行政主管部门为指挥中心,以地质环境监测总站(院、中心)为主体,地(市、州)、县(市、区)国土资源行政主管部门和地方专业队伍协同作战的地质灾害监测预警应急反应系统。
1)应急反应系统要配置必备的应急设备,每年汛前对防灾预案中地质灾害隐患点的主要县(市)进行险情巡查,重点检查防灾减灾措施、群测群防网络、监测责任制是否落实到位,并对主要灾害隐患点进行险情巡查,汛中加强监测,汛后进行复查。
2)发现险情和接到险情报告能在最短的时间内赶到现场,进行险情鉴定,同时能够及时对灾害进行动态监测、分析,预测灾害发展趋势,根据灾害成因、类型、规模、影响范围和发展趋势,划定灾害危险区,设置危险区警示标志,确定预警信号和撤离路线,组织危险区内人员和重要财产撤离,情况危急时,强制组织避灾疏散。
3)接到特大型和大型地质灾害隐患临灾报告,指挥部办公室会同相关部门,迅速组织应急调查组赶赴现场,调查、核实险情,提出应急抢险措施建议。
(2)突发性重大地质灾害远程会商与应急指挥系统建设
随着国家经济建设规模的日益扩大和人民生活水平的不断提高,地质灾害造成的损失日趋突出,地质灾害的防治工作必须针对重大地质灾害及时作出反应,提出科学的决策意见,及时指挥应急处理工作。
突发性重大地质灾害远程会商及应急指挥系统,是针对突发重大地质灾害的预报和应急指挥,在建立地质灾害综合数据库的基础上,构建连接国务院国土资源主管部门、地质灾害数据中心与重点地质灾害发生区的远程会商和应急指挥网络化多媒体环境及地质灾害应急数据传输环境,形成一套信息化的地质灾害远程会商和应急指挥工作流程。
其主要工作内容如下:
1)对重大地质灾害预报和应急指挥相关的信息进行提取、加工、整理、集成与分析,建立地质灾害综合数据库。信息内容包括地理、地质背景数据;气象分析数据;地质灾害调查与监测数据;地质灾害情况资料;救灾条件信息等。
2)建立地质灾害信息发布平台。开发和建设重大地质灾害信息预报与应急指挥相关的动态信息发布系统、空间信息提取与发布系统、多媒体信息发布系统。
3)构建地质灾害远程会商和应急指挥的网络和多媒体运行环境。包括多点、多级视频会议系统、大屏幕显示系统及有关音像、电话系统;国家与重点地质灾害区域之间的网络信息传输系统;构建地质灾害重点区域应急调查数据快速传输环境。
4)研究与制定形成一套地质灾害远程会商和应急指挥系统工作规范。分析地质灾害远程会商和应急指挥工作的特点,提出地质灾害远程会商和应急指挥系统工作的模式,建立一套相关的工作规范。
Ⅸ 全国地质灾害监测系统做得最好的是哪家
心里只怀着一个愿望:
你要想到达更远的地方,
讯息要射阅空间,
不必要的等待,
在红色的冰天之后,
渐渐的充斥是的功失败哈哈
Ⅹ 近十年国外主要的地质灾害监测系统有那些
四信地质灾害抄监测预警系统,通过野外监测站对降雨量、表面位移、泥水位、地声、次声、孔隙水压力、视频、深部位移、土压力等要素进行实时监测,使用GPRS/LoRa/3G/4G等通信方式将数据传输到管理及监测预警云平台,为防灾减灾提供实时信息服务。。
四信地质灾害监测预警系统,广泛应用于滑坡监测预警、泥石流监测预警、地面沉降监测预警、崩塌监测预警等,有效保障地质灾害多发地区人民群众的生命与财产安全。
系统由现场采集层、无线传输通信层、预警发布中心3部份组成。
实时监测地质灾害多发区的各维度数据,为科技决策提供依据
系统可快速采集、传输、计算、分析、存储各监测点的监测数据,包括雨量、泥水位、地声、次声、孔隙水压力、土体沉降、地表裂缝、深部位移、地下水、土压力、表面位移、土壤含水量、图像视频、电源电压和环境温度等,并对数据进行纠错处理,减少数据误码率、提高数据完整率。