当前位置:首页 » 地质工程 » 机场地质灾害勘探方法

机场地质灾害勘探方法

发布时间: 2021-03-05 17:05:05

地质灾害调查评价的技术方法

地质灾害调查评价的方法有遥感解译、地面测绘、地球物理、地球化学、山地工程、钻探、试验等。这些方法各有特点。

1.主要技术方法

(1)遥感图像解译

遥感图像能直观地显示区内地形、地貌、地质和水文的整体轮廓与形态,可以宏观认识调查区的自然地理、地质环境,指导调查工作的整体部署,减少盲目性,节省人力、物力的投入。

(2)工程地质测绘

工程地质测绘是地质灾害调查评价最基本、最经济的手段。其成果有利于指导物探、钻探和山地工程及试验工作的部署,应首先开展。

(3)地球物理勘探

地质灾害调查评价中常用的物探方法有电法、弹性波法、放射性法、重力法、磁法、热测量法、扩散法、综合测井法等类型。物探方法设备轻便、成本低、速度快、覆盖面大,与钻探、山地工程、地面测绘相结合,既可以节约投资,又可取得有效的成果,但要注意物探结果具有多解性,并受应用前提和现场条件的制约。

(4)钻探

钻探方法用于获取深部地质资料,具有成果直观、准确并能长期保存等优点,可以进行综合测井、录像、跨孔探测、长观和变形监测。不足是受交通运输、地形和场地等条件的限制,耗资较大。

(5)山地工程

山地工程分为轻型山地工程(试坑、探槽、浅井)和重型山地工程(竖井、平斜硐、石门、平巷等)。山地工程是地质勘查的重要手段,技术人员可直接观测岩土体内部结构、构造、断层、软弱夹层、滑带、裂缝、变形和地压等重要地质现象,获取资料直观可靠。还可以进行采样、原位测试,为物探、监测乃至施工创造有利条件。山地工程施工受地层岩性和其他条件限制,为保证施工安全,要认真研究论证防范措施。

(6)试验

试验是研究地质体的材料特性,即物理性质、水理性质、力学性质及其赋存环境(如地下水、地应力、地温等)的重要手段,是地质灾害调查评价中复杂地质条件下地质参数选取的重要途径。

2.选择方法的原则

方法的选择应以调查工作的任务要求、阶段以及地质灾害的特征为依据,以期使用最基本、简便易行的方法,以最低的投入,取得有用且好用的资料,实现最好的减灾效益。

1)针对性:要根据现场踏勘和前人资料,初步判定地质灾害的性质,有针对性地选择勘探方法,避免盲目工作,做到事半功倍。

2)实用性:力求以最简单的方法解决最复杂的问题,不刻意追求新奇复杂的技术方法。

3)简单高效:尽可能采用操作简便、易于搬运、环境适应性强的设备。

4)经济合理:在能满足调查评价任务要求的前提下,尽可能降低工作量。

3.方法的配置

方法的配置要充分考虑调查工作的阶段性,方法自身的适用性,方法之间的互补性、互验性,技术和经费的可行性。

钻探和山地工程对物(化)探有很强的互补性和互验性。先用钻探对地面物化探结果进行验证,提高其成果的准确性和推广价值。再进行测井和跨孔探测,拓宽物探的勘测范围,以取得更好的成效。钻探要投入到关键部位,每个钻孔都应综合测井,进行变形监测等,发挥其较多的功能。

试验用于查明灾害体的地质特性和赋存环境,提供岩土体物理力学参数和水文地质参数,要结合其他工作统一部署。试验常常成为解决复杂地质问题的有效途径。

实践表明,如果地质测绘工作细致深入,轻型山地工程配合得当,物化探工作针对性强,就可以大大降低钻探工程量,少用甚至不用重型山地工程。

⑵ 地质灾害治理工程勘查与地质勘探,有什么区别,我公司想办安全生产许可证说有区别不给办。谢谢

如果是新立矿山企业应是采矿证置前然后才能办理安全生产许可证

⑶  瑞雷波法

弹性波主要有两大类,在介质内部传播的波叫体波,如人们所熟知的纵波(P波)、横波(S波)等;沿介质自由表面传播的波叫表面波(Surface Wave),简称面波。表面波与体波不同,它沿界面传播,是波动现象集中在一个波长范围内的另一类弹性波。

英国人瑞雷首先以数学方法论证了表面波的存在,并说明了它的性质。根据瑞雷的理论,这个表面波是在弹性分界面处,由满足应力的边界条件而产生的波动现象,其涉及的范围集中于界面附近,所以在界面处波的振幅最大,离开界面,振幅迅速减小,这种波被命名为瑞雷波。乐夫则提出,当半无限弹性体表面存在另一密度、另一弹性常数的介质时,做水平振动传播的波有频散现象,这一频散波被称作乐夫波。研究表明,瑞雷波是由P波和SH波干涉生成的表面波,而乐夫波是SH波的多次反射波在界面干涉生成的表面波。对于不均匀介质,乐夫波和瑞雷波都具有频散特性。对于炸药震源或冲击振源,乐夫波的能量远小于瑞雷波的能量,往往难于观测到,所以面波勘探主要研究瑞雷波。

12.2.1基本原理

瑞雷波勘探是利用人工或机械震源激励,通过测量不同频率瑞雷波的传播速度来探测不同深度的岩土介质性质。瑞雷波有如下特性:在分层介质中传播的瑞雷波具有明显的频散特性;瑞雷波的波长不同,其穿透深度也不同;瑞雷波传播速度与横波速度有相关性。

利用瑞雷波的前两种特性,可以研究介质的物性变化,对沉积地层进行物性分层,探查地下空洞和掩埋物体;利用后一特性可以得到岩土层横波速度,进而计算出介质的物理力学参数。

在工程地质及地质灾害勘查中,瑞雷波勘探主要应用于以下几方面:

(1)工程地质勘查:利用实测的瑞雷波频散曲线,通过定量解释,可以得到各地质层的厚度及弹性横波的速度。速度的大小直接反映了地层的“软”“硬”程度,因此,可对第四系地层进行划分,确定地基的持力层。低速度带反映了地下赋存有软弱夹层,这类“软”地层对建筑物易造成危害,瑞雷波勘探可划分出软弱层的埋深及范围。

(2)地基加固处理效果评价:软地基的加固处理,就是通过不同的方法,如强夯、挤密置换化学处理等,使软地基变“硬”。瑞雷波法评价加固效果,是通过实测地基加固前后的波速差异,了解地基处理前后土体的物理力学性质的改善程度,同时可对处理后场地在水平方向的均匀性做出评价,并确定加固影响的深度和范围。

(3)岩土的物理力学参数原位测试:波速的大小与介质的物理力学参数密切相关,如密度、剪切模量、压缩模量、泊松比等。因此,通过对实测资料的反演拟合解释,可以得到岩、土层的横波速度、纵波速度、密度等参数,进而计算出其他物理力学参数。

(4)地下空洞及掩埋物探测:有时需要准确查明地下土洞、溶洞、废弃矿井以及各种地下掩埋物在地下的空间位置。用瑞雷波进行勘探时,当勘探深度达到这些物体的深度时,频率和速度关系曲线就会出现异常,据此可以确定其埋深及范围。

(5)公路、机场跑道疲乏质量无损检测:利用人工激发的高频瑞雷波,可以测得路面、路基的波速以及各结构层的厚度,进而推算出路面的抗剪、抗压强度及路基的载荷能力。该方法可用于机场跑道和高等级公路疲乏的检测,并可实现质量随年代变化的连续监控。

(6)饱和砂土层的液化判别:根据场地内饱和砂土层的埋深,地下水位等地质条件,可以计算出该饱和砂土层的液化临界波速值,判别其液化的可能性。实测波速大于该临界值,则为非液化层,小于该临界值则为液化层。

(7)其他方面的应用:瑞雷波勘探还可用于场地土类型、类别划分,滑坡、边坡调查,堤坝隐患危险性预测,基岩的完整性评价,桩基沉没入土深度测量等。

12.2.2观测方法

瑞雷波沿地面表层传播,在地面沿波的传播方向,以一定的道间距△x设置N+1个检波器,就可以检测到瑞雷波在N△x长度范围内的传播过程。设瑞雷波的频率为fi,相邻检波器记录的瑞雷波到达的时间差为△t或相位差为△φ,则相邻道△x长度内瑞雷波的传播速度为:

地质灾害勘查地球物理技术手册

在 N△x范围内的平均波速为

12.2.2.1稳态瑞雷波勘探

地质灾害勘查地球物理技术手册

稳态瑞雷波勘探的原理是使用稳态的电磁激振器在地面进行竖向激振,通过改变激振频率,可以得到一组与fi相对应的vRi值,测得一条vR—f曲线,由

,也可将vR—f曲线转换为vR—λR曲线。稳态面波勘探法原理如图12-3所示。

图12-3稳态法原理示意图

12.2.2.2瞬态瑞雷波勘探

瞬态法与稳态法的区别之一是震源不同,瞬态法采用冲击振源或炸药震源产生一定频率范围的复频波,不同频率的瑞雷波叠加在一起,以复频波的形式向前传播。瞬态法记录的信号要经过频谱分析和相位分析,求得各个频率分量的瑞雷波,并用互谱法求得相邻检波器间相位移△φi,则相邻道距△x内瑞雷波的传播速度vRi即可求得。分析全部频率的瑞雷波,进而得到一条vR—f曲线或vR—AR曲线。瞬态面波勘探法如图12-4所示。

图12-4瞬态法原理示意图

12.2.3技术要求

12.2.3.1观测方式

面波勘探一般采用纵观测系统,即激振点和检波器排列在一条直线上,以一定间隔布点。观测方式有以下几种:

(1)一端激震,两道或多道观测。检波点距应小于最小波长,最小偏移距可与检波点距相等。

(2)两端分别激震,两道或多道观测。

(3)对于两道观测,当探测的目的地层为速度分层时,可采用定距测量方式,即两个检波器之间的道距不变,完成一个物理点测量。当探测目标体是地下空洞等地下埋设物时,可采用变距测量方式,即固定震源和一个检波器的位置不变,以一定的间距移动,另一个检波器进行测量。也可以定距、变距、两种测量方式结合进行,一般可大致确定空洞的中心位置和顶底面埋深。

(4)两道观测方式信噪比较低,在没有开发出更好的观测技术之前,建议采用多道观测方式。多道观测方式有以下优点:①可以在时间剖面上准确识别面波所在的时间窗位置,从而为合理设计面波观测“窗口”提供依据。②可以在多道采集的有效面波记录上,根据波形的时序关系分析波的来源,判断采集到的面波、绕射波以及其他干扰波是直接还是间接来自激发振源,据此正确选定布设测线的方向、振源位置以及选择激发时刻。③在多道采集的面波记录上可以区分开基本振型和高阶振型的面波,从而为合理选用不同振型的面波,解决不同地质问题创造条件。

12.2.3.2瑞雷波的激发

(1)稳态激振的频率范围和频率间隔与勘探深度、分辨率以及地质条件等因素有关,勘探深度H与波长λR成正比(H=βλR)。β为波长深度转换系数,一般取0.65。

(2)稳态激振的优点是不同频点的能量分布比较均匀,激发高频比较容易做到;缺点是设备笨重,如果要求勘探深度达到60m,设备的重量就要超过1000kg。

(3)瞬态激振可采用不同重量和不同材质的手锤或落锤进行垂向激振,也可采用炸药等其他激振方式,以满足不同探测深度和不同探测精度的要求。

12.2.3.3数据采集

(1)稳态激振器的安置应与地面均匀、紧密耦合,并使其保持竖直状态,开始先给激振器一定频率的电流使之起振,当激振器工作稳定后,方可进行采集与接收。

(2)应根据勘探深度和分辨率选用固有频率不同的检波器,检波器的振幅和相位一致性要好,安置检波器时应注意与地面垂直并紧密耦合,不同接触条件可采用不同的耦合方式,如生石膏、橡皮泥和黄油等,对于泥土地面可直接插入土中。

(3)合理确定采样率。根据不同的勘探目的层确定采样率,对于浅层宜采用较高的采样率,而对于较深的目的层则应采用较低的采样率,以增加低频段的频点数,提高深层的分辨率。

(4)发挥多道采集数据的优势,通过试验,合理选择观测“窗口”和排列走向,以避开或减小干扰波的影响。

12.2.4数据处理

12.2.4.1稳态面波勘探

(1)瑞雷波传播速度的计算方法有两种,一种为时间差法,一种为互相关分析法。前者是利用同相位目视对比取值计算,精度差、效率低,后者通过计算机对全部记录进行处理,有利于提高效率和vR的计算精度。

(2)测得各频点的瑞雷波速度,即可绘制vR—f曲线,但频率f不能直接表示深度,在实际应用中,一般绘制vR—βλR曲线,β为波长深度转换系数。

(3)解释方法多采用半波长法,但此方法有时不够精确,实际应用中需作修正或改进。推断地层厚度的方法,目前有一次导数极值点法和拐点法。计算层速度的方法有渐近线法、H极值法和近似计算法以及层厚度、层速度等综合解释法等。

(4)由深度—波速曲线计算瑞雷波层速度时,当地层的平均速度随深度增加而增大时,应用公式计算速度:

地质灾害勘查地球物理技术手册

式中:Hn为第n点深度(m);Hn-1为第n-1点深度(m);vRn-1为第n-1点深度以上的平均速度(m/s);vRn为Hn~Hn-1深度间隔的层速度(m/s)。

当地层平均速度随深度增加而减小时,应按(公式12.4)计算层速度:

地质灾害勘查地球物理技术手册

当不考虑地层平均速度随深度变化趋势时,可用(公式12.5)计算层速度

地质灾害勘查地球物理技术手册

瑞雷波速度与横波速度有一定差异,其大小与地层泊松比有关,可按表12-2进行修正。

表12-2瑞雷波与横波速度比值随泊松比变化一览表

12.2.4.2瞬态面波勘探

(1)屏幕上显示了多道面波记录,确定面波的时间—空间域窗口,经过富氏变换,将数据由时间—空间域转换到频率—波数域,得到二维振幅谱图像。在振幅谱图像上选取带通滤波的窗口,进行二维滤波拾取面波信息,由此得出面波频散曲线。

(2)根据面波频散曲线可进行地层分层。首先根据已知地质资料和频散曲线形状,给出地层分层的初始模型和拟和误差,拟和程序应利用最优化算法计算出理论频散曲线,反复修改各层厚度和波速参数,使理论频散曲线与实测频散曲线得到最好的拟合,求得各层厚度和速度值。

12.2.5成果的表达形式

无论是稳态面波勘探还是瞬态面波勘探,都需求出不同频率(即不同波长)的瑞雷波速度,得到一条面波相速度频散曲线,在此基础上进行波速分层和解释。在实际应用中,一般绘制vR—βλR曲线,β为波长深度转换系数,即以vR为横坐标,βλR为纵坐标。因为βλR直接代表着深度,所以,vR—βλR曲线的变化直接反映了瑞雷波随深度的变化情况。图12-5是典型的瑞雷波勘探成果图。

图12-5瑞雷波法勘探成果图(孙党生等实测)

12.2.6展望

瑞雷波法可用于解决浅部工程地质和地质灾害问题,例如洞穴、掩埋物、堤坝隐患探测、公路和机场跑道检测、地层分层、地基加固处理效果检查等,虽然在国内只有短短十几年时间,但该方法以其浅层分辨率高、应用范围广、方便、快速等优点,已引起科研、生产部门的高度重视。随着该方法的理论和应用研究的不断深入,除可应用瑞雷波的波速外,瑞雷波的衰减特性、椭圆率的变化等各种信息的综合利用,必将开拓瑞雷波勘探更加广泛的应用领域。应用天然源的面波勘探也是今后发展方向。

12.2.7仪器设备

稳态面波勘探仪器设备见表12-3。

表12-3GR-810仪器系统的配置(稳态)

续表

瞬态面波勘探仪器设备见表12-4。

表12-4瞬态面波勘探系统

⑷ 新技术新方法在地质灾害勘查设计中有哪些应用

各类地质灾害指的复是在自然或者人制为的因素条件下形成的,对于人民的生命财产安全造成了很大的损失,同时,各类地质灾害还会对我们的生存环境造成严重的破坏。最近几年,由于大自然的破坏,以至各类地质灾害屡屡发生,如滑坡、泥石流、崩塌等,到了夏季,暴雨频发,对于滑坡、泥石流等灾害更容易引发,这种灾害会导致水土流失人员伤亡、房屋倒塌、人员伤亡,给人民的生命财产安全造成极大损失。因此,对于滑坡、泥石流等地质灾害的的深入研究就成为了一项刻不容缓的而且具有重大社会意义的工作,这样,会在一定程度上减小这类地质灾害对于人类的损失。作为一项新的科研成果,物探技术成为了现代针对滑坡、泥石流等地质灾害的一项重大发明,作为一项新的现代化的勘探技术,它具备了准确、省时省力、经济、全面性的特点。因此,它在各类地质灾害的勘探与调查中起到了非常重要的作用。本文针对以滑坡为主的地质灾害所形成的原因,来分析物探技术,重点介绍高密度电阻率法和瑞雷波法在各类地质灾害中的实际应用

⑸ 地球物理方法在探测、解决地质灾害地质问题方面的能力,地球物理勘探方法在地质灾害探测中的应用

地震勘探: 可以查清楚地下岩层的速度和密度物理参数,用来解释地下岩层的起伏形态,构造的分布状况,岩性的变化情况
电法勘探: 可以查清地下的电阻率电导率物理参数,常用来经行水、金属或者其他高阻类的地质体
磁法勘探: 可以查清大地电磁的分布情况,用来查清探测区域的磁力异常,通过磁力异常来定位特殊矿产
重力勘探: 雷同磁法,探测的物理参数为重力
地质雷达: 通过发射电磁波来进行快速的地下电性差异层,常用来进行路基检测,管网探测等等
地震、电法井间CT: 通过不同的井下布设发射、接受装置来检测相应的地球物理参数,进一步通过CT成像方法来对井间的地层进行成像
井地CT: 采用井中激发,或者地面激发,井中或者地面接收地球物理场的变化来进行类似于椎体的成像
vsp、rvsp采用井中激发,或者地面激发,井中或者地面接收地球物理场的变化来进行地下情况的成像
常见院校有: 中国石油大学 中国海洋大学 中国地质大学 中国矿业大学
中南大学 中科院相关院所(较多不列举) 各大石油学院 吉林大学 成都地质学院(现为科技大学) 等等等等
地震类的勘探成像精度高,可以用来定量分析。其他方法一般具有体积效应,常用来进行定性勘探。
靠 累

⑹ 对重大地质灾害的早期识别研究 有什么技术和方法

各类地质灾害来指的是在自然源或者人为的因素条件下形成的,对于人民的生命财产安全造成了很大的损失,同时,各类地质灾害还会对我们的生存环境造成严重的破坏。最近几年,由于大自然的破坏,以至各类地质灾害屡屡发生,如滑坡、泥石流、崩塌等,到了夏季,暴雨频发,对于滑坡、泥石流等灾害更容易引发,这种灾害会导致水土流失人员伤亡、房屋倒塌、人员伤亡,给人民的生命财产安全造成极大损失。因此,对于滑坡、泥石流等地质灾害的的深入研究就成为了一项刻不容缓的而且具有重大社会意义的工作,这样,会在一定程度上减小这类地质灾害对于人类的损失。作为一项新的科研成果,物探技术成为了现代针对滑坡、泥石流等地质灾害的一项重大发明,作为一项新的现代化的勘探技术,它具备了准确、省时省力、经济、全面性的特点。因此,它在各类地质灾害的勘探与调查中起到了非常重要的作用。本文针对以滑坡为主的地质灾害所形成的原因,来分析物探技术,重点介绍高密度电阻率法和瑞雷波法在各类地质灾害中的实际应用

⑺ 浅谈加强重要建设工程地质勘察、地质灾害危险性评估、地震地质调查成果地质资料汇交管理

於顺然

(江苏省国土资源厅,南京210029)

摘要 本文结合江苏省成果地质资料汇交管理工作的实际,在对“ 重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查”类成果地质资料的汇交范围进行了细化的同时,并对其汇交人、汇交时间、汇交数量及内容、法律责任等方面做了细化,意在引起广大成果地质资料汇交义务人、地质资料管理者及其同仁们,高度重视该类成果资料的汇交管理,使地质资料在国民经济建设中,更好地发挥其应有的作用。

关键词 建设项目;成果地质资料;汇交管理

地质成果资料的统一汇交是手段,社会公开利用是目的。不该汇交的而汇交了是浪费,该汇交的而未汇交则是违法。《地质资料管理条例》附件:“地质资料汇交范围”中对“重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查”形成的成果地质资料的汇交范围,规定得既笼统又原则,有的甚至只是其条目式的,在具体成果地质资料汇交管理工作的实践过程中,其可操作性比较差,从而给该类成果资料的汇交管理工作带来诸多麻烦和问题。

为进一步加强对“重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查”成果地质资料的汇交管理,根据国务院《地质资料管理条例》(以下简称《条例》)、国土资源部《地质资料管理条例实施办法》、《江苏省地质资料管理办法》,笔者结合多年对江苏省成果地质资料汇交管理工作实际,在此提出如下对策建议,供有关领导及同仁们参考。

1 汇交细目

在国务院《条例》目前尚未修订之前,可以国土资源部或省厅规范性文件的形式,进一步细化“重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查”成果地质资料的汇交细目。“重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查”成果地质资料,在《条例》附件“地质资料汇交范围”的十大类中占两大类,江苏省的具体规定为:

1.1 重要建设项目工程地质勘察成果地质资料汇交范围:

农水方面:水利、水库工程(受益面积大于5万亩的灌溉工程和容量大于1000万立方米的水库工程)。

交通方面:长度超过10千米的铁路;长度超过500米的隧道;长度超过500米的桥梁年吞吐量大于100万吨的港口、码头;二级以上的公路、火车站及机场。

电力方面:核电站、抽水蓄能电站,容量大于10万千瓦的水电站、火电站。

工业方面:年产量大于20万吨的钢铁厂、水泥厂,用地大于200亩的工业、企业建筑。

其他方面:放射性设施、军事设施、集中供水水源地、水处理厂等重要小型工程勘察资料。

1.2 地质灾害危险性评估成果地质资料的汇交范围

(1)按建设用地地质灾害危险性评估分级,被定为“一级”(需报省厅备案)的项目。

(2)地质灾害危险性评估程度为复杂(地质灾害发育强烈;地形与地貌类型复杂;地质构造复杂、岩性岩相变化大、岩土体工程地质性质不良;工程水文地质条件不良;破坏地质环境的人类工程活动强烈等)的项目地质灾害危险性评估资料。

(3)本文上述1.1所属“重要建设项目工程地质勘察地质资料汇交范围”项目中。地质灾害危险性评估成果资料。

1.3 地震地质调查成果资料汇交范围

1.3.1 地震地质资料包括自然地震地质调查(测量、观测)

①地震地质调查、宏观地震考察、地震烈度考察(活断层、地震地质、大地构造、地震研究)。②地震地质前兆观测、地形变测量、地磁测量、地电测量、地应力测量、重力测量、断层位移测量。③地下水位(地下流体)观测、地温观测等。④建筑工程抗震、地震灾害防治、地震安全性评估资料。

1.3.2 重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查成果地质资料的汇交人

国务院《条例》规定,项目出资单位(人)是其项目成果地质资料的汇交人。①由国家出资的项目,其工作项目的承担单位是该成果地质资料的汇交人(国家出资:江苏省将其界定为中央财政、省级财政、市级财政、县乡级财政均为国家出资)。②非国家出资的项目,项目出资人可以以协议、合同等形式,委托承担项目单位代为汇交该类成果地质资料。③由中外合作开展的项目,其参与合作项目的中方为成果地质资料的汇交人。

1.3.3 汇交时间、数量及内容

本规定所涉及的成果地质资料的汇交时间为:自工作项目验收结束之日起180日内汇交(江苏省将其规定为本勘察、评估项目验收结束的时间,而非整体项目结束时间)。

上述勘察、评估项目成果地质资料复制后,按国务院《条例》及《地质资料管理条例实施办法》规定,向省地质资料馆汇交纸质资料两份,电子文档一份(其电子文档制作及质量要求同地质矿产类)。

1.3.4 法律责任、行政处罚

(1)未按照本办法规定时间汇交地质资料的,由省国土资源行政部门向其发出催交通知书,责令在60日内汇交成果地质资料,逾期仍不汇交的,按国务院《条例》第二十条规定给予行政处罚。

(2)汇交成果地质资料经验收不合格,汇交人逾期拒不按要求修改补充汇交的,视为拒汇交地质资料,由省国土资源行政部门依照国务院《条例》按规定给予行政处罚。

1.3.5 几点认识及体会

(1)江苏省省土面积100500平方公里,其中平原面积100000平方千米,是矿产资源小省,每年能够汇交的地质矿产类成果地质资料只有30种左右。近些年来,江苏省地质资料馆每年接收汇交的成果地质资料数量在100种左右。这其中有近三分之二的成果地质资料是重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查类成果地质资料。由此可见,加强和规范该类成果地质资料的汇交与管理工作,在江苏省地质资料的汇交与管理工作中占有重要地位和作用。

(2)近年来,通过我们的积极工作,汇交到省地质资料馆的“重要建设项目工程地质勘察、地质灾害危险性评估”类成果地质资料有:南京长江大桥、二桥、三桥、江阴长江大桥、润杨长江大桥、苏通长江大桥、南京地铁等。苏通长江大桥、连云港核电站的工程地质勘察和地质灾害危险性评估成果地质资料的汇交工作正在交涉过程之中。

(3)有关江苏省地震地质调查成果资料的汇交问题,早在计划经济时期,江苏省地震局曾经向江苏全省地质资料处汇交过一些地震地质调查方面的成果资料,自20世纪90年代起,江苏省地震地质调查成果资料的汇交工作则处于停滞状态。近来此项工作仍在协调过程之中。

向国家汇交合格的成果地质资料是广大地质资料汇交义务人应尽的法律义务。笔者将近些年来江苏省“重要建设项目工程地质勘察、地质灾害危险性评估及地震地质调查”类成果地质资料汇交管理工作中的有关规定、做法、存在的一些主要问题及认识体会罗列于本文,并提出了一些对策建议,意在引起广大成果地质资料汇交义务人、地质资料汇交管理者及其同仁们,高度重视该类成果资料的汇交,使地质资料在国民经济建设中,更好地发挥其应有的作用。

⑻ 地质灾害监测方法技术现状与发展趋势

【摘要】20世纪末期以来,监测理论和技术方法有长足发展,常规技术方法趋于成熟,设备精度、设备性能已具较高水平,并开发了部分高精度(微米级位移识别率)、自计、遥测、自动传输的监测设施。未来,将充分综合运用光学、电学、信息学、计算机和通信等技术(诸如光纤技术—BOTDR、时域反射技术—TDR、激光扫描技术、核磁共振技术、NUMIS、GPS技术、合成孔径干涉雷达技术—InSAR及互联网通讯技术等),进一步开发经济适用、有效可行的地质灾害监测新技术,提高精度、准确性和及时性,最大程度地减小地质灾害造成的损失。

【关键词】地质灾害监测技术方法新技术优化集成

20世纪80年代以来,我国地质灾害时空分布特点呈现新的变化。随着人类工程活动越来越强,人为地质灾害日趋严重,规模、数量和分布范围呈增加趋势;人口密集、经济发达地区地质灾害造成的损失越来越大。崩塌、滑坡和泥石流等突发性地质灾害发生频度和造成的损失不断加大,地面沉降、海水入侵等缓慢性地质灾害的范围逐渐增加。据相关统计资料显示,1995~2002年,地质灾害共造成9000多人失踪或死亡,突发性地质灾害共造成直接经济损失524亿元,缓慢性地质灾害造成直接经济损失590亿元,间接经济损失2700亿元。地质灾害已经成为严重制约我国经济发展的重要因素之一。

为了摸清我国地质灾害的分布情况,我国系统地开展了地质灾害调查工作,先后出台了《地质灾害防治管理办法》和《地质灾害防治条例》,明确指出:防治地质灾害,实行“以人为本,防治结合,统筹规划,突出重点,分期实施,逐步到位”的方针。并于2003年4月启动了全国性地质气象预报。对已经查明的地质灾害体,特别是对生产建设、人民生命财产安全构成严重威胁的地质灾害,若能运用适当、有效、经济可行的监测措施,作出科学的监测预报,则可最大程度地减小灾害损失。

滑坡监测在不同条件、不同时期其作用不同,总的来说有以下几个方面:

(1)通过综合分析多种监测方法的监测数据,确定地质灾害稳定状态及发展趋势,及时作出预测,防止或减轻灾害损失。

(2)研究导致灾害体变形破坏的主导因素、作用机理,为防治工程设计提供依据。

(3)在防治工程施工过程中,监测、分析灾害体变形发展趋势及工程施工的扰动,保障施工安全。

(4)施工结束后,进行工程效果监测。

(5)综合利用长观监测资料,分析灾害体变形破坏机制和规律,检验在防治工程设计中所采用的理论模型及岩土体性质指标值的准确性,对已有的监测预报理论及模型进行验证改进,改善、提高监测预测预报技术方法。

1地质灾害监测技术综述

地质灾害监测的主要任务为监测地质灾害时空域演变信息(包括形变、地球物理场、化学场)、诱发因素等,最大程度获取连续的空间变形数据,应用于地质灾害的稳定性评价、预测预报和防治工程效果评估。

地质灾害监测是集地质灾害形成机理、监测仪器、时空技术和预测预报技术为一体的综合技术。地质灾害的形成机理是开展地质灾害监测工作的基础;监测仪器是开展工作的手段;更为重要的是只有充分利用时空技术,才能有效发挥地质监测的作用;预测预报是开展地质灾害监测的最终目的。

崩塌、滑坡、泥石流等突发性地质灾害,具有爆发周期短、威胁性及破坏性显著、成因复杂等特点,因此,当前地质灾害的监测技术方法的研究和应用多是围绕突发性地质灾害进行的。1.1监测方法

监测方法按监测参数的类型分为四大类:即变形、物理与化学场、地下水和诱发因素监测(见表1)。

表1主要地质灾害监测方法一览表

1.1.1 变形监测

主要包括以测量位移形变信息为主的监测方法,如地表相对位移监测、地表绝对位移监测(大地测量、GPS测量等)、深部位移监测。该类技术目前较为成熟,精度较高,常作为常规监测技术用于地质灾害监测。由于获得的是灾害体位移形变的直观信息,特别是位移形变信息,往往成为预测预报的主要依据之一。

1.1.2物理与化学场监测

监测灾害体物理场、化学场等场变化信息的监测技术方法主要有应力监测、地声监测、放射性元素(氡气、汞气)测量、地球化学方法以及地脉动测量等。目前多用于监测滑坡等地质灾害体所含放射性元素(铀、镭)衰变产物(如氡气)浓度、化学元素及其物理场的变化。地质灾害体的物理、化学场发生变化,往往同灾害体的变形破坏联系密切,相对于位移变形,具有超前性。

1.1.3地下水监测

地下水监测主要是以监测地质灾害地下水活动、富含特征、水质特征为主的监测方法。如地下水位(或地下水压力)监测、孔隙水压力监测和地下水水质监测等。大部分地质灾害的形成、发展均与灾害体内部或周围的地下水活动关系密切,同时在灾害生成的过程中,地下水的本身特征也相应发生变化。

1.1.4诱发因素监测

诱发因素类主要包括以监测地质灾害诱发因素为主的监测技术方法,如气象监测、地下水动态监测、地震监测、人类工程活动等。降水、地下水活动是地质灾害的主要诱发因素;降雨量的大小、时空分布特征是评价区域性地质灾害(特别是崩、滑、流三大地质灾害的判别)的主要判别指标之一;人类工程活动是现代地质灾害的主要诱发因素之一,因此地质灾害诱发因素监测是地质灾害监测技术的重要组成部分。

1.2监测仪器

1.2.1按从监测仪器同灾害体的相对空间关系分为接触类和非接触类

(1)接触类:是指必须安装于灾害体现场或进行现场施测的监测仪器系列。如滑坡地表或深部位移监测、物理和化学场监测等。该类仪器所获得的信息多为灾害体细部信息,信息量丰富。

(2)非接触类:是指于现场安装简易标志或直接于灾害体外围施测的监测仪器系列。该类监测方法多以获得灾害体地表的绝对变形信息为主,易采用网式施测;特别是突发性地质灾害的临灾前后,具有安全、快捷等特点。如激光微位移监测、测量机器人、遥感雷达监测等。

1.2.2按监测组织方式分为简易监测、仪表监测、控制网监测、自动遥测

(1)简易监测:采用简易的量测工具(皮尺、钢尺、卡尺)对灾害体地表的裂缝等部位进行监测。

(2)仪表监测:采用机测或电测仪表(安装、埋设传感器)对滑坡进行地表及深部的位移、应力、地声、水位、水压、含水量等信息监测。

(3)控制网监测:在滑坡变形破坏区及周边稳定地带,布设大地测量或GPS卫星定位测量控制点网,进行滑坡绝对位移三维监测。

(4)自动遥测:利用有线和无线传输技术,对仪表监测所得信息进行远距离遥控自动采集、传输,可实现全天候不间断监测。

2地质灾害监测方法技术现状

地质灾害监测技术是集多门技术学科为一体的综合技术应用,主要发展于20世纪末期。伴随着电子技术、计算机技术、信息技术和空间技术发展,国内外地质灾害调查与监测方法和相关理论得到长足发展,主要表现在:

(1)常规监测方法技术趋于成熟,设备精度、设备性能都具有很高水平。目前地质灾害的位移监测方法均可以进行毫米级监测,高精度位移监测方法可以识别0.1mm的位移变形。

(2)监测方法多样化、三维立体化。由于采用了多种有效方法结合对比校核以及从空中、地面到灾害体深部的立体化监测网络,使得综合判别能力加强,促进了地质灾害评价、预测能力的提高。

(3)其他领域的先进技术逐渐向地质灾害监测领域进行渗透。随着高新技术的发展和应用的深入,卫星遥感、航空遥感等空间技术的精度逐渐提高,一些高精度物探(如电法、核磁共振等技术)的发展,使得地质灾害的勘查技术与监测技术趋于融合,通过技术上的处理、提升,该类技术逐渐适用于区域性的地质灾害和单体灾害的监测工作。

“八五”以来,我国在地质灾害监测技术研究方面取得了丰硕的成果,并积累了丰富的经验,使我国的地质灾害监测预警水平得到很大程度的提高;但是还存在一定的局限性,主要表现在:

(1)地质灾害监测技术、仪器设施多种多样,应用重复性高,受适用程度、精度、设施集成化程度、自动化程度和造价等因素的制约,常造成设备资源浪费,效果不明显。

(2)所取得的研究成果多侧重于某一工程或某一应用角度,在地质灾害成灾机理、诱发因素研究的基础上,对各种监测技术方法优化集成的研究程度较低。

(3)监测仪器设施的研究开发、数据分析理论同相关地质灾害目标参数定性、定量关系的研究程度不足,造成监测数据的解释、分析出现较大的误差。

因此,要提高地质灾害预警技术水平,必须在地质灾害研究同开发监测技术方法相结合的基础上,进行地质灾害监测优化集成方案的研究。

3地质灾害监测技术方法发展趋势

3.1高精度、自动化、实时化的发展趋势

光学、电学、信息学及计算机技术和通信技术的发展,给地质灾害监测仪器的研究开发带来勃勃生机;能够监测的信息种类和监测手段将越来越丰富,同时某些监测方法的监测精度、采集信息的直观性和操作简便性有所提高;充分利用现代通讯技术提高远距离监测数据信息传输的速度、准确性、安全性和自动化程度;同时提高科技含量,降低成本,为地质灾害的经济型监测打下基础。

监测预测预报信息的公众化和政府化。随着互联网技术的发展普及,以及国家政府的地质灾害管理职能的加强,灾害信息将通过互联网进行实时发布,公众可通过互联网了解地质灾害信息,学习地质灾害的防灾减灾知识;各级政府职能部门可通过所发布信息,了解灾情的发展,及时做出决策。

3.2新技术方法的开发与应用

3.2.1调查与监测技术方法的融合

随着计算机的高速发展,地球物理勘探方法的数据采集、信号处理和资料处理能力大幅度提高,可以实现高分辨率、高采样技术的应用;地球物理技术将向二维、三维采集系统发展;通过加大测试频次,实现时间序列的地质灾害监测。

3.2.2 智能传感器的发展

集多种功能于一体、低造价的地质灾害监测智能传感技术的研究与开发,将逐渐改变传统的点线式空间布设模式;由于可以采用网式布设模式,且每个单元均可以采集多种信息,最终可以实现近似连续的三维地质灾害信息采集。

3.3新技术新方法

3.3.1光纤技术(BOTDR)

光导纤维监测技术又称布里渊散射光时域光纤监测技术(BOTDR),是国际上20世纪70年代后期才迅速发展起来的一种现代化监测技术,在航空、航天领域中已显示了其有效性。在土木、交通、地质工程及地质灾害防治等领域的应用才刚刚开始,并受到各发达国家研究机构的普遍重视,发展前景十分广阔。

通过合理的光纤敷设,可以监测整个灾害体(特别是滑坡)的应变信息。

3.3.2时间域反射技术(TDR)

时间域反射测试技术(Time Domain Reflectometry)是一种电子测量技术。许多年来,一直被用于各种物体形态特征的测量和空间定位。早在20世纪30年代,美国的研究人员开始运用时间域反射测试技术检测通讯电缆的通断情况。在80年代初期,国外的研究人员将时间域反射测试技术用于监测地下煤层和岩层的变形位移等。90年代中期,美国的研究人员将时间域反射测试技术开始用于滑坡等地质灾害变形监测的研究,针对岩石和土体滑坡曾经做过许多的试验研究,国内研究人员已经开始该方法的研究工作,并已经在三峡库区投入试验应用阶段,同时开展了与之相关的定量数据分析理论研究。

所埋设电缆即是传感器,又可传输测试信号;该方法相对于深部位移钻孔倾斜仪监测具有安装简单、使用安全和经济实用等特点。

3.3.3激光扫描技术

该技术在欧美等发达国家应用较早,我国近期开始逐渐引进。主要是用于建筑工程变形监测以及实景再现,随着扫描距离的加大,逐渐向地质灾害调查和监测方向发展。

该技术通过激光束扫描目标体表面,获得含有三维空间坐标信息的点云数据,精度较高。应用于地质灾害监测,可以进行灾害体测图工作,其点云数据可以作为地质灾害建模、地质灾害监测的基础数据。

3.3.4核磁共振技术(NUMIS)

核磁共振技术是国际上较为先进的一种用来直接找水的地球物理新方法。它应用核磁感应系统,通过从小到大地改变激发电流脉冲的幅值和持续时间,探测由浅到深的含水层的赋存状态。我国于近期开始引进和研究,目前已经在三峡库区的部分滑坡体进行了应用试验,效果较好。

应用于地质灾害监测,可以确定地下是否存在地下水、含水层位置以及每一含水层的含水量和平均孔隙度,进而可以获知如滑坡面的位置、深度、分布范围等信息,从而对滑坡体进行稳定性评价,并对滑坡体的治理提出科学依据。

3.3.5合成孔径干涉雷达技术(InSAR)

运用合成孔径雷达干涉及其差分技术(InSAR及D-InSAR)进行地面微位移监测,是20世纪90年代逐渐发展起来的新方法。该技术主要用于地形测量(建立数字化高程)、地面形变监测(如地震形变、地面沉降、活动构造、滑坡和冰川运动监测)及火山活动等方面。

同传统地质灾害监测方法相比,具有如下特点:

(1)覆盖范围大;

(2)不需要建立监测网;

(3)空间分辨率高,可以获得某一地区连续的地表形变信息;

(4)可以监测或识别出潜在或未知的地面形变信息;

(5)全天候,不受云层及昼夜影响。

但由于系统本身因素以及地面植被、湿度及大气条件变化的影响,精度及其适用性还不能满足高精度地质灾害监测。

为了克服该技术在地面形变监测方面的不足,并提高其精度,国内外技术人员先后引入了永久散射点(PS)的技术和GPS定位技术,使InSAR技术在城市及岩石出露较好地区地面形变监测精度大大提高,在一定的条件下精度可达到毫米级。永久散射(PS)技术通过选取一定时期内表现出稳定干涉行为的孤立点,克服了许多妨碍传统雷达干涉技术的分辨率、空间及时间上基线限制等问题。

随着卫星雷达系统资源的改进和发展,以及相应数据处理软件的提高,该技术在地质灾害监测领域的应用将趋于成熟。

3.4地质灾害监测技术的优化集成

3.4.1问题的提出

(1)监测方法的适应性。对于各种监测方法所使用的监测仪器设施,均有各自的应用方向和使用技术要求;针对不同地质灾害灾种、类型,其使用技术要求(包括测点布设模式、安装使用技术要求等)不同。

(2)地质灾害不同的发展阶段。对于崩塌、滑坡等突发性地质灾害,不同发展阶段所适用的监测方法和仪器设施各异,监测数据采集周期频度不同。

(3)监测参数与监测部位。实践证明,一方面,不同的监测参数(地表位移、深部位移、应力、地下水动态、地声等)在不同类型的灾害体监测中具有不同程度的表现优势;另一方面,同一灾害体不同部位的监测参数随时间变化趋势特点并不相同,即存在反映灾害体关键部位特征的监测点,又存在仅反映局部单元(不具有明显的代表性,甚至是孤立的)特征的监测点。因此,监测要素(监测参数、监测部位)的优化选择,是整个监测设计工作的基础。

(4)自动化程度。决定于设备的集成度、控制模式、数据标准化程度和信息发布方式。

(5)经济效益。决定于地质灾害的规模、危害程度、监测技术组合、设备选型等因素。

3.4.2设计原则

地质灾害监测技术优化集成方案遵循以下原则:

(1)监测技术优化原则:针对某一类型地质灾害,确定优势监测要素,进行监测内容、监测方法优化组合,使监测工作高效、实用。

(2)经济最优原则:首先,不过于追求高、精、尖的监测技术,而应选择发展最为成熟、应用程度较高的监测技术;其次,对于危害程度较大的大型地质灾害体,可选择专业化程度较高的监测技术方法,由专业人员进行操作、维护,对于危害程度低,规模小的灾害体,可选择操作简单、结果直观的宏观监测技术,由群测群防级人员进行操作。

3.4.3最终目标

根据不同种类地质灾害和不同类型地质灾害的物质组成、动力成因类型、变形破坏特征、外形特征、发育阶段等因素,研究适用于不同类型地质灾害的监测要素(监测参数、监测点位的集合)、监测方法、监测点网的时空布置模式、监测技术要求,建立典型地质灾害监测的优化集成方案。

⑼  崩塌勘查典型实例示范

1.5.1长江三峡链子崖音频大地电场法、甚低频电磁法裂缝、岩溶、煤洞勘测

链子崖位于长江三峡兵书宝剑峡出口处右岸,濒临江边的陡崖主体由二叠系栖霞组灰岩构成,底部为煤系软弱层。在长约700m,宽30~180m范围内发育有58条裂缝,将岩体切割成3个危岩区,即南部的I区To至T6缝区和北部的Ⅲ区T8至T12缝区以及中部的Ⅱ区T7缝区。其中T8至T12缝区危岩体紧临长江,南、西分别被T8、T9、T11缝和T12缝切割,北、东两侧临空,底部煤层基本被采空,是防灾治理、监测预报的重点险段。

到20世纪80年代中期,经过长期的大量调查研究工作,链子崖可见裂缝的分布情况已基本查清;但是,在表土覆盖地段的裂缝分布、延伸、连通交切情况,隐伏构造、岩溶、煤洞的分布等尚不清楚。针对上述问题,地质矿产部水文地质工程地质技术方法研究所于1988年采用了音频大地电场法、甚低频电磁法勘测裂缝、岩溶、煤洞的分布情况。

1.5.1.1 隐伏裂缝勘测

基于裂缝发育的不规则性和地形条件,勘测中采用了异常追踪法:即从已知裂缝的隐没端开始,根据裂缝和异常发育趋势布设勘探剖面,同时辅以现场地质调查,进行异常的定点、连接,循序渐进,直至查明(图1-1)。裂缝上方的音频大地电场和甚低频电阻率异常曲线一般形态尖锐,幅值较大(图1-2)。

裂缝勘测结果表明:链子崖南部Ⅲ区和北部I区裂缝已相互连通。特别是确定了Ⅲ区分布的 T8-1、T8-1-2、T9、T11裂缝均与T12裂缝连通以及T8-0缝向SE方向延伸至陡壁边缘,对危岩体稳定性评价至关重要。勘探结果在随后的工程探槽(图1-3)和声波跨孔测试中得到验证。

1.5.1.2隐伏煤洞勘测

图1-1追踪裂缝的测线布置及异常分布

链子崖的变形与底部马鞍山组(P1mn)煤层采空有直接关系。根据调查访问资料,链子崖底部有采煤巷道20余条,基本沿地层走向分布。为了解其存在状况,用音频大地电场法和甚低频电磁法在链子崖顶部展开了面积性勘测。

煤洞的电场异常不同于裂缝,一是幅值较小、宽度较大、规律性较强(图1-4a)。

勘测共确定煤洞14条,煤洞走向与岩层走向基本一致(SW—NE),长度300~400m,间隔30~40m,勘测结果和实际情况相符。

1.5.1.3隐伏岩溶勘测

平行于链子崖陡崖,勘测中追踪发现一条幅值高、宽度大的异常(图1-4b)带近南北向发育,其东侧裂缝发育,西侧则明显减少;该异常带与北部的黄泥巴壁相接,根据异常形态、结合地质特征分析,推测为一岩溶发育带,后期的勘探工程证实了这一推测(连克等,1991)。

图1-2隐伏裂缝实测剖面(T9缝前端)

图1-3TC3工程探槽展示图

1.5.2链子崖隐伏裂缝的声波检测

链子崖危岩体存在12组50余条裂缝,出露最宽约2m,深不可测。其中T8及T9裂缝,北端隐伏于覆盖层下,是否延伸与T12缝贯通,成为查明岩体结构与方量和确定治理工程设计的关键,为此,在上述裂缝延伸的关键部位,布两钻孔,孔距21m,深150余m。由地质矿产部水文地质工程地质技术方法研究所于1989年承担跨孔声波测试,查明裂缝的延伸及倾向。

现场地质剖面概况及跨孔声波测试示意图如图1-5a。采用等高同步测试法、扇面测试法,测取的波形记录分别如图1-5b及图1-5c。这些记录的推论是:接收到的是绕射波,其地质模型应如图1-5d,即裂缝张开无充填。显然,只有存在地表覆盖层的绕射波,才会出现发射与接收点靠近覆盖层声传播时间短,远离覆盖层则声传播时间加长。为证实现场测试推断是正确的,在室内按推理的地层模型,进行模型超声测试,取得和现场一致的测试结果。

图1-4Ex、ρ曲线图

另外,在一个孔内逐点发射,并接收裂缝的反射波,根据反射波的声波走时,推断出裂缝的倾向,与地质工程师从地质构造的推论相一致。至此对裂缝的性状给出明确的结论,为链子崖危岩体的治理,提供了依据,受到国家科委表彰(展建设等,1991)。

1.5.3危岩锚固钻孔内裂缝及裂缝密集带声波检测

长江三峡链子崖50000方危岩体防治工程,采用锚索加固处理,锚固孔深30~40m不等,最深达64.2m。危岩体主要以栖霞灰岩为主,裂隙发育且为张性,局部成破碎软弱带。锚固施工需掌握上述裂缝、软弱结构面在锚固孔中的位置,分布及几何尺寸。地质矿产部水文地质工程地质技术方法研究所承担此项特种检测任务,研制一发一收干耦合换能器,在不能存留井液的水平干孔中,完成了共2670m的测试,指导了施工。图1-6其中三个钻孔的测试结果,其中视声速低于1000m/s(图中粗实线部分)的低速孔段均为裂隙及裂隙密集带(展建设、曹修定实测,1996)。

1.5.4岩崩堆积体灌浆补强效果声波测试

1998年地质矿产部水文地质工程地质技术方法研究所在三峡库区迁建城镇新址岩崩堆积体工程改造现场,完成了灌浆补强前后岩体物理力学强度变化试验工作。采用“一发双收”单孔及跨孔声波检测对半径为1.7m圆周等分的六个钻孔中等边三角形分布的三个钻孔作为实施灌浆孔,另三个按等边三角形分布的钻孔及圆心的钻孔作为声波检测孔。采用灌浆前、灌浆后7d、灌浆后28d进行声波单孔测试及跨孔声波透视。

图1-5各种方法测试示意图及推测的地层模型

图1-6危岩锚固孔内裂隙及软弱破碎带声波测试声速-孔深曲线粗实线为裂隙及破碎带

单孔测试采用敲击作震源产生纵波及横波,以三分量检测器贴壁接收;跨孔测试用小药量爆炸震源的以三分量检测器贴壁接收。

岩崩堆积灌浆补强分别在四川奉节及巫山两地各做两组试验,现仅以奉节组试验为例加以说明。图1-7为灌浆前后单孔一发双收的时差-孔深对比曲线;图1-8为灌浆前后跨孔的声速-孔深对比曲线。由跨孔测试结果可见灌浆后声速有明显提高,最高可达60%以上;而单孔测试最高14%、最小仅2%。单孔测试声速变化小的原因是此法能了解沿孔壁一个波长范围的声速,单孔声速的提高,说明灌浆范围已达声波观测孔的孔壁;而跨孔测试是直接了解两孔连线间的岩体灌浆情况。

图1-7灌浆前后单孔一发双收的时差-孔深对深对比曲线

图1-8灌浆前后跨孔的声速-孔深对比曲线

由于测试纵波声速的同时,还测试了横波声速,因此可计算出岩崩堆积体灌浆前后的动弹性力学性能的变化,见表1-4(李洪涛等实测,1998)。

1.5.5长江三峡链子崖煤层采空区老空洞探地雷达探测

长江三峡链子崖底部煤层采空区的分布及其后期充填情况是评价链子崖危岩体稳定性的重要资料,同时也是确定治理工程混凝土承重阻滑键布置的重要依据。为此,在充分的地质调查分析基础上,委托煤炭科学研究总院采用地质雷达技术,利用PD2、PD6和PD1三个勘探平硐对煤层采空区的空洞或充填疏松地带进行了探测,取得了较好的效果。

表1-4奉节动弹性力学参数

地质雷达资料的解释是靠图形识别来进行的。具体解释过程是在资料处理后进行的对比,即对比波在相位、周期(频率)、同相轴和波形等运动学方面的特点,以及测点间在二维(横向与纵向)方向上组成的图形特征。同时,还应注意到相位的强弱(动力学特点)。图1-9为PD2沿线的一段探地雷达图像,图中44~61m之间显示为灰岩分布区,在76~85测点之间出现周期加大,相位改变,呈现明显弧形同相轴,反映的是煤层采空区。根据采空区的这种特征所得PD2平硐的探测成果列于图1-10与表1-5中(刘传正,2000)。

图1-9PD2Z线雷达图像(100MHz)

1.5.6金丽温高速公路崩塌体井内电视探测

由于浙江金丽温高速公路k81段高边坡地质条件复杂,岩层破碎,构造挤压,节理裂隙及断裂构造十分发育,处于崩塌体范围内。根据甲方要求对锚索孔B6-5、B6-9、B4-8、B6-16、B6-19、B6-23进行测试,以上各孔孔径为φ130mm,锚索钻孔俯角15°。主要查找钻孔中裂缝(图1-11)及破碎情况(封绍武实测,2002)。

图1-10PD2平硐雷达测线布置与探测成果

1—煤层采空区;2—充填但未压实的采空区

表1-5PD2平硐探地雷达勘查异常解释综合表

图1-11浙江金丽温高速路k81段高边坡(水平钻孔—干孔)裂缝图片

参考文献

段永侯,罗元华,柳源等.1993.中国地质灾害.北京:中国建筑工业出版社

郭建强,彭成,孙党生等.2003.链子崖危岩体勘查中物探技术的应用.水文地质工程地质

胡厚田.1989.崩塌与落石.北京:中国铁道出版社

李媛,张颖,钟立勋.1992.中国滑坡崩塌类型及分布图说明书.北京:中国地图出版社

李智毅,王智济,杨裕云.1996.工程地质学基础.武汉:中国地质大学出版社

李智毅,唐辉明.2000.岩土工程勘查.武汉:中国地质大学出版社

李大心.1994.探地雷达方法及其应用.北京:地质出版社

连克,朱汝裂,郭建强.1991.音频大地电场法在地质灾害调查中的应用尝试——长江三峡链子崖危岩体隐伏地质结构的探测.中国地质灾害与防治学报

刘传正.2000.地质灾害勘查指南.北京:地质出版社

晏同珍,杨顺安,方云.2000.滑坡学.武汉:中国地质大学出版社

展建设,吴庆曾.1991.跨孔声波穿透法在探测三峡链子崖隐伏裂缝中的应用.中国地质灾害与防治学报

张咸恭,李智毅等.1998.专门工程地质学.北京:地质出版社

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864