地质灾害预警预报服务协议
㈠ 新疆地质灾害预警预报与防治研究
第一节 地质灾害现状
一、地质灾害发生情况
新疆突发性的崩塌、滑坡、泥石流、地面塌陷灾害的主要发生情况:1958~1997 年发生崩塌、滑坡、泥石流、地面塌陷灾害56起,因灾死亡345 人,经济损失12697.89 万元。其中泥石流33起、滑坡12起灾害、地面塌陷8 起、崩塌3 起;1998~2005 年新疆发生崩塌、滑坡、泥石流、地面塌陷灾害483 起,因灾死亡79人,经济损失18897.52万元(见表1-6-1)。
1998~2005年发生的地质灾害以滑坡灾害为主,发生352 起,占72.88%,其次为泥石流灾害,发生92起,占19.05%,崩塌和地面塌陷灾害发生较少,发生26起和13起,占5.38%和2.69%;造成人员伤亡最多的是滑坡灾害,因灾死亡60 人,占75.96%,其次为泥石流灾害,因灾死亡14 人,占17.72%,崩塌和地面塌陷分别造成3 人和2 人死亡,占3.79%和2.53%;造成经济损失最大的是滑坡灾害,达12500.1 万元,占66.15%,其次是泥石流灾害,为6183.54万元,占32.72%,崩塌和地面塌陷灾害造成的损失较少,分别为112.58和101.3万元,占0.59%和0.54%(见表1-6-2)。
表1-6-1 1998~2005年灾情统计表
1998~2005年灾情最重的地区为伊犁地区,发生灾害369 起,占76.39%,死亡62 人,占78.48%,经济损失12233.56 万元,占64.74%;灾情较重地区为克孜勒苏州、巴音郭楞州、昌吉州、塔城地压、乌鲁木齐市,共发生灾害85 起,占17.59%,死亡15人,占18.98%,损失4671.2万元,占24.71%;其他地区灾情较轻,共发生灾害29 起,占6.00%,死亡2 人,占2.53%,损失1992.76万元,占10.55%。
表1-6-2 1998~2005年灾种分类统计表
二、地质灾害防治工作进展及存在问题
(一)地质灾害调查、勘查与治理工作
新疆地质灾害调查、勘查与治理工作起步较晚,主要为国家出资项目。1993年首次开展了“新疆地质灾害现状调查”工作,此次工作以收集资料、编图为主,未投入实物工作量。1998 年以后,国家和自治区逐渐加大了地质灾害防治基础工作的投入力度,并先后安排了“乌鲁木齐市南山矿区泥石流灾害勘查”、“伊犁地区地质灾害调查”、“阿勒泰市区崩塌、泥石流灾害勘查”、“新疆1∶50万区域环境地质调查”、新源县等33 个“县(市)地质灾害调查与区划”、“伊犁地区地质灾害应急调查与处置”、“乌鲁木齐市六道湾煤矿塌陷区环境恢复治理项目示范区勘查”、“新源县、巩留县地质灾害危险性评估”等工作。这些基础性工作的开展,明显提高了新疆地质灾害的研究程度和防治水平,尤其是开展“县(市)地质灾害调查与区划”工作,普及了地质灾害防治知识,提高了当地政府和群众对地质灾害危害性的认识,建立了地质灾害群测群防网络体系,制定了重要地质灾害隐患点的防灾预案,增强了地质灾害的预警能力,为地质灾害防治工作提供了科学依据。
(二)建设用地地质灾害危险性评估工作
为避免工程建设诱发和加剧地质灾害或遭受地质灾害的威胁,国土资源部就建设用地地质灾害危险性评估工作下发了一系列文件,并对建设用地地质灾害危险性评估技术要求进行了规范。新疆此项工作始于1999年,至2005年我区共进行建设用地地质灾害危险性评估工作135 项,其中1999 年开展了1 项,2000 年开展了5项,2001年开展了7项,2002年开展了11项,2003年完成14项,2004年完成51 项,2005 年完成43 项,呈逐年增加的趋势。项目涉及公路建设、房地产开发建设、水利工程建设、公共设施建设、输油(气)管线建设、厂矿企业建设、电厂建设、旅游设施建设、农业开发基地建设、机场建设、移民搬迁选址、城镇规划建设等。在已进行的135 项地质灾害危险性评估项目中,一级评估72 项,二级评估24项,三级评估39项(见表1-6-3)。
表1-6-3 1999~2005年地质灾害危险性评估工作汇总统计表
建设用地地质灾害危险性评估工作的开展对项目建设可能诱发和加剧地质灾害的危险性、建设项目遭受地质灾害威胁的可能性进行了评估,提出了适应建设项目特点的可行的地质灾害防治措施和建议,为保证建设项目用地安全起到了很好的作用。
(三)地质灾害应急调查及巡查检查工作
根据国土资源部有关要求,我区每年汛期均组成汛期地质灾害巡查检查组,检查防灾预案、险情巡查、汛期值班、灾情速报等汛期地质灾害防治制度的落实情况,发生灾情及时上报,并组织力量及时赶往现场进行调查,1998~2005 年共派出291 人次、历时尽500余天、行程数万千米(见表1-6-4)。
表1-6-4 地质灾害巡查检查及应急调查工作统计表
通过汛期地质灾害巡查检查和应急调查,提高了各级政府对地质灾害防治工作的重视程度和国土资源主管部门在汛期地质灾害防治工作中的应急反应能力,为各级政府在减灾防灾工作决策中提供了强有力的技术支持,为最大限度地减轻地质灾害造成的损失打下了良好的基础。
(四)地质灾害预警预报工作
我区地质灾害预警预报的主要为气象预报预警。地质灾害气象预报预警的灾种为崩塌、滑坡、泥石流3种类型,采用的预报方法为专家分析法。2004年4 月5 日起正式开展地质灾害气象预报预警工作,发布形成以传真或电话方式每天向伊犁地区发布地质灾害预报预警信息和向达到4 级(预警级)以上地区发布地质灾害气象预报预警信息362余期,并于2004年5月15日起在新疆人民广播电台及新疆专业气象服务网上发布。
(五)地质灾害防治管理工作
近年来新疆地质灾害防治管理工作取得长足的进展,主要表现在以下几方面:①法制建设取得了突破性进展(2002 年5 月1 日起施行的《新疆维吾尔自治区地质环境保护条例》);②地质灾害各项工作制度建设进一步深入;③地质灾害防治组织体系已经形成;④地质灾害监督管理得到加强;⑤全民地质灾害防灾意识得到提高。
(六)地质灾害防治存在的主要问题
尽管自治区地质灾害防治工作取得了较大的成绩,但依然存在以下主要问题:①地质灾害防治法规、制度不够完善;②地质灾害防治投入严重不足;③基础调查工作推进缓慢;④矿山地质灾害严重;⑤地质灾害监测、预报预警水平较低;⑥重要地质灾害隐患点亟待治理。
第二节 地质灾害发育分布规律
一、地质灾害的成因分析
地质灾害的形成除受自然因素控制外,还受社会因素的影响。其中自然因素包括地形地貌条件、地质构造条件、地层岩性条件、水文条件、气象条件、地下水作用、植被条件、地震作用;人为因素包括人类活动、社会经济发展条件。
二、地质灾害的发育分布规律
新疆地质灾害总的发育特征是阿尔泰山、天山、昆仑山三大山系由西向东具有由强变弱的趋势,其中天山最为发育;在天山西段伊犁谷地和天山中部多呈环带状分布。各大山系沿沟谷和交通沿线常呈条带状发育。根据地质灾害形成发育的地质环境条件、地质灾害类型、发育强度、诱发因素、分布特征和人类活动强度,将地质灾害易发区划分为高易发区、中易发区、低易发区和不易发区4个不同的区。
(一)地质灾害发生程度分区
1.地质灾害高易发区
(1)伊犁谷地山区以黄土滑坡、泥石流和地面塌陷为主的地质灾害高易发亚区,面积20530.80平方千米;
(2)重要交通沿线山区段以崩塌、滑坡、泥石流为主的地质灾害高易发亚区,面积19403.84平方千米;
(3)天山南北麓和准噶尔西部山地低山丘陵含煤带以地面塌陷为主的地质灾害高易发亚区,面积16916.24平方千米;
(4)大河流域山区段及西昆仑高山区以泥石流为主的地质灾害高易发亚区,面积19963.16平方千米。
2.地质灾害中易发区
(1)中高山、极高山以崩塌、泥石流为主的地质灾害中易发亚区,面积165116.85平方千米;
(2)其他山区不同灾种集中分布的地质灾害中易发亚区,面积19.86万平方千米。
3.地质灾害低易发区
分布在阿尔泰山、天山、昆仑山三大山系的低山丘陵区和昆仑山—阿尔金山部分高山区,面积344328.64平方千米。
4.地质灾害不易发区
主要分布于塔里木盆地、准噶尔盆地、吐鲁番—哈密盆地、焉耆盆地、伊犁谷地、塔城盆地及巴里坤—伊吾盆地等若干山间盆地的平原区,面积880077.40平方千米。
(二)地质灾害在时间上的分布特征
新疆地质灾害在时间上总的分布规律特征是:年内具有汛期(4~9月)高发,其他时间时有发生,全年呈正态分布的特点,年际具有与大气候特征相对应的周期性(8~12年)变化规律。
(三)地质灾害在空间地域上的分布特征
新疆地质灾害总的空间地域分布规律是:崩塌、滑坡、泥石流、地面塌陷灾害沿三大山系环绕两大盆地呈“E”字形展布,即阿尔泰山和北天山围绕准噶尔盆地、南天山和昆仑山围绕塔里木盆地呈向东开口的环状分布。
(四)地质灾害发展趋势
地质灾害的发育在规模上由局部、孤立,向群发、成片趋势发展,在空间上由以中低山区为主向高山区扩展的趋势,在时间上由汛期发育向以汛期为主、各个季节时有出现的趋势发展。预测新疆崩塌、滑坡、泥石流未来变化北疆呈加剧趋势,伊犁谷地部分地区滑坡加剧趋势明显,南疆阿克苏到库尔勒一带有加剧趋势。地面塌陷发展趋势取决人类采矿活动增强而加剧。
第三节 地质灾害预警、预报与防治
一、地质灾害预警、预报与防治现状及存在问题
(一)开展了地质灾害预警、预报工作
我区地质灾害预警、预报工作主要开展以下工作:
(1)群测群防系统建设与运行;
(2)地质灾害应急反应系统建设;
(3)汛期地质灾害气象预报预警;
(4)全面落实地质灾害防灾预案的编制;
(5)地质灾害空间信息系统建设;
(6)对重大地质灾害(隐患)点开展了治理工作。
(二)存在的主要问题
(1)地质灾害预警预报及防治工作尚处于起步阶段;
(2)在管理上、技术上,尚存在较多不完善之处,有待进一步提高。
二、地质灾害预警、预报与防治
(一)地质灾害预警、预报
(1)建立并运行自治区群测群防网络体系:“十一五”期间,完成52个县(市)群测群防网络体系的建立。首先建成伊犁谷地、天山北坡经济带两个区域重要地质灾害隐患点的专业监测骨干网络,之后完成北疆、东疆重要地质灾害点的专业监测骨干网络的建设。
(2)继续加强和完善我区地质灾害应急反应系统建设。
(3)正式开展地质灾害气象预报预警工作,主要区域为乌鲁木齐及西天山南、北地区。
(4)全面落实地质灾害防灾预案的编制。
(5)地质灾害空间信息系统建设:“十一五”期间完成52 个县(市)地质灾害数据库建设,建成自治区地质灾害监控中心站。建成14个地(州、市)级监控站。
(6)地质灾害监测预报预警示范区建设:建立、完善伊犁哈萨克自治州巩留县滑坡地质灾害监测预报预警示范区,远期推广滑坡监测预报预警经验。
(二)地质灾害防治
我区划分了地质灾害重点防治区(Ⅰ)、次重点防治区(Ⅱ)和一般防治区(Ⅲ)3 类防治区,具体划分出4 个重点防治亚区、2个次重点防治亚区。
1.重点防治区(Ⅰ)
(1)伊犁谷地山区滑坡、泥石流、地面塌陷灾害重点防治亚区(Ⅰ1 ),面积21632.24 平方千米。“十一五”期间,制定伊犁哈萨克自治州直属8县1市的地质灾害防治规划,建立地质灾害群测群防网络体系,新建伊犁哈萨克自治州地质环境监测站,开展汛期地质灾害气象预报预警,对受重要地质灾害隐患严重威胁的学校、农牧民实施移民搬迁工程。严禁已迁出危险区域的居民回迁。限制在重要地质灾害隐患点威胁范围内从事各类工程建设;确需建设且又无法避让的,必须进行地质灾害防治工程勘查治理。
(2)重要交通沿线崩塌、滑坡、泥石流灾害重点防治亚区(Ⅰ2 ),面积20598.30平方千米。完成217、312、314国道山区段的地质灾害专项调查,划定危险区,建立警示标志,制定防灾预案,完成217国道独—库公路山区段、312 国道果子沟段地质灾害勘查。在重要交通沿线两侧200米范围内,严禁露天采矿活动,限制地下采矿活动;严禁诱发或加剧地质灾害的其他人类活动。
(3)天山南北麓和准噶尔西部山地低山丘陵含煤带地面塌陷灾害重点防治亚区(Ⅰ3 ),面积36353.38 平方千米。完成天山北坡经济带11县(市)的以地面塌陷灾害为主的矿山地质环境及地质灾害专项调查工作,完成乌鲁木齐市六道湾煤矿地面塌陷区治理示范工程,出台矿山地质环境治理恢复保证金制度实施办法,全面推行矿山地质环境保护方案编审制度和新建矿山准入制度,严格执行矿产资源储量压覆占用制度。严禁威胁城镇及重要工程设施安全的采矿活动,禁止在地面塌陷危险区进行其他人类活动。
(4)大河流域山区段及西昆仑高山区以泥石流为主的地质灾害重点防治亚区(Ⅰ4 ),面积25601.87 平方千米。完成克兰河阿勒泰市区段、叶尔羌河山区段以泥石流为主的专项地质灾害调查工作;完成阿勒泰市将军沟泥石流治理和叶尔羌河、开都河山区段和库车河、喀拉喀什河、奎屯河、玛纳斯河等出山口段严重威胁人民生命财产和重要工程设施安全以泥石流、滑坡为主的地质灾害隐患点的勘查治理工作。严禁从事诱发对人民生命财产和重要工程设施安全构成威胁的泥石流、滑坡灾害的人类工程活动。
2.次重点防治区(Ⅱ)
(1)中高山、极高山以崩塌、泥石流为主的地质灾害次重点防治亚区(Ⅱ1 ),面积135993.50平方千米。通过分期开展地质灾害调查与区划,设立警示标志、实施避让措施、加强地质灾害防治科普宣传等预防工作,以避让为主,避免人员伤亡和财产损失。
(2)中低山以崩塌、滑坡-泥石流为主的地质灾害次重点防治亚区(Ⅱ2 ),面积105898.74平方千米。通过分期开展地质灾害调查与区划,加强地质灾害防治知识科普宣传,采取以避让为主的防治手段,达到防灾减灾目的;实施矿山地质环境保护方案编审制度、矿山地质环境治理恢复保证金制度,对矿业开发诱发的地质灾害,采用工程、生物等多种措施进行治理。
3.一般防治区(Ⅲ)
包括全疆除重点防治区和次重点防治区以外的所有地区,面积1322012.15平方千米。
三、地质灾害预警减灾建议
(1)应积极推进法制建设,依法防治地质灾害。
(2)加快自治区地质灾害防治规划体系的建立,加强领导,建立健全地质灾害防治监督管理体系。
(3)逐步建立并完善相关技术要求,实现地质灾害防治基础技术工作规范化。
(4)建立地质灾害防治奖惩制度,建立稳定的投入保障机制,保证地质灾害防治工作的经费来源。
(5)依靠科技进步,实施科技创新,提高地质灾害综合防治能力。
(6)加强部门合作,逐步推进社会化减灾系统建设;广泛宣传地质灾害防治基础知识,提高全社会防灾减灾意识。
㈡ 国土资源部中国气象局关于进一步推进地质灾害气象预警预报工作的通知
国土资发〔2011〕135 号
各省、自治区、直辖市及计划单列市国土资源主管部门,气象局,中国地质环境监测院、国家气象中心、中国气象局公共气象服务中心:
为深入贯彻落实 《国务院关于加强地质灾害防治工作的决定》 (国发 〔2011〕20 号)、《国务院办公厅关于加强气象灾害监测预警及信息发布工作的意见》(国办发 〔2011〕33 号)和 《国土资源部与中国气象局关于深化地质灾害气象预警预报工作合作的框架协议》有关精神,进一步推进全国地质灾害气象预警预报工作,现就有关事项通知如下:
一、共同推进地质灾害气象预警预报体系建设
地方各级国土资源、气象部门要根据地质灾害实际情况,围绕地质灾害防治气象服务需求,采用多种方式,争取多方支持,依托现有资源,共同推动在地质灾害易发区建立综合的地质灾害气象观测站网,加快对易发区及周边地区气象观测站的升级改造,加强对已建气象设施的维护和保障,使气象观测设施处于良好运行状态,以满足地质灾害易发区市 (地、州)、县 (区、市)的地质灾害气象预警预报工作顺利开展的需要。
二、健全完善地质灾害气象预报预警信息共享平台和应急联动工作机制
地方各级国土资源、气象部门加快建设地质灾害监测预警信息和气象预报预警信息的共享平台,建立会商机制,共同发布地质灾害气象预报预警信息。要建立应对恶劣天气特别是突发强降雨等极端气象条件的应急联动工作机制。国土资源部门应根据地质灾害气象预警信息,加强应急值守,一旦发生 4 级以上地质灾害气象预警的灾害性天气,要及时启动相关应急预案,切实做好应对防范工作。气象部门应加强 4 级以上地质灾害气象预警灾害性天气的监测、预报、预警和服务保障工作,根据国土资源部门提供的地质灾害发生情况,组织开展加密观测和针对性的预报服务会商,及时提供气象服务信息,并提出相关防范意见和措施建议。要依托现有通信专线,进一步加强双方信息数据共享,重点加强地质灾害易发区监测、灾害数据的充分共享。要进一步加强应急联动能力建设,完善双方信息互通制度,拓展灾害应急联动方式渠道,丰富应急联动技术手段。双方要明确各自的责任部门、联络人员及联系方式,做到责任到人。
三、大力推进地质灾害气象业务标准体系建设
要加强科研和联合攻关,大力推进地质灾害防治气象业务标准体系建设,不断提高地质灾害气象监测预警预报精细化水平。地方各级国土资源、气象部门要联合制定地质灾害易发区气象观测站建设安装、运行维护、检测校准、通讯协议、信息交换共享、预报服务产品制作、信息发布等方面的规范和标准,充分利用各自的资源和技术优势,形成合力,共同加快相关标准和规范的编制工作,促进地质灾害气象业务的规范化发展。联合加强对各级地质灾害气象预警预报业务人员的培训,提高业务水平和能力。要针对地质灾害突发性强等特点,联合研发 6 小时间隔的地质灾害气象预警预报产品,逐步开展地质灾害短时临近预警预报业务。要积极推动基层地质灾害气象预警预报工作的深入开展,推进福建省泉州市、云南省玉溪市和三峡库区地质灾害监测预警示范区建设,深入开展精细化地质灾害气象预警预报试验研究,探索积累经验并在全国推广应用。
四、全面提高地质灾害气象预警信息发布能力
地方各级国土资源、气象部门要积极争取地方政府和有关部门的大力支持,不断加强易灾地区特别是偏远山区、学校、农村等地区的地质灾害气象预警及气象灾害信息发布传播设施建设,努力拓宽预报预警信息覆盖范围。要加强与广电、电信、城建等部门的联系与合作,通过建立协同高效的联合响应机制,利用电视和电台、手机短信、城区显著位置电子广告牌等设施及时发布地质灾害气象预报预警信息,保证预报预警信息渠道畅通、播发及时。
五、积极探索建立多样化的地质灾害防治合作模式
地方各级国土资源、气象部门要根据各地特点和需求,积极探索建立符合本地实际的地质灾害气象业务发展长效合作机制,建立多方参与、权责明晰的地质灾害气象监测系统建设、运营维护与服务提供模式。对于面向公众的灾害性天气预报预警、实况监测信息等服务,属气象部门公益服务范畴的,由各级气象部门无偿提供。对于相关部门和单位提出的个性化地质灾害气象服务需求,由气象部门按照有关规定通过协议方式予以提供。
国土资源部 中国气象局
二〇一一年九月八日
㈢ 新疆地质灾害预警、预报与防治
第一节 地质灾害预警、预报与防治现状
一、地质灾害预警、预报与防治现状
新疆地质灾害预警、预报与防治工作起步较晚。截至2005年,主要工作内容为以下5个方面:
(一)群测群防系统建设与运行
本项工作始于2000年以来开展的《县(市)地质灾害调查与区划》项目,截至2005年,已开展“县(市)地质灾害调查与区划”工作的县(市)共计33个,主要开展的工作内容包括:
1.以县为单位建立了监测网
一级网—县级监测网;二级网—乡(镇)级监测网;三级网—村级监测网。
2.主要工作内容
(1)定期巡视,汛期来临前强化监测,主要对灾害体的变形量和位移量进行测量。
(2)出现险情时采取预警、避让等应急处理措施,以及其他缓解灾害发生的措施。
(3)以居民点为防治对象,明确监测范围和监测人,主要任务是目测灾害体变化,发现异常及时上报。
(4)加强宣传和培训工作。
(5)编制地质灾害防灾预案,并广而告之于民众。
(6)对监测网点的管理和运行做出了明确规定,主要包括签订责任书;监测信息的及时反馈、分析处理、指导性意见的再反馈;落实汛期值班制度;建立地质灾害灾情速报制度等。
(二)地质灾害应急反应系统建设
主要包括地质灾害险情巡查、应急调查和速报工作。截至2005年底,全疆共出动300余人次进行险情巡查和应急调查工作,提交调查报告40余份。
仅2003年自治区国土资源厅先后共派出8个巡查和检查组,33人次,行程22100余千米,历时49天,并于3月31日~4月13日专门派出汛期地质灾害防治工作检查巡查组,重点对伊犁地区、塔城地区、博尔塔拉州、昌吉州4个地(州)的新源县、巩留县等9个县(市)地质灾害防治工作进行了巡查检查。上述工作的开展避免了已发生灾害点人员伤亡增多、财产损失加重、灾情扩大;及时发现了新的地质灾害隐患点,会同当地人民政府、国土资源局及乡、村领导制定出预防措施,在很大程度上避免和减少了生命财产损失。
通过巡查检查我区地质灾害重点防治区域的防治工作情况,采取与当地政府座谈等形式,提高了当地政府对地质灾害防治工作的重视程度,保障了地质灾害防治各项工作的顺利进行。目前各地都不同程度地开展了地质灾害险情巡查工作,遇有灾情都能及时进行调查和上报,自治区国土资源厅以不定期工作简报形式及时向自治区领导和国土资源部报告灾情。
(三)汛期地质灾害气象预报预警
主要开展的工作有:确定了地质灾害预报预警灾害种类为区域群发突发性滑坡、崩塌和泥石流,地质灾害气象预报预警采用空间预报预警类型;划分了预报预警等级、时间段及区域;地质灾害气象预报预警区划及预报预警模式;制定了地质灾害预报预警程序。
2003年地质灾害气象预报预警首先在伊犁至托克逊后沟天山南北麓区域试运行发布。由于新疆地质灾害预报预警开展较晚,预报判据还未分析建立,采用专家分析方法进行预报。2003 年9 月15日~2003年9月30日,利用气象局内部信息系统进行了试运行发布,资料传送通过拨号进入气象局网络设置的上传下载专用文件夹,下载24小时降水预报等值线图,上传地质灾害预报预警图。
(四)全面落实地质灾害防灾预案的编制
年度汛期防灾预案编制制度始于1998 年,近年来覆盖面逐步扩大。2005年全疆14个地(州、市)均于2月上旬完成了本辖区“汛期地质灾害防灾预案”的编制工作,并报当地政府,预案编制覆盖率达到了100%。防灾预案对全区14个地区、46个易发区段、百余处隐患点进行了预测,并提出了防御措施。成功预报地质灾害典型实例包括:巩留县莫乎尔乡小莫乎尔沟孔格亚夏东侧山体滑坡、新源县别斯托别乡恰普河牧业村别拉西滑坡,避免了24 人死亡、19万元的经济损失,并总结出了一套成功预报减灾的经验。
(五)地质灾害空间信息系统建设
根据已开展的地质灾害调查专项调查及相关调查成果,建立了地质灾害空间数据库。
(六)对重大地质灾害(隐患)点开展了治理工作
主要包括:乌鲁木齐市六道湾煤矿、阿勒泰将军沟泥石流;西沟煤矿、哈密硫磺沟煤矿、昌吉五宫煤矿、哈巴河赛都金矿、富蕴乔夏哈拉金铜矿、伊犁伊能煤矿、巴音郭楞州石棉矿、乌市老君庙煤矿等矿山崩塌、滑坡、泥石流、地面塌陷灾害治理。
二、存在的主要问题
地质灾害预警预报及防治工作尚处于起步阶段,在管理上、技术上尚存在较多不完善之处,有待进一步提高。
第二节 地质灾害预警、预报与防治
一、地质灾害预警、预报
(一)群测群防系统建设与运行
根据地质灾害发育分布特点,按照“分步建立、逐步完善”的原则,建立自治区群测群防网络体系。“十一五”期间,完成52个县(市)群测群防网络体系的建立。与此同时,建立专业监测骨干网络,对于重要地质灾害隐患点,由专业技术人员采用专业设备进行监测;因工程建设可能引发地质灾害的,由建设单位安排专人负责地质灾害监测,形成自治区专业监测骨干网络体系,实现监测数据传输、自动处理。“十一五”期间,首先建成伊犁谷地、天山北坡经济带两个区域重要地质灾害隐患点的专业监测骨干网络,之后,完成北疆、东疆重要地质灾害点的专业监测骨干网络的建设。
(二)地质灾害应急反应系统建设
建成以自治区国土资源行政主管部门为指挥核心、自治区地质环境监测院为主体的自治区地质灾害应急反应指挥中心,建成以各地(州、市)、县(市)国土资源行政主管部门为指挥核心、地质环境监测机构和各地勘单位为主体的地质灾害应急反应系统,构成全疆的应急反应系统。配置必要的专业设备,每年汛期前进行险情巡查,重点检查各级防灾预案、群测群防网络、汛期值班、监测责任的落实情况,并对主要地质灾害隐患点进行险情巡查;汛期中对监测工作加强监督管理,接到险情或灾情报告及时组织技术力量在最短的时间内赶到现场,调查灾害原因、发展趋势,协助当地政府采取应急措施,并提出处理对策,汛期后进行复查,总结经验,部署下一年度的地质灾害防治工作。
(三)汛期地质灾害气象预报预警
(1)正式开展地质灾害气象预报预警工作,主要区域为乌鲁木齐以及西天山南北地区。
(2)地质灾害预报预警的灾种崩塌、滑坡、泥石流3种类型。
(3)预报等级按国土发 〔2003〕 229 号文件统一划分为5 级:1级为可能性很小;2级为可能性较小;3级为可能性较大;4级为可能性大;5级为可能性很大。其中3级在预报中为预报级(注意级);4级在预报中为预警级;5 级在预报中为警报级;1、2 级为不发布级。
(4)地质灾害预报预警信息的权限:发布警报(5 级)由厅领导审批;发布预报信息(3、4 级)由厅地环处处长审批;不发布预报预警信息(1、2 级)由厅授权新疆维吾尔自治地质环境监测院主管领导审批。
(5)发布对象为各级国土资源主管部门及广大社会民众。
(6)完善地质灾害气象预报预警发布程序以及地质灾害和气象数据信息的传输、采集、汇总、分析和处理系统,引用最新的数据信息技术处理手段和方法,提高预报准确度。
(四)全面落实地质灾害防灾预案的编制
对新发现的地质灾害(隐患)点编制防灾预案,并落实实施。对已编制防灾预案的地质灾害(隐患)点,加强实施情况的监督和检查。
(五)地质灾害空间信息系统建设
通过地质灾害空间信息系统的建设,建立比较完善的自治区地质灾害数据库、矿山地质环境数据库、地质灾害防治决策支持系统和信息管理系统,建成地质灾害监控空间信息网络系统。对地质灾害进行信息采集、汇总、分析和处理,及时反映地质灾害综合研究成果及地质灾害预警信息,快速准确地将这些成果和信息提供给政府决策并传播给广大公众,为新疆的经济建设服务。
“十一五”期间完成52 个县(市)地质灾害数据库建设,建成自治区地质灾害监控中心站。通过互联网实现区级中心站与国家中心站信息数据共享,及时为政府和社会提供服务,为国家防灾减灾提供基础信息。建成14 个地(州、市)级监控站。实现国家、自治区中心站与地、州、市级监控站的网络互联和信息数据共享。建立相对完善的基于地理信息系统(GIS)和互联网的地质灾害空间信息系统,实现地质灾害监测信息采集、存储、传输、处理及成果发布等全过程的有效管理与监控,提高处理突发事件的能力和地质灾害防治水平。
(六)地质灾害监测预报预警示范区建设
建立伊犁哈萨克自治州巩留县滑坡地质灾害监测预报预警示范区。通过详细的地质环境调查、灾害历史和降水历史资料分析、滑坡和气象水文监测等,研究滑坡灾害的形成机制,掌握滑坡灾害主要诱发因素,特别是融雪水和降雨在灾害发生中所起的作用,确定发生滑坡的临界降雨量、降雨强度和积雪深度,充分运用“3S”等现代化的技术手段开展滑坡灾害气象预报预警;完善巩留县滑坡灾害监测预报预警示范区建设,建成巩留地质灾害防治示范县;远期推广滑坡灾害监测预报预警经验。
二、地质灾害防治
根据新疆地质灾害易发程度分区,结合自治区国民经济和社会发展计划,将突发性地质灾害防治划分为地质灾害重点防治区(Ⅰ)、次重点防治区(Ⅱ)和一般防治区(Ⅲ)。结合致灾的灾种不同和区域性地质灾害的危害特点,在重点防治区内进一步划分出4个防治亚区,在次重点防治区内划分出2个防治亚区。
地质灾害防治工作的重点放在易发程度高的经济发达区、人口相对密集区和重要基础设施建设分布区。按照“统筹规划、突出重点、分步实施、全面推进”的原则,进行工作部署。
(一)重点防治区(Ⅰ)
1.伊犁谷地山区滑坡、泥石流、地面塌陷灾害重点防治亚区(Ⅰ1)
分布于伊犁谷地黄土覆盖的中低山丘陵区和煤系地层区,面积21632.24平方千米。滑坡、泥石流灾害在新源县、巩留县、尼勒克县和特克斯县尤为发育,地面塌陷灾害在伊犁哈萨克自治州直属8县1市均有分布。“十一五”期间,制定伊犁哈萨克自治州直属8县1市的地质灾害防治规划,建立地质灾害群测群防网络体系,新建伊犁哈萨克自治州地质环境监测站,开展汛期地质灾害气象预报预警,对受重要地质灾害隐患严重威胁的学校、农牧民实施移民搬迁工程。
严禁已迁出危险区域的居民回迁。限制在重要地质灾害隐患点威胁范围内从事各类工程建设;确需建设且又无法避让的,必须进行地质灾害防治工程勘查治理。
2.重要交通沿线崩塌、滑坡、泥石流灾害重点防治亚区(Ⅰ2)
该区包括216、217、218、219、312、314、315 国道山区段、南疆铁路鱼儿沟至和静段、兰新铁路了墩至十三间房段等,面积20598.30平方千米。
完成217、312、314国道山区段的地质灾害专项调查,划定危险区,建立警示标志,制定防灾预案,完成217国道独—库公路山区段、312国道果子沟段地质灾害勘查。
在重要交通沿线两侧200米范围内,严禁露天采矿活动,限制地下采矿活动;严禁诱发或加剧地质灾害的其他人类活动。
3.天山南北麓和准噶尔西部山地低山丘陵含煤带地面塌陷灾害重点防治亚区(Ⅰ3)
该区包括准噶尔盆地西、北、东部、吐—哈盆地北部、塔里木盆地南部及天山南北麓的低山丘陵煤矿区分布段等。面积36353.38平方千米。
完成天山北坡经济带11县(市)的以地面塌陷灾害为主的矿山地质环境及地质灾害专项调查工作,完成乌鲁木齐市六道湾煤矿地面塌陷区治理示范工程,出台矿山地质环境治理恢复保证金制度实施办法,全面推行矿山地质环境保护方案编审制度和新建矿山准入制度,严格执行矿产资源储量压覆占用制度。
严禁威胁城镇及重要工程设施安全的采矿活动,禁止在地面塌陷危险区进行其他人类活动。
4.大河流域山区段及西昆仑高山区以泥石流为主的地质灾害重点防治亚区(Ⅰ4)
主要包括克兰河阿勒泰市区段、叶尔羌河山区段(以暴雨泥石流为主)、喀拉喀什河、西昆仑高山区及天山南北麓大河山口段(以滑坡—泥石流为主),总面积25601.87平方千米。
完成克兰河阿勒泰市区段、叶尔羌河山区段以泥石流为主的专项地质灾害调查工作;完成阿勒泰市将军沟泥石流治理和叶尔羌河、开都河山区段和库车河、喀拉喀什河、奎屯河、玛纳斯河等出山口段严重威胁人民生命财产和重要工程设施安全的以泥石流、滑坡为主的地质灾害隐患点的勘查治理工作。
严禁从事诱发对人民生命财产和重要工程设施安全构成威胁的泥石流、滑坡灾害的人类工程活动。
(二)次重点防治区(Ⅱ)
1.中高山、极高山以崩塌、泥石流为主的地质灾害次重点防治亚区(Ⅱ1)
分布在天山、昆仑山西段和阿尔泰山林带以上的中高山、极高山地带,面积135993.50平方千米。雪线以下的高山草甸多为良好的夏季牧场,局部地段存在采矿活动。通过分期开展地质灾害调查与区划,设立警示标志、实施避让措施、加强地质灾害防治科普宣传等预防工作,以避让为主,避免人员伤亡和财产损失。
2.中低山以崩塌、滑坡-泥石流为主的地质灾害次重点防治亚区(Ⅱ2)
主要分布在阿尔泰山南坡、天山、昆仑山—阿尔金山北坡的中低山区等,面积105898.74平方千米。人类经济活动主要为矿业开发和牧业生产。
通过分期开展地质灾害调查与区划,加强地质灾害防治知识科普宣传,采取以避让为主的防治手段,达到防灾减灾目的;实施矿山地质环境保护方案编审制度、矿山地质环境治理恢复保证金制度,对矿业开发诱发的地质灾害,采用工程、生物等多种措施进行治理。
(三)一般防治区(Ⅲ)
包括全疆除重点防治区和次重点防治区以外的所有地区,面积1322012.15平方千米。低山丘陵区多为小型崩塌和泥石流,局部地段存在滑坡;盆地平原区存在沙漠化、盐渍化。
分期开展地质灾害调查与区划,采取避让和生物工程措施对低山丘陵区地质灾害进行防治,保护地质环境;通过科学规划、合理开发利用水土等自然资源,保护并逐步改善生态环境;采取退耕还林、还牧、还草、植树造林等措施,防治土地沙漠化;采取竖井排灌、井排与渠排相结合等降低地下水位的措施,防治土壤盐渍化。
㈣ 国土资源部办公厅中国气象局办公室关于成立地质灾害气象预警预报工作协调领导小组及联络组的通知
国土资厅发〔2011〕30 号
各省 (自治区、直辖市)国土资源厅 (局)、气象局,中国地质环境监测院、国家气象中心、中国气象局公共气象服务中心:
为了进一步深化国土资源、气象两部门合作,贯彻 《关于深化地质灾害气象预警预报工作合作的框架协议》要求,推进地质灾害气象预警预报能力建设,国土资源部、中国气象局决定成立地质灾害气象预警预报工作协调领导小组 (以下简称“领导小组”)及领导小组联络组。
领导小组的主要任务是: 领导和组织协调地质灾害气象监测、预报、预警、服务和科技攻关工作; 研究重大合作事项; 检查、总结并部署年度合作相关工作。领导小组原则上每年召开 1 次工作会议。
领导小组联络组的主要任务是: 组织落实和完成协调领导小组商定的合作意向和任务; 协调领导小组日常具体工作。
领导小组组成人员如下:
组长: 汪 民 国土资源部党组成员、副部长
矫梅燕 中国气象局党组成员、副局长
成员: 关凤峻 国土资源部地质环境司司长
柳 源 国土资源部地质环境司巡视员
侯金武 中国地质环境监测院院长
田廷山 中国地质环境监测院副院长
陈振林 中国气象局应急减灾与公共服务司司长
毕宝贵 中国气象局预报与网络司司长
端义宏 国家气象中心主任
孙 健 中国气象局公共气象服务中心主任
领导小组联络组组成人员如下:
薛佩瑄 国土资源部地质环境司地质灾害防治处处长
胡 杰 国土资源部地质环境司地质灾害防治处调研员
李铁峰 中国地质环境监测院地质灾害预警预报室主任
唐 灿 中国地质环境监测院地质灾害预警预报室副主任
卓弘春 国土资源部地质环境司地质灾害防治处干部
蒙嘉川 中国气象局应急减灾与公共服务司专业服务处副处长
黄 卓 中国气象局预报与网络司天气处处长
王建林 国家气象中心业务处处长
李海胜 中国气象局公共气象服务中心业务处处长
赵琳娜 中国气象局公共气象服务中心专业气象室主任
领导小组成员由于职务和岗位变动,不能继续履行其职责时,成员随之变动。
国土资源部办公厅 中国气象局办公室
二〇一一年五月五日
㈤ 年国家地质灾害气象预警服务
5.8.1 技术准备
5.8.1.1 工作情况
2008 年度国家级地质灾害气象预警预报服务在 5 月 1 日至 9 月 30 日开展,每日一次。由于汶川地震和台风活动以及强降雨影响,2008 年加强并延续了预警预报值班。5月 13 日以后针对地震灾区加密了预报频次,由每日 1 次增加为 2 ~ 3 次,增加了 60 次。预警预报期也从 9 月 30 日延续到 10 月 4 日( 台风“海高斯”登陆) ,11 月 5 日又增加了 1次,增加了 6 天。
2008 年预警预报值班共 159 天,制作预警预报产品 213 份。在中央电视台发布地质灾害预警预报信息 94 次( 其中 4 级 93 次,5 级 1 次) ,在中央人民广播电台发布 94 次,在中国地质环境信息网上发布 176 次( 3 级以上) ,在国土资源部政府网上发布 94 次。
由于汶川地震区山坡岩土体更加松散破碎、余震不断、强降雨天气频繁出现的情况,加强了地质灾害预警预报工作。主要是加密了预报频次,适度提高了地质灾害预报等级。制作地质灾害预警预报产品的频次从每日 1 次增加到每日 3 次,分别在中央电视台早晨 7 点、中午 12 点和晚上 7 点 30 分气象节目发布,并在中央电视台多个频道、中央人民广播电台随气象节目一起滚动播出,同时在中国地质环境信息网上实时发布。警示当地居民和抢险救灾人员注意防范地震余震和降雨引发的滑坡、崩塌、泥石流等地质灾害; 警示临时居住帐篷和救灾场所的百姓要避开山体斜坡、河流沟口等易发地质灾害的部位,提醒沿山路行驶的车辆和行人要注意山体滑坡、崩塌落石和泥石流。
适当增加地质灾害气象预警预报的频次的工作流程为: 国家气象中心提出,经与中国地质环境监测院会商后联合发布。西太平洋洋面生成( 强) 热带风暴后,若预测可能影响中国大陆,国家气象中心提前告知中国地质环境监测院,以便针对东南沿海的地质灾害气象预警预报做好前期准备工作。
5.8.1.2 预警产品计算
( 1) 集成了两代预警模型
为了便于新旧预警模型并行使用、相互校验,提高预警预报计算结果的精确性,新的预警预报系统软件中将第一代预警模型( 临界雨量模型) 、第二代预警模型( 显式统计预警模型) 集成在同一系统中( 图 5.35) 。
第一代预警模型( 临界雨量模型) : 基于雨量站点的地质灾害预报,预警计算在雨量站点上完成,在雨量站点上生成不同等级的预警等级点。
第二代预警模型( 显式统计预警模型) : 以剖分的网格( 10km ×10km) 为单位,在每个预警网格上计算预警产品值。
图 5.35 两代预警模型集成使用
( 2) 可采用分步式计算与一站式计算两种计算方式
分布式计算主要是分为: 气象数据自动导入-预报产品计算两步进行,便于预警产品计算之前先完成下载雨量、数据导入、数据分布查看等操作( 图 5.36) 。一站式计算: 将数据导入、产品计算从头到尾一步完成,便于日常预警值班的方便快捷。
图 5.36 分步式计算与一站式计算两种计算方式
5.8.1.3 数据管理
( 1) 雨量数据自动下载
当气象部门将前期实况雨量和次日的预报雨量上传到 FTP 地址上后,无论是一站式计算,还是分布式计算方式,预报员使用预警软件时第一步就是直接从 FTP 上下载数据,下载完毕后自动提示,并直接导入软件系统参加计算。
中国地质灾害区域预警方法与应用
( 2) 数据自动备份
根据日常工作需求,软件实现在计算完成后,完成原始雨量数据的自动备份、预警产品结果的自动备份( 图 5.37) 。
图 5.37 数据自动备份
原始雨量数据备份到目录“D: 2008rain 701”
Copy ftp: / /129.179.10.68 / c-cma / a-forecast /0701 / 整个文件夹。
预警产品结果数据备份到目录“D: 2008results 701”
Copy “data publish ”下的 3 个文件:
gt080701.doc; gt080701.txt; 080701.bmp; 080701.jpg;
Copy “data result ”下的 3 个文件 080701.w l; 080701.w p;
Copy “data station 80701.w t”
5.8.1.4 数据查询
数据查询功能中,除地质背景环境条件查询( 图 5.38,首先在图层管理栏内打开要查询的地质环境条件数据,然后使用“查看属性”来查看相应的地质环境条件) 外,本次软件改进中主要增加了较强大的雨量数据的查询功能。
雨量查询功能主要是基于雨量站点的原始查询、统计查询以及数据导出等功能。通过右键点击“站点查询”,即可得到各雨量站点的信息,主要包括: 实况雨量、累计雨量、14 时雨量、条件查询 4 个选项卡。
图 5.38 地质背景环境条件查询
实况雨量: 查询结果是所选雨量站点的逐日 24h 雨量值( 图 5.39) 。累计雨量查询结果是所选雨量站点的逐日累计雨量,系统设计为累计 7d 的雨量。
图 5.39 雨量查询窗口
14 时雨量: 查询结果是当前日期 8 时至 14 时的 6h 实况雨量、经过计算得到的当前日期 14 时至昨日 14 时的实况雨量。
条件查询: 主要是一些较复杂的定制查询功能和查询结果导出功能。可以通过选择站号、站名、起始日期、终止日期,进行不同时间段各个雨量站点的累计雨量查询( 图5.40) 。
图 5.40 条件查询
5.8.1.5 预警产品修正
地质灾害预警预报产品自动完成后,预报员可根据经验或会商结果对预警产品进行修正。关于预警产品修正依据方面,增加了分省易发区图; 产品背景数据补充县界、县名以及地貌简图。
( 1) 增加了分省( 区、市) 易发区图( 图 5.41)
图 5.41 分省( 区、市) 易发区图
( 2) 修正了产品背景数据( 图 5.42,图 5.43)
图 5.42 中国地貌底图
图 5.43 预警区县界县名
5.8.1.6 软件界面与显示
软件界面作了进一步的完善; 图层显示标准化等,如不同雨量用不同的颜色大小进行标记; 不同预警等级的颜色也给出相应的颜色显示标准。
( 1) 软件界面
从每日预警值班的角度,进一步完善和简化了预警软件界面,图层控制管理窗口使用更加清晰方便( 图 5.44) 。
图 5.44 完善后的软件界面
( 2) 图层显示标准化
不同雨量用不同的颜色大小进行标记。关于当日 8 点、14 点雨量显示的相关约定根据雨量大小( 子图号均为 34) ( 图 5.45) :
图 5.45 8 点实况雨量显示标准化
≥250mm: 深红色( 253) ,RGB 为 151 31 23; 子图宽度和高度均为 60;
100 ~ 250mm: 粉红色( 183) ,RG B 为 255 0 191; 子图宽度和高度均为 50;
50 ~ 100mm: 蓝色( 5) ,RG B 为 0 0 255; 子图宽度和高度均为 40;
25 ~ 50mm: 浅蓝色( 19) ,RG B 为 135 135 255; 子图宽度和高度均为 30;
10 ~ 25mm: 绿色( 90) ,RG B 为 0 175 0; 子图宽度和高度均为 20;
< 10mm: 浅绿色( 7) ,RG B 为 0 255 0; 子图宽度和高度均为 10。
( 3) 预警等级颜色标准化
( RGB,图 5.46)
图 5.46 预警等级颜色标准化
5.8.1.7 矢量化网上发布
将发布的预警产品格式改为矢量化格式,从而实现预警产品查询的方便快捷和精确定位( 可直接查询到县级行政区域) ( 图 5.47) 。根据需要可实现雨量数据的实时显示与查询; 同时,能够满足每日多次预警产品的发布需求。
图 5.47 改进的矢量化网上发布及放大后效果
5.8.2 5 级地质灾害警报区
2008 年汛期,共发布了 1 次 5 级预警预报信息。我们对这次预报的地质灾害发生情况进行了调查。
5.8.2.1 5 级地质灾害预警预报情况
2008 年 7 月 20 日下午,中国地质环境监测院收到中国气象局的天气预报: 未来 24 小时( 7 月 20 日 20: 00 ~7 月 21 日 20: 00) 甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部有暴雨( 50mm) 。其中甘肃南部局部、四川中部局部和北部局部,以及吉林东南局部有大暴雨( 100mm) 。
针对气象局降雨预报和预测暴雨地区的地质环境条件,经过与被预警区省级地质灾害预警预报技术单位和气象局会商,我们发布了如下预警预报信息: 今日 20: 00 至明日 20:00,甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部局部发生地质灾害可能性较大( 3 级) 。其中,甘肃南部局部、四川中部局部和北部局部等地震重灾区发生地质灾害可能性大或很大( 4 ~5 级) ( 图 5.48) 。
图 5.48 7 月 20 日降雨预报等值线和地质灾害气象预警预报区域
5.8.2.2 地质灾害发生情况与地质环境条件
根据四川、甘肃国土资源厅地质环境处获得反馈信息,7 月 20 日晚至 7 月 22 日期间,四川省东南部发生较大地质灾害 47 处; 甘肃省南部发生较大地质灾害 8 处。
四川省 7 月 20 ~22 日发生的地质灾害主要分布在四川省东部和中南部。在地质环境分区上分别属于盆地东华蓥山平行岭谷地质环境区和峨眉山高中山地质环境区。
盆地东华蓥山平行岭谷地质环境区: 以剥蚀构造地形为主,背斜成山向斜成谷,山高谷深,岭谷相间,山岭海拔 700 ~1700m,间以石灰岩槽状谷地或山间小盆地,山间盆地一般海拔 300 ~500m,相对高差 100m 左右。地形坡度 30° ~35°,背斜山地区较陡。侏罗系分布最广( 达 80%以上) 。地层岩性为泥岩、砂质泥岩、岩屑长石砂岩、粉砂岩不等厚互层组成软硬相间的岩体主要组合。构造呈北东—北北东走向,由一系列平行的狭长不对称箱状背斜组成,断裂少见。区域地壳属间歇性面状抬升,地壳活动较强。区域最大地震震级为 5.75 级,地震基本烈度为Ⅵ-Ⅶ。
峨眉山高中山地质环境区: 以高中山地貌为主,地势由北向南渐增,海拔 1000 ~3700m,切割深度 500 ~1000m,地形坡度15° ~40°,山坡上缓下陡,山顶圆缓,沟谷狭窄。地层包括下古生界的碳酸盐岩、变质岩,以及中生界的砂岩、泥岩和火山喷发的玄武岩等。软硬相间的岩体组合,类型较多,岩层较破碎。构造以南北向的褶皱、断裂为主,兼有北东向、北西向断裂切割,地层错落,岩层破碎,地壳活动较强,地震烈度为Ⅷ度。滑坡、崩塌、泥石流较发育。
甘肃省发生的地质灾害主要分布在陇南山地。该地区属西秦岭山地,地势西高东低,海拔 2500 ~4500m,地形强烈切割,水文网发育,相对高差 1000 ~2000m,属中高山地形。岩土体类型以变质岩岩组、碳酸盐岩岩组为主,碎屑岩类和黄土零星分布。年平均降雨量一般为600mm,7 ~ 9 月 3 个月降雨量占全年的 65% ,多暴雨。植被覆盖率达 30% ~ 46% 。属于滑坡、泥石流中等-高-极高发育地区。
5.8.2.3 预警预报效果分析
7 月 20 日对甘肃南部局部、四川中部局部和北部局部等地震重灾区发布了 4 ~ 5 级的地质灾害预警预报。7 月 21 ~22 日,地质灾害大量发生,实际发生区在四川东南部和甘肃南部。甘肃南部和中部局部的预报是准确的,四川北部没有报准的原因是实际降雨发生了偏移。20 日预报的暴雨中心是南部局部、四川中部局部和北部局部等地震重灾区,而实际暴雨中心却落在了四川东南部和甘肃南部以及陕西西南部( 图 5.49) 。
5.8.3 2008 年预警预报效果分析
本章选取 2008 年 7 月和 8 月的预报情况进行分析。
5.8.3.1 成功预报情况分析
实际计算时,如果当日仅有 1 个预报区,则按 1 个区计算; 如果有多个预报区,则按实际预报区个数计算,3 级、4 级和 5 级区共同参与计算。采用第 3 章 3.7 节建立的计算公式,计算出 2008 年 7,8 月预报准确率( 表 5.11) 。
图 5.49 7 月 21 日预报降雨、实际降雨与地质灾害点分布对比
表 5.11 2008 年 7,8 月预报准确率
表 5.11 列出 7 月共发布 93 个预报区,有 30 个准确预报区,平均预报准确率为32.26% 。8 月共发布 64 个预报区,有 14 个准确预报区,平均预报准确率为 21.88% 。每日预报准确率的变化从 0 ~100%均有,显示地质灾害发生的准确情况具有一定的随机性,同时与降雨量的情况有一定的关系,是一个复杂的过程,造成预报准确率较低。遇到大范围强降雨出现时,预报准确率会有所提高。
5.8.3.2 空报情况分析
实际计算时,如果当日仅有 1 个空报区,则按 1 个区计算; 如果有多个空报区,则按实际个数计算,三级、四级和五级区共同参与计算。空报率和准确率之和为 1。采用第 3 章 3.7建立的计算公式,计算出 2008 年 7,8 月空报率( 表 5.12) 。
表 5.12 2008 年 7,8 月空报率
根据表 5.12 空报率的计算结果,7 月的平均空报率为 67.74%,8 月的平均空报率为78.12% ,空报率较大,主要是因为预报降雨与实际降雨偏差较大所致。
表 5.13 2008 年 7,8 月漏报率
2008 年 7 月 20 日预报降雨和实际降雨情况可以看出,两个预报 100mm 的地区,其中一个降雨量不到10mm,另一个区中最大降雨量仅为40mm,降雨中心完全偏离预报区域,且降雨中心最大降雨量为 73mm,与预报 100mm 相差 27mm( 图 5.50) 。
图 5.50 7 月 20 日预报雨量与实际雨量对比图
5.8.3.3 漏报情况分析
采用第 3 章 3.7 建立的计算公式,计算出 2008 年 7,8 月漏报率( 表 5.13) 。
根据表 5.13 显示的计算结果,7 月的平均漏报率为 66.87% ,8 月的平均漏报率为86.54% ,漏报率较大,主要是因为地质灾害预报是针对比较大的云团或台风等强对流天气引起的地质灾害的预报准确率较高,而对于局地暴雨等天气情况引发的地质灾害预测较低。
5.8.4 暴雨日数与地质灾害
将汛期( 5 ~9 月) 全国暴雨日数与地质灾害点分布叠加( 图 5.51) 。
显示暴雨日数较大的地区集中分布在广东南部、广西南部、湖北东部等地。图 5.52 暴雨日数分段与单位面积地质灾害点统计,灾害点密度较大的区域集中在暴雨日数在 3 ~5 日之间,而在暴雨日数 >10 日的区域地质灾害点密度并不是最大的,即总体上,暴雨日数分布与地质灾害点密度分布对应关系不好。
图 5.51 2008 年 5 ~9 月全国暴雨日数与地质灾害点分布( 台湾省专题资料暂缺)
图 5.52 2008 年 5 ~9 月全国暴雨日数分段与单位面积地质灾害点统计
5.8.5 强降水过程引发地质灾害分析
2008 年汛期( 5 ~ 9 月) 全国共有 8 次强降水过程,在地质灾害多发区引发了大量的崩塌、滑坡、泥石流等地质灾害。
( 1) 2008 年 5 月 25 ~31 日强降水过程
2008 年 5 月 25 ~ 31 日,华南大部,特别是广西、贵州、广东局部发生一次强降水过程,过程降水量达 50 ~200mm。在全国多个省份引发了 365 处重大地质灾害。其中: 湖南 206处,广西 32 处,贵州 17 处等( 图 5.53) 。
图 5.53 2008 年 5 月 25 ~31 日强降水过程与地质灾害点分布( 台湾省专题资料暂缺)
从图5.54降水量分段与单位面积灾害点个数统计来看,过程降水量在50~200mm范围内,地质灾害点密度均较大,特别是过程降水量大于200mm的区域,主要分布在广西东北部、广东中北局部地区,地质灾害点分布更为集中,密度达7.4处/100km2;过程降水量为150~200mm的区域,覆盖了贵州、广西两省(区)交界地区,密度也较大,达2.8处/100km2。从全国统计来看,5月25~31日88.8%的地质灾害点位于累积雨量50~100mm范围内,全国地质灾害点主要是由本次强降水过程引发的。
图5.54 2008年5月25~31日降水量分段与单位面积地质灾害点统计
(2)2008年6月6~19日强降水过程
2008年6月6~19日,在我国的华南大部,特别是广东、广西、江西等地持续出现强降水过程,过程降水量达200~800mm。全国多个省份596处灾害点。其中:江西147处,广西126处,湖南88处,广东55处,浙江33处,云南23处等(图5.55)。
图5.55 2008年6月6日~19日强降水过程与地质灾害点分布(台湾省专题资料暂缺)
从图5.56降水量分段与单位面积灾害点个数统计来看,过程降水量在200~800mm范围内,地质灾害点分布最多,占全国灾害点总数的70.5%。过程降水量大于800mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量400~800mm的区域基本覆盖了广东、广西、江西、浙江、安徽等省(区)的山地(地质灾害高发区),地质灾害分布最为广泛,地质灾害点密度为4.6~6.4处/100km2;过程降水量200~400mm的区域覆盖了云南、重庆、湖南等地,地质灾害分布广泛,灾害点密度为6.4处/100km2。可见,本次大范围地质灾害的发生主要受到此次强降水过程的控制。
图5.56 2008年6月6~19日降水量分段与单位面积地质灾害点统计
(3)2008年7月6~10日强降水过程
2008年7月6~10日,华南大部、贵州东部、江南中西部、江汉东部、江淮西部、黄淮中东部、吉林北部等地出现了贯穿南北的强降水过程,全国多个省份共76处重大灾害点,其中:广东13处,湖北13处,安徽9处,广西2处等。
从图5.57降水量分段与单位面积灾害点个数统计来看,随着过程降水量增大,地质灾害点密度明显呈现增多趋势,特别是过程降水量介于100~300mm的区域,地质灾害分布点密度为0.8处/100km2;过程降水量大于300mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量在0~100mm范围内,也有大量灾害点分布。可见,此次强降水过程分布广泛,除降水中心灾害点个数较多外,在其他降水范围内仍有很多灾害点分布。
图5.57 2008年7月6~10日降水量分段与单位面积地质灾害点统计
(4)2008年7月20~24日强降水过程
2008年7月20~24日,四川盆地、黄淮、江淮等地普降暴雨到大暴雨,过程雨量50~200mm。在多处引发了大量地质灾害,其中四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。
从图5.58降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域过程降水量主要介于100~150mm之间,主要分布在四川、湖北、湖南等地质灾害多发区,而在过程降水量更大(>200mm)的区域,灾害点密度反倒相对较小,主要是因为这部分区域主要位于山东、河南、湖北等省份的地质灾害低易发区。可见山区或者说地质灾害多发区的灾害发生,主要受到强降水过程的控制,也即只有强降水过程落在地质灾害多发区时,地质灾害才会大量发生。
(5)2008年7月31日至8月2日强降水过程
2008年7月31日至8月2日,安徽、江苏局地出现强降水过程,累计降雨量50~200mm,局地250~530mm。最大降雨中心位于安徽的东北局部(>300mm),无灾害点发生;次级降雨中心位于安徽南部,为灾害多发区,引发灾害10处。
图5.58 2008年7月20~24日降水量分段与单位面积地质灾害点统计
从图5.59降水量分段与单位面积灾害点个数统计来看,也反映了这一特点,灾害点主要分布在过程降水量100~300mm的区域。在10~100mm覆盖的其他区域,有一些灾害点零星分布。
图5.59 2008年7月31日至8月2日降水量分段与单位面积地质灾害点统计
(6)2008年8月13~17日强降水过程
2008年8月13~17日,长江中上游、江淮地区等地大部分地区出现大到暴雨、局部大暴雨,降雨量普遍在50mm以上,湖北南部和东部、湖南西北部、河南东南部、安徽西部等地有100~200mm,部分地区超过200mm。在湖北、湖南、重庆等地引发大量灾害。其中湖南27处,湖北14处,四川12处,贵州6处,陕西3处,重庆2处。
从图5.60降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域主要集中落于降水量大于200mm的区域,因为该区域位于湖南西北局部地区,降水强度的大幅度集中[24h降水量湖南桑植(164.4mm)、通道(113.4mm)、平江(108.0mm)破历史同期记录],引发了大量的群发地质灾害。
(7)2008年8月28~29日强降水过程
2008年8月28~29日,湖北、安徽、重庆等地两天累计雨量一般有50~250mm。在湖北引发了7处,重庆引发了4处地质灾害。
从图5.61降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量大于50mm的区域,该区域主要位于湖北、湖南北部、重庆大部两日累积雨量基本都达到暴雨级别,降雨强度大,地质灾害频发。
图5.60 2008年8月13~17日降水量分段与单位面积地质灾害点统计
图5.61 2008年8月28~29日降水量分段与单位面积地质灾害点统计
(8)2008年9月22~27日强降水过程
2008年9月22~27日,四川省9个县(市)降了大暴雨;北川县连续5d出现暴雨;彭山和新都2个县(市)日降水量突破9月历史极值。地震灾区部分地方道路中断,山体滑坡和泥石流频发,重大灾害点达40处(图5.62)。地质灾害点密度最大区域位于100~200mm降水量区域,其次为50~100mm区域。
从图5.63降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量100~200mm的区域,主要位于四川西部南北延伸地带。
5.8.6 台风暴雨引发地质灾害分析
2008年汛期(5~9月)全国共有6次台风登陆我国大陆,带来了丰富强降水,对于崩塌、滑坡、泥石流等地质灾害的发生起到了一定的引发作用。
(1)热带风暴“风神”(6月25~29日)
6号热带风暴“风神”6月25日清晨在深圳登陆。受其影响,广东、福建、广西、江西、湖南等地降大到暴雨,在广东、江西、浙江、广西等省(区)引发了大量的崩塌、滑坡、泥石流地质灾害。
从不同降水量分段的灾害点密度来看,过程降水量在50~400mm之间时,灾害点分布较多,特别是100~200mm、300~400mm过程降水量时,灾害点密度分别达到了1.2处/100km2和1.6处/100km2。而降水量大于400mm的区域主要集中在广东东南沿海局部地区,灾害少发(图5.64)。本时段的地质灾害点主要是由于台风带来的集中降水引发的。
图5.62 2008年9月22~27日强降水过程与地质灾害点分布(台湾省专题资料暂缺)
图5.63 2008年9月22~27日降水量分段与单位面积地质灾害点统计
图5.64 热带风暴“风神”(6月25~29日)诱发灾害点分布统计
(2)热带风暴“海鸥”(7月19~20日)
7号热带风暴“海鸥”7月15日下午在菲律宾以东海面上生成。17日在台湾省宜兰县登陆,18日在福建省霞浦县再次登陆。受其影响,福建、广东、浙江、江西等地相继出现暴雨到大暴雨,在广东、福建两省引发了7处滑坡、崩塌、泥石流等小型灾害(图5.65)。
图5.65 热带风暴“海鸥”(7月19~20日)诱发灾害点分布统计
本次降水过程具有降水面积相对集中的特点,过程降水量大于50mm的区域面积较小,灾害点集中分布在过程降水量100~150mm的局部区域。
(3)热带风暴“凤凰”(7月28日至8月2日)
第8号热带风暴“凤凰”于7月25日下午在西北太平洋洋面上生成,28日早晨在台湾省花莲登陆,同日22时在福建省福清市再次登陆,登陆时为台风强度(中心附近风力12级)。受其影响,浙江东南部、福建中北部等地普降大到暴雨,部分地区大暴雨或特大暴雨;长江口、福建、浙江等地出现8~10级大风,局部达14级。在安徽、福建、广东、江西等省份引发了35处群发型地质灾害。
过程降水量大于300mm的区域主要集中在安徽东部与江苏交界地区,属地质灾害不易发区,无灾害点分布。而过程降水量在100~300mm的区域主要分布在福建、广东、安徽南部等地质灾害多发区,降水集中,地质背景环境条件脆弱,地质灾害大量发生(图5.66)。
图5.66 热带风暴“凤凰”(7月28日至8月2日)诱发灾害点分布统计
(4)强热带风暴“北冕”(8月7~9日)
强热带风暴“北冕”8月6日傍晚在广东省阳西县沿海登陆,登陆时中心附近最大风力有10级;并于7日下午在广西东兴市沿海再次登陆,登陆时中心附近最大风力有8级。受其影响,华南大部以及云南普降大到暴雨,局部降大暴雨或特大暴雨,过程最大降水量超过400mm。引发130处地质灾害,其中:四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。
从过程降水量分段的灾害点密度来看,降水量大于200mm的区域分布在广西南部的局部区域,地质灾害低发。而降水量50~100mm的区域分布在云南东部、广西中部、广东中部等灾害多发区,灾害点密度达1.4处/100km2(图5.67)。
图5.67 强热带风暴“北冕”(8月7~9日)诱发灾害点分布统计
(5)强台风“森拉克”(9月14~16日)
强台风“森拉克”于9月14日凌晨在台湾省宜兰县沿海登陆,登陆时中心附近最大风力为15级(48m/s)。“森拉克”具有发展快、强度强,移动慢、路径异常,正面袭击台湾,影响台湾和东海时间长等特点,降水集中在福建东北沿海、浙江东南沿海局部,无典型的台风引发灾害报告(图5.68)。
图5.68 强台风“森拉克”(9月14~16日)诱发灾害点分布统计
(6)强台风“黑格比”(9月23~27日)
强台风“黑格比”于9月24日晨在广东省电白县沿海登陆,登陆时中心最大风力达到15级(48m/s)。“黑格比”带来的强降水过程与强热带风暴“北冕”相似,地质灾害点密度最大的区域过程降水量介于100~200mm之间,在广东、广西、云南等地引发了大量地质灾害(图5.69)。
图5.69 强台风“黑格比”(9月23~27日)诱发灾害点分布统计
5.8.7 第一代与第二代区域预警系统应用对比
以2007年7~8月和2008年7~8月空间预报准确率核算,前者约为40%,后者约为27%,但后者预警面积仅为前者的四分之一,大大减少了预警区域,等于减少了防灾相应成本。
采用两套系统以2008年5月1~15日实际预警情况开展了对比分析(表5.14)。
表5.14 2008年汛期第一代与第二代区域预警系统应用对比
结论是,第二代预警系统在继承第一代系统临界雨量判别优势的基础上,突出反映了区域地质环境条件,在预警准确度、精细度等多个方面有较大改进。
㈥ 地质灾害气象预报预警响应
群测群防机构可通过电视、网络、传真、通讯等形式接收国家、省(自治区、直辖市)、市、县发布的地质灾害气象预报预警信息。
县级群测群防机构收到地质灾害气象预报预警信息后,应在2小时内将信息转发到相关地质灾害防治责任单位、隐患点监测责任人以及隐患区巡查责任单位(或责任人)。
(1)当预警级别为3级时,群测群防机构应通知基层群测群防监测人员注意,查看隐患点变化情况。
(2)当预警级别为4级时,群测群防机构应通知基层群测群防监测人员加密监测,注意防范,做好启动防灾应急预案的准备。
(3)当预警级别为5级时,群测群防组织应立即通知基层群测群防监测人员加强巡查,加密监测。一旦发现地质灾害临灾前兆,应立即发布紧急撤离信号,组织疏散受威胁的人员。
(4)未在地质灾害气象预报预警区域内,出现持续大雨或暴雨天气时,群测群防责任单位和监测人员应及时上岗加强监测。当发现临灾特征时,应立即组织疏散受威胁人员。
(5)鼓励公民和组织通过电话等各种形式向人民政府、国土资源主管部门提供地质灾害灾情和险情信息。
(6)县级群测群防机构在汛期每个月25日前,应将当月地质灾害信息反馈到省(自治区、直辖市)、市国土资源主管部门,信息反馈内容详见附件Ⅰ-5。
㈦ 汛期预警服务
6.3.1 工作程序
1)每日接收气象部门的当日实际降雨量数据、未来24h预报降雨量数据以及双方约定的其他数据,如气象部门初判的地质灾害预警预报区域及预警预报等级数据等。接收时间一般为当日15:00~16:00。
2)在计算机信息系统中作分析处理,根据各预警区的判据模型,自动判定未来24h地质灾害可能发生的区域和等级,形成初步预警结果(预警区域和等级)。
3)针对初步预警结果与下一级预警预报业务单位或对应的气象部门进行会商。
4)综合分析各单位的会商意见,对初步预警结果进行订正,形成最终预警产品。
5)主管领导审定、签发预警产品。
6)于当天16:20通过适当方式(电缆专线、FTP、E-mail等)把预警产品发回气象部门。
7)气象部门接收预警产品,并和天气预报产品统一制作,发送电视台。
8)当达到预报等级(3~5级)时,在当地电视台天气预报节目中播出;在相关网站或其他媒体上发布。
6.3.2 数据传输内容和方式
6.3.2.1 气象数据传输
每天15:30以前,气象部门负责向国土资源部门提供预报区内未来24h(当日20:00至次日20:00)降雨预报数据和当日实际降雨数据。文件名和文件格式双方自行约定。
国土资源部门根据气象部门提供的资料制作地质灾害预警预报产品,并以图像和文字形式传送给气象部门,由气象部门加工制作,与天气预报一起向社会发布。文件名和文件格式双方自行约定。
6.3.2.2 国土资源系统内部传输
每日17:00以前,负责本级地质灾害气象预警预报的单位将区内各级预警产品传输至所建立的地质环境信息网,供各级政府及国土资源部门浏览和下载。
在预警预报信息发布后72h内,各级国土资源部门应将预警效果(包括实际降雨量,地质灾害灾情、有效避免人员伤亡及经济损失等)传输至预警预报产品制作单位。为下一次预警预报产品制作提供参考资料。
6.3.2.3 数据传输方式
根据各地具体情况,可采用铺设光缆专线、FTP、E-mail、传真、电话等多种形式与气象部门、国土资源部门各级预警预报业务单位之间进行数据传输。
6.3.3 业务会商
6.3.3.1 目的
为了提高地质灾害气象预警预报的准确率,充分发挥国家、省(区)、市(地、州)地质灾害预警预报业务单位各自的优势作用,不断地提高防灾减灾成效,更好地为社会防灾减灾服务,有必要实施预报业务会商制度。要求在地质灾害气象预警预报信息形成预警产品前必须开展预警预报会商。
6.3.3.2 会商方式和内容
当双方确定的预报区域和等级不同时,应开展会商,特别是发布5级警报时,需经双方会商后确定预警区范围。会商时间为每日16:20~16:40,有特殊需要时,可随时电话会商。
根据地质灾害气象预警预报工作性质决定会商方式(或范围)主要有国土资源系统内部会商、气象部门内部会商、国土资源系统与气象部门联合会商、各系统上下级(或指定地区)会商等。会商内容为前期降雨情况、预报降雨情况、地质灾害预报范围和等级等。会商后,根据需要对预报范围和等级进行必要的修正。
6.3.3.3 会商形式
会商形式可采用小型会议、可视化远程会商、FTP式数据传输、E-mail数据传输、电话或传真等方式。
通过会商,了解预警区地质环境特征、历史发灾情况、当地气象部门的降雨预报数据和前期实际降雨数据等。各预警区的省(自治区、直辖市)通过电子邮件或传真的方式提供省级地质灾害气象预警预报情况,作为全国地质灾害预警预报的参考。
6.3.3.4 修正完善,形成正式发布产品
认真研究省级预警预报单位作出的预警结果,并对关键问题进行不同形式的会商,争取达成共识,最终形成国家级正式发布的地质灾害预警产品。
6.3.4 审定与发布
6.3.4.1 填写“预警预报产品签发单”
填写“预警预报产品签发单”,报地质灾害预警预报中心主任和主管领导审批,领导外出时电话请示审批。若出现5级地质灾害警报,及时向部、局、院领导报告请示。地质灾害预报等级达到4级及以上时,编写“地质灾害预警快报”,由环境司上报部领导。
6.3.4.2 预警产品发布
将预警产品通过FTP或E-mail的方式发送至国家气象局气象中心。如果出现达到预报等级3级以上的区域,则在中国地质环境信息网上发布;如果出现达到预报等级4级以上的区域,则在中央电视台19:30的天气预报节目中向社会公布,警示预警区群众注意地质灾害的预防和躲避。
6.3.4.3 报送预警产品
按程序报送当日地质灾害预警预报产品,特别是发布5级警报时一般要经主管部门同意,并征求预警地区有关部门的意见,以便于应急响应。
6.3.4.4 填写“预警预报情况记录表”
填写“预警预报情况记录表”,记录每日预警预报信息发布情况。
㈧ 地质灾害预报制度
县级人民政府国土资源主管部门和气象主管机构加强合作,联合开展地质灾害气象预报预警回工作,并答将预报预警结果及时报告本级人民政府,同时通过媒体向社会发布。当发出某个区域有可能发生地质灾害的预警预报后,当地人民政府要依照群测群防责任制的规定,立即将有关信息通知到地质灾害危险点的防灾责任人、监测人和该区域内的群众;各单位和当地群众要对照“防灾明白卡”的要求,做好防灾的各项准备工作。
㈨ 美国和日本等国地质灾害预警服务
目前,实现地质灾害预警的国家和地区,一般具备如下条件:
1)模型方法方面:对降雨和地质灾害的发生进行深入研究,获得了地质灾害预警的理论模型方法。
2)降雨监测和降雨预报方面:一是降雨预报数据,能够实现区域未来一段时间内的降雨预报;二是实时降雨监测数据,该数据一般可以通过两种方式获得:
a)雨量计,通过在区域上埋设一定数量的雨量计,实时精确掌握点上的降雨情况,从而实现区域上实时降雨的获得。通过安装自动遥测雨量监测仪(截至1995年,在旧金山湾地区安装了60台),当雨量每增加1mm时,通过电波自动传送数据到任何可接收到信号的地方(要求有接收器、计算机、数据接收分析显示的软件)。
b)降雨雷达,通过多普勒雷达(通过降雨云层上反射的雷达波)数据来进行降雨实时监测,该方法的难题在于,雷达回波值与地面上的降雨自动遥测值之间的关系确定上。原因有二:一是冰的反射能力远远大于水滴,因此温度成为一个关键的因素,且云中水滴的大小与温度、高度都相关,同时,除了水滴外,粉尘、昆虫、鸟等都能反射雷达的能量,都有回波;二是地面发散,即接近地面的雷达回波存在问题,特别是受到地形的影响。因此,将雷达回波值转换到降雨强度难度较大,且不同地区转换关系又不一样。
3)预警系统:根据降雨引发灾害的理论模型方法,实时进行分析预警。
4)预警信息发布平台:一般通过广播电台或电视台,向公众发布预警信息。
存在不足:理论模型方法需要更多的校验;缺乏有关斜坡岩土体方面的实时监测。
1.4.1 美国
美国是最早开展区域泥石流灾害预警的国家之一。
1.4.1.1 旧金山海湾地区
1985年,美国地质调查局(USGS)和美国气象服务中心(NWS)联合在旧金山海湾地区正式建立了泥石流预警系统。该系统于1986年2月12~21日在旧金山海湾地区的一次特大暴雨灾害中用于滑坡预报,并得到检验。由于技术复杂、机构变动和人员变动等方面原因,该预警系统在1995年被迫停止运行。
基于1982年1月3~5日在美国旧金山海湾地区发生的一次特大暴雨所引起的滑坡灾害数据,这次特大暴雨持续了34h,降雨量616mm,引发了大量的滑坡,造成25人死亡和超过6600万美元的经济损失。Mark&Newman通过对1982年1月的降雨情况分析得出,当前期雨量超过300~400mm,暴雨量超过250mm,即超过年平均降雨量的30%时,滑坡将大规模发生。该系统的基本原理是考虑了临界降雨强度和持续时间,并且考虑地质条件、降雨的空间分布,以及地形条件。美国地质调查局和美国气象服务中心在整个旧金山海湾地区共设计了45个自动降雨记录点,当降雨每增加1mm时,降雨观测点就通过自动方式将数据传送到美国地质调查局的接收中心和计算机系统。同时,为了监测降雨期间地下水压力的变化,工作人员还设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。当降雨量和降雨强度将要超过临界值时,提前进行滑坡灾害的预报,以减少滑坡灾害的损失和可能的人员伤亡。
旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。
1986年2月12~21日的滑坡灾害预警首先由美国地质调查局决定,通过当地电台、电视台以及美国气象服务中心的特别预报的方式来进行的。这次滑坡灾害的预警分为两个阶段:第一阶段是2月14日的6h灾害危险期;第二阶段是17~19日之间的60h的灾害危险期。由于地质条件的复杂性和地形条件的变化,这两次预报主要是针对整个旧金山海湾地区,而不是某一个特定的滑坡灾害地点。根据滑坡灾害发生后的调查,10处滑坡灾害点有目击者能提供精确的时间,其中有8处滑坡所发生的时间与预警的时间段是完全一致的(图1.17)。
图1.17 累计降雨量、滑坡预警时间(水平线段)、滑坡发生时间空心三角为滑坡;实心三角为泥石流
进一步研究要点:
a) 降雨—滑坡关系需精练,要考虑长期中等强度的降雨影响,使降雨与滑坡发生之间有更准确的模型,同时要针对滑坡的临界值,而不仅仅是泥石流;
b) 土体含水量和孔隙水压力的测量方法要更精确、有效;
c) 预警系统需要模式化和自动化,以便在暴雨期能够更快、更有效地得到数据;
d) 与滑坡有关的地形、水文和地质条件等内容,需进一步考虑,以使今后的预警更准确、有效。
作为第一个预警系统,从 4 个方面保证运行:
a) 降雨方面: 国家气象服务中心降雨预报( 未来 6h 预报) ,降雨实时连续监测( 多于 40个实时雨量计) ;
b) 预警方法方面: Canon and Ellen( 1985) 的临界降雨判据;
c) 预警运行上: 美国地质调查局根据降雨预报和实时降雨监测,实时预警系统进行分析;
d) 美国地质调查局和气象服务中心共同确定预警,并向社会发布。
1.4.1.2 俄勒冈州
1997 年,美国的 Oregon 政府建立了泥石流预警系统。该系统,由林业部的气象学家、地调系统( DOGAMI) 的地质学家、交通部( ODOT) 的工程师一起创建的。预警信息和建议通过 NOAA 天气节目和 Law Enforcement Data System 进行广播发布。DOGAMI 负责向媒体和相关地区提供关于泥石流的追加信息; ODOT 负责在更风险时段向机动车辆提供预警,包括在高泥石流风险路段安装预警信号。
1.4.1.3 夏威夷州
1992 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wilson 等,1992) 。
1.4.1.4 弗基尼亚州
2000 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wieczoic 等,2000) 。
1.4.1.5 波多黎各岛
1993 年,加勒比海的波多黎各岛建立了与旧金山海湾类似的 I-D 的预警模型,并进行了数次实时预报( Larsen & Simon,1993) 。
1.4.2 日本福井县
Onodera et al.( 1974) 通过研究发现,在日本,累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 时,大量滑坡将发生滑动。
日本在泥石流预警系统研制和开发方面处于国际领先地位。以发展具体一条或相邻沟的小规模地区的泥石流预报系统为主,通过上游泥石流形成区降雨资料的统计分析,确定临界雨量值和临界雨量报警线,通过上游雨量实时数据采集、演算和比较判别,自动发出报警信号。
山田刚二等( 1977) 通过滑坡的位移和地下水压力的监测,认为滑坡位移速率以及地下水压力不仅与当天降雨量有关,而且还与以前的降雨量有关,所以用有效雨量来表示雨量,有效雨量可以从下式求得:
中国地质灾害区域预警方法与应用
式中:Rc为有效雨量;R0为当天降雨量;Rn为日前降雨量;α为系数;n为经过的天数。通过对山阴干线小田—天仪之间403km,400km附近的滑坡研究发现,日有效降雨量、位移速率、地下水压力随时间而变化的曲线,位移速率v,Rc与地下水压力(p)之间关系分别是二次曲线和直线:
中国地质灾害区域预警方法与应用
目前,日本在福井县开展了地质灾害预警预报工作。以点代面,根据区域地形、地貌和环境地质特征以及灾害可能发生的危险程度,在全县范围内布设了 66 个预警预报监测点,实现了定点、定时和灾害程度的预警预报。同时通过该系统还可以了解过去某一时间的雨量情况和发布情况等内容。
1.4.3 巴 西
Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。
1996 年,里约热内卢( Rio de Janeiro) 州建立了预警系统( Geo-Rio) 。由地质力学所设计并安装了 30 台自动雨量计,向中心计算机( Geo-Rio) 发送数据。中心计算机接收数据,并发布预警。2001 年滑坡灾害中,对里约热内卢的部分地区发布了预警,但在向北 60 km 处的 Petropolis 损失惨重。由于火灾,Geo-Rio 系统于 2002 年 11 月被迫停止。
㈩ 地质灾害预警预报分为几个等级,主要通过什么途径发布
根据地质灾害活动或损失程度划分的等级。目的是表示地质灾害的轻重程度,便于专对不同地质灾害事件属或地质灾害与其他自然灾害进行对比。分级的依据或类型有两种。一是根据地质灾害活动的强度、规模、速度等指标反映地质灾害的活动程度,有人称其为灾变等级。不同地质灾害的分级标准和指标不一,只有少数地质灾害已形成公认的分级标志(如地震采用震级表示地震活动强度),多数地质灾害尚没有统一的分级方案。二是以地质灾害的破坏损失程度分级。有人称其为灾度等级,但没有公认的分级方案和相应的指标标准。多数人认为以地质灾害事件造成的人员伤亡和直接经济损失数量作为地质灾害破坏损失分级指标,从大到小依次为巨灾、大灾、中灾、小灾、微灾。这两种分级含义不同,但有密切联系:地质灾害活动强度级次所标识的是地质灾害动力活动的强弱程度或规模大小;地质灾害破坏损失级次标识的是地质灾害破坏损失的大小,它除了受地质灾害强度控制外,还与受灾地区人口、财产分布以及受灾体的脆弱程度等社会经济条件密切相关。
地质灾害按照人员伤亡、经济损失的大小,分为特大型、大型、中型和小型四个等级。