高中地理大圓航程
1. 地理高中最短距離和方向怎麼判斷
你好!來最短距離的演算法是如果源是在地球上的任意兩點是剛好在一個球面上是過圓心的一個大圓上,也就是說兩點在同一條經線圈上或者是同在赤道這條緯線圈上,這些都在過圓心的大圓上,那麼過兩點的劣弧就是最短距離。如果不是在這些特殊的大圓上,而是在其他緯線圈上,那就要過兩點作一個過球心的大圓,劣弧就是所求的最短距離。(具體做法,過這兩個點作一個向高緯度突起的弧,北半球的就向北極點突起,那突起的這一段劣弧就是所求的最短距離。如圖:)希望可以幫到你!
2. 高中地理求兩點之間航行最短路程的方向問題
地球是一個兩極部位略扁的不規則球體,但在討論兩點之間的最短航線時,一般近似地認為地球是一個正球體,即在地球表面上兩地之間的最短距離(或航線)應指的是經過這兩點的球大圓在這兩點間的一段劣弧長度,這個圓的圓心必須經過球心(即地心)。在中學地理應試中主要有以下幾種情況。
1.晨昏線上兩點之間的最短距離是該晨昏線上兩點之間的劣弧部分。如圖1右圖中的的陰影部分為黑夜,GH之間的最短航線是沿著晨昏線的劣弧走:先東南,再向正東,後東北,即經過GMH,而不是GYH。
2.赤道上兩點之間的最短距離是赤道上兩點之間的劣弧部分。如圖1左圖中的AB之間的最短航線:A到B走為正東或B到A走為正西。
3.經線上兩點之間的最短距離是該經線上兩點之間劣弧部分。如圖1左圖中的CD之間的最短航線:C到D為正北或D到A為正南。
4.若兩地間的經度差等於180°,則經過兩點的大圓一定是經線圈。這兩點間的最短航程須經過極點,其結果只能是先正北後正南或先正南後正北。
⑴同位於北半球的兩點,最短航線必須經過北極點,其航行方向一定是先向正北,過北極點後再向正南。如圖1左圖中的EF之間的最短航線為先正北後正南,即經過ENF三個點的經線圈的劣弧線,而不是沿EF的緯線走。
⑵同位於南半球的兩點,最短航線必須經過南極點,其航行方向一定是先向正南,過北極點後再向正北。
⑶兩地位於不同半球時,這時需要考慮是經過北極點為劣弧,還是經過南極點為劣弧,然後再確定最短航程的走向。如圖1左圖中的E點到X點的最短航線為先正北後正南,即經過經線圈的ENFX四個點的劣弧線;而不是先正南後正北,即不是經過經線圈的ESX三個點弧線。注意:上述四種情況中赤道、經線、經線圈、晨昏線都是大圓或大圓的一部分,故直接可截取球面距離。
5.若兩地經度差不等於180°,則過兩地的大圓不是經線圈,而是與經線圈斜交,其最短航線不經過極點,具體分兩種情況。
⑴若甲位於乙的東方,從甲到乙的最短航線可分為:同在北半球,先向西北,再向西,最後向西南;若同在南半球先向西南,再向西,最後向西北;若位於不同的半球時,需要討論哪一段為劣弧段。
⑵若甲位於乙的西方,從甲到乙的最短航線可分為:同在北半球,先向東北,再向東,最後向東南;若同在南半球先向東南,再向東,最後向東北;若位於不同的半球時,需要討論哪一段為劣弧段。
3. 請詳細解釋一下地理中的大圓
。。什麼大圓。。大圓航線么。。?大圓航線是指地球上任意兩地間的最短航線。立體幾何中球面上任意兩點間的最短距離是過這兩地的大圓上的一段劣弧。這是其解題依據。。我能想到的就這些。。要是按地球講的話。。那就是經過地心的圓了。。
4. 地理大圓航線原理!!急用~~拜賜教!
這里所說的劣弧是指:過A、B和地心的平面相交的交線為一正圓,該院被A、B兩點分為優弧和劣弧,劣弧為這兩點間的最短距離。
因為A、B兩點在同一緯線上,且A在B的東方,既然它們是以地心為圓心的圓上兩點,那怎麼走在圖上一畫就一目瞭然了。
你可以去下面這個網站看看,裡面有這道題,還有球面兩點間最短距離的方法歸納。
http://wenku..com/view/b99881c758f5f61fb7366677.html
5. 地理 大圓航線
地球表面是個球面,因此地球表面上沒有直線(當然,距離很短的時候接近直線),同樣兩點之間畫弧,顯然,半徑越小,弧就越突出,長度就越長,半徑越大,弧就越平緩,就越接近線段,長度就越短。因此地球上最短航線是大圓航線。但是,大圓航線除了在赤道上和同一經線上外,其它的大圓航線方向在不斷變化,領航不便。因此實際航線的確定方法一般都是先畫出大圓航線,然後選幾個點,相鄰點之間用等角航線(領航方便),但整個航線接近大圓航線。(距離較近。)
6. 高中地理必修一最短航線問題 最短航線那個大圓怎麼畫大圓一定要能
這不就一立體幾何嘛,把地球想成一個圓,地核是圓心,那2點不就在圓上嗎。你這問題我高一的沒學過,你學的人教版?
7. 地理高中最短距離和方向怎麼判斷。
樓上有誤。
求球面最短航線距離有兩種情況:
①若兩地間的經度度數和等版於180°,則經過權兩地的大圓是經線圈,這兩地間的最短航程經過極點。
②若兩地經度度數和不等於180°,則過兩地的大圓與經線圈斜交,其最短航程不經過極點。
樓主所說的屬於第①種情況,最短航線必須過南極點,沿120°E往南飛,過了南極點後,就是沿著60°W往北飛,依次飛過的緯度是:30°N——0°——90°S——35°S,跨越175個緯度,航程:175*111千米/度=19425千米。
8. 高中地理:關於最短航線問題
兩點最短航線為經過兩點的大圓的劣弧;在北半球,向北極點方向,如該題,最短航線為先向東北,再向東南;南半球相反。
9. 高中地理定最短航線問題。
所謂劣弧,最短航線,就是看你在那個半球航行,若是在北半球,以偏向北極點為最短航線,在南半球以偏向南極點為最短航線,這是答題技巧與方法,希望對你有所幫助