SZK4工程地質柱狀是什麼意思
『壹』 岩土體工程地質類型分區
平原區廣泛分布以沖洪積成因為主的第四系堆積物,低山丘陵區出露多種類型的岩組,沂沭斷裂帶西側的鄌郚-葛溝斷裂、沂水-湯頭斷裂縱貫南北,總體看工程地質條件較復雜(圖1-8-3)。
圖1-8-3 昌樂縣岩土體工程地質類型分區略圖
(一)岩體工程地質類型
1.堅硬的塊狀侵入岩岩組
分布於營邱—河頭一帶,為古元古代呂梁期侵入岩,岩性以弱片麻狀中粒含角閃二長花崗岩、弱片麻狀中粒含黑雲二長花崗岩,岩石堅硬,力學強度高,工程地質性質良好,山區風化帶厚度<3m,丘陵及準平原區20~30m,fc=130~170MPa,fr=90~130MPa(fc為岩石極限干抗壓強度,fr為岩石飽和極限抗壓強度)。
2.堅硬的塊狀-似層狀噴出岩岩組
主要分布在南郝—崔家埠—五圖一線以南、鄌郚-葛溝斷裂以西地區,為新近紀臨朐群牛山組、堯山組火山噴出岩,岩性為玄武岩。岩石堅硬,柱狀節理發育,工程地質性質良好。風化帶厚20~30m,fc=140~160MPa。
3.堅硬的塊狀變質岩岩組
主要分布在鄌郚—阿陀一帶,為新太古代泰山岩群山草峪組黑雲變粒岩,岩石堅硬,風化帶厚度30~40m,fc=180~200MPa。
4.堅硬較堅硬的中厚-厚層狀灰岩岩組
僅分布於朱劉街道、五圖街道一帶,主要為寒武紀長清群硃砂洞組、饅頭組、九龍群張夏組、崮山組和炒米店組白雲質灰岩、泥灰岩、泥質條帶灰岩和生物碎屑灰岩等,局部夾細砂岩。灰岩堅硬,力學強度高,泥灰岩強度低。白雲質灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。
5.較堅硬的中厚—厚層碎屑岩岩組
主要分布在鄌郚-葛溝斷裂帶與沂水-湯頭斷裂帶,以及五圖煤礦一帶,岩性為白堊紀淄博群三台組砂岩、礫岩,萊陽群城山後組角礫岩、砂礫岩、砂岩,青山群八畝地組凝灰岩、集塊角礫岩、粉砂岩,大盛群馬郎溝組粉砂岩、細砂岩,田家樓組泥質粉砂岩、細砂岩、黏土岩,古近紀五圖群朱壁店組礫岩、砂礫岩、礫岩,李家崖組黏土岩、砂岩、黏土岩、油頁岩等。風化帶厚度<40m,砂岩和礫岩fc=30~80MPa,fr=20~50MPa。
6.較堅硬的薄層狀頁岩夾灰岩岩組
局限分布在阿陀東北部,岩性為中寒武系、下寒武系及元古宇土門群頁岩、博層灰岩、泥灰岩。頁岩夾泥灰岩fc=30~40MPa,fr=10~15MPa。
(二)土體工程地質類型
1.北部沖洪積上層黏性土多層或雙層結構
分布於北部山前平原地區,以上層黏性土多層結構為主,上層黏性土厚<5m或5~10m,僅局部>10m,黏性土岩性以粉質黏土、黏土為主,中等壓縮性。砂性土為粉細砂、中細砂,其次粗砂、礫石,砂層顆粒自北至南變粗,工程地質性質良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk為地基承載力標准值)。
2.山前及河谷平原沖洪積上層黏性土雙層、多層結構及黏性土單層結構
分布於山前坡麓、山間河谷地區,上部黏性土為粉質黏土、粉土、黏土,厚度5m左右,中等壓縮性。下部砂性土為中粗砂、細砂、砂礫石,緊密狀態,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。
3.山麓地區坡洪積及殘坡積黏性土單層結構或上層黏性土雙層結構
分布於南部低山丘陵坡麓地帶,以黏性土單層結構或上層為黏性土雙層結構為主。黏性土厚<5m或5~10m,以黃褐色至棕紅色粉質黏土及黏土為主,含鐵錳質及鈣質結核,可塑—硬塑,中等壓縮性,部分地區分布濕陷性黃土。下部夾透鏡體狀碎石土及泥鈣質膠結礫岩,緊密狀態,工程地質性質良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。
總之,昌樂縣工程地質主要問題是沂沭斷裂帶的活動性,其次是地面沉陷、岩溶塌陷、局部黃土濕陷等問題。
『貳』 海底工程地質概況
開辟區內分布最廣的沉積物類型為硅質粘土和硅質軟泥,沉積物未固結。由沉積物柱狀樣的表層硅質粘土和硅質軟泥測試結果(表2—3)表明,表層沉積物硅質粘土和硅質軟泥的工程地質性質具有如下特點。
2.4.1物理性質
樣品具有高含水量(163%~356%)、低密度(天然密度1.1~1.3g/cm3)、高孔隙度(84.5%~90.6%)以及塑性指數(IP=26~110)和液性指數(IL=1.9~8.8)都很高的特性。
表2—3海底表層沉積物工程地質性質主要參數
註:塑性指數(IP)為粘性土塑性上限(液限含水量wL)與塑性下限(塑限含水量wP)之差值,即IP=wL—wP,代表可塑程度;液性指數IL是粘性土的稠度指標,可作為抵抗外力的量度,IL=(w—wP)/(wL—wP)(式中,w為天然含水量),其值越大,抵抗外力的能力越小。
2.4.2力學性質
具抗壓性低(剪切強度1.0~4.0kPa)、壓縮系數大(4.4~11.5MPa-1)和固結系數小(1.1×10-3~5.8×10-3cm2/s)的特徵。
從上述物理性質和力學性質的特徵看,開辟區表層沉積物的工程地質性質較差。相對而言,硅質粘土的工程地質性質參數比硅質軟泥的變化范圍小,其工程地質性質稍好。
根據現場采樣,在表層沉積物幾厘米或幾十厘米之下,沉積物的含水量降低,粘結性驟增,均勻度和工程地質性質變好。
『叄』 工程地質學中柱狀節理的形成機理!
一般是岩漿岩。岩漿噴出後,在地下慢慢冷卻,後又被推出地表形成的柱狀。在南京有個石柱山。你可以搜索一下。
『肆』 高速公路地質設計圖中S和T是什麼意思
S志留系地層;T三疊紀地層。表示不同時代的岩石。
『伍』 建築地基的「ZK」是什麼意思
地基是指建築物下面支承基礎的土體或岩體。作為建築地基的土層分為岩石、碎石土回、砂土、粉土、黏性土答和人工填土。地基有天然地基和人工地基(復合地基)兩類。天然地基是不需要人加固的天然土層。人工地基需要人加固處理,常見有石屑墊層、砂墊層、混合灰土回填再夯實等。
建築類的ZK是鑽孔(zuan kong)的縮寫。每隔一定的距離,一個樁號。
鑽孔是指用鑽頭在實體材料上加工出孔的操作。這里講述了勘探工作里的鑽孔工作,以及鑽孔需要的輔助工具以及部分應急措施方法。
在地質勘查工作中,利用鑽探設備向地下鑽成的直徑較小深度較大的柱狀圓孔,又稱鑽井。鑽探石油和天然氣以及地下水的鑽孔直徑較大些。鑽孔直徑和深度大小,取決於地質礦產埋藏深度和鑽孔的用途。
鑽孔各部位的名稱如圖所示。鑽孔起始部位稱孔口,側部稱孔壁,底部稱孔底。鑽孔的直徑D簡稱孔徑,孔口直徑稱開孔口徑,孔底直徑稱終孔直徑。從孔口至孔底的距離H稱鑽孔深度,簡稱孔深。鑽孔的某一段稱孔段。
『陸』 地質剖面圖的N,S,M各代表什麼意思
N為新生代上第三系地層
S為中生代志留系地層
m可能為某一組段地層代號。
『柒』 水文地質編錄中如何區別岩芯長柱狀還是柱狀
特意來查了一下,《雲南地礦源局礦區水文地質工作具體要求暫行規定》(1980年12月)裡面說的是:岩心長度>50cm為長柱狀;25--50cm為柱狀;10---25短柱狀;5--8短柱狀。5--8cm扁柱狀。不好意思剛才打錯了。
『捌』 水文地質編錄中如何區別岩芯長柱狀還是柱狀
特意查了一下,《雲南地礦局礦區水文地質工作具體要求暫行規定》(專1980年12月)裡面說的是:岩屬心長度>50cm為長柱狀;25--50cm為柱狀;10---25短柱狀;5--8短柱狀。5--8cm扁柱狀。不好意思剛才打錯了。 到地學網網站查看回答詳情>>
『玖』 煤礦工程地質勘察工作
煤礦工程地質勘察工作應盡量收集已有的地質、水文地質及鄰近礦區的生產資料,充分利用地質孔、水文地質孔來滿足工程地質調查的要求。在詳查階段,勘探孔間距一般500~1000m,用於工程地質目的一般不需增加勘探孔數,孔徑一般採用89mm或108mm,對鬆散層、軟弱岩層及煤層採用雙層管取芯以減少擾動。須安排一定數量的孔全孔取芯。取芯深度一般要求從煤層之上30m至煤層以下10m。
3.1.3.1 鑽孔編錄工作
(1)在鑽進過程中,每一岩層分層的鑽進速度、鑽桿振動以及沖洗液消耗量的變化、水位變化等均應作仔細觀察、記錄。
(2)取樣或破壞岩芯之前,擦凈岩芯表面的泥漿進行彩色拍照,這可提供一個持久良好的記錄,而且可通過這些相片給出節理、自然岩層分層、軟弱岩層及軟弱夾層。
(3)對於取芯的每一岩(土)層,取芯後應立即觀察描述。
黏土類土:首先根據黏土顆粒含量多少(藉助於搓條、刀切等手段)劃分為黏土和亞黏土,再描述其顏色、成分、層理、結核包裹體、化石、滑面及其傾角、接觸面、溫度和可塑性等。
砂類土:首先根據顆粒粒組的百分含量劃分為礫石,粗、中、細、粉砂,再描述其顏色、顆粒成分及含量、分選性、滾圓度、層理、接觸面、化石、結核、濕度和密實程度等。
岩石:要描述每一岩石分層的岩石名稱、顆粒成分及含量、分選性、滾圓度、膠結物成分及含量、膠結方式、層理、接觸類型、該層的岩石質量標志(RQD)、強度、不連續面的密度及崩解、膨脹特性等。
野外可按以下簡易標志描述:
1)RQD:某一地層分層>10cm長的岩芯之和與該分層岩芯總長度的比值(%)。
2)折斷強度:從岩層中取出150mm岩芯,試著用手將其折斷。折斷強度可用下列標准予以估計:高的——手摺不斷,中等的——很少折斷,低的——經常折斷。
3)不連續面密度:以每分層中每米節理或不連續面的數量分級。
高的:>10,結構面極發育,岩體破碎;
較高的:2~10,結構面發育,岩體破裂;
中等的:0.5~2,結構面較發育,岩體呈塊狀;
低的:<0.5,結構面不發育,岩體完整。
4)崩解性:將有代表性的風乾的長25cm的岩芯放入水中10min,據以下標准評價確定。
高的:完全崩解;中等的:有些崩解;低的:很少或沒有崩解。
(4)取樣方法:根據煤層和岩石物理力學性質試驗的要求,對岩(土)層分層依次採取尺寸和數量均符合實驗要求的完整試樣,經包裝、蠟封後運往實驗室,如果是土樣、濕度敏感性較大的岩石均應在取芯後立即取樣,以保持濕度和不被風化。
(5)每個鑽孔應進行物探工作。
(6)鑽孔編錄的綜合成果必須反映在鑽孔工程地質柱狀圖上,該圖應包括下述項目:地層岩性、柱狀、RQD、折斷強度、不連續面密度、崩解性質、綜合評價等。這一圖件對評價地層的冒落特性,查明潛在的地層控制問題,估計平均支護載荷密度都是非常有用的。
1)節理和不連續面的密度和方向,它們之間的接觸關系及充填情況。利用這一資料可評價頂、底板岩層變形性質及分析殘余構造應力的方向。
2)直接頂板地層的厚度和力學特性。這些性質會大大影響工作面後方地層的冒落性、變形特徵、工作面支護載荷、頂底板移近、煤巷支護及岩層移動。
3)詳細調查岩芯丟失的層段,以查明軟弱岩層。
4)黏土岩和砂岩位置及厚度的變化,由此可查出古河床或河漫灘的標志,預計可能出現的地層控制問題。
5)每一地層單位的RQD、強度、崩解性、各岩層間出現離層的可能性。據此可確定平均支護密度及煤巷支護。
3.1.3.2 專門工程地質工作
下面討論更為詳細的工程地質資料的獲得方法。這些資料包括節理和不連續面的性質、原岩應力狀態、岩土層的強度指標、崩解性、岩體變形性質等。
(1)節理和不連續面的密度、間距、形狀和延伸等,這些可在岩石露頭上進行節理裂隙統計得到;也可通過岩心直接測繪,如此需考慮使用雙管鑽進,取得定向岩芯;還可使用物探技術或鑽孔電視於孔內直接測得節理裂隙圖像。
(2)可在鄰近礦井中使用應力解除法,或在鑽孔中通過水力破裂法測定原岩應力狀態。水力破裂法適應於較深處的應力測量,且只能得到水平面上的兩個應力的大小和方向,垂直方向的應力則需按深度和上覆岩層的容重計算得到。以上測量必須在定性分析的基礎上,認為該區有構造應力存在時才進行,否則即按自重應力場計算原岩應力。
(3)實驗室測定的岩(煤)塊強度變形指標有變形模量、泊松比、單軸抗壓強度、單軸抗拉強度、岩塊和節理面的粘聚力與內摩擦角值。這些參數應盡量在較大直徑的岩樣上測定,以便更接近岩體指標。
在進行岩移預計或留設防水煤柱時,尚需得到鬆散層的變形和強度指標,它們是土的壓縮系數、無側限變形模量、泊松比、粘聚力和內摩擦角、無側限抗壓強度,黏土的抗拉強度、固結系數、先期固結壓力,還要得到其他常規的物理性質指標,如含水量、黏土的塑限及液限、砂土的相對密度、顆粒成分等。
(4)水理性質:在水或濕氣作用下,頂、底板岩石的惡化對地層控制是極其不利的。岩石的水理性質可由膨脹和崩解指標表示,決定這一性質的內因是它所含黏土礦物的性質及含量,如含蒙脫石的黏土類岩石最易崩解和膨脹,因此還必須進行岩石的礦物成分分析。
(5)岩體的變形性質:在鑽孔內設置鑽孔膨脹儀以測量直接頂、底板橫向變形性質,通過聲波測井可得到垂直層理方向的岩體變形性質。
3.1.3.3 水文地質調查
包括鬆散層含水層中的地下水和基岩含水層中的地下水的調查。這些調查應提供以下信息:(1)地下開挖時潮濕的區域;(2)開挖區地下水量的預計;(3)采礦引起的地面及岩層移動對地表和地下水變化的影響。為此,必須進行野外鑽孔抽水、注水試驗,以查明地下水水位、水流方向,岩層的滲透性,各主要含水層間的水力聯系等。
3.1.3.4 圖件的編制
工程地質工作的成果應反映在以下圖件上,可便於開采設計和生產使用:
(1)工程地質柱狀圖。在綜合鑽孔編錄及專門工程地質工作的基礎上編制,並需將各岩層劃分為工程地質岩組(指工程地質性質相近的岩層的組合)。它包括以下內容:地層單位、深度、厚度,各岩組岩性描述,岩石(體)的變形指標、強度指標、膨脹崩解特性,節理裂隙的密度和方向,可能離層的部位和岩層的滲透系數等。
(2)工程地質剖面圖。著重反映沿勘探線工程地質條件的變化,包括工程地質岩組、風化帶界線、各岩組主要物理力學性質、地下水位、岩層滲透性等內容。
(3)工程地質問題平面預測圖。根據頂、底板岩性岩相、岩石物理力學指標、岩體變形性質,節理、裂隙、斷層的產狀和密度,地下水活動情況,瓦斯集中的可能性等,對頂、底板岩層進行穩定性評價,預測可能出現的地層控制問題,為選擇採煤設備和頂、底板管理方法提供依據。