地質勘察破碎帶怎麼描述
❶ 三峽庫區地質災害勘察物探技術方法應用
李洪濤孫黨生楊勤海楊進平
(中國地質調查局水文地質工程地質技術方法研究所,河北保定,071051)
【摘要】本文簡要敘述了在三峽庫區地質災害勘察中經常使用的物探技術方法以及一些典型的工程實例,以求為今後的工作帶來一定示範效應,進一步為地質災害勘察提供先進有效的測試手段。
【關鍵詞】三峽庫區地質災害勘察物探技術方法
1前言
從1997年至2004年,中國地質調查局水文地質工程地質技術方法研究所承擔了三峽庫區移民遷建新址重大地質災害防治研究與論證綜合地球物理勘查,奉節三馬山小區物探勘察,巴東黃土坡滑坡、萬州官塘口滑坡物探勘察,重慶14區縣庫岸調查等一批應用研究課題及物探勘察任務。先後在三峽庫區的巴東、巫山、奉節、萬州及豐都、石柱等地進行了大量的綜合地球物理勘察。本文為地球物理勘探技術方法在三峽庫區地質災害防治工程中的應用實踐經驗總結和體會,以求為今後的工作帶來一定示範效應,進一步為地質災害勘察提供先進有效的測試手段。
2地球物理勘探技術方法
2.1淺層高解析度地震勘探
2.1.1工作技術方法
(1)展開排列法
考慮到庫區地形地質條件的復雜性,在奉節和巫山兩地,在布置地震剖面之前,作為一種重要的試驗方法,都採用了展開排列法。其作用是了解測區地震波波組中各種波的時序排列關系,進行震相分析,從而確定數據採集的儀器參數和觀測系統,採取合適的激發與接收措施,進行地層介質速度參數的估算。展開排列法觀測系統採用0m、10m、20m、30m、40m、50m等不同偏移距,道距2m或3m。
(2)共深度點多次水平疊加法(CDP)
CDP水平疊加法是在不同激發點和接收點上採集來自相同反射點的反射波,在得到的多張地震記錄中抽出界面上共反射點道集,經過速度掃描、動靜校正之後,進行疊加處理,以時間剖面的形式給出地質界面及構造信息,這種方法可以提高信噪比,對壓制干擾波有顯著的作用。CDP剖面觀測系統中的偏移距的選擇,是根據面波、聲波等干擾波與目的層反射波的關系確定,分別採用30m、40m和69m。道距採用2m、3m和5m。水平疊加次數大部分為6次,部分用3次。
(3)地震高密度映像法
高密度映像技術採用單次激發、單次接收等偏移距信號採集,其工作模式與水域中聲納法類似,故又稱為陸地聲納法。採集的信號經幅度壓縮、彩色調制,以彩色映像的方式顯示。高密度映像法的偏移距用2m,點距1m。
2.1.2野外數據採集設備
地震勘探採用北京水電物探研究所的SWS—1A型多功能面波儀與瑞典ABEM公司MARK6輕便多道地震儀。接收檢波器用38HZ高靈敏數字檢波器配CDP輕便覆蓋電纜。根據探測目的層的深度,以及測區施工條件,分別採用錘擊與炸葯爆破兩種震源。錘擊震源錘重24磅,錘墊厚20mm。為增加有效信號,壓制隨機干擾,採用垂直疊加,疊加次數一般為5次。炸葯震源一般在炮孔中激發,孔深1~2m,葯量100~200g。
2.1.3資料數據處理
CDP剖面資料的數據處理採用CSP.3.3地震數據處理系統。針對本區地形坡度大且起伏劇烈的特點,在疊前和疊後均作了地形校正。處理內容還包括增益控制、噪音和干擾波切除、濾波、速度分析、動校正與水平疊加等,最終輸出含有地形線的CDP水平迭加雙程反射波時間剖面圖,成果地質解釋圖是在AutoCAD14.0下完成的。處理流程如圖1。
圖1淺層地震數據處理流程圖
2.2面波勘探
採用瞬態面波(瑞雷波)勘探。在地表用震源豎向激震時,一般會產生直達縱波、折射縱波、反射縱波和瑞雷波以及各種轉換波。理論分析和實驗表明,所有這些波中,瑞雷波的能量最強,約佔67%。瑞雷波是一種沿地表傳播的表面波,其傳播的波陣面為一個圓柱體,傳播的深度約為一個波長。利用瑞雷波的頻散特性,即不同波長的瑞雷波傳播特徵反映不同深度地質體的特徵,進行地質介質結構的探測。
2.2.1儀器設備
面波勘探採用北京水電物探研究所的SWS—1A型多功能面波儀,接收檢波器採用4Hz低頻檢波器,面波剖面採用12道排列,道距1m,點距5m,偏移距分別為0m、5m、10m、15m和20m。
2.2.2資料處理
面波剖面採用 FKSWSA面波處理系統,通過多道三維傅里葉變換,在時間—空間(T—X)域和頻率—波數(F—K)域內進行速度和波數(波長)濾波,消除非面波信號,有效地提取面波信息,繪制面波頻散曲線,進行面波資料的反演解釋。
FKSWSA面波處理系統的特點是可以進行擬合處理,即設定的地層結構參數與計算的地層參數,通過相關系數判斷,確定最佳地層結構反演結果。
2.3地震層析成像(CT)
地震層析成像和其他科學技術領域的成像技術類似,是一種邊界投影反演方法。從地震波的運動學與動力學特徵出發,地震層析可分為射線層析和波動方程層析兩類。它們分別測定地震波的走時、振幅、相位、周期等信息變化,反演地質介質三維速度結構或衰減特性,並以圖像表示其結果。
地震 CT數據採集採用井間與井地結合的方式。井地方式是在兩孔之間沿地面上激發彈性波,孔中接收;井間方式是在一孔內激發,另一孔內接收。接收點距2m和1m,炮距2m或視井中條件確定,構成上下交叉的觀測系統,以保證射線覆蓋測試區域,提高成像精度。
2.3.1儀器
SWS—1A多功能面波儀或 MARK6輕便多道地震儀。
接收採用串聯式氣囊檢波器與井壁耦合。
採用爆炸震源,電雷管激發。
2.3.2數據處理
數據處理採用CST for Windows地震層析成像系統。每個成像區域均按2m×2m單元剖分,每個單元塊上的射線節點密度為10個×10個。成果以波速等值線色譜圖展示,圖像輸出是通過Winsurf6.04實現的。處理流程如圖2。
圖2地震層析成像數據處理流程
2.4EH—4電導率成像
EH—4電導率成像方法屬部分可控源與天然場相結合的一種大地電磁測試法。不同於直流電法,它不是通過延長電纜和加大極距來增加勘探深度,而是在測點上,通過其變頻獲得深度信息。EH—4在奉節縣寶塔坪三萬塘地面塌陷坑調查中,在坑底布置了一條南北向剖面,點距5m,電偶極距15m,與剖面方向一致。在塌陷坑南側地表布置了一條剖面,點距5m,電偶極距10m。
2.4.1儀器設備
EH—4電導率成像系統是由美國 GEOMETRLCS和EMI公司聯合生產。是目前國際上較為先進的一種電磁法勘探儀器。
2.4.2EH—4的資料處理
包括現場數據處理和後續處理兩大部分。現場數據處理主要是一維分析,用於檢查野外採集的數據質量和調整參數。後續處理包括數據分析、一維數據處理和顯示及擬二維處理。數據分析軟體用於識別雜訊源,估計和調整發射機的信號電平,分析數據採集質量。一維數據處理和顯示是在經過數據分析後得到新的功率譜後的資料再處理,可刪除雜訊嚴重的數據以減少發散,增加信號的相關度。二維處理是採用EMAP法進行擬二維反演,有效地消除靜態效應,構造電阻率斷面圖,在現場給出解釋結果灰度圖,通過計算機二維反演,進行彩色成圖。
2.5聲波測井技術
聲波測井是以測定岩、礦的聲波速度和幅度為基礎,在劃分基岩岩性、風化破碎程度,確定破碎帶位置、基岩與覆蓋層分界面以及在覆蓋層、基岩內確定低速層等方面是一種較為有效的方法。
單孔全波列聲波測試是採用一發雙收探管,發射—接收源距50cm,間距30cm。在鑽孔內(裸孔)沿井壁發射、接收聲波信息,測井時將探管下至井底,按一定點距向上測試,由計算機完成全波列數據採集與數據存儲,室內通過回放和資料處理拾取縱、橫波,在全波列採集波形中根據波形干涉點、幅度、頻譜分析,確定縱橫、波初至走時,計算縱波、橫波速度繪製成果圖。
測試使用的儀器為SSJ—4D全波列聲波測井儀(中國地質調查局水文地質工程地質技術方法研究所)。
井下探頭分採用干孔貼壁式和水耦合兩種類型。
3應用成果分析
3.1滑崩堆積體
滑崩堆積體是一種多成因、多期次的鬆散堆積體。其大部分是在構造和重力卸荷及岩溶作用下形成的滑坡體、崩塌體、泥石流堆積體和岩溶塌陷堆積體。地球物理勘探的目的是了解堆積體厚度及深部結構特徵,採用的主要工作方法是展開排列法、CDP剖面與面波法。
3.1.1巫山新城址凈壇路—祥雲路—集仙路深部結構特徵
該區由於地形起伏較大,加上沖溝人工回填等因素,給地震探測帶來了很大困難。圖3(剖面F)反映了凈壇路—祥雲路—集仙路方向的深部結構特徵。可以看出完整基岩埋深達40~50m,而在祥雲路至集仙路之間形成深達30m的深槽。圖4(剖面 H)橫切頭道溝,沖溝形態明顯。在時間剖面上,凡是在沖溝部位,由於切割、風化呈多同相軸形態,反映沖溝堆積物的復雜性。探測結果明顯反映了堆積體的順層特徵。
3.1.2滑崩堆積體精細結構特徵
為了進一步提示滑崩堆積體精細結構特徵,採用了面波探測來了解淺部的地質結構。圖5列出典型的頻散曲線及其地質解釋結果,可以看到面波勘探能夠很好地提供淺部地層細節及其速度分布資料。結果表明,滑崩堆積體內部可劃分為3層:
圖3巫山新址凈壇路—集仙路(剖面F)淺層地震勘探結果
第一層:0~3.15m,為含礫石粘土層,橫波速度330~470m/s。
第二層:3~8m,為碎石夾土層,橫波速度470~770m/s。
第三層:8~16m,為破碎岩層,橫波速度770~970m/s。
3.1.3成果解釋
滑崩堆積體埋深約40m,但是祥雲路至集仙路之間存在深達70m的凹槽。滑崩堆積體底面明顯順岩層方向,傾角達30°。在滑崩堆積體中,可細分為3層,其波速不超過1000m/s,說明其岩體完整性較差。
3.2 滑坡
滑坡勘查採用的技術方法主要是 CDP剖面法,勘查對象有巴東縣新城區黃土坡滑坡、巫山秀峰寺滑坡、重慶市萬州區關塘口滑坡、萬州區長江大橋—上沱口段庫岸滑坡等。本文僅對其中一部分有代表性的成果分述如下。
3.2.1巴東縣新城區黃土坡滑坡
(1)地震時間剖面波組特徵
巴東黃土坡滑坡共做了9條剖面,本文列舉2條剖面予以分析。從圖6(D剖面)、圖7(C剖面)中的時間剖面可以看出均存在一至二組反射波同相軸,其中T1波組較穩定,時間在30~60ms左右,其深度為30~51m,這一層可以認為是第四系滑坡堆積體與下伏基岩的分界面,T2波組時間在50~90ms左右,其深度為52~76m,這一層可認為是基岩風化岩層與完整基岩的分界面。從圖6(D剖面)及圖7(C剖面)可見均未發現有大的斷層形跡的顯示,但裂隙(節理)較發育,形成岩體破碎,從反射波的特徵來看,形成了雜亂弱反射或波組的錯斷標志。
圖4巫山新址祥雲路(剖面H)淺層地震勘探結果
圖5巫山新址凈壇路—集仙路面波勘探結果
圖6巴東黃土坡滑坡(D剖面)淺層地震勘探時間剖面
圖7巴東黃土坡滑坡(C1、C2剖面)淺層地震勘探時間剖面
(2)地質解釋
巴東黃土坡滑坡地震勘探結果基本查明了工作區內第四系鬆散堆積體的厚度及空間分布范圍、滑坡堆積體的厚度及分布范圍。推斷地質解釋圖直觀反映了基岩埋深及起伏形態,其埋藏深度分布范圍一般在50~90m左右。查明了工作區內基岩軟弱結構面的異常分布帶及位置,共解釋推斷基岩破碎帶及裂隙發育帶共計21處。
3.2.2巫山秀峰寺滑坡
(1)地震時間剖面的波組特徵
巫山秀峰寺滑坡共做了8條淺層地震剖面,本文列出其中典型的地震剖面1條見圖8,從時間剖面可以看出,均存在一至二組反射波同相軸,其中一組比較穩定,時間在50ms左右(消除地形影響後)。這一層可以認為是滑坡堆積體與下伏基岩的分界面,其深度一般為30m左右。對一些不同結構特徵的界面,如風化岩體也有所反映。時間一般為75ms左右,推斷為完整基岩與風化岩體或碎塊石層的分界面。另外,在圖8中,CDP點120~140反射波同相軸向下凹陷甚至尖滅,結合現場地質情況,這一位置為一古寺廟所處位置,在地震反射波中出現這一現象,可能是由於古代工程人工開挖造成地層波阻抗界面差異所致。
圖8巫山秀峰寺 D3淺層地震勘探結果
(2)地質解釋
巫山秀峰寺滑坡所完成的8條淺層地震剖面,基本查明了滑坡堆積體的厚度和空間形態,推斷地質圖直觀反映了基岩的形態和覆蓋層的厚度變化。除基岩面之外,CDP剖面上還有一些同相軸,它們都是地震波地質信息的真實反映,如D3線所反映的同相軸不連續現象與舊寺廟位置相吻合。秀峰寺滑坡的8條剖面展示了秀峰寺滑坡堆積體厚度約在25~35m之間。
3.2.3重慶萬州區長江大橋——上沱口段庫岸滑坡勘查
(1)地震剖面的波組特徵
萬州長江大橋上沱口段庫岸滑坡勘查共做了5條CDP淺地震剖面。圖9、圖10是其中兩條典型剖面,從圖7、圖8可見地震反射波的波組特徵較明顯,一般延續1~2個相位,從波的相位、能量、波形、連續性等方面來對比,其中T1波組為第四系滑坡堆積層與下伏基岩(風化層)的分界面,該層反射波的連續性和相位特徵是分析判斷崩滑堆積層厚度變化的主要依據。T2反射層推斷為基岩內部的反射,是推斷基岩埋深及起伏形態的主要依據,它反映了基岩風化殼及軟弱岩層的岩性橫向的變化特徵。
(2)地質解釋
長江大橋上沱口段庫岸滑坡所完成的5條淺層地震剖面,基本查明了滑坡堆積體的厚度和空間形態。推斷地質圖直觀反映第四系崩滑堆積層的厚度及分布范圍,崩滑堆積層平均厚度為3.5~9m。基本確定了工區范圍內的基岩風化殼的厚度,基岩風化殼平均厚度為14~17m左右。確定了基岩埋深及起伏形態。對工區內基岩結構面的異常分布及結構特徵也作出了相應的地質推斷與解釋,共解釋推斷基岩破碎帶及裂隙發育帶共計11處。
3.2.4重慶萬州區關塘口滑坡群和巴東縣新城址滑坡體聲波測井
重慶萬州關塘口滑坡群、巴東縣新城址滑坡體進行聲波測井勘探,旨在結合地質調查,評估劃分岩性、完整性,確定滑帶、破碎帶位置。
圖9萬州長江大橋—上沱口段庫岸(塌岸)防護工程C—C′淺層地震勘查成果
圖10萬州長江大橋—上沱口段庫岸(塌岸)防護工程D—D′淺層地震勘查成果
萬州關塘口滑坡群總計對13口鑽孔進行了觀測,巴東黃土坡滑坡對12口鑽孔進行了觀測,圖11為關塘口 ZK3典型的聲(波)速—孔深曲線,它是由原始記錄聲波波列及其提取出的聲時時差—孔深曲線和計算後繪出的聲速—孔深曲線。由此,可對基岩及上覆層的界線明確地做出劃分,同時還可看出:基岩部分聲速在3500m/s以上,裂隙發育帶聲速有所低;上部覆蓋層可分為平均聲速1800m/s、2200m/s兩層,其速度變化說明塊石與土的含量、塊石岩性、地層結構均有不同程度的變化。圖12為聲波測試曲線圖與鑽孔柱狀圖的對比圖,20.5~24m之間曲線頻率低、聲波幅度小,為岩體疏鬆的反映。鑽孔20.5~24m表明完整岩體內部存在裂隙破碎帶(見圖12)。圖13為巴東ZK1典型的聲(波)速—孔深曲線,66.0~67.5m、77.5~84.5m兩段波速值明顯增高到3800m/s,認為已進入基岩,其間所夾68.0~77.0m段,從變面積圖像看接收波形頻率變低,速度變低,認為是一層軟弱夾層,並在後期治理工程中得到了驗證。
圖11官塘口滑坡勘察ZK3聲波測井成果圖
圖12ZK7聲波測試曲線圖與鑽孔柱狀圖的對比圖
圖13巴東黃土坡ZK1孔聲波測井成果圖
萬州關塘口滑坡群的13口鑽井聲波測試結果統計出不同地層岩性的聲速平均值如表1、表2。
表1關塘口滑坡群主要岩性波速
表2黃土坡滑坡主要地層岩性波速
根據測井資料、鑽孔資料分析推斷關塘口滑坡存在一個以上的滑帶。依據測試成果,本次推斷解釋的滑帶,其位置為上部覆蓋層與下伏基岩的岩性分界部位。從測試鑽孔整體分布位置分析,滑坡體的前後緣較淺,前緣埋深為20m,後緣埋深為30m,滑坡體的中間部位埋深在55m位置。
聲波測井在劃分基岩岩性、風化破碎程度、確定破碎帶位置、基岩與覆蓋層分界面以及在覆蓋層、基岩內確定低速層等方面是一種較為有效的方法。
3.3岩溶與洞穴
3.3.1岩溶塌陷
奉節縣寶塔坪小區趙家梁子西側三萬塘溝底緩坡處,於1997年5月30日下午2:30分發生塌陷,形成長短軸20~25m,深約20m的塌陷坑。剖面呈漏斗形,體積約6000~7000m3,東北側地面裂縫離新遷移民房不足4m。塌陷引起社會各界,特別是縣委各級領導的高度重視。為進一步查明塌陷坑的深度及延伸發育情況,課題組進行了專門的調研,並運用了先進的EH—4電導率成像系統、高分辨地震勘探、高密度電阻率法、音頻大地電場法及井間地震層析成像等綜合物探。
(1)EH—4電導率成像
圖14為塌陷坑底 EH—4勘測剖面。
圖14奉節寶塔坪塌陷坑底電法勘探剖面
從圖中可以看出,完整基岩界面自坑底向下深約55m,加上坑底至地表的距離,塌陷坑底界面距地表深度約70m,同時該剖面還反映了塌陷坑南北兩側基岩風化破碎程度的差異,北側粘土層覆蓋層厚,基岩風化破碎強烈,南側有一破碎基岩段,底部邊界距地表約55m,其下可能為岩溶發育通道。此解釋結果與地震 B剖面結果是吻合的。
(2)高解析度地震勘探
圖15反映了沿寶塔坪塌陷沖溝的深部結構特徵。剖面起自塌陷坑,測線長約200m,近南北向。該區地質結構可劃分為4層:
第一層:埋深0~40m,以塊碎石夾粘土層為主。
第二層:埋深40~70mm,為破碎松動的岩體。
第三層:埋深70~100mm,為較完整的岩體。
第四層:埋深100m以下,為完整岩體。
另外從順沖溝作了兩條近東西向的橫切剖面 B、C(圖16、圖17)。探測結果表明其地層結構與圖15所揭示的類似,但是,在塌陷坑南側反射界面呈現向上彎曲的拱狀,類似繞射波的特點,且局部不連續,推斷可能為岩溶異常點。其連線方向與沖溝方向一致。發育深度 B為55~60m,C剖面為60~65m。
(3)地震波 CT剖面
為了進一步查明塌陷坑的延伸與發育情況,有針對性地布置了3條地震 CT剖面,根據地震CT成像剖面圖的波速圖像特徵、波速等值線分布結合鑽孔資料綜合分析如下(見圖18)。
圖15奉節寶塔坪 A線淺層地震勘探結果
圖16奉節寶塔坪B線淺層地震勘探結果
圖17奉節寶塔坪 C線淺層地震勘探結果
圖18奉節寶塔坪淺震1線鑽孔 CT成像圖
a.整個工作區縱波速度分布較低,均在0.8~3.8km/s之間。其上部(50~60m)碎塊石土的波速分布在0.8~1.6km/s之間,基岩部分的波速僅為2.0~3.8km/s,即為鑽孔所揭露的破碎岩體段。
b.CT成像的速度分布呈現不均一狀,說明工作區基岩部分的節理裂隙發育,岩體破碎。上部碎塊石土堆積形態不一,結構復雜。
c.由圖18可以看到一系列由 NW向 SE傾的界面特徵,推測為地層產狀或岩性接觸面。這一點與淺震B、C剖面(圖16、圖17)解釋結果相一致。
綜上所述,寶塔坪趙家梁子塌陷坑附近,在CT剖面所處位置,基岩部分未發現較大的溶洞。但是高分辨地震與音頻大地電場顯示的結果都表明,在塌陷坑的下遊方向,順溝發育有一SN向構造破碎異常帶,形成地下水通道,對地層介質起到溶蝕、遷移作用,其深度在50~60m。3.3.2 溶洞
為配合「重慶巫山新城地質災害防治與利用示範研究」專題中有關淺部岩溶發育狀況研究,在巫山新城周家包統建房基礎作了三對地震波CT。圖19為巫山縣周家包ZB5—ZB6鑽孔CT成像圖。其速度分布在0.71~3.40km/s之間,與完整灰岩相比偏低,淺部岩溶極為發育。310m高程以下岩體相對完整,但其波速依然不高,推斷解釋為裂隙或小溶洞較多,尤其是ZB5—ZB6剖面的底部有一直徑3m左右的紅色區域,推斷為溶洞。從ZB5孔310m高程至ZB6孔280m高程有6個串珠狀分布的相對獨立閉合的紅色區域推斷為受構造影響形成的溶洞。
圖19巫山縣周家包ZB5—ZB6鑽孔CT成像圖
4結束語
地質災害受天然和人為的多種復雜因素影響和控制,其分布、形成、發生、發展和變化都十分復雜,特別是在三峽庫區,地質地理條件復雜、地質災害繁多、分布廣、發生頻繁。單純藉助傳統地質技術方法已不能完成勘查、監測、預報和防治的任務,新技術方法是改善常規地質勘查方法、實現地質工作現代化的有力武器,是地質工作取得新進展和突破的有力手段。在此次三峽庫區移民遷建的整個過程中,由於地質問題的復雜性,給移民遷建帶來了巨大的壓力,也為勘查新技術的應用提供了一個廣闊的用武之地。
在庫區地質災害勘查防治與合理開發利用的全過程中,地球物理勘查得到了較為廣泛的應用。尤其在地質災害調查中,勘查新技術的應用無論從涉及的地質災害類型、選擇的方法種類及其適宜性和投入的工作都是前所未有的,所取得的成果也是多方面的、突出的,歷年來我所採用先進的CT層析成像、淺層地震探測、面波勘探、高密度映像、聲波探測、EH—4等方法,對三峽庫區岩溶分布規律、塌陷坑、滑坡體結構、人防工程分布等進行了示範研究,為地質災害的預防提供了科學的依據,具有重要的實用價值與指導意義。然而由於物探方法理論基礎所決定的地質解釋多解性的局限,以及三峽庫區復雜的地質條件、惡劣的工作環境,某些物探工作成果中往往不免存在一些差強人意之處。這要求我們以鍥而不舍的精神,通過合理有效地利用地球物理勘探新技術(包括根據不同的地質條件和目的,正確地選擇物探方法及其最佳組合形式)對現有物探方法的工作布置方式、數據採集和解釋處理方法提出改進,以適應三峽庫區特殊的工作環境。
❷ 岩土工程到底是搞什麼的賺頭和橋梁比起怎麼樣通常在哪種地方工作拜託各位大神
概述 由於國民經濟的發展和路網完善的需求,高速公路逐步進入山區。高速公路由於其線形指標高,工程艱巨,投資巨大,對自然環境的破壞也非常嚴重。隨著環境保護理念的日益深入人心,對於山區高速公路的勘察設計、施工運營等方面的環保要求也越來越高。山區公路環境載體主要是自然環境,也是地質環境。山區一般地形地質條件復雜,地質環境脆弱,地質災害多發,高速公路的建設不可避免的要切坡、填溝、打洞(隧道),對地質環境造成嚴重破壞,處理不好還會誘發和加劇各種地質災害,增加公路建設投資,影響工期,甚至給運營階段帶來嚴重的安全隱患。因此山區高速公路的環保主要是地質環境的保護和地質災害的防治。 要建設一條兼顧交通、環保、生態等方面要求的高標準的山區高速公路,應該重視和加強地質工作。地質工作應貫穿於設計、施工和運營的全過程。對地質現象和規律的認識(岩土工程勘察工作)是由面到線、由線到點、由表及裡、由粗到細、由宏觀到微觀,逐步深入的,根據不同階段應採取不同的方法和手段。 2 勘察設計階段 地質條件是客觀存在的,山區高速公路在自然地質環境中穿行,並對地質環境進行改造,應該認識地質規律,尊重地質規律,在設計中充分考慮地質因素,遵循地質原則,從源頭上盡量減少山區高速公路對自然環境的破壞,並且為施工和運營提供良好的條件。 2.1工可階段――貫徹地質選線的原則 山區公路地質選線主要受到地形和不良地質現象的制約,主要的不良地質現象有滑坡、泥石流、岩崩、岩溶、岩堆(坡積層)、軟弱土、膨脹土、濕陷性黃土、凍土、水害、采空區以及強震區(高地應力)等。本階段應盡可能詳細地收集區域構造地質、岩石地層、水文地質、工程地質、地震地質、環境地質等方面的資料,利用遙感資料(衛片和航片),編制中比例尺(1:5萬或1:10萬)工程地質圖和地質災害(不良地質現象)分布圖,圖上標注大的地質構造(主要是斷層)、重大的地質病害體,分析區域性的地質災害發生條件,進行初步的地質災害評估,配合路線方案設計,進行必要的現場踏勘和重點路段的調查,反復對比,優選出工程地質條件最好、地質災害最少、工程建設對地質環境的不利影響最小的路線走廊帶,真正貫徹地質選線的原則。對於滑坡、崩塌、岩堆、泥石流、岩溶、軟土、泥沼等嚴重不良地質地段和沙漠、多年凍土等特殊地區,一般情況下路線應設法繞避。 2.2初設階段――突出重大地質病害對路線方案的制約 確定路線方案前應對沿線地質構造帶、斷層、岩石的層理情況、地質病害的分布及范圍等,通過對遙感地質判釋資料以及不同勘測階段的勘探、調查資料的分析,研究路線通過方案並不斷優化。對地質較為復雜地段還應注意在設線後誘發並加劇地質病害的可能性,謹慎的確定路線的線位和採取的工程措施。地質技術人員應配合路線設計師作好地質咨詢工作,可以沿初步擬定的路線線位,進行全線踏勘,對重點工點進行地質調查,得出初擬線位沿線的基本工程地質情況,評估路線方案的可行性,發現重大不良地質地段或預測工後會出現難以治理的地質病害的路段要及時反饋信息,以便盡快調整路線線位。基本確定路線方案後,及時委託有資質的單位進行建設用地地質災害危險性評估工作,並進行大比例尺(1:1萬)的地質遙感解譯及地質災害調查和工程地質調繪工作,編制1:1萬工程地質圖和路線區域地質病害現狀圖。圖件的重點是地質災害和重要工點的工程地質條件,要有針對性,要突出重點,不可以拿1:5萬地質圖放大。現在委託地質部門做的圖件,有些不能稱為工程地質圖,只能稱為基本地質圖(工程地質分區太籠統、工程地質條件的論述太簡略)。地質災害評估工作不能夠代替1:1萬工程地質圖的編制,但二者可結合進行,以節約時間和經費。 很多地質災害(滑坡、泥石流等)由於植被覆蓋、後期人工改造以及觀察角度和范圍有限等原因,在現場難以判斷。通過遙感資料(如航片)可以從宏觀上觀察全貌,合理的解譯,有利於對此類不良地質體的正確認識。 當工作中發現仍有重大的地質病害存在或有潛在的重大地質病害時,必須及時調整線位。對於重大的地質病害應盡量繞避,實在無法繞避的要考慮工程措施的可能性與可靠性,盡量在路線的平縱面優化上下功夫(採用分離式路基、用橋隧構造物通過、從滑坡體上部通過、半路半橋等),避免高填深挖,以減少對地質環境的破壞,提高工程措施的可靠性和安全度。對地質病害應以防為主,以治為輔,能避當避,即使增加工程造價也是值得的。 以安徽省徽杭高速公路為例,該路全長約80km,有四分之三路段位於山區,由於勘測時間較早,對山區高速公路特點認識不足,以投資為主要控制因素,其中有一半左右的路段基本沿區域性的三陽斷裂帶布設。受構造影響,岩體風化破碎嚴重,並且沿線分布有雄村滑坡、朱村滑坡等規模較大的不良地質體。施工開挖後,出現大量的不穩定邊坡,甚至誘發了部分滑坡。對於部分地質病害路段及時調整線位,進行了避讓,而更多的病害段只能採取治理措施,結果造價大幅攀升,嚴重影響了工期,並且治理效果也難以預測。 必要時應增加技術設計階段,對重大地質病害路段進行深入勘察,確定路線可行性。 2.3施工圖設計階段――詳查工點地質條件 通過初步設計階段的各種地質工作,已經基本查明路沿線的地質條件,但是工作深度和廣度還不夠。本階段應詳查工點地質(橋位、隧道、深路塹、高填路堤、陡坡路堤、支擋構造物),進行重要工點1:2000地質測繪。採用調查、測繪、槽探、坑探、鑽探、物探等綜合勘察手段。查明場地岩土體組成、性質、分布以及風化層、不良地質、特殊性岩土等工程地質條件在路線縱橫方向的變化。以前對於橋位和隧道等構造物工點地質勘察較為重視,但是對於深路塹和陡路堤、斜坡路堤、支擋構造物等路基方面的工點也必須加強勘察,特別是高邊坡和不良地質體的勘察和預測。另外對於築路材料料場和棄土場的勘察一定要重視,以前山區公路曾出現過取土、棄土場所不合理,亂挖亂棄,破壞環境,導致水土流失的事例。 除了詳細的地質勘察工作之外,還要貫徹綜合設計原則,在路線設計的各個階段,對工程地質條件要有充分的了解,保證路線方案的科學性。對地質資料要充分利用,橋位、隧道、路線各有一套地質資料,但彼此經常脫節。比如當橋隧相連時,隧道勘察發現有不良地質現象,橋梁設計人員卻不知道,還把橋台置於其上。因此加強各專業之間的交流溝通,互相學習。從事路線、隧道、橋梁設計的人員要盡量多地掌握一些基本的地質知識,以有利於對地質資料的合理使用。 3 施工階段――遵循信息化施工、補充勘察、動態設計原則 由於地質條件的復雜性和勘察周期的制約,有些復雜場地(岩溶、破碎帶、岩性縱橫向差異大的地區)或地形困難場地(陡坡、魚塘等)在設計階段難以布置充分的勘察工作量,無法查清場地詳細工程地質條件。在施工期間,可以進行補充勘察,如對岩溶發育區或岩性差異大的場地逐樁鑽探,對原進場困難場地通過施工便道進場鑽探。施工中發現新的地質問題也要補充勘察。應該把施工期間的勘察工作視作設計期間勘察工作的重要補充。 另外本階段應遵循信息化施工(施工中監測)、動態設計的原則。隧道的超前預報、邊坡的動態監測都是施工階段必須要進行的工作。施工單位一定要配備過硬的地質技術人員,及時發現問題,不要等到地質病害已經發生才去治理,要有前瞻性、預見性,發現邊坡、隧道等有失穩的趨勢之後要立即反饋業主和設計單位,並及時採取合適的加固措施,避免邊坡、隧洞大面積失穩。應該認識到,設計階段的勘察工作對地質現象和地質規律的認識往往是不全面的,甚至是錯誤的,據此進行的設計只能稱為預設計。在邊坡或隧道斷面開挖以後,很多問題才會發現,此時應有岩土工程技術人員在現場,對照原有的勘察設計方案,發現新的問題之後通過合理工序及時調整設計方案。等到問題已經發生才去採取措施,既多花了錢,又耽誤了工期。 目前施工單位的岩土工程技術人員也是極為缺乏的,有時由於不合理的施工方法導致或加劇了地質病害的發生和發展(如在破碎岩體上放大炮、自下而上開挖邊坡等) 施工期間的岩土工程監理工作目前還較為薄弱的,有豐富理論知識和實踐經驗的岩土監理工程師極為缺乏,使施工期間的地質病害預防工作遠遠達不到要求。 4 運營階段――加強敏感點監測 山區高速公路運營期間也要高度重視地質工作。因為有些地質災害的發生是一個長期的過程,應力釋放或邊坡的蠕變有些需要長達幾年乃至十幾年的時間,一次性治理有時並不能保證長治久安。因此對於一些在施工中出現病害的路段或重要工點要建立資料庫,進行變形、位移和地下水的動態監測,定期巡查,建立防災和預警系統,在雨季或洪水季節要加強對敏感點的監測。通過長期觀測記錄,還可以更深入的認識地質規律,分析地質病害的發生發展機理,預測發展趨勢,發現有不利的趨勢要及時採取措施。 5 山區公路建設地質工作中存在的問題 5.1前期階段 工可階段對地質工作不夠重視,地質遙感工作不做或精度不夠,不能夠貫徹地質選線的原則,導致選定的路線走廊帶中地質病害多,處理難度大,給後期工作帶來極大難度。 初步設計階段,由於路線方案調整較大,而工期緊張,因此很多勘察工作量作廢,路線地質精度不夠,部分工點缺少地質資料,給設計工作帶來隱患,也使得施工圖設計階段路線方案有時發生較大調整。 施工圖設計階段不做或漏做重要工點的1:2000地質測繪,或雖做了但精度不夠;對一些地質病害研究不深,導致對一些重要工點的勘察深度不夠;對於路線地質調查深度不夠,導致一些地質敏感點遺漏,在施工中出現地質病害。構造物勘察相對較細,而路基方面的勘察則往往較粗略。 目前的山區公路工程勘察還存在許多有待改進的地方。由於現在很多項目的勘察設計工期都非常緊張,如何在很短的時間內達到盡可能高的勘察精度,的確是一個難題。為搶時間,現在地質勘察工作很大一部分外委出去,全線人員設備上了很多,但在施工中仍會暴露出很多地質問題。這一方面是由於地質現象的隱蔽性和地質科學的復雜性,難以全面深入地認識地質現象,另一方面也是由於從事岩土工程的技術人員本身能力有限所致。岩土工程在一定程度上屬於經驗學科,技術人員的經驗非常重要。外委的勘察單位一定要過硬,對於其提供的地質資料要進行審核,去偽存真,對於不能夠滿足規范和設計要求的堅決返工。在其外業和內業階段要進行監督,多溝通。外行業的地勘隊伍往往對公路工程的特點及公路勘察規范了解不夠,不能夠有針對性的進行勘察,資料經常不能滿足設計要求。另外由於工期緊,技術准備不足,勘察手段不合理,經常導致勘察深度不足,如隧道勘探未採用雙管單動鑽進,無法判斷RQD,鑽探工藝和技術不過硬,岩石取心率低,鑽孔水文地質試驗數據不足,對邊坡勘察無法判斷滑動面,無法取得可信的各種力學參數,物探手段與其他勘探手段的互相校核精度不夠等,甚至有個別單位編造資料應付設計。所以不僅要看投入了多少人力物力,還要看投入人員技術水平、職業技能和職業道德素質如何,擬定的勘察方案是否合理,對地質現象的認識是否科學。在實踐中,由於技術人員水平參差不齊,經常會出現錯判、漏判地質病害的現象。因此加強公路岩土工程從業人員的技術水平是非常緊迫的事情。 5.2施工階段 地質技術力量薄弱,岩土工程監測和監理不力,施工工序和方法不對,導致地質病害的加劇,甚至誘發地質病害。對工程地質特點認識不足,不能夠及時預測和反饋地質病害,只能被動地等待地質病害的發生。 5.3運營階段 地質工作目前還基本上是空白,無法保證山區高速公路的安全順暢。 6 正確認識地質工作的重要性和特殊性 由於岩土體的組成物質差異,更重要的是在岩土體內部分布有大量的不連續界面,把完整的岩土體分割成許多塊體,總體為非均質體,在應力的傳遞上非常復雜,因此岩土工程屬於非線性科學。現有的岩石力學、土力學、岩體力學等均難以准確的描述岩土體實際的力學本構關系。地質災害的發生除了其本身的因素外,還受到許多外界的因素影響,十分復雜。因此,對於岩土工程的分析計算只能是半定量的,在很大程度上受分析者經驗的制約。對於已經存在的滑坡、崩塌、泥石流等地質病害,其周界相對清楚,各種勘察設計技術規范較完備,認識起來相對容易。最難的是對於現狀穩定的高邊坡,預測其人工開挖後的穩定性。對於其地質構造的分析,地質-力學模型的建立,穩定計算分析都十分困難。勘察深度難以保證,穩定性計算方法不夠科學,邊坡設計時也有其不合理之處,如一般都只給出最終的邊坡坡率和邊界,各種邊坡加固設計也是針對最終邊坡的,各種分析計算也是以最終邊坡為約束條件的。這樣即使地質條件清楚,分析計算合理,設計穩妥,施工嚴格遵循規范和設計要求,也往往會出現難以預料的地質病害。其中一個重要原因是未對開挖過程中的各種邊坡條件進行分析計算,雖然按最終邊坡條件計算是穩定的,但不能夠保證任意開挖條件下邊坡都是穩定的。因此對於從事邊坡設計的岩土工程師而言,應該對於邊坡開挖過程中的多種控制性斷面穩定性進行計算,提供合理的開挖步驟和各種穩定的開挖斷面,並對不穩定的中間邊坡提出臨時性的工程加固措施,以保證邊坡的穩定開挖。 7 展望 技術進步是山區高速公路成功修築的重要保證。現在採用三維數模,可以很快的得出路線平縱面模型,任意切割縱橫斷面,發現問題之後可以很快的調整線位並重新進行分析,大大提高了工作效率。相信隨著3S技術的發展,今後三維數模會和三維地學模型、岩土工程專家分析系統結合起來,對於重要工點通過現場地質工作,建立地質-力學模型,通過專家分析系統,可以任意模擬邊坡開挖後的形狀及物理力學狀態的變化,迅速分析其穩定性,進行針對性的設計。甚至還可以對邊坡等地質病害通過互聯網進行遠程會診,聚集各方面力量以解決問題。 8 結語 地質環境保護和地質災害防治是山區高速公路建設成敗的關鍵,為此必須重視地質工作。(1)業主要認識到,前期的地質工作一定要認真細致,勘察設計階段多花些錢和時間,盡量詳細地查明地質條件,避免地質隱患,對於施工來說會節約大量的投資和工期。(2)設計階段的地質勘察工作必須加強,要達到必要的深度。(3)施工單位要加強地質技術力量,業主單位也要增加地質技術人員,岩土工程監理工作要加強。(4)運營階段的岩土工程監測工作必須重視。(5)單純依靠前期地質工作對地質客觀規律和地質環境的認識是不夠的,在設計施工運營的全過程中要不斷的加強地質工作。(6)由於地質條件的復雜性,雖然進行了前期地質勘察工作,在施工和運營中出現地質病害也是正常的。(7)設計階段深入細致的地質工作可以確保施工時不出現大的地質病害,施工階段的細致的地質工作可以確保運營期間不出現大的地質病害。(8)公路勘察設計、施工、建設及運營管理單位一般岩土工程技術力量相對薄弱,應加強人才培養,適應山區高等級公路建設的需要。 山區高速公路的修建對勘察、設計、施工、監理、管理等各個環節和部門都提出了更高的要求,大家要加強學習,真正重視問題的嚴重性。可以說,山區高速公路的修建,岩土工程是關鍵,地質病害是控制性因素。 參考資料: http://ke..com/view/507169.html
❸ 主要建築物地區的工程地質勘察工作
在1955年初步設計階段第二期工程地質勘察的同時,也布置了為論證三門峽水利樞紐主要建築物地段,技術設計階段的工程地質工作(如勘探豎井、水平探硐及灌漿試驗),以便進一步了解混凝土重力壩建基高程處,及左右兩岸壩肩接觸部分的閃長玢岩的裂隙程度、風化厚度、岩石物理力學性質、地下水向基坑的滲入量,以及設計帷幕灌漿時的孔排孔距等。
1956年為了進一步確定在已選定的下壩線方案上建壩的問題,需要詳細地研究基岩頂板高程、構造和第四紀沉積層以及分布在本地段的各種基岩物理力學性能,因而補打了13個鑽孔。
此外,為了進一步核定混凝土重力壩壩內式電站與壩後式電站兩種比較方案,在正常高水位360m時的工程地質條件,1957年3月三門峽水電站設計總地質師B.Й.薩維里耶夫提出了下列的主要勘探任務:
1.進行比例尺1:1000地質測繪,對主要建築物布置的范圍內,閃長玢岩中所有的破碎帶及裂隙密集帶進行了解,並進一步說明其透水性和地下水的承壓性,以及破碎帶灌漿的可能性和必要性,以提高基礎岩石的質量。
2.進一步確定閃長玢岩的頂板所在高程。
3.根據地質勘探資料,進一步確定閃長玢岩表面風化帶的厚度,以及壩基風化岩石開挖的深度。
4.為了設計最好的排水系統(在灌漿帷幕的後面),對溢流壩段和廠房壩段基礎閃長玢岩裂隙做詳細說明,以便根據對裂隙的觀測資料,擬定出排水鑽孔的方向和所需要的數量。
5.為了設計溢流壩段的護坦,應在溢流壩至張公島間的地段內,進行對閃長玢岩完整性的研究。換句話說也就是要研究閃長玢岩中裂隙的大小,它們在水平及垂直方向上的分布情況,以及該地段內的構造破碎帶和裂隙密集帶的詳細性質。
6.進一步明確主要建築物基礎岩石的物理力學性質,特別是河床地段閃長玢岩以下的軟弱岩石(煤層和炭質頁岩)的特性。
7.進一步明確區內地表水和地下水的化學成分及其侵蝕性,以便選擇水泥的成分和標號,並確定左、右兩岸地下水的流向,預測該地段內水庫形成後,其地下水流的方向及其水質變化情況。
8.為了解決壩址區的施工用水和生活用水,於1957年4月對壩址下游右岸的老鴉溝及左岸的寨後溝先後布置了6個鑽孔,尋找奧陶紀馬家溝組石灰岩中的岩溶裂隙水,首先在69號孔中發現了有水,因孔徑太小,然後分別在右岸的74號孔與左岸的231號孔中共取得60L/s的水量,這些水量只能滿足第一期的施工用水。因此,於1957年9月在右岸8號孔附近補打了373號孔,又取得70L/s的水量。(Ⅱ-23)兩處水量為130L/s,可滿足施工用水。但由於水中含硫酸根離子較高,不適宜生活用水,故三門峽工程局在七里溝口修建了一、二級沉沙池,採用黃河水,經處理後作為生活用水,這樣三門峽壩址區的施工場地各個方面的用水都得到了完全的滿足。
經過上述一系列的技術設計階段的工程地質勘察工作,在地質測繪及勘察資料綜合分析的基礎上,對主要結構物地基的工程地質條件,又做了進一步的論證,特別是基礎中的斷層及構造破碎帶在水平、垂直方向上的變化,向深部的延伸,以及透水性方面,又做了進一步的闡明。但是對這些破碎帶是否伸延到下煤系岩層中去,以及破碎帶與斷層生成後,在第三紀及第四紀年代內是否活動過,今後結構物遭到了地震作用,基礎下的斷層及構造破碎帶是否會活動,而危及結構物的安全等等問題,都沒有給予明確的答案。這個問題的回答,在三門峽主要結構物技術設計中,具有重大的實際意義。為了解決此問題,1958年2月三門峽水電站設計總地質師B.И.薩維里耶夫提出了為進一步查明壩址區地質構造的任務書。地質總隊根據任務書的要求,1958年2~5月,經過兩個多月的勘探工作,這一問題已基本上得到了解決(Ⅱ-7)。
根據中華人民共和國國務院批準的混凝土重力壩壩後式電站方案,正常高水位350m,大壩在以後可能加高到360m,也就是說按360m正常高水位設計,350m高程施工。根據這一設計方案的要求,在結束技術設計工程地質勘察工作之前還需要補充下列工作,這些工作中有一少部分是屬於施工詳圖階段的。
1.在右岸從壩軸線至混凝土拌和樓場地(在此地段300m高程上,設計有通往水利樞紐安裝場地的鐵路專用線),需進行比例尺1:500的工程地質測繪。根據上述測繪資料,必須闡明岸邊的穩定性,及下鐵路線在施工過程中,邊坡穩定性的保證措施,和採取保證通往安裝場地的鐵路專用線行車安全措施的必要性。
2.在混凝土非溢流壩左岸接頭地段,進行1:500的工程地質測繪,根據測繪資料編制地質剖面,進一步確定該地段內石炭-二疊紀煤系岩層的厚度、成分和產狀要素,閃長玢岩表層裂隙性及風化深度,以及闡明左岸接頭部位穩定設計措施的必要性。
3.在混凝土非溢流壩右岸接頭地段,根據1:2000地質測繪資料,編制出精確的地質剖面,其目的是進一步確定黃土層以下閃長玢岩的埋藏深度,以及該地段內基坑開挖所需完成的土石方工程量。
4.為了進一步確定1、16、18號斷層在黃河河床部分的位置及斷距,必須在擬定的地質剖面圖A—A線上補打鑽孔6個。
5.為編制出准確的壩軸線、隔牆軸線、機組軸線,以及溢流壩軸線上的地質剖面圖,還需補打11個鑽孔。
6.進一步確定在河床內沖刷深坑部位的大壩河床地段閃長玢岩的頂板及沖積層的厚度、成分,需補充打4個鑽孔。
7.為了防止大壩基礎構造破碎帶的滲漏和帷幕灌漿時的孔距與孔排距離的設計需要,從1956年4月到1958年8月,其間還進行了4個地段的灌漿試驗工作。
上述工作除了個別水上鑽孔,由於洪水到來沒有進行鑽探外,絕大部分已於1958年9月完成,資料亦已於1958年9月底前送交設計部門。
根據1952年到1958年所取得的一系列的地質資料,用來編制三門峽水利樞紐的技術設計,已基本上滿足了設計要求(Ⅱ-2、Ⅱ-3、Ⅱ-8)。
1952~1958年主要建築物地區的工作量及勘探程度,詳見表3及圖7。
表3 黃河三門峽水利樞紐主要建築物地段1952~1958年間各個勘察階段的探工作項目及完成工作量總表
續表
❹ 地勘探孔中,圖中的r,c,等各代表什麼意思
工程地質物探與勘探的任務,主要有以下各項: (一)詳細研究建築場地的岩性及地質結構。研究個地層的性質、厚度、縱向和橫向變化,進行地層劃分並確定其接觸關系;基岩的風化深度及風化岩石性質,劃分風化帶研究岩層的產狀、裂隙發育程度及隨深度的變化;褶皺、斷裂、破碎帶以及其它地質結構現象的空間分布、變化的特點。提供岩石右鑽性和岩體強度、結構面發育等定量指針。 (二)查明水文地質條件。了解含水層和隔水層的分布厚度、性質及其變化,地下水位(水頭)等。 (三)研究地貌及物理地質現象。查明各種地貌形態,如河谷階地、洪積扇、斜坡的位置和結構等。研究各種物理地質現象,如岩溶的規模及發育深度,滑坡的范圍、滑動面位置、動態等。 (四)取樣及提供野外試驗條件。從勘探工程中採取岩土樣及水樣,供室內試驗及分析鑒定用。在勘探工程中可作各種野外試驗,如岩土力學性質試驗、地應力量測、水文地質試驗等。 (五)其它項目。如利用勘探工程布置地下水及各種工程動力地質現象的長期觀測,進行井下攝影及井下電視、灌漿等工程處理。 物探可以說是一種間接的勘探工作,它可以簡便而迅速地探測地下地質情況,與測繪工作相配合尤為適宜,又可為勘探工作的布置指出方向。物探成果亦須由勘探工作來證實。勘探工作包括鑽探和坑探兩種,能較可靠地了解地下地質情況,萬其是坑探工程,勘探人吶可以直接在其中觀察測量;但是它耗費人力和資金較多,周期也長,因此使用時應具經濟觀點。布置鑽探和坑探工程,要以測繪和物探工作為基礎。考慮到物探和勘探各自的優缺點,在布置工作時應綜合運用,互為補充。 一個工程在不同的勘察階段,物探 和勘探往往是配合測繪工作的,而應較多地採用物探手段,鑽探和坑探主要用來驗證物探成果和取得基準剖面。隨著勘察程度的提高,為了深入研究各種工程地質問題,以進行確切的分析、評價,鑽探和坑探工程將愈來愈被廣泛地採用,成為主要的勘察手段,而物探工作則作為勘探工程的輔助手段。本章重點論述物探和勘察在工程地質勘察中的適用條件,所要解決的主要問題,統計局蕭要求。心肝及勘探工作的布置、設計及施工順序等問題。 工程地質物探 物探的全稱為地球物理勘探,它是以專門儀器來探測地表層各種地質體的物理場,從而進行地層劃分,判定地質構造、水文地質條件及各種物理地質現象的一種勘探方法。 由於地質體具有不同的物理性質(導電性、彈性、磁性、密度、放射性等)和物理狀態(含水率、裂隙性、固結程度等),就為利用物探方法研究各種不同的地質體和地質現象提供了物理前提。所探測的地質體各部分之間以及該地質體與周圍地質體之間的物理性質和物理前提。所探測的地質體各部分之間以及該地質體與周圍地質體之間的物理性質和物理狀態差異愈大,使用這種方法就愈能獲得比較滿意的結果。 需要指出的是,物探方法雖能簡便而迅速地探測地下地質情況,但由於它經常受到非探測對象的影響和干擾,心肝及儀器測量精度的不夠,其所得判斷和解釋的結果往往較為粗略,且有多解性。所以,在物探工作之後,還常須用鑽探或坑探來驗證,以獲得確切的地質成果。物探工作的方法有電法勘探、地震勘探、重力勘探、磁法勘探、核子勘探以及地球物理測井等,在工程地質勘察中運用最普遍的是電法和地震勘探。 一、電法勘探在工程地質勘察中的應用 將各個電測 點所得地質資料邊成剖面,即為物探地質剖面,它如同利用鑽孔資料所墨守成規的剖面(圖3—3) 環形電測深法是利用對稱四極裝置改變其方向,測量同一點的視電阻率。它可用來確定各向異性很明顯的地質介質,職陡立岩層的走向、斷層破碎帶與含水裂隙帶的延伸和岩溶發育的主導方向,以及它隨深度的變化情況等。圖3—4是利用環形電測深法所測得的裂隙主導走向為N10°W(橢圓長軸所指方向)。這個方向在不同極囈(即不同深度上)都是穩定的。 但是,鑽探方法也有它一定的缺點,主要是:一般難於進行直接觀察;一些有重大工程地質意義的軟弱層(破碎泥化夾層、風化夾層等)和構造破碎帶,往往不易取得岩心,以致達不到地質要求。為了克服上述缺點,近十餘年來發民兵了鑽孔攝影技術和鑽孔電視以及便於地質人員能直接下井觀測的大口徑鑽孔,使用效果良好。 二、工程地質鑽探的特殊要求 工程地制裁鑽探是為工程建築物的設計、施工服務的,它多具綜合目的,因而在鑽進方法、鑽孔結構、鑽進進程中的觀測編錄等方面均有特殊要求。 工程地質鑽探 對岩心採取率要求校高,一般岩層不能低於80%;對工程建築物至關生要的軟弱夾層和斷層破碎帶也不能低於60%,但往往不易取得岩心。為保證獲較高的岩心採取率,針對不同的勘探對象應採用相尖的鑽進方法。如在軟弱地層或斷層破碎帶中鑽進時,要晝養活沖洗液或用干鑽,降低鑽速,縮短鑽程,最好採用雙層岩心管。近年來,黃河水利委員會在水浪底水利樞紐勘察中,革新鑽具,採用套鑽和化學樹脂膠合的措施,幾乎可以100%地採取泥化夾層和斷層破碎帶的岩心。在土層中鑽進時,以採取干鑽為宜,並應適當縮短鑽程。 為了保證准確地測定地下水位和水文地質試驗工作的正常運行,必須按含水層的位置和試驗工作的要求,確定孔身結構及外電進方法。對不同的含水層要換徑並分層止水,加以隔離。含水層愈多,換徑和分層止水的次數就愈多。一般的工程地質鑽孔終孔直徑為91MM,根據換 徑次數及位置,即可確定孔身結構。。若在基岩面以一的砂卵石層中作抽水試驗干鑽,不允許使用泥漿加回孔壁的辦法。一般鑽孔要直,不能發生彎曲;孔壁要求光滑規則,同一孔徑段應大小一對敵。這些要求在鑽探操作工藝上給予滿足。 鑽孔水文地質觀測,是工程地質鑽探的一項重要工作,藉以了解岩層透水性的變化,發現含水層和得知其近似水位並掌握各含水層之間的水力聯系等。在外鑽進過程中應按水文地質鑽探的要求,做好孔中水位測量,測定沖洗液消耗量及外電孔涌水量、測量水溫等工作。在工程地質鑽探中,為了研究岩土的物理力學性質,經常要採取岩土槔。堅硬岩石的取樣可利用岩心,但其中的軟弱夾層和斷層破碎帶取樣時,必須採取特殊措施。為了取得質量可靠的原狀土樣,則必須配備專門的取土器,燕應注意取樣方法和操作工序,以盡量使土倦不受或少受擾動。為達到上述的特殊要求,鑽探人員應嚴格按規定操作,不能盲目追求進尺。 三、工程地質鑽探常用的鑽探方法和設備 自然地質條件是復雜的,各種鑽探方法和設備都有一定的使用條件,選擇鑽探方法和設備時,應視鑽探的目的和地質條件而定。目前,工程地質勘探中常用的鑽探方法、鑽具及其使用條件和優缺點列於表3—2中。 由表列可知:鑽探方法可分為沖擊鑽探、回轉鑽探、沖擊回轉鑽探和振動鑽探等四種。在工程地質勘探中主要採用沖擊鑽探和回轉鑽探:按動力來源又可將它們分為人力的和機械的兩種。機械回轉鑽探鑽進效率高,孔深大,又能採取岩心,所以在工程地質勘探中使用最為廣泛。目前,國內外正在大力革新鑽探技術,逐步朝著全液壓驅動、儀表控制、勘探與測試相結合的方向發展。近年來,法國生產的FORACO-V。P。R。H鑽機可稱得上是鑽探技術革新的代表,它兼具振動、沖擊、回轉鑽進,又可作靜力和動力觸探試驗,操作全由儀表控制,由機械手擰卸鑽具,鑽進效率高,適用於工程地質勘探。 為了研究工程土體的物理力學性質在工程地質勘察中,應結合勘探工作採取原狀土樣。但是在鑽孔中採取原狀土樣時受到很多因素影響,其中主要的是取土器的結構和取土實用。下面介紹幾種常用的取土器。 1、限制球閥式取土器在取土過程中,進入取土器內的液體、氣體將球頂起排出;當取土停止時,由於球上部彈簧的作用將球壓回原閥座位置,以起封閉作用,。這種球閥裝置密封可靠,但要選擇適當的彈簧強度,調節到適當的壓力。球的直徑與排水孔的直徑要互相適應,以便於水、氣、泥排出。 2、上提橡皮墊活閥式取土器土樣進入取土筒時,取土器內的水、氣、泥由活閥上部排排出,。上提鑽桿時,橡皮墊封閉活門,即可取上土樣。 3、回轉壓入式取土器有兩層管,外管回轉(帶有合金鑽頭或螺旋),內管壓入。內管一般球閥式取土器類似,上部是球閥封閉。這種取土器適用於深層取土。 4、水壓活塞式取土器活塞式取土器的下口一下處於封閉狀態,在貫入土時,取土筒下壓使土樣進入,活塞靜止,土樣上部不隨任何壓力,也不受鑽孔內沖洗液的影響。這種取土器是藉助於水泵的壓力推動活塞使取土筒進入土層。在取土器下入孔底時,一個活塞將取土器下口封閉;壓土時,上部活塞帶動取土筒下壓而採得原狀土樣,如圖3—13所示。 以上四種取土器適用於採取粘性土的原狀土樣。採取砂類土和飽水軟粘土是很困難的,要使用特製的取土器。近年來,我國水電勘察部門研製了厚壁管靴長筒上提 活閥式取土器,反旋活閥分節取土器和真空活塞取砂器等,採取地下水位惟下的原狀砂類土和軟粘土樣,效果較好。原狀土樣的採取方法主要有三種: (1)擊入法:適用於較硬的土層中取樣,又可分為孔外及孔內的輕錘多擊法和重錘少擊法。實踐證明,孔內的重錘少擊法取樣效果好,效率高而土樣擾動小。 (2)壓入法:適用於較軟的土層中取樣,又可分為連續壓入和斷續壓入法。連續壓入法是藉助活塞油壓筒或鋼繩滑輪組合裝置,將取土器一次快速均勻地壓入土中,土樣的擾動較小,當採用連續壓入法無法將取土器壓入土層時,則可採用斷續壓入法。 (3)振動法:當振動鑽進進,可利用振動器的振動作用將取土器壓入土中。 這種方法對土樣的邊緣部分擾動較大。易受振動液化的土層不適用。為了保證土樣的質量,除了對取土器和取土方法進行選擇外,還應注意鑽探方法、鑽、孔結構、清除孔內殘土、操作方法、和土樣封存及運輸等各頂問題。 四、工程地質勘探鑽孔類型及其適用條件 鑽孔的類型指的是鑽孔的角度及其方向。鑽孔的角度即是鑽機的立軸鑽桿與地平線的夾角,也叫做鑽孔傾角。按照鑽孔傾角及其變化情況,可將鑽孔分為鉛直孔、斜孔、水平孔和定各孔四種。在進行工程地質勘探時,窨採用何種角度及方向的鑽孔,需視鑽孔的具體任務及地形地質條件而定。為了能取得盡可能多的地質資料,又節省鑽探工作量鑽進方向最好與不同岩性接觸面或斷層面垂直,但是在實際上往往不易達到,一般要求基夾角不中於20°。 (一) 直孔 傾角90°。在工程地質鑽探中此類孔最常用,適於查明岩漿岩的岩性岩相、岩石風化殼、基岩面以第四紀覆蓋層厚度及性質、緩傾角的沉積及斷裂等。作壓水試驗的鑽孔一般都採用鉛直孔。 (二) 斜孔 傾角小於90°,且應定出傾斜的方向。當沉積岩層傾角較大(﹥60°),或陡傾的斷層破碎帶,常以與岩層或斷層傾向相反的方向斜向鑽進。在水利水電工程地質勘探中,常用斜孔探查河床下的地質結構。尤其是在河床不很寬而水流湍急的峽谷中 ,可在兩岸以斜孔向河底交叉鑽進,既可較好地控制河床下的地質結構,又可以養活或避免河中布孔進行水上鑽探的困難。但是斜孔鑽進技術要求較高,常易發生孔身偏斜,而使地質解釋工作產生誤差,在軟硬相間的岩層中鑽進,此現象尤為嚴重。 (三) 水平孔 傾角多為0° 。一般在坑探工程中布置,可作為平硐、石門的延續,用以查明河底地質結構、進行岩體應力量測、超前探水和排水。在河谷斜坡地段用以探查岸坡地制裁結構及卸葆裂隙,效果也較好。 (四) 定向孔 採用一些技術措施,可使鑽孔隨著深度的變化有規律地彎曲,進行定向鑽進,如岩層上緩下陡進,或在一個孔中控制多個定向分枝孔,共同鑽探同一目的層,或在一個孔中控制多個定向分枝孔,共同鑽探同一目的層。定向鑽進的技術措施比較復雜。近年來,國內外廣泛採用在一個孔位上鑽多個不同方向的定向斜孔的布置方案,效果極佳。 五、大口徑鑽進和小口徑(金剛石鑽頭)鑽進在工程地質勘探中的應用 (一)大口徑鑽進 工程地制裁勘探鑽孔的孔徑,大多數是168MM開孔,91MM終孔,這樣的孔身結構能夠滿足一般的勘探、試驗要求。但是在特殊情況下,譬如為了探查壩基軟弱夾層和強透水帶的位置及展布方向、斷層破碎帶和緩傾角裂隙的產大辯論和特徵,以及為了檢查基礎的灌漿質量和混凝土的澆築情況,就需按照工程地質的要求,打一些大口每項鑽孔,以工程技術人員進入孔中直接觀察和測量。。 大口徑鑽孔主要在水電工程地質勘探中採用。我國於1963年在丹江口壩直址打成了第一口大口每徑鑽孔;之後,葛洲壩、小浪底、偏窗子、三峽等水利樞紐工程中相繼採用,均取得 很好的勘探效果。面且承擔了大壩基礎處理等任務。 由於大口徑鑽孔能夠讓勘探人員直接進入其中觀測和取樣,准確地搜集到第一性地質資料,因而避免了用一般勘探耗費大量進尺而未能搞清某些地質現象和問題的弊病。它也代替了施工復雜的豎井工程,而且由於無爆破震動,可以保持岩層的天然狀態。 大口徑鑽探方法有沖擊鑽進和回轉鑽進,在工程地質勘探中主要使用後者,其孔徑分別1150、1050、950和750MM,孔深 30—60M,可以取得財心。鑽具是在現有設備基礎上改裝的,主要包括鑽頭、岩心管、取粉管、鑽桿等。除鑽具外,還應配備吊籠、絞國及潛水泵等必要的設備。 大口徑鑽進的工作情況如圖3—18所示。 (二) 小口徑(金剛石鑽頭)鑽進 近年來,我國在工程地制裁勘探中逐漸推廣小口徑的金剛石鑽進。這種鑽進有很多優點:能鑽進極硬的岩石,使用壽命長,鑽進效率高,岩心採取率高,且岩心完整度好;孔徑均勻,孔壁光滑,鑽彎曲度小;鑽進時平穩,設備的磨損小,能量消耗少;重量輕,搬運方便等。金剛石鑽具主要包括金剛石鑽頭、金剛石擴也器、岩心卡簧及金剛石鑽進用岩心管。金剛石鑽頭目前生產有直徑76、66、46、36MM等幾種規格,較一般的鑽頭要小得多,故稱之為「小口徑」。這種鑽頭是將金剛石顆粒鑲嵌在鑽頭唇部,利用金剛石的硬度磨削岩石鑽入地層。金剛石鑽進一般均使用雙層岩心管。從小泵送來的沖洗液,經內、外管之間的間隙而到達孔底,可減少對岩心的沖刷影響。 採用小口徑(金剛石鑽頭)鑽進,在操作上必須注意的是:在任何情況下都不允許無水鑽進否則發生高熱會燒毀金剛石,用過鋼粒鑽進的孔,不能再下入金剛石鑽頭,因孔底遺留鋼粒,在沖擊振動時會使金剛石損壞;若鑲嵌的金剛石顆粒掉落孔底,應即打撈,否則會使整個金剛石鑽頭遭到損壞;鑽進中若迂軟弱夾層及裂隙發育的地層,應特別注意降低壓力及轉速。由於在礫石層、礫岩及硬脆破碎地層中鑽進時,沖擊振動很大,對金剛石的包鑲金屬磨耗很快,故一般不採用金剛石鑽進。 金剛石鑽進雖有很多優點,可是它的孔徑過小,有能作現場水文地質試驗。 六、聲波測井在工程地質鑽探中的應用墀測井是一種地球物理勘探技術,它的物理基礎是研究與岩石性質密切相關的聲振動沿鑽井的傳播特徵。它具有快速,輕便的優點。近十餘年來在國內外逐漸推廣應用,我取得了較好的效果。 聲波測井可充分利用已有的鑽孔,結合地質調查,了解基岩風化殼的厚度、物征,進行分帶,查明深部地層的岩性特徵,進行地層劃分,確定軟弱夾層的層位、深度和厚度;尋找岩溶洞穴和斷層破碎帶;研究岩石的某些物理力學性質,進行工程岩體分類等。與其它測井方法密切配合,還可憐全部或部分代替岩心鑽探,開展無岩心鑽進。總之,聲波測井在工程地質鑽探中的應用是多方面的。 目前所應用的聲波測井方法主要有以下三種:一是根據墀傳播速度研究地質體性質的墀速度測井;二是根據墀振幅的衰減反映岩層性質的墀幅度測井;三是利用墀在井壁上的反向我了解井壁結構情況的專長波電視測井。其中應用最多的是聲速測井。 聲速測井的裝置如圖3—19所示,為單發射雙接收型的。兩個接收器R1、R2的距離為L。沿井壁的滑行波到達兩個接收器的時間差為△t,具有 L △t = —— V2 △t表示聲波通過厚度為L的一段岩層所需的時間,習慣上把它換算為通過一米岩層所需的時間(叫做旅行時間),單位為μs/m。由時差△t即可求出聲波在岩層中的傳播速度V(m/s): V=-106/△t 三峽水利樞紐壩基為前震旦紀的石英閃長岩和閃雲斜長花崗岩,經大量聲波測並工作後獲得的各風化帶縱波速度值列於中。 由於沒風化帶內,岩石組織結構、礦物萬分和風化程度不同的岩石所佔比例及分布,狀況不同,因而不但波速不同,而且聲速曲線的形態也不相同。劇風化帶的波速值跳躍范圍不大,曲線形態以不規則的方形鋸齒為主。強內化帶中,當堅硬和半堅硬岩石碎塊與疏鬆相互摻雜時,波速值跳躍范圍大而密,曲線形態為緊密排弄的長尖刺狀鋸齒。微風化帶的聲速曲線擺動幅度較小。四川某壩基48號孔的綜合柱狀;圖,可以用來說明應用聲波測勘查斷層破碎帶的效果。從聲波曲線的整個背景值來看,代表二疊紀斑狀玄武岩的V為3700-4400m/s,V為2300m/s. 但在標高390m附近,卻出現了一個明顯的低值異常,V、Vs分加緊為2150和1350m/s,幾乎相當於政黨值的一半。進行幅度觀測時,聲波能量吸收衰減強烈,振幅大大下降。經分析,該處是斷慨角礫岩,岩體十分破碎。 七、鑽孔設計書的編制、鑽孔觀測編錄及資料整理 (一)、鑽探工作耗費資金較大,應盡可能使每一個鑽孔都發揮綜合效益,取得較多的資料。為此,工程地質人員除了編制整個工程地質勘探設計外,還應逐個編制鑽孔設計書,以保證鑽探工作達到預期的目的。 鑽孔設計書的內容要點應包括: 1、鑽孔附近的地形、地質概況及鑽孔的目的。鑽孔的目的一定要充分說明,使施鑽人員和觀測、編錄人員明確該孔的意義及鑽進中應注意的問題,這對於保證鑽進、觀測和編錄工作的質量,都是至關重要的。 2、鑽孔的類型、深度及孔身結構。應根據已掌握的資料,繪制鑽孔設計柱狀剖面圖,說明將要迂到的地層岩性、地質構造及水文地質情況等,據以確定鑽進方法、鑽孔類型、孔深、孔和終孔直徑,以及換徑深度、鑽進速度及固壁方法等。 3、工程地質要求。包括岩心採取率、取樣、試驗、觀測、止水及編錄等各方面的要求。編錄的項目及應取得的成果資料有:鑽孔柱狀剖面、岩心素描(或照相)、鑽進觀測、試驗記憶錄圖表及水文地質日誌等。 4、說明鑽探結束後對鑽孔的外理意見,留作長期觀測抑或封孔。 (二) 孔的觀測與編錄 為了全面、准確地反映鑽探工程第一性地質資料,在鑽進過程中必須認真、細致地做好觀測與編錄工作。 1、岩心觀察、描述和編錄 應對岩主進行鑒定,描述其顏色、礦物萬分和顆粒成分、結構和構造,正確地定名,必要進取樣進行岩礦鑒定。對疏鬆砂礫土秋粘性土,應觀察其緻密程度和稠度狀態。確定節理裂隙的類型、延續性、蝕變充填情況、傾角 、間距等,進行裂隙統計。對風化岩石,應將岩心按風化程度進行分帶和描述。必要時編制岩心素描及岩心拄狀圖。 通過對岩心的各種統計,可獲得岩心採取率、岩心獲得率和岩石質量指針等定量指針。岩心採取率是指所取岩心的總長度與本回次進尺的百分比。總矩度包括比較完整的岩心和破碎的碎塊、碎屑及碎粉物質。 岩石質量指針(RQD)由D·U·迪你提出的,它是指在取出的岩心中,只計算長度大於10cm的柱狀岩心長度,與本回次進飛的百分比。其計算和等級劃分如圖3—22所示。上述三項定量指針可反映岩石的堅硬和完整程度。岩石愈堅硬、完整,數值愈高;而愈軟弱、破碎的岩石,則數值愈低。它們也與鑽進的工藝和技術水平有關。 每回次取出的岩心應順序排列,並按有關規定進行編號、裝箱和保管。並應註明所取原狀土樣、岩樣的數量及深度。 2、孔水文地質觀測 注意並記錄鑽進過程中沖洗液消耗量的變化。發現地下水後,應測定其初見水位及穩定水位,確定含水層頂底板標高及厚度,測量水溫,定深取水樣以進行水質分析。 3、孔內情況 鑽過過程中注意換層的深度、回水顏色變化、鑽具陷落、孔壁坍塌、卡鑽埋鑽和涌砂現象等,結合岩心以判斷孔內情況。如果孔壁坍塌及卡鑽,岩心廠礦且採取率又低,就表明岩石裂孫發育覲上於構造破碎帶中。 當鑽進過程中,迂到嚴重風華蔌裂隙十分發育的岩層、斷層破碎帶、岩溶洞穴時,岩主採取率往往很低,甚至取不到岩心,給判斷孔內情況帶來困難。鑽孔攝影和鑽孔電視彌了這一缺陷,通過對孔壁的觀察,可以對岩層的裂隙發育程度及方向、風化程度、斷層破碎帶、財溶洞穴和軟弱泥化夾層等,取得較為清晰的照片或圖像,給人以孔內直觀的感覺。目前我國水電部門使用的SK——150型鑽孔攝影儀和JZS—1型鑽孔電視機,為提高工程地質勘探的質量和鑽孔利用率,顯示了獨特的優越性。 二、坑探工程設計書的編制、觀測與編錄 (一)坑探工程設計書的編制及觀測 坑探工程的設計是在工程地質勘探總體布置的基礎上進行的。其主要內容包括:坑探工程附近的地形地質情況、坑探的目的、類型、掘進深度及其誰、施工條件、觀測與編錄內容、取樣位置和成果要求等。 坑探工程的觀察、描述內容,依其類型和目的不同,側重點有所不同,側重點有所不同,一般應有:第四系和基岩地層的時代、岩性、成分、結構構造、厚度、產狀及接觸關系;岩石的風化特點及風化殼分帶;軟弱夾層的岩性、厚度、產狀破碎泥化情況;斷裂、裂隙的組數、產狀、性質、密度、寬度以及延展、空切情況;地下水滲水點位置、特點、涌水量大小;以及不育地制裁現象的描述等。 (二)坑探工程的編錄 坑探工程的編錄工作主要是繪制展視圖。所謂展視圖,就是沿坑探工程的壁、底面所編制的地質斷面圖,按一定的制圖方法將三度空間的圖形展開。用它表示的地質成果一目瞭然,故在生產上廣為應用。 不同類型坑探工程展視圖的編制方法和表示內容有所不同,它們的比例尺一般為1:25—— 1:100。現介紹如下: 1、試坑、淺井、豎井等鉛直坑探工程展視圖,一般採用四壁輻射展開法或四壁平等展開法。前者適用於試坑,後者適用於淺井和豎井。 2、探槽展視圖一般只畫底和一壁,有時也將兩側壁畫出。如果槽長且方向、坡度有轉析時,可分段畫出,使壁與氏保持平行。 3、平硐展視圖一般將五個面全部畫出,其中硐頂分開單畫,其餘幾個面相聯展開。硐底坡度有變化時,要用高差曲線表示。第五節 工程地質勘探的布置 布置勘探工作的總要求是:以最少的勘探工作量取得盡可能多的地質資料。為此,要求工程地質人員必須明確勘探的目的和任務,做好勘探設計,將每個勘探工程都布置在關鍵部位。以發揮綜合效益。
❺ 地質勘察繪圖用什麼軟體
CAD制圖輔助工具說明 2007.10.01
===================
CAD制圖輔助工具是本人自主開發的一組CAD應用軟體,其開發以及運行環境為:
Windows XP SP2 操作系統、AutoCAD 2002和Microsoft Office 2000。
CAD制圖輔助工具是本人對2000年以來在AutoCAD及Microsoft Excel2000上二次開發工作的一個總結,內容涉及地質剖面圖繪制、測繪展點、鑽孔剖面圖繪制、鑽孔柱狀圖繪制、觸探曲線繪制、表格繪制、渠線里程推算、測量放樣計算等一系列水利水電工程測量中常用的制圖輔助工具。
一、常見問題:
1.CAD啟動後,如果該制圖工具的菜單和工具欄不能正常載入或顯示,請仔細檢查本工具在AutoCAD中的支持文件搜索路徑是否設置正確;
2.如圖形未能繪製成功,請仔細檢查數據錄入中的數據是否正確或符合程序要求。安裝目錄內有相應的數據文件可供參考;
3.當運行數據錄入程序無響應時,請先刪除temp目錄內所有的(臨時數據)文件後再打開程序;
4.不能將數據文件與圖形文件保存在同一目錄內。
二、使用技巧:
1.在鑽孔剖面圖的數據錄入中
a.「地層代號」數據欄中的地層代號如需用上下標表示,請用「!」表示下標,「^」表示上標,如:Q!4^2al表示4是下標、2al是上標;
b.「試驗數據」數據欄中滲透系數如需用上標表示,請用「^」表示上標,如:K=1.39×10^-4表示-4是上標;
c.實際輸入時,如上下標判別符號沒有輸入,程序僅將輸入內容作字串處理,如輸入K=1.39×10-4,則標注內容也是K=1.39×10-4;
d.如終孔水位為負值,程序將在圖形中孔口線以上10cm處,標注水位高程及施測日期,否則在實際井深處標注水位高程及施測日期;
e.「其它界線」數據欄輸入強、弱風化線下限井深和取樣位置、終孔水位井深等,其中程序繪制強、弱風化線型符號,其它界線如泥化夾層等,將以輔助線的形式繪出供參考;
f.如要表示鑽孔套管所下位置,在「鑽孔結構」數據欄輸入鑽孔結構數據時在數據後面加字母g或G即可。其套管所在孔徑將用虛線表示;
g.「岩性分類」欄即可輸入中文也可輸入代碼。例如某段岩性為「粉砂質泥岩」",可在「岩性分類」一欄中輸入「粉砂質泥岩」,也可輸入其對應的代碼編號「HW006」;
h.如果沒有相應的花紋圖案,可打開「Hwdata.txt」文件編輯相應的花紋代號來取代;
i.取樣位置也可以輸入起始井深值來表示,數值中間用「-」或「/」分隔,比如輸入22.34-25.46或22.34/25.46。
2.鑽孔剖面圖繪制中的「地層代號」和「岩層界線」(砂卵礫石、泥質粉砂岩、粉砂質泥岩、砂岩、強風化等)是作為輔助線而設定的,不需用時關閉「Temp」圖層即可。
三、歷史更新:
2007.12.01
修正圖切時弦線方向的多處顯示錯誤。
2007.11.24
修正放樣計算程序中變數錯誤導致的計算問題。
2007.11.11
修正剖面繪制中里程標注值及標注位置的問題。
2007.10.01
修正圖切剖面時圓弧要素的顯示,增加弦線方向。
2007.08.29
更新剖面數據錄入模塊。
2007.06.22
增加關閉、退出模塊中數據未保存時的提示功能。
2007.06.20
增加任意目錄打開、保存功能。
2007.06.19
更正另存為文件時的參數設置錯誤。
2007.06.18
修改狀態欄顯示的文件路徑顯示錯誤。
2007.06.01
修正保存數據時參數設置模塊的錯誤。
2007.04.10
更新剖面數據錄入模塊,增加多文檔操作功能。
2007.01.01
增加繪制柱狀圖破碎帶和泥化夾層功能。
2007.01.01
增加繪制剖面圖起始點間距功能。
2007.01.01
修改放樣計算程序中的錯誤。
2006.07.11
修正在AutoCAD 2007中的運行錯誤,增強程序對04、05、06、07版的支持。
2006.07.07
增加讀取多段線頂點坐標功能。
2006.07.05
修改剖面點高程累距查看程序。
2006.06.01
修正觸探數據管理工具中數據顯示錯識。
2006.03.31
增加菜單文件編輯及刷新功能。
2006.03.28
修正鑽孔柱狀圖中試驗數據標注時的錯誤。增加數據自動復制、備份功能。
2006.03.22
增加清除程序運行時產生的臨時文件功能。
2006.03.18
增加打開坐標一覽表的功能。
2006.03.16
增加圖切剖面時自動寫入累距數據的功能(以當前日期數+時間秒數為數據文件名)。
2006.03.13
修正剖面數據錄入中的小錯誤,增強了打開新數據格式的功能。
2006.03.04
修改圖切剖面程序,增加量取圓弧、直線、多段線長度等功能。
2006.01.21
修正生成剖面及鑽孔時臨時數據文件所在目錄為當前目錄下的temp子目錄內。這樣有利於清除垃圾文件,便於查看程序運行的錯誤。
2006.01.13
用Inno Setup 5.15重新製作安裝,可以選擇安裝各功能模塊。並定名為「阿江CAD工具DIY版 2006.01.13 內核版本:0601001」。
2005.12.23
修正量取剖面方向和兩相交線夾角的坐標距離顯示方式。
2005.12.13
改進數據錄入中打開及選擇數據文件時的選擇方式。
2005.11.28
修正載入《剖面數據管理》程序時的錯誤提示。
2005.10.04
修改《剖面數據管理》程序所產生的臨時文件存放路徑,將原來的存放目錄C:\Windows\Temp改為當前目錄的Temp子目錄。
2005.10.03
修正圖切剖面起點累距的輸入方式和方向的顯示問題。
2005.10.01
修正Z坐標歸零時對不同坐標系的處理,修改選擇對象時自動選擇全部對象為手動選擇所需對象。
2005.09.29
將世界坐標系轉換與測量坐標系轉換合並,修正旋轉角為0時無法改變基準點坐標問題。
❻ 岩土工程到底是搞什麼的賺頭和橋梁比起怎麼樣通常在哪種地方工作
概述 由於國民經濟的發展和路網完善的需求,高速公路逐步進入山區。高速公路由於其線形指標高,工程艱巨,投資巨大,對自然環境的破壞也非常嚴重。隨著環境保護理念的日益深入人心,對於山區高速公路的勘察設計、施工運營等方面的環保要求也越來越高。山區公路環境載體主要是自然環境,也是地質環境。山區一般地形地質條件復雜,地質環境脆弱,地質災害多發,高速公路的建設不可避免的要切坡、填溝、打洞(隧道),對地質環境造成嚴重破壞,處理不好還會誘發和加劇各種地質災害,增加公路建設投資,影響工期,甚至給運營階段帶來嚴重的安全隱患。因此山區高速公路的環保主要是地質環境的保護和地質災害的防治。 要建設一條兼顧交通、環保、生態等方面要求的高標準的山區高速公路,應該重視和加強地質工作。地質工作應貫穿於設計、施工和運營的全過程。對地質現象和規律的認識(岩土工程勘察工作)是由面到線、由線到點、由表及裡、由粗到細、由宏觀到微觀,逐步深入的,根據不同階段應採取不同的方法和手段。 2 勘察設計階段 地質條件是客觀存在的,山區高速公路在自然地質環境中穿行,並對地質環境進行改造,應該認識地質規律,尊重地質規律,在設計中充分考慮地質因素,遵循地質原則,從源頭上盡量減少山區高速公路對自然環境的破壞,並且為施工和運營提供良好的條件。 2.1工可階段――貫徹地質選線的原則 山區公路地質選線主要受到地形和不良地質現象的制約,主要的不良地質現象有滑坡、泥石流、岩崩、岩溶、岩堆(坡積層)、軟弱土、膨脹土、濕陷性黃土、凍土、水害、采空區以及強震區(高地應力)等。本階段應盡可能詳細地收集區域構造地質、岩石地層、水文地質、工程地質、地震地質、環境地質等方面的資料,利用遙感資料(衛片和航片),編制中比例尺(1:5萬或1:10萬)工程地質圖和地質災害(不良地質現象)分布圖,圖上標注大的地質構造(主要是斷層)、重大的地質病害體,分析區域性的地質災害發生條件,進行初步的地質災害評估,配合路線方案設計,進行必要的現場踏勘和重點路段的調查,反復對比,優選出工程地質條件最好、地質災害最少、工程建設對地質環境的不利影響最小的路線走廊帶,真正貫徹地質選線的原則。對於滑坡、崩塌、岩堆、泥石流、岩溶、軟土、泥沼等嚴重不良地質地段和沙漠、多年凍土等特殊地區,一般情況下路線應設法繞避。 2.2初設階段――突出重大地質病害對路線方案的制約 確定路線方案前應對沿線地質構造帶、斷層、岩石的層理情況、地質病害的分布及范圍等,通過對遙感地質判釋資料以及不同勘測階段的勘探、調查資料的分析,研究路線通過方案並不斷優化。對地質較為復雜地段還應注意在設線後誘發並加劇地質病害的可能性,謹慎的確定路線的線位和採取的工程措施。地質技術人員應配合路線設計師作好地質咨詢工作,可以沿初步擬定的路線線位,進行全線踏勘,對重點工點進行地質調查,得出初擬線位沿線的基本工程地質情況,評估路線方案的可行性,發現重大不良地質地段或預測工後會出現難以治理的地質病害的路段要及時反饋信息,以便盡快調整路線線位。基本確定路線方案後,及時委託有資質的單位進行建設用地地質災害危險性評估工作,並進行大比例尺(1:1萬)的地質遙感解譯及地質災害調查和工程地質調繪工作,編制1:1萬工程地質圖和路線區域地質病害現狀圖。圖件的重點是地質災害和重要工點的工程地質條件,要有針對性,要突出重點,不可以拿1:5萬地質圖放大。現在委託地質部門做的圖件,有些不能稱為工程地質圖,只能稱為基本地質圖(工程地質分區太籠統、工程地質條件的論述太簡略)。地質災害評估工作不能夠代替1:1萬工程地質圖的編制,但二者可結合進行,以節約時間和經費。 很多地質災害(滑坡、泥石流等)由於植被覆蓋、後期人工改造以及觀察角度和范圍有限等原因,在現場難以判斷。通過遙感資料(如航片)可以從宏觀上觀察全貌,合理的解譯,有利於對此類不良地質體的正確認識。 當工作中發現仍有重大的地質病害存在或有潛在的重大地質病害時,必須及時調整線位。對於重大的地質病害應盡量繞避,實在無法繞避的要考慮工程措施的可能性與可靠性,盡量在路線的平縱面優化上下功夫(採用分離式路基、用橋隧構造物通過、從滑坡體上部通過、半路半橋等),避免高填深挖,以減少對地質環境的破壞,提高工程措施的可靠性和安全度。對地質病害應以防為主,以治為輔,能避當避,即使增加工程造價也是值得的。 以安徽省徽杭高速公路為例,該路全長約80km,有四分之三路段位於山區,由於勘測時間較早,對山區高速公路特點認識不足,以投資為主要控制因素,其中有一半左右的路段基本沿區域性的三陽斷裂帶布設。受構造影響,岩體風化破碎嚴重,並且沿線分布有雄村滑坡、朱村滑坡等規模較大的不良地質體。施工開挖後,出現大量的不穩定邊坡,甚至誘發了部分滑坡。對於部分地質病害路段及時調整線位,進行了避讓,而更多的病害段只能採取治理措施,結果造價大幅攀升,嚴重影響了工期,並且治理效果也難以預測。 必要時應增加技術設計階段,對重大地質病害路段進行深入勘察,確定路線可行性。 2.3施工圖設計階段――詳查工點地質條件 通過初步設計階段的各種地質工作,已經基本查明路沿線的地質條件,但是工作深度和廣度還不夠。本階段應詳查工點地質(橋位、隧道、深路塹、高填路堤、陡坡路堤、支擋構造物),進行重要工點1:2000地質測繪。採用調查、測繪、槽探、坑探、鑽探、物探等綜合勘察手段。查明場地岩土體組成、性質、分布以及風化層、不良地質、特殊性岩土等工程地質條件在路線縱橫方向的變化。以前對於橋位和隧道等構造物工點地質勘察較為重視,但是對於深路塹和陡路堤、斜坡路堤、支擋構造物等路基方面的工點也必須加強勘察,特別是高邊坡和不良地質體的勘察和預測。另外對於築路材料料場和棄土場的勘察一定要重視,以前山區公路曾出現過取土、棄土場所不合理,亂挖亂棄,破壞環境,導致水土流失的事例。 除了詳細的地質勘察工作之外,還要貫徹綜合設計原則,在路線設計的各個階段,對工程地質條件要有充分的了解,保證路線方案的科學性。對地質資料要充分利用,橋位、隧道、路線各有一套地質資料,但彼此經常脫節。比如當橋隧相連時,隧道勘察發現有不良地質現象,橋梁設計人員卻不知道,還把橋台置於其上。因此加強各專業之間的交流溝通,互相學習。從事路線、隧道、橋梁設計的人員要盡量多地掌握一些基本的地質知識,以有利於對地質資料的合理使用。 3 施工階段――遵循信息化施工、補充勘察、動態設計原則 由於地質條件的復雜性和勘察周期的制約,有些復雜場地(岩溶、破碎帶、岩性縱橫向差異大的地區)或地形困難場地(陡坡、魚塘等)在設計階段難以布置充分的勘察工作量,無法查清場地詳細工程地質條件。在施工期間,可以進行補充勘察,如對岩溶發育區或岩性差異大的場地逐樁鑽探,對原進場困難場地通過施工便道進場鑽探。施工中發現新的地質問題也要補充勘察。應該把施工期間的勘察工作視作設計期間勘察工作的重要補充。 另外本階段應遵循信息化施工(施工中監測)、動態設計的原則。隧道的超前預報、邊坡的動態監測都是施工階段必須要進行的工作。施工單位一定要配備過硬的地質技術人員,及時發現問題,不要等到地質病害已經發生才去治理,要有前瞻性、預見性,發現邊坡、隧道等有失穩的趨勢之後要立即反饋業主和設計單位,並及時採取合適的加固措施,避免邊坡、隧洞大面積失穩。應該認識到,設計階段的勘察工作對地質現象和地質規律的認識往往是不全面的,甚至是錯誤的,據此進行的設計只能稱為預設計。在邊坡或隧道斷面開挖以後,很多問題才會發現,此時應有岩土工程技術人員在現場,對照原有的勘察設計方案,發現新的問題之後通過合理工序及時調整設計方案。等到問題已經發生才去採取措施,既多花了錢,又耽誤了工期。 目前施工單位的岩土工程技術人員也是極為缺乏的,有時由於不合理的施工方法導致或加劇了地質病害的發生和發展(如在破碎岩體上放大炮、自下而上開挖邊坡等) 施工期間的岩土工程監理工作目前還較為薄弱的,有豐富理論知識和實踐經驗的岩土監理工程師極為缺乏,使施工期間的地質病害預防工作遠遠達不到要求。 4 運營階段――加強敏感點監測 山區高速公路運營期間也要高度重視地質工作。因為有些地質災害的發生是一個長期的過程,應力釋放或邊坡的蠕變有些需要長達幾年乃至十幾年的時間,一次性治理有時並不能保證長治久安。因此對於一些在施工中出現病害的路段或重要工點要建立資料庫,進行變形、位移和地下水的動態監測,定期巡查,建立防災和預警系統,在雨季或洪水季節要加強對敏感點的監測。通過長期觀測記錄,還可以更深入的認識地質規律,分析地質病害的發生發展機理,預測發展趨勢,發現有不利的趨勢要及時採取措施。 5 山區公路建設地質工作中存在的問題 5.1前期階段 工可階段對地質工作不夠重視,地質遙感工作不做或精度不夠,不能夠貫徹地質選線的原則,導致選定的路線走廊帶中地質病害多,處理難度大,給後期工作帶來極大難度。 初步設計階段,由於路線方案調整較大,而工期緊張,因此很多勘察工作量作廢,路線地質精度不夠,部分工點缺少地質資料,給設計工作帶來隱患,也使得施工圖設計階段路線方案有時發生較大調整。 施工圖設計階段不做或漏做重要工點的1:2000地質測繪,或雖做了但精度不夠;對一些地質病害研究不深,導致對一些重要工點的勘察深度不夠;對於路線地質調查深度不夠,導致一些地質敏感點遺漏,在施工中出現地質病害。構造物勘察相對較細,而路基方面的勘察則往往較粗略。 目前的山區公路工程勘察還存在許多有待改進的地方。由於現在很多項目的勘察設計工期都非常緊張,如何在很短的時間內達到盡可能高的勘察精度,的確是一個難題。為搶時間,現在地質勘察工作很大一部分外委出去,全線人員設備上了很多,但在施工中仍會暴露出很多地質問題。這一方面是由於地質現象的隱蔽性和地質科學的復雜性,難以全面深入地認識地質現象,另一方面也是由於從事岩土工程的技術人員本身能力有限所致。岩土工程在一定程度上屬於經驗學科,技術人員的經驗非常重要。外委的勘察單位一定要過硬,對於其提供的地質資料要進行審核,去偽存真,對於不能夠滿足規范和設計要求的堅決返工。在其外業和內業階段要進行監督,多溝通。外行業的地勘隊伍往往對公路工程的特點及公路勘察規范了解不夠,不能夠有針對性的進行勘察,資料經常不能滿足設計要求。另外由於工期緊,技術准備不足,勘察手段不合理,經常導致勘察深度不足,如隧道勘探未採用雙管單動鑽進,無法判斷RQD,鑽探工藝和技術不過硬,岩石取心率低,鑽孔水文地質試驗數據不足,對邊坡勘察無法判斷滑動面,無法取得可信的各種力學參數,物探手段與其他勘探手段的互相校核精度不夠等,甚至有個別單位編造資料應付設計。所以不僅要看投入了多少人力物力,還要看投入人員技術水平、職業技能和職業道德素質如何,擬定的勘察方案是否合理,對地質現象的認識是否科學。在實踐中,由於技術人員水平參差不齊,經常會出現錯判、漏判地質病害的現象。因此加強公路岩土工程從業人員的技術水平是非常緊迫的事情。 5.2施工階段 地質技術力量薄弱,岩土工程監測和監理不力,施工工序和方法不對,導致地質病害的加劇,甚至誘發地質病害。對工程地質特點認識不足,不能夠及時預測和反饋地質病害,只能被動地等待地質病害的發生。 5.3運營階段 地質工作目前還基本上是空白,無法保證山區高速公路的安全順暢。 6 正確認識地質工作的重要性和特殊性 由於岩土體的組成物質差異,更重要的是在岩土體內部分布有大量的不連續界面,把完整的岩土體分割成許多塊體,總體為非均質體,在應力的傳遞上非常復雜,因此岩土工程屬於非線性科學。現有的岩石力學、土力學、岩體力學等均難以准確的描述岩土體實際的力學本構關系。地質災害的發生除了其本身的因素外,還受到許多外界的因素影響,十分復雜。因此,對於岩土工程的分析計算只能是半定量的,在很大程度上受分析者經驗的制約。對於已經存在的滑坡、崩塌、泥石流等地質病害,其周界相對清楚,各種勘察設計技術規范較完備,認識起來相對容易。最難的是對於現狀穩定的高邊坡,預測其人工開挖後的穩定性。對於其地質構造的分析,地質-力學模型的建立,穩定計算分析都十分困難。勘察深度難以保證,穩定性計算方法不夠科學,邊坡設計時也有其不合理之處,如一般都只給出最終的邊坡坡率和邊界,各種邊坡加固設計也是針對最終邊坡的,各種分析計算也是以最終邊坡為約束條件的。這樣即使地質條件清楚,分析計算合理,設計穩妥,施工嚴格遵循規范和設計要求,也往往會出現難以預料的地質病害。其中一個重要原因是未對開挖過程中的各種邊坡條件進行分析計算,雖然按最終邊坡條件計算是穩定的,但不能夠保證任意開挖條件下邊坡都是穩定的。因此對於從事邊坡設計的岩土工程師而言,應該對於邊坡開挖過程中的多種控制性斷面穩定性進行計算,提供合理的開挖步驟和各種穩定的開挖斷面,並對不穩定的中間邊坡提出臨時性的工程加固措施,以保證邊坡的穩定開挖。 7 展望 技術進步是山區高速公路成功修築的重要保證。現在採用三維數模,可以很快的得出路線平縱面模型,任意切割縱橫斷面,發現問題之後可以很快的調整線位並重新進行分析,大大提高了工作效率。相信隨著3S技術的發展,今後三維數模會和三維地學模型、岩土工程專家分析系統結合起來,對於重要工點通過現場地質工作,建立地質-力學模型,通過專家分析系統,可以任意模擬邊坡開挖後的形狀及物理力學狀態的變化,迅速分析其穩定性,進行針對性的設計。甚至還可以對邊坡等地質病害通過互聯網進行遠程會診,聚集各方面力量以解決問題。 8 結語 地質環境保護和地質災害防治是山區高速公路建設成敗的關鍵,為此必須重視地質工作。(1)業主要認識到,前期的地質工作一定要認真細致,勘察設計階段多花些錢和時間,盡量詳細地查明地質條件,避免地質隱患,對於施工來說會節約大量的投資和工期。(2)設計階段的地質勘察工作必須加強,要達到必要的深度。(3)施工單位要加強地質技術力量,業主單位也要增加地質技術人員,岩土工程監理工作要加強。(4)運營階段的岩土工程監測工作必須重視。(5)單純依靠前期地質工作對地質客觀規律和地質環境的認識是不夠的,在設計施工運營的全過程中要不斷的加強地質工作。(6)由於地質條件的復雜性,雖然進行了前期地質勘察工作,在施工和運營中出現地質病害也是正常的。(7)設計階段深入細致的地質工作可以確保施工時不出現大的地質病害,施工階段的細致的地質工作可以確保運營期間不出現大的地質病害。(8)公路勘察設計、施工、建設及運營管理單位一般岩土工程技術力量相對薄弱,應加強人才培養,適應山區高等級公路建設的需要。 山區高速公路的修建對勘察、設計、施工、監理、管理等各個環節和部門都提出了更高的要求,大家要加強學習,真正重視問題的嚴重性。可以說,山區高速公路的修建,岩土工程是關鍵,地質病害是控制性因素。 參考資料: http://ke..com/view/507169.html
麻煩採納,謝謝!
❼ 岩土工程師干哪些工作,有什麼能力要求
1 概述
由於國民經濟的發展和路網完善的需求,高速公路逐步進入山區。高速公路由於其線形指標高,工程艱巨,投資巨大,對自然環境的破壞也非常嚴重。隨著環境保護理念的日益深入人心,對於山區高速公路的勘察設計、施工運營等方面的環保要求也越來越高。山區公路環境載體主要是自然環境,也是地質環境。山區一般地形地質條件復雜,地質環境脆弱,地質災害多發,高速公路的建設不可避免的要切坡、填溝、打洞(隧道),對地質環境造成嚴重破壞,處理不好還會誘發和加劇各種地質災害,增加公路建設投資,影響工期,甚至給運營階段帶來嚴重的安全隱患。因此山區高速公路的環保主要是地質環境的保護和地質災害的防治。
要建設一條兼顧交通、環保、生態等方面要求的高標準的山區高速公路,應該重視和加強地質工作。地質工作應貫穿於設計、施工和運營的全過程。對地質現象和規律的認識(岩土工程勘察工作)是由面到線、由線到點、由表及裡、由粗到細、由宏觀到微觀,逐步深入的,根據不同階段應採取不同的方法和手段。
2 勘察設計階段
地質條件是客觀存在的,山區高速公路在自然地質環境中穿行,並對地質環境進行改造,應該認識地質規律,尊重地質規律,在設計中充分考慮地質因素,遵循地質原則,從源頭上盡量減少山區高速公路對自然環境的破壞,並且為施工和運營提供良好的條件。
2.1工可階段――貫徹地質選線的原則
山區公路地質選線主要受到地形和不良地質現象的制約,主要的不良地質現象有滑坡、泥石流、岩崩、岩溶、岩堆(坡積層)、軟弱土、膨脹土、濕陷性黃土、凍土、水害、采空區以及強震區(高地應力)等。本階段應盡可能詳細地收集區域構造地質、岩石地層、水文地質、工程地質、地震地質、環境地質等方面的資料,利用遙感資料(衛片和航片),編制中比例尺(1:5萬或1:10萬)工程地質圖和地質災害(不良地質現象)分布圖,圖上標注大的地質構造(主要是斷層)、重大的地質病害體,分析區域性的地質災害發生條件,進行初步的地質災害評估,配合路線方案設計,進行必要的現場踏勘和重點路段的調查,反復對比,優選出工程地質條件最好、地質災害最少、工程建設對地質環境的不利影響最小的路線走廊帶,真正貫徹地質選線的原則。對於滑坡、崩塌、岩堆、泥石流、岩溶、軟土、泥沼等嚴重不良地質地段和沙漠、多年凍土等特殊地區,一般情況下路線應設法繞避。
2.2初設階段――突出重大地質病害對路線方案的制約
確定路線方案前應對沿線地質構造帶、斷層、岩石的層理情況、地質病害的分布及范圍等,通過對遙感地質判釋資料以及不同勘測階段的勘探、調查資料的分析,研究路線通過方案並不斷優化。對地質較為復雜地段還應注意在設線後誘發並加劇地質病害的可能性,謹慎的確定路線的線位和採取的工程措施。地質技術人員應配合路線設計師作好地質咨詢工作,可以沿初步擬定的路線線位,進行全線踏勘,對重點工點進行地質調查,得出初擬線位沿線的基本工程地質情況,評估路線方案的可行性,發現重大不良地質地段或預測工後會出現難以治理的地質病害的路段要及時反饋信息,以便盡快調整路線線位。基本確定路線方案後,及時委託有資質的單位進行建設用地地質災害危險性評估工作,並進行大比例尺(1:1萬)的地質遙感解譯及地質災害調查和工程地質調繪工作,編制1:1萬工程地質圖和路線區域地質病害現狀圖。圖件的重點是地質災害和重要工點的工程地質條件,要有針對性,要突出重點,不可以拿1:5萬地質圖放大。現在委託地質部門做的圖件,有些不能稱為工程地質圖,只能稱為基本地質圖(工程地質分區太籠統、工程地質條件的論述太簡略)。地質災害評估工作不能夠代替1:1萬工程地質圖的編制,但二者可結合進行,以節約時間和經費。
很多地質災害(滑坡、泥石流等)由於植被覆蓋、後期人工改造以及觀察角度和范圍有限等原因,在現場難以判斷。通過遙感資料(如航片)可以從宏觀上觀察全貌,合理的解譯,有利於對此類不良地質體的正確認識。
當工作中發現仍有重大的地質病害存在或有潛在的重大地質病害時,必須及時調整線位。對於重大的地質病害應盡量繞避,實在無法繞避的要考慮工程措施的可能性與可靠性,盡量在路線的平縱面優化上下功夫(採用分離式路基、用橋隧構造物通過、從滑坡體上部通過、半路半橋等),避免高填深挖,以減少對地質環境的破壞,提高工程措施的可靠性和安全度。對地質病害應以防為主,以治為輔,能避當避,即使增加工程造價也是值得的。
以安徽省徽杭高速公路為例,該路全長約80km,有四分之三路段位於山區,由於勘測時間較早,對山區高速公路特點認識不足,以投資為主要控制因素,其中有一半左右的路段基本沿區域性的三陽斷裂帶布設。受構造影響,岩體風化破碎嚴重,並且沿線分布有雄村滑坡、朱村滑坡等規模較大的不良地質體。施工開挖後,出現大量的不穩定邊坡,甚至誘發了部分滑坡。對於部分地質病害路段及時調整線位,進行了避讓,而更多的病害段只能採取治理措施,結果造價大幅攀升,嚴重影響了工期,並且治理效果也難以預測。
必要時應增加技術設計階段,對重大地質病害路段進行深入勘察,確定路線可行性。
2.3施工圖設計階段――詳查工點地質條件
通過初步設計階段的各種地質工作,已經基本查明路沿線的地質條件,但是工作深度和廣度還不夠。本階段應詳查工點地質(橋位、隧道、深路塹、高填路堤、陡坡路堤、支擋構造物),進行重要工點1:2000地質測繪。採用調查、測繪、槽探、坑探、鑽探、物探等綜合勘察手段。查明場地岩土體組成、性質、分布以及風化層、不良地質、特殊性岩土等工程地質條件在路線縱橫方向的變化。以前對於橋位和隧道等構造物工點地質勘察較為重視,但是對於深路塹和陡路堤、斜坡路堤、支擋構造物等路基方面的工點也必須加強勘察,特別是高邊坡和不良地質體的勘察和預測。另外對於築路材料料場和棄土場的勘察一定要重視,以前山區公路曾出現過取土、棄土場所不合理,亂挖亂棄,破壞環境,導致水土流失的事例。
除了詳細的地質勘察工作之外,還要貫徹綜合設計原則,在路線設計的各個階段,對工程地質條件要有充分的了解,保證路線方案的科學性。對地質資料要充分利用,橋位、隧道、路線各有一套地質資料,但彼此經常脫節。比如當橋隧相連時,隧道勘察發現有不良地質現象,橋梁設計人員卻不知道,還把橋台置於其上。因此加強各專業之間的交流溝通,互相學習。從事路線、隧道、橋梁設計的人員要盡量多地掌握一些基本的地質知識,以有利於對地質資料的合理使用。
3 施工階段――遵循信息化施工、補充勘察、動態設計原則
由於地質條件的復雜性和勘察周期的制約,有些復雜場地(岩溶、破碎帶、岩性縱橫向差異大的地區)或地形困難場地(陡坡、魚塘等)在設計階段難以布置充分的勘察工作量,無法查清場地詳細工程地質條件。在施工期間,可以進行補充勘察,如對岩溶發育區或岩性差異大的場地逐樁鑽探,對原進場困難場地通過施工便道進場鑽探。施工中發現新的地質問題也要補充勘察。應該把施工期間的勘察工作視作設計期間勘察工作的重要補充。
另外本階段應遵循信息化施工(施工中監測)、動態設計的原則。隧道的超前預報、邊坡的動態監測都是施工階段必須要進行的工作。施工單位一定要配備過硬的地質技術人員,及時發現問題,不要等到地質病害已經發生才去治理,要有前瞻性、預見性,發現邊坡、隧道等有失穩的趨勢之後要立即反饋業主和設計單位,並及時採取合適的加固措施,避免邊坡、隧洞大面積失穩。應該認識到,設計階段的勘察工作對地質現象和地質規律的認識往往是不全面的,甚至是錯誤的,據此進行的設計只能稱為預設計。在邊坡或隧道斷面開挖以後,很多問題才會發現,此時應有岩土工程技術人員在現場,對照原有的勘察設計方案,發現新的問題之後通過合理工序及時調整設計方案。等到問題已經發生才去採取措施,既多花了錢,又耽誤了工期。
目前施工單位的岩土工程技術人員也是極為缺乏的,有時由於不合理的施工方法導致或加劇了地質病害的發生和發展(如在破碎岩體上放大炮、自下而上開挖邊坡等)
施工期間的岩土工程監理工作目前還較為薄弱的,有豐富理論知識和實踐經驗的岩土監理工程師極為缺乏,使施工期間的地質病害預防工作遠遠達不到要求。
4 運營階段――加強敏感點監測
山區高速公路運營期間也要高度重視地質工作。因為有些地質災害的發生是一個長期的過程,應力釋放或邊坡的蠕變有些需要長達幾年乃至十幾年的時間,一次性治理有時並不能保證長治久安。因此對於一些在施工中出現病害的路段或重要工點要建立資料庫,進行變形、位移和地下水的動態監測,定期巡查,建立防災和預警系統,在雨季或洪水季節要加強對敏感點的監測。通過長期觀測記錄,還可以更深入的認識地質規律,分析地質病害的發生發展機理,預測發展趨勢,發現有不利的趨勢要及時採取措施。
5 山區公路建設地質工作中存在的問題
5.1前期階段
工可階段對地質工作不夠重視,地質遙感工作不做或精度不夠,不能夠貫徹地質選線的原則,導致選定的路線走廊帶中地質病害多,處理難度大,給後期工作帶來極大難度。
初步設計階段,由於路線方案調整較大,而工期緊張,因此很多勘察工作量作廢,路線地質精度不夠,部分工點缺少地質資料,給設計工作帶來隱患,也使得施工圖設計階段路線方案有時發生較大調整。
施工圖設計階段不做或漏做重要工點的1:2000地質測繪,或雖做了但精度不夠;對一些地質病害研究不深,導致對一些重要工點的勘察深度不夠;對於路線地質調查深度不夠,導致一些地質敏感點遺漏,在施工中出現地質病害。構造物勘察相對較細,而路基方面的勘察則往往較粗略。
目前的山區公路工程勘察還存在許多有待改進的地方。由於現在很多項目的勘察設計工期都非常緊張,如何在很短的時間內達到盡可能高的勘察精度,的確是一個難題。為搶時間,現在地質勘察工作很大一部分外委出去,全線人員設備上了很多,但在施工中仍會暴露出很多地質問題。這一方面是由於地質現象的隱蔽性和地質科學的復雜性,難以全面深入地認識地質現象,另一方面也是由於從事岩土工程的技術人員本身能力有限所致。岩土工程在一定程度上屬於經驗學科,技術人員的經驗非常重要。外委的勘察單位一定要過硬,對於其提供的地質資料要進行審核,去偽存真,對於不能夠滿足規范和設計要求的堅決返工。在其外業和內業階段要進行監督,多溝通。外行業的地勘隊伍往往對公路工程的特點及公路勘察規范了解不夠,不能夠有針對性的進行勘察,資料經常不能滿足設計要求。另外由於工期緊,技術准備不足,勘察手段不合理,經常導致勘察深度不足,如隧道勘探未採用雙管單動鑽進,無法判斷RQD,鑽探工藝和技術不過硬,岩石取心率低,鑽孔水文地質試驗數據不足,對邊坡勘察無法判斷滑動面,無法取得可信的各種力學參數,物探手段與其他勘探手段的互相校核精度不夠等,甚至有個別單位編造資料應付設計。所以不僅要看投入了多少人力物力,還要看投入人員技術水平、職業技能和職業道德素質如何,擬定的勘察方案是否合理,對地質現象的認識是否科學。在實踐中,由於技術人員水平參差不齊,經常會出現錯判、漏判地質病害的現象。因此加強公路岩土工程從業人員的技術水平是非常緊迫的事情。
5.2施工階段
地質技術力量薄弱,岩土工程監測和監理不力,施工工序和方法不對,導致地質病害的加劇,甚至誘發地質病害。對工程地質特點認識不足,不能夠及時預測和反饋地質病害,只能被動地等待地質病害的發生。
5.3運營階段
地質工作目前還基本上是空白,無法保證山區高速公路的安全順暢。
6 正確認識地質工作的重要性和特殊性
由於岩土體的組成物質差異,更重要的是在岩土體內部分布有大量的不連續界面,把完整的岩土體分割成許多塊體,總體為非均質體,在應力的傳遞上非常復雜,因此岩土工程屬於非線性科學。現有的岩石力學、土力學、岩體力學等均難以准確的描述岩土體實際的力學本構關系。地質災害的發生除了其本身的因素外,還受到許多外界的因素影響,十分復雜。因此,對於岩土工程的分析計算只能是半定量的,在很大程度上受分析者經驗的制約。對於已經存在的滑坡、崩塌、泥石流等地質病害,其周界相對清楚,各種勘察設計技術規范較完備,認識起來相對容易。最難的是對於現狀穩定的高邊坡,預測其人工開挖後的穩定性。對於其地質構造的分析,地質-力學模型的建立,穩定計算分析都十分困難。勘察深度難以保證,穩定性計算方法不夠科學,邊坡設計時也有其不合理之處,如一般都只給出最終的邊坡坡率和邊界,各種邊坡加固設計也是針對最終邊坡的,各種分析計算也是以最終邊坡為約束條件的。這樣即使地質條件清楚,分析計算合理,設計穩妥,施工嚴格遵循規范和設計要求,也往往會出現難以預料的地質病害。其中一個重要原因是未對開挖過程中的各種邊坡條件進行分析計算,雖然按最終邊坡條件計算是穩定的,但不能夠保證任意開挖條件下邊坡都是穩定的。因此對於從事邊坡設計的岩土工程師而言,應該對於邊坡開挖過程中的多種控制性斷面穩定性進行計算,提供合理的開挖步驟和各種穩定的開挖斷面,並對不穩定的中間邊坡提出臨時性的工程加固措施,以保證邊坡的穩定開挖。
7 展望
技術進步是山區高速公路成功修築的重要保證。現在採用三維數模,可以很快的得出路線平縱面模型,任意切割縱橫斷面,發現問題之後可以很快的調整線位並重新進行分析,大大提高了工作效率。相信隨著3S技術的發展,今後三維數模會和三維地學模型、岩土工程專家分析系統結合起來,對於重要工點通過現場地質工作,建立地質-力學模型,通過專家分析系統,可以任意模擬邊坡開挖後的形狀及物理力學狀態的變化,迅速分析其穩定性,進行針對性的設計。甚至還可以對邊坡等地質病害通過互聯網進行遠程會診,聚集各方面力量以解決問題。
8 結語
地質環境保護和地質災害防治是山區高速公路建設成敗的關鍵,為此必須重視地質工作。(1)業主要認識到,前期的地質工作一定要認真細致,勘察設計階段多花些錢和時間,盡量詳細地查明地質條件,避免地質隱患,對於施工來說會節約大量的投資和工期。(2)設計階段的地質勘察工作必須加強,要達到必要的深度。(3)施工單位要加強地質技術力量,業主單位也要增加地質技術人員,岩土工程監理工作要加強。(4)運營階段的岩土工程監測工作必須重視。(5)單純依靠前期地質工作對地質客觀規律和地質環境的認識是不夠的,在設計施工運營的全過程中要不斷的加強地質工作。(6)由於地質條件的復雜性,雖然進行了前期地質勘察工作,在施工和運營中出現地質病害也是正常的。(7)設計階段深入細致的地質工作可以確保施工時不出現大的地質病害,施工階段的細致的地質工作可以確保運營期間不出現大的地質病害。(8)公路勘察設計、施工、建設及運營管理單位一般岩土工程技術力量相對薄弱,應加強人才培養,適應山區高等級公路建設的需要。
山區高速公路的修建對勘察、設計、施工、監理、管理等各個環節和部門都提出了更高的要求,大家要加強學習,真正重視問題的嚴重性。可以說,山區高速公路的修建,岩土工程是關鍵,地質病害是控制性因素。