為什麼山區地質硬
① 在堅硬的地殼中為什麼能夠發生褶皺而形成這一系列的高大山系
地質作用,地質構造。
褶皺構造是地殼中最廣泛的構造形式之一,它幾乎控制了地球上大中型地貌的基本形態,世界上許多高大山脈都是褶皺山脈。岩層在形成時,一般是水平的。岩層在構造運動作用下,因受力而發生彎曲,一個彎曲稱褶曲,如果發生的是一系列波狀的彎曲變形,就叫褶皺。褶皺雖然改變了岩石的原始形態,但岩石並未喪失其連續性和完整性。
② 沿海都是什麼地質,硬地還是軟地
我國北部是泥沙
南部是岩石
③ 為什麼山區會發生地震多一些
地震就是地殼的震動,火山噴發、流星影響、人為活動如地下核試驗和礦山開發都可能引起,但是最多還是由於地殼運動。其實,我們的地球很不太平,據美國地質學調查,每年共有三百萬次地震,如果平均下來,你每數11秒地球便會這里那裡地抖動一下身軀,當然,這三百萬下的絕大多數都只是輕微一哆嗦,不足掛齒。但像昨天那種晃動半個亞洲,其後果必然震驚整個地球。
大家都聽說過「地震帶」,為什麼地震專愛騷擾某些地區呢?這得從二十世紀最偉大的發現之一「板塊構造學說」說起。地球最上層的岩石圈並不是緊密連成一片,而是幾個堅硬而獨立的單元在軟流圈上漂,彼此似斷非斷,還有相對滑動,是為「板塊」。
如同國家邊境最易發生沖突,各個板塊相接觸的地方也是地質上最活躍的地點。可以想像,板塊間相對運動有三種:彼此遠離則拉扯、彼此靠近則擠壓,或者一個朝南一個朝北,在交接處發生扭曲。與之相應的,地殼的反應便是產生三種不同式樣的斷層(某些文獻定義為四種):正斷層(normal fault),負斷層(thrust fault)和平行斷層(strike-slip fault)。盡管原理各異,三者卻有共性,那便是巨大能量在斷層的扭曲之下蓄勢待發,當斷層間摩擦力較大,斷層想要動卻被迫固定下來時(locked)最為明顯,這便是「哪裡有壓迫,哪裡就有反抗」。
我們繼續想像,地殼的火氣憋得越來越大,當里邊的壓力終於大於斷層兩邊的摩擦力時,地殼便獲得動能,猛烈地哆嗦開來。再回到剛才的問題,在板塊交界處這種扭曲最容易產生,而一個小斷層扭曲了,旁邊的也不得安寧,因而最容易形成大規模的「斷層帶」,一震起來,一傳十世傳百,於是短時間內震動便很可能連成一片。在我國青藏高原那裡,歐亞板塊和印度板塊相互推擠,於是形成了地質活躍區;而在東南沿海,歐亞板塊和太平洋板塊更是從不肯相安無事,是另一個地震多發區。
實際上地震不僅僅發生在板塊之間,在十七世紀的美國曾以密蘇里為中心發生過一場震撼數州的地震,一百多年後,科學家才發現它的始作俑者——竟是一個蓄謀了六億年的斷層!
④ 為什麼高山區地殼厚,平原地區地殼薄
高山區地殼厚,平原地區地殼薄,這源自艾利提出的一種均衡方案,即地質學上的「山根」說。即把面積相同、密度相同但重量不同的塊體放在液體中,在重力作用下,露出水面越高的塊體沉入水下的部分越深,以此保持塊體之間的平衡狀態。艾利認為大山好像冰山浮在海洋里一樣,其表面和底面有相應而又相反的形象,故地面較高的地殼部分其底面也較深,大山區的底部都存在「山根」。
⑤ 為什麼會形成山區和平原不同的地貌類型
不同的地貌類型成因:
地貌即地球表面各種形態的總稱,也能稱為地形。地表起伏的形態,如陸地上的山地、平原、河谷、沙丘,海底的大陸架、大陸坡、深海平原、海底山脈等。
地表形態是多種多樣的,成因也不盡相同,是內、外力地質作用對地殼綜合作用的結果。內力地質作用造成了地表的起伏,控制了海陸分布的輪廊及山地、高原、盆地和平原的地域配置,決定了地貌的構造格架。而外營力(流水、風力、太陽輻射能、大氣和生物的生長和活動)地質作用,通過多種方式,對地殼表層物質不斷進行風化、剝蝕、搬運和堆積,從而形成了現代地面的各種形態。
⑥ 地理中如何判斷地質層的硬度
硬度(莫氏硬度)的判斷一般是用待測物質在標准物質表面劃痕來測定的,比如一種岩層可以再硬度為9的剛玉上劃痕而在10的金剛石不可以劃,那該岩層硬度在9-10之間。
⑦ 地質是不是越往下石頭越硬
不好說,地殼下部不是還有軟流圈么。其實你這個問題問的很難回答,首先硬這個概念就不清晰。
⑧ 在何種地質構造可開采地質堅硬的岩石
一般的,岩漿岩和變質岩都比較堅硬,岩漿岩占整個地殼體積的65%,變質岩佔了27%,沉積岩佔了8%。不過覆蓋在地表的還是沉積岩最多。因為大陸地殼表層的75% 的面積被沉積岩所覆蓋,大洋地殼幾乎全為沉積岩覆蓋。所以你可以考慮采那些花崗岩、閃長岩等岩漿岩以及灰岩等沉積岩(比較緻密),這些都是常用的建築材料。地質構造的話這個不好說。其實一般堅硬的岩石在地表低溫低壓的條件下容易發生脆性變形,形成像節理、斷層這些地質構造。而其在地下較深的部位亦可發生塑性變形,形成各種褶皺。不過找堅硬岩石的話,在脆性構造附近比較多見一些。
⑨ 有些地區的地下水的硬度特別高為什麼
硬度分復兩類,一類叫暫時硬度,制是指水中含鈣、鎂離子引起的硬度,用加熱煮沸方法就可除去鈣、鎂離子;一類叫永久性硬度,不能用加熱煮沸法消除去,因為其中含的是硫酸鈣、硫酸鎂、氯化鈣、氯化鎂等,要用葯劑法才能 除去。地下水當流經過含多量鈣、鎂、硫酸根、氯離子的地層時,它們就溶解在其中,所以硬度就大了。一般7-10度算大的了。
⑩ 中國地質的簡要介紹(最好是關於土質軟硬的)
中國地質構造的基本格局
關於中國地質構造的基本格局,李四光(1939、1973)、黃汲清等(1977)、任紀舜(1990、1997)、程裕淇等(1994),分別從構造體系和構造域兩個方面進行過概括和客觀描述。借鑒前人成果,結合此次編圖所取得的資料,認為中國的地質構造格局主要是板塊間相互作用與陸內構造活動的綜合反映,而板塊活動與陸內塊體再活動總是有一定的方向、方式和涉及一定地域,從而形成一定的構造體系域。這與構造體系和構造域的原義和范疇已不盡相同。強調板塊相互作用與板內構造活動都具有重要意義。現從構造形變的綜合形態、主體構造帶展向、復合關系及其動力體系角度,將全國劃分為古亞洲、特提斯、華夏—濱西太平洋、賀蘭—康滇等4個主要的構造體系域,它們東西橫亘、南北縱貫,東西約略對稱,並以上揚子地塊為中心構造結,構成了一幅大中華構造格架。
我國地質構造的一個顯著特點是斷裂構造十分發育,所編1:250萬地質圖上最主要的區域斷裂(表5-1)計89條(圖5-2),有45條屬發生過6級以上地震的活動性斷裂,他們分屬於不同的構造體系域,其中包括6條板塊結合帶和6條重要的微板塊結合帶和10條地殼拼接帶,多數有蛇綠岩帶、構造混雜岩帶發育。不少伴有規模較大的韌性剪切帶,其中有16條已發現有藍片岩帶。而含柯石英榴輝岩的超高壓變質帶主要在中央造山系發現。由於絕大部分具有較長的發育歷史和復雜的力學轉變過程,地質圖未能區分其屬性。
古亞洲構造體系域
該域包括任紀舜(1997)所劃分的古亞洲構造域,但范圍、時限更為廣泛,主要是還考慮了板塊拼合後的陸內造山作用。以李四光(1973)所劃分的3條巨型緯向帶為主體,還包括其間所鑲嵌的東西向排列的陸塊或地塊。這些構造形體總體循近東西向展布,中部約略向南彎曲或形成規模不等向南凸出的弧形彎滑構造,如淮陽弧、廣西弧等,並相伴有NEE、NWW向一對X型剪切構造。
該體系域主要發育於我國中北部,包括發育於晚元古代以來,定型於華力西期的天山—興蒙造山系和定型於印支期的中央造山帶以及其間的塔里木、華北陸塊。形成於燕山期發育於特提斯與華夏構造域之上的南嶺構造帶也是該域的新成員,以隆起—花崗岩帶為特徵,是陸內造山的產物。除此尚有一些規模較小的構造帶。
特提斯構造體系域
特提斯構造體系域為華力西、印支、燕山、喜馬拉雅期,特提斯洋迭次關閉,岡底斯—印度板塊多次相對向N或NNE方向聚合、碰撞造山形成的一個主體為NW向、中段為近EW向、東南段約略向南東撒開的反S狀弧形擠壓地帶,是總體為EW向的特提斯造山系在特定邊界條件下發生的構造畸變。其地域主要在中央造山帶之南,揚子陸塊以西的青藏高原地區,NW向的右江造山帶也屬該域組成部分。主體由一系列造山帶間夾羌北—昌都、羌南、岡底斯等長條狀弧形微陸塊組成,其中有一系列巨大的斷裂帶,亦呈反S狀,長達1 000~3 000 km余,多數伴有蛇綠岩帶、外來混雜岩塊或藍片岩帶,他們一般具有拉張、逆沖擠壓等復性特徵。東段兼有左行走滑和旋轉,南段顯示右行,其間的塊體有向SE擠出的趨勢。多數斷裂活動性較大,為地震多發帶。
金沙江-紅河斷裂帶全長3 000 km以上,北西段呈NWW向分為兩支:一支為羊湖—金沙江斷裂,發育西金烏金蛇綠岩帶,並有榴輝岩分布,在蛇形溝新發現有早二疊世深海放射蟲硅質岩;另一支為郭扎錯—若拉崗日斷裂,在藏北青南沿帶發育二疊—三疊系復理石、硅質岩、基性火山岩及二疊系灰岩外來岩塊,且有蛇綠岩殘塊及藍片岩。中段折向NNW至SN向,由金沙江蛇綠岩及含志留系—二疊系灰岩外來岩塊的泥礫混雜岩組成寬達30~40 km的強變形帶,以逆沖兼有右行剪切為特徵。南段經哀勞山延出國境,與越南黑水河消減帶相連,以逆沖兼有左行剪切為主,是一條對接於印支期的微板塊結合帶。甘孜-理塘斷裂帶為金沙江-紅河斷裂帶的NNW向分支,北段為逆沖左行剪切,南段以右行剪切為主,帶內有理塘蛇綠混雜岩和藍片岩、志留系二疊系灰岩的外來岩塊。
龍木錯—瀾滄江斷裂帶:西起龍木錯,過青海後轉沿瀾滄江南下,出境後與泰國清萊—馬來西亞結合帶連接。境內長2 800 km。西段於藏北加錯見蛇綠岩;雙湖地區也有藍片岩帶發育,南段有昌寧—孟連二疊紀蛇綠岩帶。可能是一條二疊紀晚世微板塊結合帶。
班公錯—怒江斷裂帶:前已述及,該斷裂帶西起班公錯,經改則、丁青轉怒江南下出境,中國境內長2 500 km。北西段分布有班公錯、改則、丁青、碧土、滇西三台山等三疊紀—白堊紀蛇綠岩帶和改則藍片岩帶;南段與瀾滄江之間的昌寧—孟連二疊紀蛇綠混雜岩帶,現歸於瀾滄江帶,但與怒江帶有何聯系,還值得研究。除此,伴有木嘎崗日群(J)含放射蟲硅質岩—復理石,顯示洋殼自北而南俯沖,岡底斯向北仰沖。結合帶最終對接於侏羅紀至早白堊世初。該斷裂帶南側此次新釐定的噶爾—納木錯斷裂帶,沿帶有6處蛇綠混雜岩和放射蟲硅質岩—復理石分布(K1),還可能與波密地區迫龍藏布蛇綠岩帶相連。小洋盆閉合於早白堊世末,斷裂帶顯示自南向北俯沖。
雅魯藏布江斷裂帶:沿印度河—雅魯藏布江河谷展布。自薩嘎以西分為南北兩支。東端在墨脫形成大拐彎出境,中國境內長1 700 km,寬幾至幾十千米。其北為岡底斯白堊紀—始新世火山弧,以南發育弧前盆地復理石楔。有雅魯藏布江蛇綠岩帶、放射蟲硅質岩、泥礫混雜岩和藍片岩分布。最近在林芝玉門有三疊紀蛇綠岩帶發現,說明洋盆在三疊紀已經出現,對接於白堊紀未。斷裂帶為自南向北俯沖。
道孚—康定、紫雲—南丹、右江等NW向斷裂以擠壓兼有左行走滑為特徵。道孚-康定斷裂帶也稱鮮水河斷裂帶,自二疊紀以來長期活動,中新世後左行走滑總距達80~100 km(許志琴,1997),南延有可能與小江斷裂帶相接,是一條地震活動頻發帶。
在喜馬拉雅造山帶有定日—洛扎斷裂、喜馬拉雅主中央斷裂和主邊界斷裂,為一組向南凸出的逆沖推覆斷裂系。喜馬拉雅主中央斷裂向北緩傾,傾角30°左右。主邊界斷裂帶北側的古老地層向南逆沖於山前的西瓦里克群(N+Q)之上,顯然是印度陸塊向北俯沖的產物,其形成時代為10 Ma~22 Ma(潘桂棠面告)。同時伴有強烈的伸展作用:高低喜馬拉雅之間的藏南拆離帶,大規模向NE滑脫,向東至墨脫與雅魯藏布江斷裂帶疊接,形成時代為12 Ma~21 Ma(潘桂棠面告)。沿北喜馬拉雅構造帶由拉軌崗日群組成一條穹隆群,最近區調證實是伸展環境下發展起來的一串變質核雜岩構造。在岡底斯地區垂直造山帶有多條近於等距的SN向地塹或張裂帶,最近區調發現,其中當窮錯—許如錯地塹有中新鹼性世火山岩、侵入岩(26.1 Ma),申扎打個隆弄巴溝口SN向斷裂,為一強地震活動帶,它們也與印度陸塊的嵌入、高原隆升背景下的陸內伸展有關。
華夏—濱西太平洋構造體系域
任紀舜等將中國東部劃歸由在太平洋—太平洋動力體系形成的環太平洋構造域。程裕淇等則分為由揚子、華夏兩個古板塊相互作用形成的古華夏構造域和燕山期以來由歐亞板塊和太平洋板塊相互作用形成的濱西太平洋構造域。根據1∶250萬地質圖編圖資料,對古太平洋構造所知尚少,故在前人劃分基礎上稱為華夏—濱西太平洋構造體系域。華夏構造域地域限於中國東南部地區,濱西太平洋構造域則擴及整個東亞地區。華夏古板塊與揚子古板塊的相互作用,主要由南向北和由東向西以及由南東向北西的擠壓碰撞,自四堡運動至加里東運動完成拼合。印支、燕山運動時期兩個古板塊又發生強烈的陸內擠壓嵌合作用。加里東造山運動時期華南造山帶先自南向北不均一仰沖推覆,後自東向西仰沖拼貼,奠定了該區構造輪廓。形成了總體為NE向、中段為EW向的反S狀的江南地塊和反S狀欽—杭結合帶以及反S狀羅霄—北武夷—會稽山加里東期前緣褶沖帶,也可能是EW向構造帶在特定條件下的一個變種。除此,還發育有稍晚的近南北向疊加褶皺和一些更晚的NE向的褶皺帶、斷裂帶。該構造體系域的NE向反S構造帶與特提斯構造域的NW向反S構造帶在中國南部圍繞四川盆地,約略呈犄角之勢,只是前者規模略小,不完全對稱。
燕山運動以來,由於陸內收縮和歐亞板塊與古太平洋板塊相互作用,形成了東亞濱西太平洋構造體系域,主要包括遼闊的中國東部陸緣活化帶、完達山造山帶和台灣造山帶以及東南海域,在東部陸區疊加改造中國東部的華夏構造體系域與古亞洲構造體系域,形成了一系列NNE向的隆起—岩漿帶和松遼、華北等大型盆地,其間發育一系列的NNE向巨大的斷裂帶,包括大興安嶺—太行山、嫩江—青龍河、濟寧—團風、鎮江—廣州、麗水—海豐、長樂—南澳、台東縱谷、台灣中央山脈、台西山麓等斷裂帶,也捲入了狼山、彌勒—師宗、撫州—遂川等NE向斷裂,重要的有30條,不少斷裂的一些段落並不連續,呈左行側列排列,其性質以逆沖兼有左行走滑為主,且以自SE向NW仰沖居多。他們在晚白堊世時大部分轉化為正斷層,局部發生位移不大的右行走滑,其中以汾渭斷裂帶控制的「之」字狀地塹系最為特徵。台灣的一束NNE向斷裂在新近紀以來作疊瓦式向西逆沖,至今仍有活動。
該域著名的郯廬斷裂系縱貫中國東部,它是中生代以來在一些古斷裂的基礎上發展起來的,以郯廬斷裂帶為主幹,南北均有一些分支,形成一個具有成生聯系的斷裂系統。居於中段的郯廬斷裂帶由一束平直的走滑斷裂組成,斷面向E陡傾,在其兩側變形特點有明顯不同。東盤以長距離牽引拖曳為主,斷續出露的青白口紀張八嶺群、南華—震旦系及古生代地層,在廬江、張八嶺一帶呈NNE走向,向北逐漸向東偏轉,至蘇北宿遷—泗洪、響水—淮陰一帶轉為NE、NNE向。總體呈NE—NNE向大型弧形構造,其間可能有一些規模較小的拉斷現象,顯然具牽引弧特點。至於肥東地區出露於郯廬帶中的闞集岩群、肥東岩群等中深變質構造岩片,這些古老硬脆的塊體,很可能是走滑錯斷的碎片。還需要說明的是在郯廬斷裂帶的南部廣濟、宿松等地斷裂兩側的震旦紀及早古生代地層大致呈由NWW向轉為NE向的弧形,平移錯動不顯著,說明郯廬斷裂帶南部是在一個向南凸出的弧形構造基礎上發展起來的,最大走滑拖曳部位在郯城、廬江一帶,向南逐漸減弱消失。郯廬斷裂帶的西盤構造帶與構造線主要為NWW至EW向,與走滑斷裂帶直交,不具拖曳特點,出現巨大斷距。郯廬斷裂帶南端達長江北岸,與揚子陸塊北緣逆沖斷裂帶以及大別推覆體前緣斷裂帶同時終止廣濟附近,即他們具有共同終點。由此不難設想郯廬斷裂帶西側的深層俯沖和大推覆與郯廬斷裂帶的大平移有密切的成生聯系。平移作用導致和加強了西側華北陸塊的深層俯沖和大別塊體向南擠出與推覆效應。而推覆與俯沖是以郯廬斷裂帶為邊界條件,並使走滑斷裂帶隨推覆同步發展延伸。這種走滑與推覆的聯動現象在中國東南部已有多處見到。郯廬斷裂系南延部分的廬江—懷寧斷裂,平移距離很小,該斷裂在湖口與贛江斷裂帶相接後,因九嶺疊瓦式逆沖推覆帶沿其西側向SSW方向推移,使其平移特徵得到顯著加強,以後形跡斷續零星,至粵西地區主要是遷就利用了較古老的四會—吳川斷裂帶,又有所加強。郯廬斷裂系北段為舒蘭—依蘭斷裂帶和敦化—密山斷裂帶,斷裂走向也向NE偏轉,左行走滑作用明顯減弱,敦化-密山斷裂後期右行走滑則比較明顯。根據地質依據和大量定年數據,郯廬斷裂帶啟動於三疊紀末(2088Ma~245 Ma)(王小風等,2000),強烈走滑於侏羅紀—早白堊世(100 Ma~208 Ma),晚白堊世至古近世為伸展期,新近紀又有一些擠壓或右行走滑。斷裂帶西側大約也在印支期發生了華北陸塊向南俯沖,處於中下地殼的大別山「山根」受到擠壓深層發生超高壓變質,開始擠出,在中部層次形成低溫高壓藍片岩帶。於侏羅紀時岩塊大規模向南逆沖推覆,在白堊紀時大別山體開始隆升,周邊斷陷。東南沿海的長樂—南澳斷裂帶走滑剪切的時限集中於100 Ma~120 Ma(舒良樹,2000)。所以中國大陸東部的NNE向走滑作用啟動時間有所不同,但均結束於100 Ma前後。
除此,在東南陸緣還發育一組NW向張裂帶,斷裂形跡斷斷續續,向陸內逐漸閉合,沿帶發育中新生代火山、斷陷盆地和成串的火山機構及小型侵入體,沿九江-寧德、會昌-雲霄斷裂帶有中酸性同熔型斑岩、次火山岩或晶洞花崗岩分布,具深張斷裂特點。沿海的晶洞花崗岩沿九江-寧德斷裂帶達贛東北的靈山。
賀蘭—康滇構造體系域
該域主體縱貫我國中部,包括賀蘭山、康滇、黔中一帶的褶皺帶和斷裂帶,以及近SN向的鄂爾多斯盆地,松潘—甘孜造山帶東部以及四川盆地。該體系域居我國地質構造的中軸,而上揚子古陸塊(現四川盆地),則是多體系聚合施壓的穩定核心,構成中國的中心構造結。其西面是「北、西雙向」擠壓而成倒三角形的松潘—甘孜褶皺區(許志琴,1997),北、東、南三面為大巴山、江南、川南等弧形褶皺帶所圍繞。從深部構造看我國地殼西厚東薄,西南特厚、東南特薄,而該域地殼厚度為38~45 km,大致代表我國地殼的平均厚度,恰為「中性」的過渡帶(程裕淇,1994)。
該域有7條重要的斷裂帶,均為地震活動的敏感地帶。北端的鄂爾多斯斷裂帶,走向SN,向西陡傾,晚侏羅世—早白堊世時向E逆沖,東部相對下降,最大降幅可達800 m。中南段有著名的龍門山、箐河和小金河逆沖推覆斷裂帶,屬松潘—甘孜造山帶的前陸逆沖推覆系統。南段於康滇地塊發育3條近SN向斷裂帶,長度均為500~600 km。自西向東依次為綠汁江、安寧河以及小江斷裂帶,同為左行逆沖推覆斷裂帶,都是二疊紀玄武岩的噴溢通道,地震活動由西而東依次減弱。
上述格局說明該構造體系域主要是陸內近東西向擠壓和特提斯構造動力體系與華夏—濱西太平洋構造動力體系復合聯合作用的結果,同時還受到了古亞洲構造動力體系的復合影響。
以上四大構造體系域各具特點,同時又互相遷就、互相改造、互相干涉、互相疊加,形成我國復雜而有規律的構造面貌。
除此,近期限的一些調查資料表明千山帶內部先後的褶皺變形可以平行造山帶發生疊加,但也可以近乎直交。如江南地區四堡期限第1期褶皺帶為近SN向,第2期即主體褶皺為近EW向;贛中武功山區加里東期第1期褶皺帶為近EW向,第2期即主體褶皺為近SN向;湯家富也報導了(2003)安徽滁州、和縣、巢湖一帶印支期限早期褶皺為NWW向,後期為NE向,均近直交。這也可從板內構造活動和板塊碰撞兩種作用得到期解釋,是否如此,值得進一步研究。