有色金屬礦的形成與什麼地質作用有關
㈠ 有色金屬礦產分布於什麼地質構造
有色金屬礦的形成大概有這樣幾種情況:1岩漿噴發過程形成,2岩石風化並被流體運搬到某地,其中金屬成分富集沉積形成,3岩漿噴發或者岩石風化沉積形成的礦床,經過漫長地質歲月變質後形成。
㈡ 與地質作用有關的礦產
在一定的地質作用下,某些有用的礦物富集形成了礦產.圖中與煤炭資源形成相關的地質作用過程是外力作用,符合的是①②.
故選:A.
㈢ —、形成礦物的地質作用
礦物的成因通常是按地質作用來分類的。根據作用的性質和能量來源,一般將形成礦物的地質作用分為內生作用、外生作用和變質作用。
1.內生作用
內生作用(endogenic process)主要指由地球內部熱能所導致礦物形成的各種地質作用,包括岩漿作用、火山作用、偉晶作用和熱液作用等各種復雜的過程。
1)岩漿作用
岩漿作用(magmatism)是指由岩漿冷卻結晶而形成礦物的作用。岩漿是形成於上地幔或地殼深處的、以硅酸鹽為主要成分並富含揮發組分的高溫(700~1300℃)高壓(5×108~20×108 Pa)的熔融體。在地殼運動過程中,地下深處的岩漿在其揮發分及地質應力的作用下,沿深大斷裂上侵,由於溫度、壓力的降低,首先從岩漿中結晶析出的是一些含量多、熔點高的礦物,而礦物的晶出必然會使岩漿各組分的相對濃度發生變化。隨著溫度、壓力的緩慢降低及組分相對濃度的不斷改變,即相繼析出顆粒較粗的各種礦物晶體。
在岩漿作用過程中,岩漿不斷演化,先後析出的主要礦物——橄欖石、輝石、角閃石、黑雲母、斜長石、正長石、微斜長石和石英等造岩礦物,形成各種礦物組合,構成不同的岩石類型,如超基性岩、基性岩、中性岩、酸性岩及鹼性岩。此外,還可形成金剛石及鉑族自然元素、鉻鐵礦、磁鐵礦及Cu、Fe、Ni的硫化物等金屬礦物,富集成極為重要的礦床與相應的岩漿岩共同產出。
2)火山作用
火山作用(volcanism)實際上是岩漿作用的一種形式,為地下深處的岩漿沿地殼脆弱帶上侵至地面或直接噴出地表,迅速冷凝的全過程。
火山作用的產物是各種類型的火山岩,包括熔岩和火山碎屑岩。其形成的礦物以高溫、淬火、低壓、高氧、缺少揮發分的礦物組合為特徵,除透長石、鱗石英、方石英等細小斑晶外,均呈隱晶質,甚至形成非晶質的火山玻璃。
由於揮發分的逸出,火山岩中往往產生許多氣孔,並常為火山後期熱液作用形成的沸石、蛋白石、瑪瑙、方解石和自然銅等礦物所充填。在火山噴氣孔周圍則常有自然硫、雄黃、雌黃和石鹽等凝華作用的產物。
3)偉晶作用
偉晶作用(pegmatitization)是指在地表以下較深部位(3~8 km)的高溫(400~700℃)高壓[(1×108)~(3×108)Pa]條件下所進行的形成偉晶岩及其有關礦物的作用。
偉晶岩多呈脈狀並成群產出,其主要礦物成分與相應的深成岩相似。偉晶作用中形成的礦物最明顯的特點是:晶體粗大,富含SiO2、K2O、Na2O和揮發分(F、Cl、B、OH等)(如石英、長石、白雲母、黃玉和電氣石等)及稀有、稀土和放射性元素(Li、Be、Cs、Rb、Sn、Nb、Ta、TR、U、Th等)(如鋰輝石、綠柱石、天河石和鈮鉭鐵礦等),常可富集形成有獨特的經濟意義的工業礦床。
4)熱液作用
熱液作用(hydrothermalism)是指從氣水溶液到熱水溶液過程中形成礦物的作用。熱液按其來源主要分岩漿期後熱液、火山熱液、變質熱液和地下水熱液。通常所說的熱液系指富含有各種金屬元素的以H2O為主的揮發組分的岩漿期後熱液(postmagmatic hydrothermal solution)。在岩漿演化的後期,由於外壓減小,熱液遂沿著圍岩裂隙向上運移,並從圍岩中淋濾和溶解部分成礦物質,在適當的條件下,含礦熱液便沉澱出各種礦物。
熱液活動的深度范圍從5~8 km直至近地表,作用的溫度在500~50℃。熱液作用按溫度大致分為高溫、中溫和低溫三種類型。
(1)高溫熱液作用(high-temperature hydrothermalism):溫度約在500~300℃。主要形成由W、Sn、Bi、Mo、Nb、Ta、Be、Fe等高電價小半徑的陽離子組成的氧化物和含氧鹽及部分硫化物,也常見含揮發分的礦物。如黑鎢礦、錫石、輝鉍礦、輝鉬礦、鈮鉭鐵礦、毒砂、磁黃鐵礦、磁鐵礦、自然金、綠柱石、黃玉、電氣石、白雲母、石英和螢石等。
(2)中溫熱液作用(medium-temperature hydrothermalism):溫度一般在300~200℃。主要形成以Cu、Pb、Zn為主的硫化物和硫鹽礦物,如黃銅礦、方鉛礦、閃鋅礦、黃鐵礦和自然金等,此外,還常見螢石、石英、重晶石及方解石等碳酸鹽類礦物。
(3)低溫熱液作用(low-temperature hydrothermalism):溫度約在200~50℃。主要形成As、Sb、Hg、Ag等的硫化物礦物組合,如雄黃、雌黃、輝銻礦、辰砂、輝銀礦和自然金等,以及重晶石、石英、方解石、蛋白石、高嶺石等。
2.外生作用
外生作用(exogenic process)是指在地表或近地表較低的溫度和壓力下,由於太陽能、水、大氣和生物等因素的參與而形成礦物的各種地質作用,包括風化作用和沉積作用。
1)風化作用
風化作用(weathering),在地表或近地表環境中,由於溫度變化及大氣、水、生物等的作用,使礦物、岩石在原地遭受機械破碎,同時也可發生化學分解而使其組分轉入溶液被帶走或改造為新的礦物和岩石,這一過程稱風化作用。
不同礦物抗風化的能力各不相同。一般地,硫化物、碳酸鹽最易風化,硅酸鹽、氧化物較穩定,尤其是具層狀結構、富含水及高價態的變價元素的氧化物和氫氧化物、硅酸鹽,以及自然元素在地表最為穩定。
在風化作用過程中形成的一系列穩定於地表條件的表生礦物主要是各種氧化物和氫氧化物、粘土礦物及其他含氧鹽,如玉髓、蛋白石、褐鐵礦、鋁土礦、硬錳礦、水錳礦、高嶺石、蒙脫石、孔雀石和藍銅礦等。礦物集合體常呈多孔狀、土狀、皮殼狀和鍾乳狀等。
此外,風化後還殘留有一些穩定的原生礦物,如石英、自然金、自然鉑、金剛石、磁鐵礦和鋯石等。
2)沉積作用
沉積作用(sedimentation)是指地表風化產物及火山噴發物等被流水、風、冰川和生物等介質挾帶,搬運至適宜的環境中沉積下來,形成新的礦物或礦物組合的作用。沉積作用主要發生在河流、湖泊及海洋中。
沉積物通常以難溶的礦物碎屑和岩屑、真溶液方式或膠體溶液方式被介質搬運,相應的沉積方式有機械沉積、化學沉積和生物化學沉積。
(1)機械沉積(mechanical sedimentation):被流水、風等搬運的難溶的礦物、岩石碎屑物質,因水流速或風力減小,而按體積、相對密度大小先後沉積下來,在河谷或其他有利場所集中形成各種砂礦床,如自然金、自然鉑、金剛石、錫石和鋯石等。在機械沉積過程中,一般不形成新的礦物。
(2)化學沉積(chemical sedimentation):包括膠體沉積。化學沉積發生於真溶液和膠體溶液中。風化作用形成的真溶液,進入乾涸的內陸湖泊、封閉或半封閉的潟湖或海灣後,在乾旱炎熱氣候條件下,因水分不斷蒸發而達到過飽和,從而結晶出各種易溶鹽類礦物,可形成巨大的礦床。主要是 K、Na、Mg、Ca的氯化物、硫酸鹽、碳酸鹽及其復鹽,有時也有硼酸鹽、硝酸鹽等,最常見的有石鹽、鉀鹽、光鹵石、石膏、硬石膏、硼砂和芒硝等。對於風化形成的膠體溶液,當其被帶入海盆地、內陸湖泊或沼澤盆地中,受到電解質的作用發生電性中和凝聚、沉澱,形成 Fe、Mn、Al、Si 等的氧化物和氫氧化物,如赤鐵礦、硬錳礦、軟錳礦、鋁土礦、蛋白石和玉髓等。這些膠體礦物常呈鮞狀、豆狀、腎狀、結核狀和緻密塊狀等集合體形態。例如在深海底層發現大量錳結核。
(3)生物化學沉積(biochemical sedimentation)是指由生物新陳代謝作用的產物及其遺體的堆積,或生物的生命活動促使周圍介質中某些物質聚集而形成礦物及其礦床,如方解石、硅藻土、磷灰石、煤、油頁岩和石油等。黑海淤泥中的Cu、Zn、Mo、U、Ag等重金屬的富集即是由浮游生物作用而富集成的。
3.變質作用
變質作用(metamorphism)是指在地表以下較深部位,已形成的岩石,由於地殼構造變動、岩漿活動及地熱流變化的影響,其所處的地質及物理化學條件發生改變,致使岩石在基本保持固態的情況下發生成分、結構上的變化,而生成一系列變質礦物,形成新的岩石的作用。
根據發生的原因和物理化學條件的不同,變質作用可分為接觸變質作用和區域變質作用。
1)接觸變質作用
接觸變質作用(contact metamorphism)是指由岩漿活動引起的發生於地下較淺深度(2~3km)之岩漿侵入體與圍岩的接觸帶上的一種變質作用。
接觸變質作用的規模不大。根據變質因素和特徵的不同,又分為熱變質作用和接觸交代作用兩種類型。
(1)熱變質作用(thermometamorphism):是指岩漿侵入圍岩,由於受岩漿的熱力及揮發分的影響,主要使圍岩礦物發生重結晶、顆粒增大(如石灰岩變質成大理岩),或發生變質結晶、組分重新組合形成新的礦物組合的作用。在此過程中,溫度升高是變質作用的主要因素,圍岩與岩漿之間基本無交代作用,揮發性流體一般只起催化作用,所形成的變質礦物多是一些高溫低壓礦物,常見為紅柱石、堇青石、硅灰石和透長石等。
(2)接觸交代作用(contact metasomatism):是指岩漿侵入、與圍岩接觸時,岩漿結晶作用的晚期析出的揮發分及熱液使接觸帶附近的圍岩和侵入體發生明顯的交代而形成新的岩石的作用。與熱變質作用不同,圍岩與侵入體之間的成分交換是此過程中岩石發生變質的主要原因。接觸交代作用最易發生在中酸性侵入體與碳酸鹽岩的接觸帶附近,此時侵入體中的組分FeO、Al2O3、SiO2等向圍岩中擴散,而圍岩中的CO2、CaO、MgO等組分被帶進侵入體中,即進行雙交代作用(dimetasomatism),其結果使得接觸帶附近的岩石均發生成分、結構構造的變化,形成一系列的Ca、Mg、Fe質硅酸鹽礦物,最常見的有透輝石、鈣鐵輝石、鈣鐵榴石、鈣鋁榴石、符山石、硅灰石、方柱石和金雲母等,晚期還常出現透閃石、陽起石、綠簾石等含水硅酸鹽礦物交代產物,構成夕卡岩(skarn)。同時伴隨有磁鐵礦、黃銅礦、白鎢礦、輝鉬礦、方鉛礦和閃鋅礦等金屬礦化,形成夕卡岩礦床(skarn deposit)。
2)區域變質作用
區域變質作用(regional metamorphism)是指由於區域構造運動而引起大面積范圍內發生的變質作用。原岩的礦物成分和結構構造發生改變是溫度(200~800℃)、壓力[(4×108)~(12×108)Pa]、應力,及以H2O、CO2為主的化學活動性流體等主要物理化學因素變化之綜合作用的結果。
區域變質作用形成的變質礦物及其組合主要取決於原岩的成分和變質程度。如果原岩的主要組分為SiO2、CaO、MgO、FeO,變質後易形成透閃石、陽起石、透輝石和鈣鐵輝石等礦物。若原岩系主要由SiO2、Al2 O3 組成的粘土岩,其變質產物中則出現石英或剛玉,以及Al2 SiO5 同質三象變體之一的礦物共生,具體地,低溫高壓環境有利於藍晶石形成,夕線石的形成則需要較高的溫度,而紅柱石形成的溫壓條件均相對較低。隨著區域變質程度加深,其變質產物向著結構緊密、體積小、相對密度大、不含OH-和 H2 O的礦物演化。
應當指出,形成礦物的地質作用是各種因素的綜合表現,上述內生、外生和變質作用並非彼此孤立、截然分開的。在分析礦物成因時,應全面考慮,作出合理的推斷。
㈣ 各種金屬礦是如何形成的
原因:岩石風化並被流體運搬到某地,其中金屬成分富集沉積形成。岩漿噴發或者岩石風化沉積形成的礦床,經過漫長地質歲月變質後形成。
1、黑色金屬:鐵、鉻、錳三種。
2、有色金屬:鋁、鎂、鉀、鈉、鈣、鍶、鋇、銅、鉛、鋅、錫、鈷、鎳、銻、汞、鎘、鉍、金、銀、鉑、釕、銠、鈀、鋨、銥、鈹、鋰、銣、銫、鈦。
3、常見金屬:如鐵、鋁、銅、鋅等。
4、稀有金屬:如鋯、鉿、鈮、鉭等。
5、輕金屬:密度小於4500千克/立方米,如鈦、鋁、鎂、鉀、鈉、鈣、鍶、鋇等。
擴資料:
金屬礦物探按所承擔的地質任務分為區測、普查、勘探3個階段。
1、普查階段:
在根據地質和物探方法劃出的成礦遠景區,用物探直接或間接地尋找和發現金屬礦床。最常用的作圖比例尺為 1:50000、1:25000和1:10000。金屬礦普查常用的物探方法包括航空物探和地面磁法、電法、重力法、地震法等。
2、區測階段:
研究深部和表層地質構造,進行構造分區和成礦遠景的預測。通常採用小於1:200000的比例尺作圖。區測中採用的物探方法,一般包括地震法(天然地震、人工地震)、磁法、重力法、大地電磁法和熱流法等。
3、勘探階段:
此階段的物探任務是,探查礦體的產狀和規模,追索已知礦體沿走向的延伸和向下延深,研究礦體間是否相連,圈定和發現鑽孔打漏的礦體,探明鑽孔或坑道間的隱伏礦體等。常用的作圖比例尺為1:5000、1:2000或更大。
㈤ 什麼是有色金屬礦產
國防工業、機械製造和日常生活中,有色金屬(包括許多貴重金屬)發揮著巨大的作用。對有色金屬的開采一直受到人們的重視。
南極洲地域廣闊,與地質構造和地質歷史相似的其他大陸比較,可能潛藏有豐富有色金屬資源。
南極洲的有色金屬礦產主要分布在西南極洲的安第斯成礦區,含南極半島、埃爾斯沃思地、瑪麗伯德地。該區北部可能與南美的安第斯山脈相連,南部與紐西蘭為鄰。該區時代為中至新生代,主要礦化為銅,還有鐵、鉛、鋅、金、銀等。這些礦種多與鎢鹼性侵入岩有關。可進一步劃分為銅亞區(主要是整個南極半島)和鐵亞區(主要是半島西部)。所謂礦化地區,系指有礦產顯示和儲存,但其品位、儲量(尤其是儲量)都達不到工業開發標準的地區。
在南極大陸,有色金屬主要礦化地區包括:
(1)南設得蘭群島的吉布斯島。在該島超基性火山岩體中發現了成層粒狀侵染的鉻礦化,其時代為晚古生代至中生代(約3.5億年~1.5億年前)。
(2)喬治王島。在該島上發現了最大的石英交代岩體和大量黃鐵礦及次生赤鐵礦、鈦鐵礦,還有大面積火山岩熱液蝕變岩石中的黃銅礦、斑銅礦、輝銅礦、磁黃鐵礦、白鐵礦和磁鐵礦。時代為晚侏羅紀至第三紀。該區還有大量斑狀侵入體,礦化現象與其附近的熱液蝕變有關,含有銅、鉛、鋅等多金屬熱液與斑岩型礦床相關。
1977年,地質學家在南極半島及其周圍島嶼發現了各種小型有色金屬礦,其中就有多處斑岩型銅礦,與世界聞名的銅礦之國——智利的安第斯山脈中段典型的銅礦類型相同。中安第斯山的斑岩銅礦中普遍有鉬的硫化物輝鉬礦伴生,南極半島也是如此。另外,在東南極前寒武紀地盾的基岩里也發現了一些小型的輝鉬礦礦床。
安第斯板塊俯沖作用使大量鎢鹼性火山岩噴出,蓋在半島及西埃爾斯沃思地古生代岩石之上,其中也發現有金屬礦化。
在中央安第斯山脈,與斑岩銅礦床共生的金和銀十分常見,而在南極半島上的一些地區也同樣發現了金和銀的礦化點。例如在斯托寧頓島上的英國基地附近,在侵入於變質岩基底的安第斯花崗岩中,發現與黃鐵礦相伴生的金銀礦,金的含量為1.4克/噸,銀的含量為10.3克/噸。另外,在東南極洲維多利亞地和阿德利地海岸帶的含硫化物石英岩脈中,都發現金和銀的礦化,並與鉻、鎳、鈷共生。
世界上許多鉻、鎳、鑽礦床都與巨大原基性岩類岩漿侵入體有關,並且通常表現得如沉積岩那樣呈水平狀。南非的布希維爾克,蒙大拿州的斯蒂·爾沃特和渥太華的薩德伯里等3個這樣的大岩體中,也有鉑和銅與鉻、鎳、鈷礦床伴生。西南極洲彭薩科拉山脈幾乎佔1/3的北段杜費克岩體是世界上最大的層狀岩漿雜岩之一。粗測表明,這個中侏羅紀侵入體至少有34000平方千米,厚度約7千米。盡管還沒有在該雜岩體找到有意義的礦床,但它仍然是重要的勘探對象。據報道,在南維多利亞地沃倫山脈,有另一個與杜費克相似的層狀雜岩體,只是還未進行詳細的考察。
經過地質學家們多年的考察研究,已初步發現了南極的有色金屬與貴金屬礦產的分布規律。那就是南極半島的銅礦及與它共生的有色金屬礦特別多,這種伴生現象與南美洲西部世界上有名的安第斯山銅礦帶十分相似,這無疑是同一安第斯構造帶向南極洲的延伸。而東南極洲沿海地區的鐵礦、鈾礦和其他許多礦點生存的地質條件,又同澳大利亞、印度和南非已發現的一些同類型大礦床不盡相同。
㈥ 有色金屬礦產
1)銅
全球銅資源潛力大,據美國地質調查局統計,世界陸地銅資源量估計為16×108t,深海結核中估計為7×108t。1998年世界銅儲量為34000×104t,其靜態保證為29年,儲量基礎為65000×104t。其保證年限為56年。中國銅儲量雖然僅次於美國和原蘇聯,佔世界第三位,但可供開採的儲量不足,銅進口量年復一年增加,銅資源較緊張的局勢還將持續較長時間,成為中國有色金屬礦產中缺口最大的礦種。
世界銅資源分布廣泛,遍及五大洲,其中銅儲量基礎較多的國家有智利(23.7%)、美國(15.3%)、波蘭、尚比亞、俄羅斯等國。從近年的找礦實踐看,環太平洋斑岩銅礦帶具有最大的銅資源潛力。東太平洋的智利安第斯斑岩銅礦帶,80年代以來又新發現了銅金屬量在500×104t以上的5個超大型銅礦(智利的科亞瓦西、楚基北、曼薩米納、扎爾迪瓦爾和印度尼西亞的格拉斯貝格礦床),西南太平洋除印尼之外,菲律賓和斐濟等也都新發現有大型斑岩銅金礦。
世界銅成礦類型多樣,按其地質-工業類型可分為:斑岩型、砂頁岩型、銅鎳硫化物型、海相火山岩型、銅-鈾-金型、自然銅型、脈型、碳酸岩型和夕卡岩型等。其中最重要的是前四類,它們佔世界銅總儲量的96%左右,是目前世界勘查和開採的主要銅礦類型。尤其是斑岩型和砂頁岩型各佔世界總儲量55%和29%。據初步統計,世界銅金屬儲量超過500×104t的超大型礦床有60個左右,其中斑岩型38個,佔63%,占儲量的64%,而砂頁岩型有15個,佔25%,占儲量的24%。現將這些礦床類型簡述如下:
(1)斑岩銅礦:這是世界最佳找礦類型之一。英國礦床學家R.H.西利托研究認為在大量硫砷銅礦脈之下可能有斑岩銅礦的存在,這就為尋找深部隱伏斑岩銅礦指出了方向,提供了思路。
(2)砂頁岩型銅礦:這種銅礦泛指不同時代沉積岩中的層控銅礦。加拿大地質調查局S.S.甘迪提出該類銅礦的原始物質來源是基底的奧林匹克壩型礦床,認為阿德雷德銅礦是奧林匹克壩的「派生礦」,這也為世界各地具有砂頁岩型銅礦地區進一步找礦提供了新思路。
(3)銅鎳硫化物型銅礦:礦床主要出現在元古宙和中生代,產出在克拉通地區陸內裂谷。代表性的礦床有加拿大的薩德伯里、美國的德盧斯、俄羅斯諾里爾斯克和中國的金川等。
(4)海相火山岩型銅礦:這是與海底火山作用有一定聯系的含有大量黃鐵礦和一定數量銅、鉛、鋅的礦床。產於加拿大地盾、西班牙-葡萄牙黃鐵礦帶和俄羅斯烏拉爾等地。這類礦床常有後期疊加的大脈型或細脈浸染型金礦,往往規模巨大,有重要意義。
除以上四類外,銅-鈾-金型和自然銅型也佔有一定比例,特別是巨大的奧林匹克壩銅-鈾-金型這種新礦床類型的出現更具重要意義,使其所佔儲量比例(4%)高出了海相火山岩型礦床所佔比例(2%)。此外,各類型礦床往往相伴而生,如斑岩型多與脈型、夕卡岩型伴生,砂頁岩型常與自然銅型、銅-鈾-金型一起產出,海相火山岩型往往與銅鎳硫化物型產在同一個地質單元內。因此,象夕卡岩型銅礦在許多國家將其儲量計入斑岩型礦床中而未單獨列出。
據芮宗瑤等(1997)對銅金屬大於5×104t的礦床統計,我國銅資源量在5個主要礦床類型上的分配如下:斑岩型42.1%,夕卡岩型22.3%,海相火山岩型15.0%,砂頁岩型11.3%和銅鎳硫化物型7.3%,鑒於我國銅礦資源短缺的局面短期內難以解決,應實施銅礦專項找礦工程,在東部尋找隱伏礦床,擴大老區遠景,在西部沿古絲綢之路和「三江-雅江」流域兩條路線向周圍展開,重點抓斑岩型、海相火山岩型及銅鎳硫化物型礦床,以求取得重大的突破。戴自希(1999)認為我國中西部地區勘查程度相對低,有相當的找銅潛力,該地區保有儲量佔全國銅儲量的91%,已發現的大型銅礦25個,中型90多個,近年來在新疆、雲南、甘肅、內蒙古和四川等地均有上述5種主要銅礦類型的新發現,說明中西部地區具有較好的找銅前景,應加大勘查力度,尋找大銅礦和富銅礦。
2)鉛和鋅
世界范圍內鉛鋅資源是豐富的,據美國地質調查局1999年統計,世界已查明鉛鋅資源量約為15和19×108t。現有鉛鋅儲量可保證世界礦山分別開采23年和20年。世界鉛鋅儲量和儲量基礎較多的國家有澳大利亞、美國、加拿大、原蘇聯、中國和秘魯等,它們合計佔世界鉛鋅儲量基礎的74%和63%。據初步統計,世界鉛鋅金屬儲量超過500×104t的超大型礦床約有44個,其中美國、加拿大、澳大利亞這3個國家集中了世界上約50%的超大型鉛鋅礦床。近年來,雖然對鉛鋅勘查投入較少,但不斷有新礦床發現,說明全球鉛鋅資源潛力大。
全球各個歷史時期均有鉛鋅礦床產出,但以元古宙和古生代最為集中,佔世界總儲量的80%以上,中新生代的鉛鋅礦床相對較少。鉛鋅礦床工業類型繁多,世界目前勘查和開採的鉛鋅礦床主要類型有:①噴氣沉積型礦床(SEDEX):這類礦床是世界上鉛鋅的主要來源之一,為最重要的礦床勘查類型;②密西西比河谷型礦床(MVT);③火山成因塊狀硫化物礦床(VMS):這類礦床在銅礦中稱為黃鐵礦型銅多金屬礦床或黑礦型礦床;④砂岩型鉛鋅礦床:此類型在法國和瑞典均有產出,有人認為中國雲南的金頂超大型鉛鋅礦床也屬此類型。除上述4類外,還有沉積變質型如朝鮮檢德鉛鋅礦床,它是世界上已知最大的鉛鋅礦床以及夕卡岩型、熱液交代型、脈型和斑岩型礦床等。此外,還有淺生富集或紅土化作用形成的鋅礦床。當前在國際上越來越重視對易采價廉的氧化礦-菱鋅礦的開發利用。
上述4個類型鉛鋅礦床前3類在我國都有產出,而且礦床規模較大,區帶分布明顯,是我國鉛鋅資源主要開發和進一步勘查對象。它們的重要性和典型代表依次是:SEDEX型(廠壩、東升廟等);MVT型(凡口、大梁子等)和VMS型(小鐵山、呷村等)。至於我國最大的鉛鋅礦床,即雲南金頂鉛鋅礦床的類型歸屬尚存在較大的爭議,或屬SEDEX型,或屬砂岩型,或為一獨特類型(暫可稱之為金頂型)。今後,在勘查部署上,應在我國中西部地區,加大規模大、品位富、經濟價值巨大的SEDEX型以及金頂式和VMS型等鉛鋅礦床的找礦力度。近20年來世界所發現的大型、巨型礦床基本上都是SEDEX型。國內外均很重視這一類型礦床。
3)鋁
鋁的產量和消費量在金屬中位居第二,僅次於鐵。世界鋁土礦資源豐富,儲量充足,且還在不斷增長。據美國地質調查局統計,1998年世界鋁土礦儲量為250×108t,儲量基礎為340×108t。其靜態保證年限為205年和50年,而且其儲量僅占資源量的30%~42%,鋁土礦還有大量待勘查的資源。世界各國對鋁土礦礦床的分類很不統一,按其下伏基岩性質大致分為兩大類型-硅酸鹽岩上的紅土型和碳酸鹽岩上的岩溶型鋁土礦礦床。另外,較次要的還有陸源岩層之上的沉積鋁土礦礦床,也稱為齊赫文型鋁土礦礦床。
(1)紅土型鋁土礦礦床。它主要是由酸性、中性和基性成分的含鋁硅酸鹽岩石在熱帶和亞熱帶氣候條件下經深度化學風化形成的紅土礦床,特別是新生代熱帶地區的紅土礦床工業價值很大。據原蘇聯學者統計,此類礦床佔世界現有儲量86%,佔世界鋁土礦產量65%,大於10×108t的6大紅土型鋁土礦區是在澳大利亞、幾內亞、巴西、喀麥隆、越南和印度。澳大利亞的韋帕礦床是這類礦床的典型代表。
(2)岩溶型鋁土礦礦床。這類礦床一般覆蓋在石灰岩和白雲岩凹凸不平的岩溶化表面。礦床和基岩之間為不整合或假整合。這類礦床加上陸源岩層之上的沉積鋁土礦礦床的產量佔世界總產量的35%,其儲量佔世界鋁土礦總儲量14%,主要分布於南歐和加勒比地區。我國的大部分鋁土礦礦床屬於這一類型,牙買加的鋁土礦床為此類礦床的典型代表。
(3)沉積型鋁土礦礦床。這類礦床一般呈不整合覆蓋在不同的鋁硅酸鹽岩石的表面,與下伏岩石沒有直接的成因關系,成礦物質是從其它地方搬運來的。這類礦床只佔世界總儲量不到1%,工業意義不大。
4)鎳
世界鎳資源非常豐富,儲量充足。據美國地質調查局統計,1998年世界鎳儲量為4000×104t,儲量基礎為14000×104t,平均含鎳接近(或大於)1%的礦床查明資源為1.3×108t,其中60%產於紅土型礦床,40%產於硫化物礦床,還有大量較低品位鎳礦床的資源量。世界鎳資源分布極不均勻,主要集中在古巴、加拿大、俄羅斯、新喀里多尼亞、印尼、南非、澳大利亞等國,它們佔世界鎳總儲量的92%。另外,海底錳結核和錳結殼中還有大量鎳資源,主要分布於太平洋洋底。目前勘查和開採的主要類型為硫化鎳型和紅土型。從開采量看以硫化物鎳礦佔多數。
(1)岩漿硫化銅鎳礦床。這類礦床在空間上和成因上與基性和超基性岩(包括成分相似的噴出岩)有關,按照成礦環境主要可分為3種類型:①前寒武紀綠岩型礦床,該類礦床的基本特徵是礦床均產於前寒武紀綠岩帶內,含礦岩體與科馬提岩套或鎂鐵質岩系緊密伴生。根據岩體的岩石類型和侵位方式可細分為與科馬提岩套有關的或與拉斑玄武岩有關的兩類礦床。②與大陸裂谷作用有關的礦床,該類礦床的成礦構造環境為克拉通內的裂谷及克拉通之間或邊緣的活動帶。根據岩體類型和成礦背景可細分為與溢流玄武岩有關的侵入體內的礦床和大型層狀侵入雜岩體中的礦床兩類。加拿大薩德伯里硫化銅鎳礦床的成礦地質背景和礦床特點類似於大型層狀侵入體礦床,對該礦床成因觀點看法不一,大多數研究者認為是岩漿熔離型,還有不少人認為岩體屬隕石沖擊成因。該礦床儲量巨大,鎳品位高,被認為是一種特殊類型。③顯生宙造山帶內與基性-超基性侵入體有關的礦床,這類礦床分布很廣,但成大礦的不多。
(2)紅土型鎳礦床(包括硅酸鎳礦床在內)。這類礦床是含鎳超基性岩(主要是純橄岩、橄欖岩、輝石岩或蛇紋岩)裸露地表,在長期風化和侵蝕作用過程中高含量鎳的富集的結果。氣候條件對此類礦床形成很重要,最富的礦床見於亞熱帶氣候區。世界最重要的紅土型鎳礦床是在新喀里多尼亞,該處蛇紋石化橄欖岩分布廣泛,礦床規模大,品位高,埋藏淺,品位穩定,適於露采,已有一百多年的開采歷史。
世界現有鎳儲量至少已可維持21世紀前半個世紀的生產,儲量基礎可保證整個21世紀鎳礦山的生產,現有鎳儲量占儲量基礎的43%,占資源量的36%,說明資源的勘查程度不算很高,還有大量資源有待探明。近年加拿大在薩德伯里老礦區深部繼續有大的發現。象牙海岸在已知的錫皮盧礦床附近繼續勘查,查明大的紅土鎳礦床,已查明礦石資源5.4×108t。此外,在西澳大利亞和坦尚尼亞均有新的發現,另外還有大量鎳品位小於1%的低品位鎳資源,以及海底錳結核和錳結殼中的鎳資源,這使世界鎳儲量基礎不斷增多,提高了鎳資源的保證程度。
5)鈷
據美國地質調查局統計,1998年世界鈷儲量為430×104t,儲量基礎為950×104t,世界鈷儲量高度集中於剛果、古巴、尚比亞、澳大利亞、新喀里多尼亞和俄羅斯等國家和地區。鈷主要作為開采銅和鎳等有色金屬的副產品回收,其產量取決於這些金屬的開采量。扎伊爾和尚比亞的鈷產量佔世界總產量的65%~70%。陸地上鈷極少單獨成礦床,絕大部分伴生在其它礦床中,因此鈷礦床的分類主要取決於鈷所賦存的礦床類型,可將礦床劃分為如下7個類型:
(1)銅鈷礦床。主要分布於扎伊爾南部、尚比亞北部,屬中非含銅頁岩帶范圍,是目前世界鈷的主要來源。值得注意的是,80年代初在加拿大發現這類礦床。另外在秘魯南部也找到了一個有遠景的銅鈷礦床。
(2)含鈷硫化銅鎳礦床。這類礦床大多數都含有少量鈷,主要分布於加拿大、原蘇聯和澳大利亞。最著名的加拿大薩德伯里含鈷銅鎳礦床礦石儲量為3×108t,平均含鈷0.07%,每年大約從中生產2000t鈷。
(3)含鈷紅土型鎳礦床。這類礦床屬超基性岩體裸露地表經長期強烈的風化和侵蝕作用形成富含鐵、鎳、鈷的紅土。鈷的巨大儲量集中在紅土風化殼礦床中。礦床品位的高低,主要取決於風化作用的程度。
(4)含鈷多金屬礦脈。這類礦脈世界各地都有發現,規模較大的有摩洛哥的布阿澤爾,加拿大科博爾特(安大略)和大熊湖和原蘇聯的霍伍阿克塞鈷礦床等。此外,芬蘭、印度、加拿大和澳大利亞的火山沉積岩中的金鈷鈾、鈾鎳鈷鉬和鎳鈷銀鉍礦化產鈷,並伴隨鈾礦化產出。
(5)含鈷黃鐵礦礦床。含鈷量高的含銅黃鐵礦型礦床在世界上罕見,其典型實例是原蘇聯中烏拉爾的佩什明-克柳切夫礦床,芬蘭的奧托昆普礦床和美國愛達荷州艾恩河的無名(no-name)礦床等。
(6)含鈷夕卡岩鐵礦床。這類礦床主要是夕卡岩磁鐵礦礦床,雖然鈷在這類礦床中為鐵礦的副產品,每年僅提供世界鈷產量的1%~2%,但在美國卻是鈷的重要來源。
(7)含鈷鉛鋅礦床。具有獨立鈷礦物的鉛鋅礦床極為罕見。含有分散狀鈷的鉛鋅礦床分布很廣,但鈷含量一般不高。國外某些礦床的鈷已被回收利用,主要是從閃鋅礦精礦中順便回收鈷。
總之,目前世界鈷礦生產中起主要作用的是中非的銅鈷礦床以及加拿大、原蘇聯、澳大利亞等地的含鈷硫化銅鎳礦床。紅土型鎳礦床雖然鈷儲量較大,但產量少,僅為潛力很大的鈷資源。其餘各類礦床居次要地位。世界鎳資源豐富,儲量充足,現有鎳儲量和儲量基礎靜態保證年限分別為141年和310年。此外,海底還有豐富的鈷資源,賦存在錳結核和錳結殼內。據估算,太平洋幾個海域中潛在鈷資源量總計約1020×104t,表明海底蘊藏有巨大的潛在鈷資源。
6)鎢
據美國地質調查局統計,1998年世界鎢儲量為200×104t,儲量基礎320×104t,主要集中在中國、俄羅斯、加拿大和美國。世界勘查和開採的主要鎢礦床類型有:
(1)夕卡岩型白鎢礦床。根據礦床的主要成分可細分為夕卡岩型鉬鎢、銅鎢、錫鎢和鎢礦床。夕卡岩型白鎢礦礦床是目前世界上最重要的鎢礦類型,其儲量約佔世界總儲量的1/2,往往形成大型礦區,如中國的湖南柿竹園鎢礦床。
(2)石英脈型黑鎢礦床。它可劃分為石英大脈型和細脈帶型礦床。就其形成溫度還可劃分為高、中和低溫熱液礦床。熱液型大型鎢礦床主要分布在中國南方的江西、廣東、湖南和廣西等省區。熱液型石英脈黑鎢礦礦床是當前世界上生產黑鎢礦的主要類型,其儲量約占鎢礦總儲量的1/4左右,如中國江西西華山和大吉山等鎢礦床。
(3)斑岩型鎢礦床。它與某些斑岩銅礦類似。根據成分可將這類礦床劃分為斑岩鉬鎢礦床和斑岩鎢礦床,前者如美國的克萊梅克斯礦床,後者如加拿大的普萊曾特山礦床。斑岩鎢礦床品位低(0.1%左右),儲量大,約占鎢礦總儲量的1/4,礦石礦物中黑鎢礦和白鎢礦幾乎各佔一半,如中國江西楊儲嶺鎢礦床。
(4)層控型鎢礦床。此類礦床罕見,東阿爾卑斯山倫納爾塔爾和費貝塔爾的層控礦床屬此類型。中國江西上饒焦里白鎢礦床亦屬此類型(盛繼福,1994)。
世界鎢資源較豐富,1994年世界鎢儲量和儲量基礎靜態保證年限分別為57年和86年,現有儲量至少能保證21世紀前半個世紀世界鎢的生產。但全球資源分布不平衡,中國佔世界總儲量40%左右,占國際市場供應量60%左右。因此,中國控制了世界鎢的生產與銷售。中國江西黑鎢礦、湖南白鎢礦和秦嶺將成為重要鎢礦基地。未來世界鎢業發展前景將很大程度上取決於中國的鎢的出口政策。
7)錫
據美國地質調查局資料,1998年世界錫儲量和儲量基礎分別為770×104t和1200×104t。世界錫資源分布相對集中,太平洋沿岸地區佔3/4以上,尤以東南亞地區的礦化區更為重要,錫的儲量分布相對集中,中國、巴西、馬來西亞、印度尼西亞、泰國、扎伊爾、玻利維亞、俄羅斯和秘魯等國就佔世界錫儲量的99%以上。錫的成礦條件多樣,形成多種類型礦床。目前已開採的錫礦床有:
(1)熱液型礦床。按礦物成分可分為:①錫石-石英脈礦床,產於花崗岩岩基附近,礦床規模以中小型為主,也見有大型和特大型礦床,礦石品位高。這類礦床的錫儲量約占原生礦床錫儲量的50%左右。主要分布於東南亞和歐洲,是形成砂錫礦床最主要的物質來源。②錫石-硫化物礦床,常與偏基性花崗岩類岩體、中性和基性岩牆帶有關,礦床規模多為大中型,少數為特大型。這類礦床主要分布於中國、玻利維亞和原蘇聯的東部沿海區。其錫儲量約占原生礦錫儲量的40%。80年代加拿大發現東肯普特維爾大型錫礦床,它將成為北美第一個原生錫礦礦山。
(2)偉晶岩型礦床。礦體呈脈狀產於花崗岩體及其附近的斷裂中。形成時代從寒武紀到第三紀,但最具經濟意義的產於前寒武紀地區。這類礦床的錫儲量約占原生礦床錫儲量的9%左右。主要分布於非洲、巴西、澳大利亞西部等地。
(3)砂礦床。目前開採的主要為沖積砂礦和海濱砂礦。這類礦床主要分布於東南亞、中南非、西澳大利亞等地。砂礦床儲量占國外錫儲量的64%,產量占錫總產量的60%~70%。典型礦床有馬來西亞的近打河谷砂礦。80年代在巴西亞馬孫州發現皮廷加大型含稀散金屬的錫礦床,主要開采沖積礦床和部分殘積礦床,是一世界級大錫礦。該礦的發現使巴西錫礦儲量增加了兩倍,除錫之外還有豐富的鉿、鈮、鉭和釔等資源。
世界錫資源充足,現有儲量和儲量基礎靜態保證年限分別為36年和52年,可見全球錫資源的保證程度是較高的,足以維持世界21世紀頭30年的生產。人們通過大量研究發現,錫礦化僅與一定特徵的花崗岩有關。所以含錫花崗岩研究是了解錫成礦作用和找礦的關鍵。
8)鉬
據美國地質調查局統計,1998年世界儲量和儲量基礎各為550×104t和1200×104t。鉬資源高度集中在北、南美洲科迪勒拉山系和中國東秦嶺和燕遼地區。儲量最多的國家有美國、中國、加拿大、智利和俄羅斯等,占儲量85%左右,尤其美國獨占儲量基礎45%。世界鉬礦床按地質成因可劃分為以下類型:
(1)斑岩型鉬礦床。這類礦床的經濟意義最大,佔世界鉬儲量和鉬產量的80%以上。斑岩型鉬礦床的共同特點是礦化呈細(網)脈浸染狀,礦床規模大、品位低,適宜露天開采。按金屬成分可分為獨立的斑岩型鉬礦床和銅-鉬礦床兩個亞類。斑岩型礦床是鉬的重要來源。在西方國家中其儲量和產量分別佔31.2%和29.6%。世界上著名的特大型鉬礦床有美國的克萊梅克斯、亨德森、石英山,中國陝西的金堆城、蘭家溝,加拿大的恩達科、基特索爾特等。斑岩型銅鉬礦床是鉬的另一重要來源,鉬作為副產品回收。
(2)斑岩-夕卡岩型鉬(鎢或鐵)礦床。這類礦床與花崗斑岩或似斑狀花崗岩有空間和成因上的聯系。花崗岩類侵入體與鋁硅酸鹽層相接觸,分別產生角岩化和夕卡岩化,成礦熱液活動導致礦化疊加在花崗岩類岩體、角岩和夕卡岩之上而形成本類型鉬礦床。這一類型在中國不但較廣泛產出,且有重要工業意義,如河南欒川南泥湖-三道庄鉬(鎢)礦床和上房溝鉬(鐵)礦床等。
(3)夕卡岩型鉬礦床。這類鉬礦床在空間上和成因上與花崗岩類侵入體有關。按礦石礦物成分有夕卡岩型銅鉬和鉬鎢兩類礦床。此類礦床主要分布在原蘇聯和中國,如俄羅斯北高加索的特而內奧茲鎢鉬礦床。
(4)碳酸岩脈型鉬(鉛)礦床。與碳酸岩有關的鉬、稀土礦化曾見於原蘇聯東西伯利亞和科拉半島地區,但未構成以鉬為主的礦床,只有中國陝西黃龍鋪大型鉬(鉛)礦床是這一類型的代表。礦體由含鉬(鉛)石英-方解石碳酸岩脈組成。其礦石物質成分和輝鉬礦富含錸,明顯不同於其他類型以鉬為主的礦床。
(5)石英脈型鉬礦床。這類礦床與花崗岩侵入體有成因聯系,屬高-中溫熱液礦床。礦床規模不大。常與鎢礦床伴生,鉬往往作為鎢礦山的副產品回收。
(6)沉積型鉬礦床。目前已知黑色頁岩中有鉬、鎳、釩、鈾或鉑族元素礦化,如在中國南方諸省的下寒武統黑色頁岩普遍發育富含鉬、鎳或鉬、鈾礦化。這一類型鉬礦是一種潛在的鉬礦資源。
世界鉬礦床的成礦時代大多集中在中生代至新生代早期,與該時代構造岩漿作用有關,中生代—新生代是最重要的鉬礦成礦時代,其次是海西期。世界主要鉬礦床的分布可劃分出3個全球性成礦帶,即環太平洋成礦帶、地中海阿爾卑斯成礦帶和烏拉爾-蒙古鉬礦成礦帶。世界鉬資源豐富,現有儲量和儲量基礎靜態保證年限分別為39年和85年,可供全球21世紀前半個世紀的開采。中國是世界第2大鉬資源國,集中分布在陝西、河南、吉林、遼寧和山東等省。
9)汞
據美國地質調查局統計,1998年世界汞的探明儲量為12×104t,儲量基礎為24×104t,汞礦產出較多的有西班牙、義大利、吉爾吉斯斯坦、墨西哥等國。世界已查明的汞資源約有60×104t,地中海(沿岸)-中亞構造成礦帶是世界汞礦床最集中的產地,佔世界70%的儲量和儲量基礎。其次為環太平洋構造成礦帶。從地質構造上看,這兩個帶都是古生代和新生代的構造活動帶。世界汞礦床的成礦時代較新,絕大多數是阿爾卑斯的,還有一些,如義大利的芒特阿米亞特礦床及熱泉型礦床,均屬第四紀。
目前世界所提出的汞礦床分類方案不一致。根據礦體形態、成礦元素組合、熱液活動特點,並結合地質生產的實用性可將汞礦床劃分為如下4類:①熱液層狀汞礦床,這類礦床最為重要,是世界汞儲量和產量的首要來源。世界著名的大型和巨型礦床,如美國的新阿爾馬登、新伊德里亞礦床和烏克蘭的尼基托夫礦床均屬於這類礦床。②熱液層狀汞銻礦床,礦床的規模一般不大,但在中亞地區卻具有重要意義。③熱液脈狀汞礦床,礦床規模以中小型為主。④熱泉型汞銻礦床,礦床規模不大,儲量不多,僅具有一定的成因意義。汞礦床的工業類型主要有2種:①與岩漿作用關系不明的低溫熱液汞礦,它們多分布在大范圍內無火成岩出露的地區,常形成規模很大的(往往達到大型和超大型)層狀、似層狀礦體;②與火山作用關系密切的淺成低溫熱液礦床,它們常與第三紀甚至近代火山及溫泉活動有關。
10)銻
據美國地質調查局統計,1998年世界銻儲量為210×104t,儲量基礎為320×104t,世界主要查明銻資源約510×104t,現有儲量可保證世界21世紀前半個世紀的生產與需求。世界銻資源分布極不平衡,它高度集中在中國,是世界上最大的銻資源國,銻儲量和儲量基礎分別佔世界總量的37.5%和52.8%,因此,中國銻資源開發政策將對世界銻資源保證程度起舉足輕重的作用。中國有上百處銻礦產地,已開發利用的有60多處,集中分布在湖南、廣西和雲南三省,其次為玻利維亞、原蘇聯、泰國和南非等國,在這些產地中,中國銻礦勘查程度最高,開發條件最好。世界已知銻礦床絕大部分集中在全球性的3個成礦帶中,即環太平洋成礦帶(世界77%的銻儲量,經濟意義最大)、地中海成礦帶和亞洲大陸東西礦帶中。工業銻礦床的形成主要是與各種成因(包括深成、火山及非岩漿成因)的熱液活動有關。因此銻礦床的成因類型均屬熱液型,具經濟價值的銻礦床主要為中、低溫熱液型,呈脈狀的銻和金-銻礦床以及呈層狀的銻和汞-銻礦床。
(1)熱液層狀銻礦床。這是最重要的工業類型,銻儲量約佔世界總儲量的50%以上,提供了世界60%以上的銻礦山產量。這類礦床主要分布在中國,其次是中亞、地中海沿岸等地區。礦床一般遠離侵入體而產在大斷層附近,並受一定地層層位和岩性的控制;含礦地層主要是碳酸鹽地層,少數為火山-沉積地層。礦床規模以大中型為主,按礦物組合可分為單銻型(如錫礦山、扎亞查)和銻汞型(吉日克魯特等)。
(2)熱液脈狀銻礦床。這類礦床分布較廣泛,規模以中小型為主,也有大型礦床。銻儲量約佔世界總儲量的40%以上,產量約佔世界總產量的1/3,因此也是銻礦床的主要類型。脈狀銻礦床主要產在中、新生代的褶皺斷裂帶和古老地塊內的活動性斷裂構造中。按成分可分為銻金型、銻鎢金型、銻汞型和銻多金屬礦床等4個亞類。
11)鉍
據美國地質調查局統計,1998年世界鉍儲量為11×104t,儲量基礎為26×104t。鉍極少單獨成礦,一般都同鉛、鋅、銅、鉬、鈷、金、錫、銀和鎢等伴生。玻利維亞有一個可單獨開採的鉍礦床,礦石中鉍含量高達40%,中國也有獨立鉍礦床。鉍大多數是在處理鉛、銅、金、銀、鈷、鎳及鎢等礦石過程中綜合提取的,主要是作為鉛和銅的副產品回收。因此其產量受主金屬產量、消費量的控制,而對需求的反應不敏感。世界主要產鉍國是中國、秘魯、墨西哥、日本和澳大利亞。中國生產的鉍大部分是鎢礦的副產品;日本生產的鉍主要是鉛的副產品;秘魯從銅、鉛、銀礦中提取鉍;澳大利亞的鉍大都來自鉛鋅銀礦和銅礦山;墨西哥的鉍多來自鉛和銅礦;加拿大的鉍取自鉬、鉛鋅和銅礦石;美國最重要的來源是鉛鋅銀交代礦床;玻利維亞從銅和錫礦石中提取鉍。值得注意的是,中國是一個鉍資源大國,鉍產量逐年增加,1985年,中國鉍產量僅佔世界產量的6%,1990年增長到26%,躍居為世界第一位。從此,中國鉍產量約佔世界的1/4左右。中國作為一個鉍的生產和出口大國對世界鉍市場的供需平衡起著重要作用,隨著工業生產的發展,國內對鉍的需求大幅度增加以及鎢產量大幅度減少,作為其副產品的鉍大幅度減少,中國鉍的出口量將大幅度減少,這將使國際鉍市場供過於求狀況得到緩解。
㈦ 與銅礦形成有關的地質作用
岩漿侵入的岩漿作用
㈧ 礦產的形成往往受什麼的影響
隨著越來越多的中國企業/走出去0開發國際礦產資源,由於項目所在國不同的法律體系和文化
的差異,會面臨各種問題,影響中國企業境外資源開發成效。這些影響因素包括項目所在國資源/儲量標准、法律法規、許可獲得、地方關系等,而且這些因素影響從項目定義、預可行性研究、可行性研究、工程設計、項目實施到生產運營的整個過程。
1 國際資源/儲量分類標准
資源開發首先應該進行的是對資源/儲量的評價,評價的主要依據是資源/儲量的分類標准。深入掌握資源開發項目所在國採用的分類標准,才能准確把握資源/儲量的可靠程度,而不僅僅是簡單與中國標准對比。從而為投資開發決策提供最基本的依據。項目所在國採用的資源/儲量分類標準是地質勘查工作和儲量估算等依據的標准,也是預可行性研究、可行性研究、融資、設計、出售、轉讓、上市等的標准。
111 國際資源/儲量分類標准概述
國際上的礦產資源標准雖然是規范信息披露的,但也是資源/儲量分類的標准。不同國家所採用
的資源/儲量分類標准不同,但大多數分類標準是以地質可靠程度和經濟/可采性二維進行劃分的(楊
兵,2004),如美國、加拿大、澳大利亞等。
中國和聯合國的分類是三維的(楊建功,2001;胡魁,2002;楊兵,2004),添加了可研程度軸。實質上,可研程度軸也屬於經濟性研究范圍,中國和聯合國的分類標准無形中增加了分類標準的復雜性。聯合國的分類是指導性的框架標准(楊兵,2004)。中國企業境外資源開發多數在較不發達地區和國家,這些國家根據本國情況採用發達國家的標准,如南太平洋地區的島國採用澳大利亞的分類標准。海外分類標准包括發達國家加拿大(CI M ,2005)、澳大利亞(J ORC ,2004)、美國(S ME ,2007)等以及南非(S A MREC ,2007)、智利(II M Ch,2004)等制定的標准,其中澳大利亞JO RC 、加拿大N I 43-101、南非S A MREC 規范被認為是最完善的標准。本文主要針對這些標准進行分析。112 國際上資源和儲量的劃分
上述這些分類標準是高度一致的,劃分為資源和儲量。資源是內蘊經濟的礦產資源,沒有對經濟性進行研究和劃分。資源按地質可靠程度從低到高
128
劃分為推斷(I nferred )、控制(I nd icated )和探明(Measured)資源量。礦石儲量是經濟的可采出的探明和控制資源量中的一部分,按修正因素可信度分為預可采儲量(Probable )和可采儲量(Proved)。礦產資源劃分類別的依據是地質可信程度;礦石儲量劃分除依據地質可信程度外,還要考慮影響經濟效益的各種因素。地質可信度高的資源,無法經濟合理的采出利用,也不能成為儲量。
以澳大利亞J ORC 分類標準的資源和儲量分類(圖1)為例分析如下
:
圖1 澳大利亞(JORC )勘探結果礦產資源和
礦石儲量的關系圖
F ig 11
G ener a l r ela ti onsh i p b et w een exp lor a tion r esults ,m i n era l re s our ces and or e r eser ves ,JOR C
(1)資源量是依地質可靠程度劃分的,儲量是經濟的、綜合各種因素可采出的資源量中的一部分;(2)只有探明和控制級的資源量中的一部分才可以轉化(估算)為儲量,轉化時需要考慮采礦、冶金、經濟、市場、法律、環境、社會和政府等多種因素,如采礦和冶金過程的回收率、市場價格等等;
(3)推斷級的資源量全部不能轉化為儲量,即使考慮了所有轉化因素;
控制級資源量中的一部分只能轉化為預可采儲量,不能轉化為可采儲量;
(4)探明級資源量中的一部分才可以轉化為可采儲量,也可能還有一部分達不到轉化為可采儲量,但能轉化為預可采儲量;
(5)儲量也可能因轉化因素的改變而轉化為資源量。
中國企業開發國際資源,在資源量轉化為儲量的因素中,采礦和冶金技術上的因素是容易估算和把握的,而對項目所在國的法律、環境、社會和政府以及市場等方面的影響因素不夠重視,也直接影響
資源開發的結果。
另外,澳大利亞J ORC 分類標准中的附表對分類有較詳細的指導。
113 資質人(Co mpe tent Persons)
上述國際分類標准中,除美國外,都有對資質人的說明和要求。資質人在公開勘探成果報告中具有很重要的作用。資源量和儲量的分類程序由資質人決定,並進行評價。資質人應該依據規范的附表中的指導方針開展各項工作。公開報告必須由資質人或其領導的團隊完成,來保證報告的可信度。使投資者或潛在投資者沒有歧義的理解報告的內容。資質人在不同國家的標准中的要求基本一致。如澳大利亞J ORC 標准要求資質人是一個澳大利亞采礦和冶金協會(AusI M M )或澳大利亞地質學家協會(A I G )的會員,或海外認可的專業組織(ROPO s)成員。資質人還必須有相關礦化類型礦床至少5年的工作經驗,才可予以考慮。
㈨ 從地質作用角度分析阿富汗有色金屬礦產豐富的原因
要我說,從大地構造角度說,還是受喜山運動的影響,西藏青海,新疆有色礦產豐富,我覺得喜馬拉雅造山帶提供了良好的成礦大地構造背景,沿喜山印度德干高原,巴基斯坦,阿富汗礦產都很富
㈩ 金礦的形成條件
砂金礦的形成主要取決於三個因素:砂金補給源、水動力條件、
地貌
特點。現側重從
這三方面綜合分析我國砂金分布的特徵。
砂金分布條件
1
.
砂金
的分布嚴格受含金地質體的控制
「含金地質體」是砂金形成的物質基礎,
並直接影響其分布。
所謂「含金地質體」
主要有岩金礦化體,伴生金礦床(點)及含
金
豐度值很高的
地層
與
岩體
。
實際資料表明:
(1)
多數砂金礦的分布與
岩金
礦產地密切相關
但也有少數限於其他地質條件,雖
有岩金礦分布不一定都能形成砂金礦床。如
小秦嶺
是岩金
成礦區
,限於地貌等條件未
能形成砂金礦床。相反,在
大興安嶺
北部及
阿爾泰
等地區是砂金密布區,目前僅發現
一些原生金礦點或
礦化點
。
(2)
砂金成礦區大都分布於含金
豐度
較高的古老基底地層及大面積
侵入岩
的剝蝕
區
如
湖南
的
湘江
、
資水
、
沅江
、
汨羅江
,
江西修水
、昌江、
信江
、
新安江
水系的砂
金主要分布於
江南古陸
的
板溪群
、
冷家溪群
地層出露的
地區
;川西北地區的砂金礦其
補給源主要來自前
震旦系碧口群
、
志留系
茂縣群及中上三疊統地層,及其中的原生金
礦點;
兩廣
交界一帶的砂金主要分布於
加里
東褶皺基底震旦系與前寒武系地層中;大、
小興安嶺
一帶的砂金主要分布於海西期
岩漿岩
大面積出露區。
(3)
大多數砂金礦床的
物質
來源具有多源性
例如,
金盆
砂金礦的物質來源主要是
白堊系
下統含金礫岩層,其次為二道窪群中的分散含金石英脈、
侏羅系
含金
礫岩
等多
源補給。又如
琿春河
兩岸大面積分布的中酸性岩漿岩中的含金石英脈及含金破碎蝕變
帶周圍的伴生金礦及
第三紀
含金礫岩是砂金的補給來源
控制金礦形成的地質作用主要有構造活動、火山噴發、岩漿侵入、熱液形成和流動、
沉積作用、生物作用等。
看來,現代不可能再形成岩金礦,岩金是不可再生的。而正在形成的砂金礦也是非常
緩慢的,
短時期內不可能形成具有一定規模的砂金礦。
地球上儲藏的金礦資源只能是越來越
少。當世界上的金礦資源枯竭時,黃金會價值幾何?
金礦石如何形成的
金礦的采選:開採金礦床的類型金礦資源主要分兩大類:
一類為脈金礦,
礦床大多分布在高山地區,由內力地質作用(主要是火山作用、岩漿作
用、變質作用)形成,脈金礦又稱山金礦、內生金礦;
另一類為砂金礦,
由山金礦露出地面後,
經過長期風化剝蝕,
破碎成金粒、
金片、
金末,
又通過風、流水等的搬運作用,在流水的分選作用下聚集起來,沉積在河濱、湖濱、海岸而
形成沖積型、洪積型或海濱型砂金礦床。
有的山金礦風化剝蝕後,
碎屑產物在原地堆積,則
形成殘積型砂金礦床;如果沿斜坡堆積,則形成坡積型砂金礦床。砂金礦床又稱外生金礦,
其成礦時代可以在古生代、中生代、第三紀、第四紀或現代。此外,還有一種伴生金礦,其
含金量低,常常在有色金屬礦井過程中加以回收,並進行綜合利用。