1隧道超前地質預報常用的方式有哪些
⑴ 隧道超前地質預報分類有哪些
隧洞施工超前預報分類
1 按預報的作用劃分
⑴ 常規預報:是勘測設計階段地質工作的繼續,也是隧洞施工的一個作業過程。其目的是結合施工進程,收集地質資料,判斷圍岩類別,了解掌子面前方短距離內的工程地質條件,為正確選擇斷面大小、襯砌類型、施工方法和支護設計或修改施工設計等提供依據,其成果可作為隧洞竣工後維修養護參考。該預報是短距離預報的主要任務,目前已有比較成熟的經驗。多以地質素描為主,配合簡單的物探測試了解掌子面前方地質條件。常規預報應以施工單位為主,作定量預報、並結合施工進行,預報時盡量不佔或少佔施工作業時間。
⑵ 成災預報:隧洞施工中的地質災害,是指隧洞施工過程中因前方地質條件的突然變化,導致施工失去控制的非常事件。該事件可引起人員傷亡、機械設備失效並嚴重破壞、甚至被迫長時間停工,致使工程部門蒙受重大的經濟損失。隧洞地質災害主要有大規模塌方、涌水、涌泥、涌石、岩爆、瓦斯等。成災預報是對可能的災害性地質條件進行預報,以指導隧洞施工中的防災和減災工作。該預報是中、長距離預報的主要任務,是為隧洞施工戰略決策服務的。對可能成災的地質條件,應從設計和施工方法上考慮特殊對策,否則可按常規預報進行。成災預報應由設計、科研、施工單位組成專家小組,採用地質、物探綜合分析法進行定性和定量預報,並視工作需要佔用部分施工作業時間。
⑶ 專門預報:對特殊地質問題進行預報,如膨脹岩、侵蝕性地下水、高地溫、岩溶等。這些特殊地質條件,常常使施工陷入困境或破壞隧洞襯砌,如果處理不及時或處理失當,甚至可能釀成大的地質災害。可見,專門預報也是隧洞施工預報的重要內容之一。該預報應由設計、科研和施工部門組成專門小組,採用綜合手段作定性和定量預報。
2 按距掌子面的距離劃分
隧洞施工超前預報距離與隧洞施工速度和工程實際需要密切相關。結合我國隧洞開挖技術水平和快速施工要求,按掌子面前方距離可分為三類:
⑴ 短距離預報:0~15m。就我國目前快速施工的水平,一般採用鑽爆與TBM相結合的方法。一個循環進尺約2~3m,二個循環是4~6m,三個循環是6~9m。實踐表明,預報三個循環的前方地質條件,即能滿足安全施工要求。根據我國目前的探測技術,要預報掌子面前方15m范圍內的地質條件並不困難,且測試基本可與施工同步進行。對成災預報而言,短距離預報相當於臨災預報或防災處理階段。
⑵ 中距離預報:15~50m。對於防災預報來說,只有15m范圍內的臨災預報是不夠的。發現有可能成災的地質條件,馬上要准備處理,顯然太緊張。比較理想至少應有30m的距離。因此,進行范圍超過15m的中距離預報是隧洞施工所必須的。另外,從目前已有的預報實踐來看,用物探方法在開挖面上進行20~40m的超前探測已十分有效。說明物探方法在中、長距離預報中是有潛力的。
⑶ 長距離預報:50m以上為長距離預報。
3 按採用的手段劃分
⑴ 經驗預報:在以往工程經驗的基礎上,憑感覺就能進行的預報。它對臨災預報有特殊意義,如鑿孔過程中發現有岩粉異常噴出,可能遇到了瓦斯或有害氣體;聽到岩石劈裂聲且隨後出現岩塊彈射現象可能是岩爆;鑿孔異常噴水可能是大量涌水的先兆;隧洞塌方也有先兆等等。直接預報法或地質分析法的預報效果與從事預報人員的經驗豐富程度密切相關。
⑵ 採用儀器預報:預報目的不同,方法各異,所用儀器也是多種多樣的。如地質分析法只需羅盤、地質錘、放大鏡、稀鹽酸和皮尺等;水平鑽孔法需用大型水平鑽機;物探方法需各種物探儀器等。
⑶ 綜合預報:地質體是復雜的綜合體。企圖用單一方法查明隧洞的全部地質條件是不可能的,因此應採用綜合預報方法。根據地質條件的差異和不同精度要求,適時選用若干種方法相互補充和印證,才能獲得良好效果。
4 按精度劃分
⑴ 定量預報:「定量」是對前方地質體具體位置、規模、設計參數變化等給出量的概念;對災害性地質條件,除明確災害性質外,還應明確可能成災的位置、規模和影響范圍等。當然對量的精度要求也是相對的,如短距離預報精度要求最高;中距離預報精度要求次之;長距離預報則以定性為主,強調戰略上的指導作用。
⑵ 定性預報:定性是對定量而言。定性一定要准,具體位置的精度可不作嚴格規定。
⑵ 隧道超前地質預報的方法都有哪些
隧道超前地質預報的方法:
▪ 直接預報法
▪ 地質分析法
▪ 物探法
▪ 綜合分析法
隧道超前地質預報是利回用鑽探和現代物答探等手段,探測隧道、隧洞、地下廠房等地下工程的岩土體開挖面前方的地質情況,力圖在施工前掌握前方的岩土體結構、性質、狀態,以及地下水、瓦斯等的賦存情況、地應力情況等地質信息,為進一步的施工提供指導,以避免施工及運營過程中發生涌水、瓦斯突出、岩爆、大變形等等地質災害,保證施工的安全和順利進行。
⑶ 隧道施工超前地質預測預報分為哪些級別
隧道施工超前地質預測預報分為以下級別:
①根據地質災害對隧道施工安全的危害程度,分為以下四級:
A級:存在重大地質災害隱患的地段,如大型暗河系統,可溶岩與非可溶岩接觸帶,軟弱、破碎、富水、導水性良好的地層和大型斷層破碎帶,特殊地質地段,重大物探異常地段,可能產生大型、特大型突水突泥地段,誘發重大環境地質災害的地段,高地應力、瓦斯、天然氣、放射性問題嚴重的地段以及人為坑洞等。
B級:中、小型突水突泥地段,較大物探異常地段,斷裂帶等。
C級:水文地質條件較好的碳酸鹽岩及碎屑岩地段、小型斷層破碎帶,發生突水突泥的可能性較小。
D級:非可溶岩地段,發生突水突泥的可能性極小。
②不同地質風險地段的預報方式為:
A級預報:採用地質分析法、地震波反射法或聲波反射法、地質雷達、紅外探測、超前水平鑽探等手段進行綜合預報。首先以地質分析法進行長距離預報,然後採用中長距離地震波反射法或聲波反射法和一種或幾種短距離物探方法相結合進行預報,同時進行多孔超前鑽探探查。
B級預報:採用地質分析法、地震波反射法或聲波反射法,輔以紅外探測、地質雷達,進行必要的超前水平鑽孔。當發現局部地段工程地質條件復雜時,按A級要求實施。
C級預報:以地質分析法為主。對重要的地質(層)界面、斷層或物探異常地段可採用地震波反射法或聲波反射法進行探測,必要時採用紅外探測和超前水平鑽孔。
目前在隧道施工期間採用的超前地質預報方法從專業技術方面可分為常規地質法和物探法兩大類,具體有以下幾種:(1)超前導坑;(2)正洞地質素描;(3)水平超前探孔;(4)聲波測試;(5)紅外探水;(6)電磁波法;(7)彈性波法。
⑷ 隧道施工採用的超前地質預報方法有哪些
目前在隧復道施工期間採用制的超前地質預報方法從專業技術方面可分為常規地質法和物探法兩大類,具體有以下幾種:
(1)超前導坑;(2)正洞地質素描;(3)水平超前探孔;(4)聲波測試;(5)紅外探水;(6)電磁波法;(7)彈性波法。
⑸ 隧道地質超前預報內容有哪些
隧道地質超前預報就是預判掌子面後方,開挖方向內的圍岩狀況。現今國內常用的版方法有地質權法,電磁波法,地震波法等。
地質法就是跟據總體的山體走向、地層結構預判隧道內前方圍體狀況,這對地質工程師有較高要求。且判斷的結果不夠精確。
電磁波法一般選用地質雷達,通過雷達波速變化判別前方圍岩狀況。地質雷達一般選用美國勞雷分司或瑞典馬拉分司出產的地質雷達。用於超前預報一般天線的中心頻率為100ZH,預報距離一般為掌子面後方35m左右。個人的經驗,這個是比較准確的,溶洞、斷層、含水都可以准確判斷出來,但前提是對測試文件有一定後處理經驗。
地震波法常手瑞典的TSP、或國產的TGP。也是跟據波速變化來判斷圍岩狀況。預報距離為掌子面後方150~200m,適用於深埋隧道。個人感覺這兩個東西技術不是很成熟。後處理的技術也不成熟。用了一年多,預出來的東西不準,也看過很多相關的論文,覺得論文都是給產品打廣告的。
一般成果都是以報告的形式提交給施工單位及業主,報告內容主要有掌子面狀況,及後方圍岩大體狀況。還有結論與建議。
⑹ 隧道超前地質預報的超前預報方法
5.1.1 水平鑽孔
在隧洞內安放水平鑽機進行水平鑽進,根據鑽孔資料來推斷隧洞前方的地質情況。鑽孔數量、角度及鑽孔深度可人為設計和控制。由鑽進速度的變化、鑽孔取芯鑒定、鑽孔沖洗液顏色、氣味、岩粉及遇到的其它情況來預報。此法可以反映岩體的大概情況,比較直觀,施工人員可根據實際地質情況進行下步施工組織。
水平鑽孔主要布置在開挖面及其附近,既可在超前導洞內布置鑽孔,也可在主洞工作面上進行鑽探,用以獲得准確可靠的地質資料,確保施工組織。該法可獲得工作面前方一定距離的岩芯,也可由鑽孔出水情況判斷前方有無地下水和前方何處有地下水,從而可以得到開挖面前方的地質情況。該法是施工預報最有效方法之一,但也存在不足之處:①對垂直隧洞軸線的地質結構面預報效果較好,與隧洞軸線平行的結構面預報較差;②需佔用較長的施工作業時間,費用較高。
5.1.2 超前導坑
按導坑與正洞的相互位置分為平行導坑和正洞導坑。其中,平行導坑與正洞平行,斷面小且和正洞之間有一定距離,通過對導坑開挖中遇到的構造、結構面或地下水等情況作地質記錄與分析,進而對正洞地質條件進行預報。該法的優點是:預報成果比較直觀、精度高、預報的距離長、便於施工人員安排施工計劃和調整施工方案,還可以起到減壓放水、改善通風條件和探明地質構造條件的作用,同時,還可用作排除地下水、斷層注漿處理、擴建成第二條隧洞之用。正洞導坑布置在正洞中,是正洞的一部分,其作用與平行導坑相比,效果更好。超前導坑的缺陷為:一是成本太高,有時需要全洞進行平導開挖;二是施工工期較長。 5.2.1 斷層參數預測法
利用斷層影響帶的特殊節理或集中帶的分布規律,通過對斷層影響帶的系統編錄所得經驗公式,來預報隧洞斷層破碎帶的位置和規模。由於大多數不良地質現象與斷層破碎帶有密切的關系,故依據斷層破碎帶推斷其它不良地質體的位置和規模。
5.2.2 地質體投射法
在地表准確鑒別不良地質體的性質、位置、規模和岩體質量及精確測定不良地質體產狀的基礎上,應用地質界面和地質體透射公式進行預報。
5.2.3 正洞地質編錄與預報
隧洞施工中,及時對其開挖面(掌子面、邊牆面和拱頂面)上的各種地質現象進行測繪和記錄,利用已挖洞段地質情況來預報前方可能出現的不良地質現象。它分為①岩層岩性和層位預測法:在開挖面揭露岩層與地表某段岩層為同層和確認標志層的前提下,用地表岩層的層序預測掌子面前方將要出現的岩層;②地質體延伸預測法:在長期預報得出不良地質體厚度的基礎上,依據開挖面不良地質體的產狀和單壁始見位置,經過一系列的三角函數運算,求得條帶狀不良地質體在隧洞掌子面前方消失的距離。
該法是對開挖面地質情況如實而准確的反映。其主要內容包括地層岩性、構造和節理裂隙發育情況、地下水狀態、圍岩穩定性及初期支護採用方法等。其優點是佔用施工時間很短,設備簡單,不幹擾施工,成果快速,預報效果較好,而且為整個隧洞提供了完整的地質資料;缺點是與隧洞夾角較大而又向前傾的結構面容易產生漏報。 5.3.1 彈性波法
5.3.1.1 TSP超前預報技術
TSP(Tunnel Seismic Prediction)超前預報系統是利用地震波在不均勻地質體中產生的反射波特性來預報隧洞掌子面前方及周圍臨近區域的地質情況。該法屬多波多分量探測技術,可以檢測出掌子面前方岩性的變化,如不規則體、不連續面、斷層和破碎帶等。它可以在鑽爆法或TBM開挖的隧洞中使用,而不必接近掌子面。數據採集時在隧洞一邊側牆等間隔鑽制20餘個炮孔,而在兩側壁鑽取2個檢波器孔,使檢波器置入套管中,依次激發各炮,從掌子面前方任一波阻抗差異界面反射的信號及直達波信號將被2個三分量檢波器接收,該過程所需時間約1小時。然後利用TSPwin軟體處理可得P波和S波波場分布規律,其分析過程為:數據調整→帶通濾波→首波拾取→拾取處理→炮能量平衡→直達波損耗系數Q估算→反射波提取→P波、S波分離→速度分析→縱向深度位置搜索→反射界面提取等,最終顯示掌子面前方與隧道軸線相交的反射同相軸及其地質解譯的二維或三維成果圖。由相應密度值,可算出預報區內岩體物理力學參數,進而可劃分該區圍岩工程類別。實踐表明該法有效預報距離100~200m。
通過分析反射波速度,即可進行時深轉換,由隧洞軸的交角及洞面的距離來確定反射層所對應界面的空間位置和規模,再結合P波和S波的動力學特徵,遵循以下原則來推斷地質體的性質:①正反射振幅表明進入硬岩層,負反射振幅表明進入軟岩層;②若S波反射較P波強,則表明岩層飽水;③Vp/Vs增大或泊松比突然增大,常常由於流體的存在而引起;④若Vp下降,則表明裂隙或孔隙度增加。
TSP超前預報技術作為一種比較先進的探測手段已在我國水利、水電、鐵路、公路、煤炭等系統的各類隧洞或地下洞室工程中得到應用,如正在建設中的宜萬鐵路野三關隧洞、遼寧大夥房水庫引水隧洞、雲南元磨高速公路的大風埡口和布壠箐隧洞等工程。它具有預報距離相對較長、精度較高、提交資料及時、經濟等優點,尤其與隧洞軸線或呈大角度相交的面狀軟弱帶,如斷層、破碎帶、軟弱夾層、地下洞穴(含溶洞)以及地層的分界面等效果較好。而對不規則形態的地質缺陷或與隧洞軸線平行的不良地質體,如幾何形狀為圓柱體或圓錐體的溶洞、暗河及含水情況探測有一定的局限性。
5.3.1.2 地震負視速度法
它是將地震勘探中VSP法應用於近水平的隧洞中,也是利用地震反射波特徵來預報隧洞開挖面附近圍岩的地質情況。在側壁的一定范圍內布置激震點進行激發,其振動信號在隧洞圍岩內傳播,當岩層波阻抗發生變化時,地震波信號將部分返回。反射界面與測線直立正交時,所接收的反射波與直達波在記錄圖像呈負視速度,其延長線與直達波延長線的交點即為反射界面的位置,縱、橫波共同分析還可了解反射界面兩側岩性及軟硬程度的變化。該法具有明顯的方向特徵,可有效區分掌子面前方反射信號與周圍干擾信息,提高了識別物性界面的精確度,能對其進行較為准確的定位,預報距離可達100m以上。
觀測時在已開挖洞段的側壁或底部布設,距掌子面一定距離布設一激震點和一系列接收點,採用多炮共道或多道共炮。當偏重於運動學特徵參數的應用時共炮與共道兩種記錄方式可任意選用;當要求測試設備簡化與強調接收條件一致性時,宜採用多炮共道式;當強調動力學參數的對比利用時,則宜選用多道共炮方式。為獲取「負視速度」,震源應在預報目的體的遠端,接收點間距採用小道間距,多道接收。根據需要與設備條件,可採用單分量、三分量或組合檢波器。
負視速度法的原理與TSP法基本相同,只是數據處理軟體的開發尚難趕上TSP法。此法在實施預報時不佔用開挖工作面,對施工干擾相對較小,在鐵路隧洞工程中是常用的預報方法之一,如在渝懷鐵路圓梁山隧道正洞、平導和迂迴導坑以及朔黃鐵路長梁山隧洞施工中,均採用了負視速度法,取得了較好的預報效果。
5.3.1.3 TST超前預報技術
TST(Tunnel Seismic Tomography)超前預報系統是通過可視化地震反射成像技術預報隧洞掌子面前方150m-200m范圍內的地質情況,可准確預報斷裂帶、破碎帶、岩溶發育帶以及岩體工程類別變化等地質對象的位置、規模和性質。該法數據採集用多道高精度地震儀,處理軟體為逆散射合成孔徑成像系統。它充分運用地震反射波、散射波的運動學和動力學特徵,具有方向濾波功能、岩體波速掃描、地質構造方向掃描、速度偏移成像、吸收系數成像、走時反演成像等多種功能,從岩體的力學性質、岩體完整性等多方面對地質情況進行綜合預報。
測試時可在隧洞內掌子面、兩側、上頂和下底面,也可在隧洞外山頂布置。洞內觀測時檢波器埋入岩體1.5~2m,以避免聲波和面波干擾。可採用爆炸或可控震源激發地震波。
TST軟體包括地震數據預處理、方向濾波、偏移成像、速度掃描四大模塊。預處理功能包括:①雜訊和干擾切除;②濾波和面波清除;③小波分析與信號加強;④地震波能量吸收譜分析;⑤地震波走時拾取。偏移成像功能包括:①速度掃描分析與岩體工程類別判別;②方向掃描與構造產狀分析;③地質界面速度偏移成像;④岩體完整性吸收偏移成像;⑤地震波走時地質界面反演成像;⑥斷裂與破碎帶智能識別;
該技術在全內外公路隧道、鐵路隧道、TBM引水隧洞等廣泛應用,取得了良好的效果。尤其在雲南、貴州等岩溶分布區應用取得了非常好的效果,所得成果為:①岩溶、采空區等孤立地質體的界定;②結合速度掃描和偏移成像判斷地質災害;③推進了散射合成孔徑成像技術的發展;
5.3.1.4 水平聲波剖面法(HSP)
它利用孔間地震剖面法(ABSP)的原理及相應軟體開發的一種超前預報方法。其原理是向岩體中輻射一定頻率的高頻地震波,當地震波遇到波阻抗分界面時,將發生折射、反射,頻譜特徵也將發生變化,通過探測反射信號(接收頻率為聲波頻段的地震波),求得其傳播特徵後,便可了解工作面前方的岩體特徵。震源和檢波器的布置除離開開挖面對施工干擾較小外,還因反射波位於直達波、面波延續相位之外而不受干擾,因此記錄清晰、信噪比高、反射波同相軸明顯。
觀測時在隧洞的兩個側壁分別布設震源和檢波器,按其相對位置設計成兩種觀測方式即固定激發點(或接收點)和激發與接收點相錯斜交方式。震源在預報目的體的遠端,接收點間距採用小道間距,多道接收,構成「水平聲波剖面」。利用時差和頻差與地質相結合的方法確定反射面的空間方位並「投影」到該剖面上,從而確定反射面的空間位置及性質。其特點是各檢測點所接收的反射波路徑相等,反射波組合形態與反射界面形態相同,圖像直觀,同時觀測時也不影響掌子面的掘進。
該法已在工程中得到應用,如渝懷鐵路的圓梁山隧洞、千溪溝隧洞等,均取得了較好效果。該法數據採集單元和現場實測過程進行了較大的改進,可以在開敞式TBM法施工的隧洞中掘進機不停的情況下進行測試,因而具有較大的優越性,但尚處於研製和初步應用階段,例如在遼寧大夥房引水工程TBM2隧洞中進行試驗。
5.3.1.5 TRT真地震反射成像技術
TRT(True Reflection Tomography)真地震反射成像法是利用岩體中不均勻面的反射地震波進行超前探測,它是美國NSA工程公司開發的新方法,國外已實際應用。該法在觀測方式和資料處理方法上與TSP法及負視速度法均有很大不同,它採用空間多點激發和接收的觀測方式,其檢波點和激發點呈空間分布,以便充分獲得空間場波信息,從而使前方不良地質現象的定位精度大大提高;它的數據處理關鍵技術是速度掃描和偏移成像,不需要走時,因此,對岩體中反射界面位置的確定、岩體波速和工程類別的劃分都有較高的精度,而且還具有較大的探測距離,應該說較TSP法有較大的改進。由實際應用知,TRT法在結晶岩體中的探測距離可達100~150m,在軟弱的土層和破碎的岩體中尚可預報60~100m。該法成功應用的例子很多,較典型的是奧地利的通過阿爾卑斯山的鐵路雙線隧洞施工中進行了全程的超前預報。由於多種因素,目前國內尚未引進該技術。
5.3.1.6 陸地聲納法
陸地聲納法是「陸上極小偏移距高頻彈性波反射連續剖面法」的簡稱,可在狹小的場地和基岩裸露的條件下,探查中小溶洞、中,小斷層(斷裂)等地質施工隱患。它是彈性波反射法中的一個新品種,於1991年實現並推出,經20年長期而艱難的發展,在隧道施工超前地質預報和地面淺層高解析度勘查、工程質量檢測等方面的使用中表現了它的優點與特長。它應用地震反射法的原理,吸收了探地雷達,水聲法的一些元素;為解決它的一些關鍵性的問題,又採用了其他領域的技術,例如計算技術,測震領域的技術等,使它逐漸豐滿成熟。是中國地球物理勘探界具有原創性發明的有自主知識產權的新技術之一。施測時採用極小偏移距地震波激發—接收系統,進行單點測量或在激震點兩側對稱位置上各設一檢波器,一次激發兩道接收。然後將各測點的時間曲線拼成時間剖面根據同相軸和頻譜解釋圈定斷層、大節理、岩層分界面、岩脈、涌水層、溶洞等不良地質體 。陸地聲納法能夠無畸變的接收10-4000Hz的彈性波信號。由於可採集很寬頻率的反射信號,故可以用分窗口帶通濾波的方法處理資料,分別提取不同頻譜的信息,以突出不同規模的探查對象的反射圖像。能夠對隧道掌子面前方150米遠的進行精細物探,可給出探查范圍內的中、小溶洞、中、小斷層(斷裂)、交叉斷層及傾角、傾向;該法具有解析度高、可避開許多干擾波、反射波能量高、探查岩溶和洞穴效果好、圖像簡單易辨等優點。在外業工作時,不打孔,不放炮,可以在隧道施工工序間隔工作,不影響隧道施工,且速度快,工作效率高。
此法已在110餘個工程中成功應用。同時它通過了中國岩石力學與工程學會的技術鑒定,陸地聲納法已被納入國家行業標准三部。2012年榮獲中國岩石力學與工程學會科學技術發明獎一等獎 。2014年榮獲北京市科學技術二等獎 。
5.3.1.7 面波法
分為穩態法和瞬態法。穩態法在掌子面上放置一個激振器,用計算機控制激振器使其產生各種不同波長的波面,用兩個拾振器同時接到不同方向的振動波,由計算機算出每一種波長的面波傳播速度,根據面波的勘測深度等於波長的二分之一的原理,即可得到一組不同深度的面波平均速度的分布規律,不同介質面波的傳播速度不同。從不同面波速度分布圖,就可以反應出地質構造的不同介面,如斷層、地下水等特性變化。瞬態法由於排列長度的關系未見實際應用的報道。
此法需要的場地較小,適合在地下洞室開挖面上工作,探測深度也能滿足施工預報的要求,對資料的分析判斷可在現場進行,操作簡便。已在南嶺隧洞中應用,很清楚地發現距工作面幾米處的斷層破碎帶。但該法在開挖面上能探測多遠的距離,尚需進一步實驗研究。
5.3.2 地質雷達技術
利用高頻電磁波以寬頻帶短脈沖的形式,由掌子面通過發射天線向前發射,當遇到異常地質體或介質分界面時發生反射並返回,被接收天線接收,並由主機記錄下來,形成雷達剖面圖。由於電磁波在介質中傳播時,其路徑、電磁波場強度以及波形將隨所通過介質的電磁特性及其幾何形態而發生變化。因此,根據接收到的電磁波特徵,既波的旅行時間、幅度、頻率和波形等,通過雷達圖像的處理和分析,可確定掌子面前方界面或目標體的空間位置或結構特徵。當前方岩體完整的情況下,可以預報30m的距離;當岩石不完整或存在構造的條件下,預報距離變小,甚至小於10m。雷達探測的效果主要取決於不同介質的電性差異,即介電常數,若介質之間的介電常數差異大,則探測效果就好。由於該法對空洞、水體等的反映較靈敏,因而在岩溶地區用得較普遍。缺點是洞內測試時,由於受干擾因素較多,往往造成假的異常,形成誤判。此外它預報的距離有限,一般以不超過30m,且要佔用掌子面的工作時間。
應用地質雷達進行超前預報,在鑽爆法施工的隧洞中使用相對較多,如太平驛水電站引水隧洞、海南高速公路東線大茅隧洞等工程中應用,均取得了較好的應用效果。由於探測時需要佔用掌子面的工作時間,故在掌子面上測試時需要停機進行,因而TBM法施工的隧洞中應用時需作特殊研究解決。
5.3.3 紅外探水法
由於所有物體都發射出不可見的紅外線能量,該能量大小與物體的發射率成正比。而發射率的大小取決於物體的物質和它的表面狀況。當掌子面前方及周邊介質單一時,所測得的紅外場為正常場,當存在隱伏含水構造或有水時,他們所產生的場強要疊加到正常場上,從而使正常場產生畸變。據此判斷掌子面前方一定范圍內有無含水構造。
現場測試有兩種方法:一是在掌子面上,分上、中、下及左、中、右六條測線的交點測取9個數據,根據這9個數據之間的最大差值來判斷是否有水;二是在已挖洞段按左邊牆、拱部、右邊牆的順序進行測試,每5m或3m測取一組數據,共測取50m或30m,並繪制相應的紅外輻射曲線,根據曲線的趨勢判斷前方有無含水。
掌子面上9個數據的最大差值大於10μw/cm2,就可以判定有水;紅外輻射曲線上升或下降均可以判定有水,其他情況判定無水。紅外探測的特點是可以實現對隧洞全空間、全方位的探測,儀器操作簡單,能預測到隧洞外圍空間及掘進前方30m范圍內是否存在隱伏水體或含水構造,而且可利用施工間歇期測試,基本不佔用施工時間。但這種方法只能確定有無水,至於水量大小、賦水形態、具體位置沒有定量解釋。
5.3.4 BEAM法
BEAM(Bore-Tunneling Electrical Ahead Monitoring),這是當前國際上唯一的一種電法超前預報方法,是由德國GEOHYDRAULIC DATA公司推出的產品。它是一種聚焦電流頻率域的激發極化方法,其最大特點是通過外圍的環狀電極發射一個屏障電流和在內部發射一個測量電流,以便電流聚焦進入要探測的岩體中,通過得到一個與岩體中孔隙有關的電能儲存能力的參數PFE(Percentage frequency effect)的變化,預報前方岩體的完整性和含水性;它的另一個特點是所有的裝置都安裝在盾構挖掘機的刀頭(測量電極)和外側鋼環(屏蔽電流)上,也可裝在鑽爆法施工鑽頭的前方(測量電極)及兩側鋼架(屏蔽電流)上,隨著隧洞掘進,連續不斷獲得成果,並適時處理得出掌子面前方的PFE曲線。由此預報前方岩體的性狀及含水情況。這種儀器在歐洲許多國家都已得到應用,但在我國尚未引進。 要推動隧洞超前預報水平,提高預報准確度,就必須將地質調查方法與多種物探方法有機結合起來,對地質物探資料進行系統處理和綜合分析。其工作方法和主要內容為:
⑴ 收集、熟悉地質資料:了解工程區內宏觀的地質環境、大型構造形跡的發育分布規律以及工程圍岩所處的具體構造部位、岩體的結構特徵、節理裂隙發育程度、岩體完整性、岩石(體)強度、地下水狀態等;掌握全隧洞的地質背景,指出存在的不良地質問題和地段,還要知道各段圍岩的穩定程度、可能發生地質災害的位置、規模、性質和防治措施,目的在於保證隧洞施工設計、施工方法和措施能順應地質情況的變化適時做出調整和修改。
⑵ 施工地質編錄:對已開挖洞段地質狀態作詳細真實的描述,可作為超前預報的依據,該內容包括岩性、岩石堅硬程度及完整情況、斷層及破碎帶、節理裂隙、地下水狀態、不良地質現象等作編錄。
⑶ 圍岩特性測試:根據工程需要,對岩石物理力學特性進行補充測試,如岩石點荷載強度、岩石回彈值、岩體彈性模量、軟弱面剪切強度等,有時還應進行初始地應力和二次應力場的測試等。上述數據是預報圍岩穩定性的重要參數。
⑷ 地球物理探測:根據岩體不同物理性質量測一定距離以內的物理力學參數的變化,據此判斷出隧洞工作面前方的地質情況。採用多種物探儀器進行超前探測,常用的物探方法有地震反射、聲波反射、地質雷達、TSP203隧道超前地質預報系統等技術。
⑸ 地質物探綜合分析:組成以地質工程師為主物探及相關工程技術人員的施工地質組,對上述地質和物理探測資料進行整理和綜合分析,最後做出施工面前方不良地質問題的預測預報。
⑺ 隧道超前地質預報方法有哪些
隧道地質超前抄預報分為地質方法和襲地球物理方法,地質方法包括地質素描、超前鑽等,現在很少用。地球物理方法包括地震法、電磁法等,目前以地震法為主。
地震法中包括負視速度、HSP、TSP、TGP、TRT、TST等各種方法,常見的是後4者。其中有三個基於反射理論:
- 90年代初開始使用TSP法,近年來發現該方法存在主觀臆造成分,如用各個方向的回波當成掌子面正前方的回波,人工指定圍岩速度等,預報不準確。
- 近幾年國外提出的TRT法,對斜交地質體有誤判和漏判。
- 國內的TGP法與TSP是相似的,缺陷是不能區分不同方向的地震回波,不能准確地確定掌子面前方圍岩的波速,不能正確地進行縱橫波分離等問題,影響到預報的可靠性和准確性。
有一個基於逆散射理論,
- TST法,能夠分離不同方向的回波,能准確計算圍岩波速,代表了隧道地質超前預報的新方向。
逆散射理論之所以更好是因為反射理論的適用於反射面遠大於波長的情況,但是在隧道的狹小觀測空間內,反射面通常小於波長,因為波長通常有幾米-十幾米。而散射理論沒有此限制。而且對斜交地質體不會有漏報。
⑻ 隧道超前地質預報方法有哪些
隧道地復質超前預報分為地制質方法和地球物理方法,地質方法包括地質素描、超前鑽等,現在很少用。地球物理方法包括地震法、電磁法等,目前以地震法為主。
地震法中包括負視速度、HSP、TSP、TGP、TRT、TST等各種方法,常見的是後4者。其中有三個基於反射理論:
- 90年代初開始使用TSP法,近年來發現該方法存在主觀臆造成分,如用各個方向的回波當成掌子面正前方的回波,人工指定圍岩速度等,預報不準確。
- 近幾年國外提出的TRT法,對斜交地質體有誤判和漏判。
- 國內的TGP法與TSP是相似的,缺陷是不能區分不同方向的地震回波,不能准確地確定掌子面前方圍岩的波速,不能正確地進行縱橫波分離等問題,影響到預報的可靠性和准確性。
有一個基於逆散射理論,
- TST法,能夠分離不同方向的回波,能准確計算圍岩波速,代表了隧道地質超前預報的新方向。
逆散射理論之所以更好是因為反射理論的適用於反射面遠大於波長的情況,但是在隧道的狹小觀測空間內,反射面通常小於波長,因為波長通常有幾米-十幾米。而散射理論沒有此限制。而且對斜交地質體不會有漏報。