地質剖面圖P1q什麼意思
Ⅰ 地質剖面圖分析
①圖例就不做了。一圖中出現的東西寫上去就是了。
②上新下老。還有就是侵入關系這版個方面的話是後侵權入的穿插先形成的東西。
③侵入接觸,不整合接觸,平行不整合接觸。
④背斜。左邊的那個千枚岩那裡要和右邊的聯系起來,就可以看到有個褶皺。是在中生代形成的。
⑤看岩漿岩的侵入。有斷層才能侵入。
⑥結合地層的新老關系和岩漿岩的侵入關系。
第二題:
①地質年代(C是石炭紀。P是二疊級。T是三疊紀。C-P1是石炭-早二疊紀。D是泥盆紀。S是志留紀。最後一個是寒武紀)
②燕山運動
③造山運動強烈,火山岩礦產的形成。
④造山運動
⑤這是一個背斜構造。寒武系的岩層由於受到逆斷層的影響而抬升。
Ⅱ pl+dl是什麼意思 在地質裡面
這個是第四紀地層成因類型符號
ml--人工填土 pd--植物層 al--沖積層回 pl--洪積層 dl--坡積層 el--殘積層 eol--風積層 l--湖積答層 h--沼澤沉積層 m--海相沉積層 mc--海相交互相沉積層 gl--冰積層 fgl--冰水積層 b--火山堆積層 col--崩積層 del--滑坡堆積 set--泥石流 o--生物堆積 ch--化學堆積物 pr--成因不明沉積
另外:
上述每類符號前加Q,並以上標符號的形式顯示,表示完整的地層符號。
兩種成因混合的沉(堆)積層,可用混合符號。 例如:沖積與洪積混合層,可用Qal+pl表示。
地層與成因的符號合起來使用。例如:由沖積形成的第四繫上更新統,可用Q3al表示
Ⅲ p1m2在地質上什麼意思
下二疊茅口組二段
Ⅳ P1級儲量是什麼意思啊地質的專業術語
P1是儲量和資源的分類級別
1981年蘇聯的儲量和資源分類新增了P1、P2、P3三級預測資源和按內礦床復雜容程度的分類,規定了各類礦床應探明的各級儲量比例。1997年俄羅斯批准了新的分類,取消了各級儲量比例的勘探程度要求,礦石技術加工和開采技術條件由對各級儲量提出要求改為對整個礦床加以確定。此外,平衡表內儲量細分為採收有經濟效益儲量和國家採取特別措施支持下可開採的儲量兩個亞類;平衡表外儲量也劃分為兩個亞類:①符合表內要求,限於礦山技術、法律、生態等條件不能利用的儲量,②質量低或開采復雜因而經濟上不合理,技術進步可以改變者。
詳見網路關於」儲量級別「的詞條:http://ke..com/view/2591948.html
Ⅳ 地形地質圖中Q2是啥意思
Q一般為第四系。也就是比較新的底層
Ⅵ 地勘報告地質剖面圖中角度的問題
剖面圖中的角度是剖抄面線的角度、是兩向伸展的。鑽孔間距這行上是鑽孔的方位角和傾角、是一向的。
鑽孔施工中有些質量等問題、鑽孔不一定正好與剖面線方位角度一致。有可能偏差。所以又標有有鑽孔的方位和角度(E度<F度)。有些礦山需要在井下找到鑽孔(如金礦)。就必須要鑽孔實際方位。實際傾角和鑽孔的偏斜率等。
Ⅶ 請問如何看區域地質圖,例如一塊區域上邊標注Q,也就是第四系,代表這片區域底層只有第四系還是說這一片地
所謂地質圖,指的是地表出露的岩性,時代等特徵。第四系細脈肯定有基岩啊,不管多深,挖下去總會挖到基岩的
Ⅷ 高數,求大神詳細解釋求和符號後的那串式子,q1,p1都是什麼意思。
第三章數列
1、常用公式: =
2、等差數列:⑴定義:若 為常數 ,則 是等差數列(證明等差數列的依據);
⑵通項公式:① ;② ;③
⑶求和公式:① ;② ;③
⑷性質:① 若m+n=p+q(m,n,p,q∈N*),則
②等差數列中 成等差數列;
③等差數列{ }中 =
3、等比數列:⑴定義:若 為常數 ,則 是等比數列(證明等比數列的依據);
⑵通項公式:① ;② ;
⑶求和公式:① ;② ; ③
⑷性質:① 若m+n=p+q(m,n,p,q∈N*),則 ;
②等比數列中 成比差數列;
③等比數列 中.
第四章三角函數
1、 任意圓中圓心角弧度的計算公式:____________;弧長公式:____________;扇形的面積公式:____________。(其中α的單位都是_______)
2、任意角的三角函數的定義:設 是一個任意大小的角, 的終邊上任意的一點 ,它與原點的距離是r=_____則: ___, ___, ___, ___, ___, ___。
3、 同角三角函數間的基本關系式:
(1)平方關系:sin2α+cos2α=1;1+tan2α=sec2α;1+cot2α=csc2α
(2)商數關系:
(3)倒數關系:sinα·cscα=1; cosα·secα=1; tanα·cotα=1
4、第一套誘導公式(函數名不變,符號看象限)
(1)sin(2kπ+α)=_____,cos(2kπ+α)=_____,tan(2kπ+α)=____,
(2)sin(-α)=_______, cos(-α)=_______, tan(-α)=_______,
(3)sin(π-α)=_______, cos(π-α)=_______, tan(π-α)=_______,
(4)sin(π+α)=_______, cos(π+α)=_______, tan(π+α)=_______,
(5)sin(2π-α)=_______, cos(2π-α)=_______, tan(2π-α)=_______,
第二套誘導公式(函數名改變,符號看象限)
(1)sin(900-α)=_______, cos(900-α)=_______, tan(900-α)=_______,
(2)sin(900+α)=_______, cos(900+α)=_______, tan(900+α)=_______,
(3)sin(2700-α)=_______, cos(2700-α)=_______, tan(2700-α)=_______,
(4)sin(2700+α)=_______, cos(2700+α)=_______, tan(2700+α)=_______,
5、三角函數的和、差、倍、半公式
(1)和、差角公式:sin(α±β)=___________,cos(α±β)= , tan(α±β)=___________
▲變形公式: tanα±tanβ=tan(α±β)(1 tanα·tanβ)
▲ sinx+ cosx= ( sinx+ cosx)= sin(x+φ),
(其中cosφ= ,sinφ= ,tanφ= )
(2)二倍角公式:sin2α=2sinα·cosα; cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
▲萬能公式:sin2α= ; cos2α= ; tan2α=
▲降次公式:sin2α= , cos2α=
▲變形公式:1+sinα =(sin2 + cos2 )2;1-sinα =(sin2 -cos2 )2
1+cosα=2cos2 ; 1-cosα=2 sin2
(3)半形公式:sin =________, cos =_________,▲tan =________= = .
6、▲(1)三角函數y=sinx,y=cosx,y=tanx的圖象、定義域、值域、單調性、奇偶性、周期性、對稱性。
(2)函數f(x)=Asin(ωx+φ),振幅為 ,周期為
若函數f(x)是偶函數,則φ= ;若函數f(x)是偶函數,則φ= 。
(3)函數f(x)=Acos(ωx+φ),振幅為 ,周期為
若函數f(x)是偶函數,則φ= ;若函數f(x)是偶函數,則φ= 。
7、函數 ,振幅為A,周期為 。,(1) (2)
(3) =相鄰的兩個最高點(或最底點)之間的距離, =相鄰兩個最高點與最底點的距離,或相鄰兩個拐點的距離, =相鄰的最值點與拐點的距離。
第五章平面向量
1、若 ( , ),P ( , ), ( , ),P分 所成的比λ
則定比分點坐標公式是 中點坐標公式是
2、若△ABC三頂點的坐標為A( , )、B( , )、C( , ),則△ABC的重心坐標為 .
3、已知 =( , ), =( , ),設它們間的夾角是θ,填下表:
定義形式 坐標形式
兩向量的數量積 · = · =
向量的長度 │ │= │ │=
兩向量間的角度 = =
在 上的投影
兩向量垂直 ⊥ ⊥
兩向量平行 ‖ ‖
4、(a+b)(a-b)= ;(a+b)2= ;(a-b)2=
第六章不等式
1、不等式的性質(作用:解決與不等式有關的問題)
(1)不等式的基本性質:a>b a-b>0; ; .
(2)對稱性:a>b b<a ;b<a .
(3)傳遞性:a>b且b>c ;c<b 且b<a .
(4)加法單調性:a>b ;同向不等式相加:a>b且c>d .
(5)不等式變向原則:a>b且c 0 ac>bc;a>b且c 0 ac<bc .
同向不等式相乘: ac>bd ; an>bn (n N,且n>1).
(6) > (n N,且n>1).
(7)a>b且ab>0 ;a>b且ab<0
2、幾個重要的不等式(作用:(1)證明不等式;(2)解不等式;(3)求最大(小)值)
1.如果a,b ,那麼a2+b2≥2ab(當且僅當 時取「=」號)
2.如果a,b ,那麼 ≥ (當且僅當 時取「=」號)
3.如果a,b,c ,那麼 ≥ (當且僅當 時取「=」號)
5.若a,b都是正數,則 ≤ ≤ ≤ ( 時取等號即稱不等式鏈)
6.若a,b,m都是正數,並且a<b,比較 ≤ ≤ ≤ .
7.三角形不等式: - ≤ ≤ + ,其中不等式 ≤ + 取「=」號時的充要條件是 ,取「<」號時的充要條件是 ;
第七章直線和圓
1、若直線的斜率是k,則此直線的一個方向向量是_________;
2、經過兩點P1(x1,y1),P2(x2,y2)的直線斜率公式k =_________;
3、直線方程:⑴點斜式:若直線經過點P1(x1,y1),且斜率為k,則直線的方程設為_____________,
若直線經過點P1(x1,y1),且斜率為0,則直線的方程為 ,
若直線經過點P1(x1,y1),且斜率不存在,則直線的方程為 .
⑵斜截式:若直線斜率為k,在y軸上的截距為b,則直線的方程設為 .
⑶若直線經過兩點P1(x1,y1),P2(x2,y2).則方程設為(x2-x1)(y-y1)=(y2-y1)(x-x1)
當x1≠x2,y1≠y2時,這條直線的方程是 ;
當x1=x2,y1≠y2時,這條直線的方程是 ;
當x1≠x2,y1=y2時,這條直線的方程是 .
⑷若截距式:直線在x軸上的截距為a(a≠0),在y軸上的截距為b b≠0 ,則直線的方程是 .
⑸直線方程的一般方程為Ax+By+C=0 (A、B不同時為0),當B≠0時,方程變為 ,斜率為 ,在y軸上的截距為 ;當B=0時,方程變為 .
4、在兩坐標軸上截距相等的直線方程可設為 或 .
5、兩直線的位置關系
斜截式 一般式
直線方程
k1與k2、b1與b2的關系 比例式 乘積式
與 平行
與 重合
與 相交
與 垂直
7、已知兩點P1(x1,y1)、P2(x2,y2),則 =__________________=_______________;
8、已知直線l1:y=k1x+b1和l2:y=k2x+b2,l1到l2的角為 ,l2到l1的角為 ,l1與l2的夾角為 ,
若1+k1k2=0,則 = = = ;
若1+k1k2≠0, 則tan = ,tan = , tan = .
9、點P(x0,y0)到直線Ax+By+C=0的距離d= .
10、 兩條平行線Ax+By+C1=0與Ax+By+C2=0的距離d= .
11、曲線C:f x,y =0.關於x軸的對稱曲線C1的方程為 ,關於y軸的對稱曲線C2的方程為 ,
關於原點的對稱曲線C3的方程為 ,關於直線x-y=0的對稱曲線C4的方程為 ,關於直線 x+y=0的對稱曲線C5的方程為 ,關於直線x-y+C=0的對稱曲線C6的方程為 ,關於直線x+y+C=0的對稱曲線C7的方程為 。
12、關於點對稱的兩條直線的位置關系是 .
13、與兩條平行線Ax+By+C1=0與Ax+By+C2=0的距離相等的直線方程是 .
14、與直線Ax+By+C=0平行的直線可設為__________;與直線Ax+By+C=0垂直的直線可設為__________.
15、二元一次不等式表示的平面區域的判斷方法
特殊點代入法:當直線f(x,y)=Ax+By+C=0不過原點時,常用點(0,0)代入
若f(0,0)>0,則原點所在的平面區域即是Ax+By+C>0所表示的平面區域
若f(0,0)<0,則原點所在的平面區域即是Ax+By+C<0所表示的平面區域
公式法:
若A>0,B>0,則Ax+By+C>0所表示的平面區域在直線Ax+By+C=0的_____方
若A>0,B<0,則Ax+By+C>0所表示的平面區域在直線Ax+By+C=0的_____方
若A<0,B>0,則Ax+By+C>0所表示的平面區域在直線Ax+By+C=0的_____方
若A<0,B<0,則Ax+By+C>0所表示的平面區域在直線Ax+By+C=0的_____方
不等式Ax+By+C<0所表示的平面區域與Ax+By+C>0相反
15、圓的方程
⑴圓的標准方程是__________________,其中圓心是__________,半徑是__________。
⑵二元二次方程x2+y2+Dx+Ey+F=0
①當____________時,方程表示以_____________為圓心,以__________為半徑的圓;
②當____________時,方程表示一個點,此點的坐標是當________________ ;
③當____________時,方程不表示任何圖形。
⑶圓的參數方程是__________________,其中圓心是__________,半徑是__________。
16、過圓x2+y2=r2上一點(x0,y0)的切線方程是x0x+ y0y=r2
過圓(x-a)2+(y-b)2=r2上一點(x0,y0)的切線方程是(x0-a) (x-a)+ (y0-b)(y-b)=r2
17、直線和圓的幾種位置關系
記圓心到直線的距離為d,圓的半徑是r, 則
(1)相離 __________;(2)相切 __________;(3)相交 __________;
18、圓與圓的幾種位置關系
記兩圓的圓心距為d,兩圓的半徑分別為R、r(R≥r),則
(1)相離 __________;(2)相外切 __________;(3)相交 __________;
(4)相內切 __________;(5)內含 __________。
19、.兩圓相交弦所在直線方程的求法:
圓C1的方程為:x2+y2+D1x+E1y+C1=0.
圓C2的方程為:x2+y2+D2x+E2y+C2=0.
把兩式相減得相交弦所在直線方程為:(D1-D2)x+(E1-E2)y+(C1-C2)=0
第八章圓錐曲線
一、橢圓
1、橢圓定義:一個動點P,兩定點F1,F2,且 =2 ( 為常數)
⑴若2 > ,則動點P的軌跡是橢圓
⑵若2 = ,則動點P的軌跡是線段F1F2
⑶若2 < ,則動點P無軌跡。
2、 橢圓的方程:
⑴橢圓的標准方程:焦點在x軸上時,方程為 (a>b>0)
焦點在y軸上時,方程為 (a>b>0)
⑵橢圓的參數方程:焦點在x軸上時,參數方程為 為參數
焦點在y軸上時,參數方程為 為參數
3、 掌握橢圓的性質(范圍、對稱性、頂點坐標、焦點坐標、長軸長2 、短軸長2 、焦距2c、長半軸 、短半軸 、半焦距 、通經 、相應焦准距 、准線方程、離心率 、焦半徑(第二定義)、 2= 2+ 2)
二、雙曲線
1、雙曲線定義:一個動點P,兩定點F1,F2,且 =2 ( 為常數)
⑴若2 > ,則動點P無軌跡
⑵若2 = ,則動點P的軌跡是以F1、F2為端點的兩條射線(在直線F1F2上)
⑶若2 < ,則動點P的軌跡是雙曲線。
2、雙曲線的標准方程:焦點在x軸上時,方程為 (a>0,b>0)
焦點在y軸上時,方程為 (a>0,b>0)
3、 掌握雙曲線的性質(范圍、對稱性、頂點坐標、焦點坐標、實軸長2 、虛軸長2 、焦距2c、
實半軸 、虛半軸 、半焦距 、通經 、相應焦准距 、准線方程、漸近線方程、離心率 、焦半徑(第二定義)、 2+ 2= 2)
4、①雙曲線方程 - =1(a>0,b>0)即 - =0(或y=± x) (a>0,b>0)就是其漸近線方程;
②漸近線是 - =0(或y=± x) (a>0,b>0)的雙曲線設為 - =λ(λ≠0),k是待定系數.
5、等軸雙曲線表示為 ,離心率為 ,漸近線為 .
三、拋物線
1、 拋物線定義:一個動點P到定點F的距離與P到定直線 的距離的比為 .
若0< <1,則動點P的軌跡是橢圓; 若 =1, ,則動點P的軌跡是拋物線;
若 >1, ,則動點P的軌跡是雙曲線
2、 拋物線的標准方程:焦點在x軸上時,方程可設為y=2px2,焦點為( ,0),准線方程是x=
焦點在y軸上時,方程可設為x=2py2,焦點為(0, ),准線方程是y=
3、拋物線的性質(范圍、對稱性、頂點坐標、通經為2p、焦准距p、離心率1)
3、 關於拋物線y2=2px(p>0)焦點F弦的端點為A(x1,y1)、B(x2,y2),性質:⑴ = x1+ x2+ p,
x 1x2= ,⑶y1y2= ,⑷ ,⑸若AB與對稱軸的夾角為 ,則 = 。
四、圓錐曲線的性質:
1、P是橢圓 ( > b>0)上的一點,F1、F2是兩焦點,若∠F1PF2= (0< < ),
求證△F1PF2的面積為 tan .
2、P是雙曲線 (a>0,b>0)上的一點,F1、F2是兩焦點,若∠F1PF2= (0< < ),
求證△F1PF2的面積為 cot .
3、弦長公式(直線和曲線相交時,其被曲線所截的線段叫做弦) 設M(x,y),N(x,y),則弦長
= = = (k為已知直線斜率)
第九章 立體幾何
一、證明(線線、線面、面面)平行和垂直
1、平行的證明:
(1)線線平行的證明
①若 ‖ , ‖ .則 ‖ ; ②若 ‖ , , = .則 ‖
③若 ‖ , , .則 ‖ ; ④ ‖
(2)線面平行的證明
① ‖ ② ‖ ; ③ ‖
(3)面面平行的證明
① ‖ ② ‖
2、垂直的證明
(1)線線垂直的證明
①若 ‖ , 則 ; ②
③三垂線定理或三垂線定理的逆定理
;
④向量證明:
(2)線面垂直的證明
① ; ② ;
③ ; ④ .
(3)面面垂直的證明
①二面角 是直二面角 ; ② ;
③
二、所成的角
1、 直線與直線所成的角的范圍是
⑴若直線與直線平行,則所成角為00;⑵若直線與直線相交,則所成角為 ;
⑶兩條異面直線所成角θ的范圍是 (0°,90°].兩條異面直線所成的角是本單元的重點.求兩條異面直線所成的角的基本方法是通過平移將其轉化為兩條相交直線(即作出平面角).主要有四種方法:
① 直接平移法(利用圖中已有的平行線);
② 中位線平移法;
③ 補形平移法(延長某線段、延展某個面或補一個與已知幾何體相同的幾何體,以便找出平行線).
④ 向量法:設 , 分別是異面直線a、b上的兩個非零向量,則cosq=|cos< , >|= .
2、直線和平面所成的角的范圍是〔00,900〕
⑴若直線和平面平行或在平面內,則直線和平面所成的角是0°;
⑵若直線和平面垂直,那麼就說直線和平面所成的角是900;
⑶斜線 和平面 所成的角是平面 的斜線 和它在這個平面內的射影的夾角.范圍是(00,900)
方法:①關鍵是作垂線,找射影.構造一個直角三角形
②向量求法:求 的法向量 和 , |cos< , >|= =k(0<k<1),
則 和 所成的角是 (或 - )
3、二面角大小范圍是〔0°,180°〕
方法:①定義法;②三垂線定理及其逆定理;③垂面法;④射影面積公式S′=Scosθ;
⑤向量求法:求 、 的法向量分別為 和 ,coc< , >=k,若二面角 - - 是銳二面角時,則大小為 ;若二面角 - - 是鈍二面角時,則大小為 -
三、距離:(1)兩點之間的距離.(2)點到直線的距離.(3)點到平面的距離.(4)兩條平行線間的距離.(5)兩條異面
直線間的距離.(6)平面的平行直線與平面之間的距離.(7)兩個平行平面之間的距離.在七種距離中,求點到
平面的距離是重點,求兩條異面直線間的距離是難點.
▲求點到平面的距離:(1)直接法,即直接由點作垂線,求垂線段的長.(2)轉移法,轉化成求另一點到該平面的距離.(3)體積法;⑷向量法:如點P到面 的距離d= (其中 是面 的法向量,A )
四、三個唯一
1、 過直線外一點有且只有一條直線平行於已知直線;
2、 過一點有且只有一條直線垂直於已知平面;3、過一點有且只有一個平面垂直於已知直線.
五、重要性質
1、O是P點在△ABC所在的平面上的射影,即PO⊥面ABC.
⑴若PA=PB=PC,則點O是△ABC的外心;
⑵若PD⊥AB,PE⊥BC,PF⊥AC垂足分別為D、E、F且PD=PE=PF.
則點O是△ABC的內心;
⑶若PA⊥BC,PB⊥AC. 則點O是△ABC的垂心
3、 ⑴若∠POA=∠POB,則PO在面AOB上的射影是∠AOB的角平分線;
⑵若∠AOB,PE⊥OA,PF⊥OB,垂足分別E、F且PE=PF.
則點P在面AOB上的射影在∠AOB平分線.
4、 如圖,已知OB^平面a於B,OA是平面a的斜線,A為斜足,
直線ACÌ平面a,設ÐOAB=q1,又ÐCAB=q2,ÐOAC=q.
那麼cosq=cosq1×cosq2.
5、 在Rt△ABC中,∠C=900.對應邊分別為 、 、
⑴Rt△ABC的外心(外接圓的圓心)在斜邊的中點且半徑R=
⑵Rt△ABC的內心(內切圓的圓心)且半徑r=
⑶ ⑷
六、簡單幾何體
1稜柱:
(1) {正方體} {正四稜柱} {長方體} {直平行六面體} {直四稜柱} {四稜柱} {稜柱}
{正方體} {正四稜柱} {長方體} {直平行六面體} {平行六面體} {四稜柱} {稜柱}
(2)稜柱的側面積 其中 為直截面的周長, 為棱長 ; 稜柱的體積 =
(3)直稜柱的側面積 ; 直稜柱的體積 =
(4)特殊稜柱長方體A1B1C1D1-ABCD的長、寬、高分別為 、 、
① 對角線長 =
② 長方體外接球的直徑2R等於對角線長 ;
③ 若對角線與一個頂點引的三條棱所成角分別為 、 、 .則 =1;
④ 若對角線與一個頂點引的三個面所成角分別為 、 、 .則 =2;
⑤ 長方體的表面積S=2 ;長方體的體積V= ;
⑥ 正方體的內切球的直徑等於棱長
2、 棱錐:
(1) 棱錐的性質:若棱錐P-ABC…被平行於底面ABC的截面A1B1C1所截,則
① 多邊形ABC…∽多邊形A1B1C1…,設相似比為 ;
② ; ; 。
③ V=
⑵正棱錐(①底面是正多邊形;②頂點在底面的射影是正多邊形的中心)
① ; ②V=
3、多面體
⑴正多面體只有五種:正四面體,正六面體,正八面體,正十二面體,正二十面體。
其中正四面體、正八面體、正二十面體的面都是三角形,正六面體的面是正方形,
正二十面體是五邊形。
⑵簡單多面體的頂點數 、面數 、棱數E之間的關系:
簡單多面體各個面的內角和等於
若各面多邊形的邊數 ,則 ; 若各個頂點引出的棱數 ,則
3、 球
⑴球的截面有以下性質:
① 球心和截面圓心的連線垂直於截面
② 球心到截面的距離 與球的半徑 及截面的半徑 有以下的關系:
⑵球的表面積: ;
⑶球的體積:
第十章 排列組合與二項式定理
1. 計數原理
①加法原理: (分類) ②乘法原理: (分步)
2. 排列(有序)與組合(無序)
① = ②
③
④組合的兩個性質: ;
3. 排列組合混合題的解題原則:先選後排,先分再排
排列組合題的主要解題方法:優先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素. 以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.
捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)
插空法(解決相間問題) 間接法和去雜法等等
在求解排列與組合應用問題時,應注意:(1)把具體問題轉化或歸結為排列或組合問題;(2)通過分析確定運用分類計數原理還是分步計數原理;(3)分析題目條件,避免「選取」時重復和遺漏;(4)列出式子計算和作答.
經常運用的數學思想是:①分類討論思想 ②轉化思想; ③對稱思想.
4. 二項式定理:
①
特別地:
②通項為第 項: 作用:處理與指定項、特定項、常數項、有理項等有關問題。
③主要性質和主要結論:對稱性
最大二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)
所有二項式系數的和:
奇數項二項式系數的和=偶數項而是系數的和:
5.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時注意賦值法的應用。
6.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理並且結合放縮法證明與指數有關的不等式。
第十一章概率統計
1.必然事件 ,不可能事件 ,隨機事件的定義 。
2.⑴等可能事件的概率:(古典概率) = 理解這里 、 的意義。
⑵事件 、 互斥,即事件 、 不可能同時發生,這時 , 事件 、 對立,即事件 、 不可能同時發生,但A、B中必然有一個發生。這時 ,
⑶獨立事件:(事件 、 的發生相互獨立,互不影響)
獨立重復事件(貝努里概型) 表示事件 在 次獨立重復試驗中恰好發生了 次的概率。
為在一次獨立重復試驗中事件 發生的概率。
特殊:令 得:在 次獨立重復試驗中,事件 沒有發生的概率為
令 得:在 次獨立重復試驗中,事件A全部發生的概率為
3.統計、總體、個體、樣本、,樣本個體、樣本容量的定義;
抽樣方法:1簡單隨機抽樣:包括隨機數表法,抽簽法;2系統抽樣 3分層抽樣。
樣本平均數:
樣本方差: S2 = [(x1- )2+(x2- )2+ (x3- )2+…+(xn- )2]
樣本標准差: = 作用:估計總體的穩定程度
Ⅸ 勘察報告中地層描述括弧的符號什麼意思,像(Q42ml)(Q3eol)
這個是地質年代和成因代號,Q4指第四系
ml為人工填土
al為沖積
pl為洪積
eol為風積
Ⅹ 地質剖面圖
以上回答不夠全面
1、圖中地層從老到新為:志留系、泥盆系、石炭系、二疊系、白堊系。其中白堊系與二疊系為不整合關系,志留系和泥盆系為平行不整合(D3到S2之間有地層缺失,但D3與S2平行),其它皆為平行整合關系。
2、地質構造有:石榴庵背斜、火石峰向斜、火石峰斷層。其中背斜和向斜形成時代相同,發生在二疊紀末到白堊紀初的某一段時間;斷層形成晚於上一期,帶有逆斷性質,將老地層推覆上來。總體來講這一地區主要以擠壓環境為主,白堊紀之後構造活動變溫和了。