工程地質岩組是什麼
Ⅰ 地層岩性及岩土工程地質背景
西南地區地質構造復雜,地層出露齊全,自元古宇至新生界均有出露,總厚度回可達58433m(表1-5)。工程地答質岩土類型可劃分為岩漿岩、碎屑岩、碳酸鹽岩和變質岩4種類型。根據岩石性質、岩體結構、岩石強度及岩性組合特徵劃分岩組,其工程特徵與岩組見表1-6。
土體主要按顆粒級別劃分為黏性土、礫卵石土及砂礫,特徵見表1-7。
表1-5 西南地區地層
續表
表1-6 岩體工程地質類型及特徵
圖1-3 青藏高原及鄰區主要斷裂帶及強震分布圖
(據焦淑沛,1985)
Ⅰ—喜馬拉雅山前陸殼俯沖帶;Ⅱ—西昆侖—阿爾金山前陸殼俯沖帶;Ⅲ—祁連山前陸殼俯沖帶;Ⅳ—龍門山山前陸殼俯沖帶
(1)喜馬拉雅主斷裂活動帶;(2)雅魯藏布江—印度河主斷裂活動帶;(3)班公湖—瀾滄江主斷裂活動帶;(4)約基台錯—金沙江主斷裂活動帶;(5)昆侖山南緣主斷裂活動帶;(6)祁連山主斷裂活動帶;(7)阿爾金主斷裂活動帶
表1-7 土體工程地質類型及特徵
Ⅱ 工程地質勘探
3.3.2.1 勘探工作綜述
(1)勘探點的布設及測量
勘察工作共布置6個工程地質勘察孔,其中北端幫4個,南端幫2個,鑽孔坐標及鑽孔深度見表3-5,鑽孔平面位置見圖3-7。
表3-5 鑽孔坐標及鑽孔深度
圖3-7 鑽孔位置
圖3-8 KT1-1鑽孔柱狀圖
(2)鑽探施工
鑽探嚴格控制回次進尺,採用套管護壁、干鑽、單動雙管金剛石鑽進等鑽探及取芯工藝,確保岩芯採取率。並按採取的岩土芯結合鑽進情況進行地層鑒定、分層與描述。鑽進深度和岩土層分層深度的測量誤差低於±5cm,同時嚴格控制非連續取芯鑽進的回次進尺,以保證分層精度符合要求。鑽孔口徑不小於108mm,並滿足取樣的要求。鑽孔施工及探井完成後,均採用水泥砂漿封閉,封孔方法採用泥漿泵注入法,並對場地進行了清污。
(3)取樣工作
原狀土樣採用標准厚壁敞口式取土器以重錘少擊法採取;岩樣從岩芯管內或邊坡上直接採取。取樣具體操作方法嚴格按現行有關標准規范,結合岩土性質分布特徵執行。
3.3.2.2 勘探成果
本次勘察工作共採集土樣720組,岩樣640組,繪制鑽孔柱狀圖6張,其中KT1-1鑽孔柱狀圖見圖3-8,工程地質剖面圖見圖3-9至圖3-11。
圖3-9 剖面1工程地質模型
圖3-10 剖面2工程地質模型
圖3-11 剖面3工程地質模型
3.3.2.3 鑽孔窺視成果
(1)工作原理
鑽孔窺視儀主要由地面部分和井下部分組成。地面部分包括控制器、電腦、三腳架、絞車、滑輪和深度計數器;地下部分包括攝像探頭和電纜,攝像探頭由CCD攝像機、LED燈、玻璃罩和錐形鏡組成。鑽孔孔壁經LED光源照亮,CCD攝像機攝取由錐形鏡反射的孔壁圖象,圖象信息經電纜傳送至控制器和電腦,整個採集過程由圖象採集控制軟體系統完成,此系統把採集的圖象展開和合並,記錄在電腦上。
圖3-12 智能鑽孔窺視儀及原理
(2)鑽孔窺視成果
本次勘察共設立了5個鑽孔窺視監測孔,其中北幫3個,南幫2個。
鑽孔KT1-1位於安家嶺礦北幫西部,其孔內4m以上區域較為破碎(圖3-13)。2014年2月,受2號井工礦影響,安家嶺礦北幫1310和1280兩個弱面發生錯動,鑽孔KT1-1位於1280弱面下緣,故其完成性較差。其餘部分局部破碎,整體完整性較好,說明下部岩層沒有發生大規模錯動。
圖3-13 KT1-1孔內情況
鑽孔KT2-1、KT2-2位於安家嶺礦北幫東部,目前受2號井影響較小,孔內岩層整體性較好,局部見裂隙發育,見圖3-14和圖3-15。
圖3-14 KT2-1孔內局部裂隙發育
圖3-15 KT2-2孔內整體完整性較好
鑽孔KT3-1、KT3-2位於安家嶺礦南幫中部,工程地質條件好於北幫,通過鑽孔電視觀察,鑽孔KT3-1、KT3-2整體完整性較好,局部裂隙發育,鑽孔KT3-2在101.3m處有出水點,見圖3-16、圖3-17。
圖3-16 KT3-1孔內整體完整性較好
圖3-17 KT3-2孔內出水
Ⅲ 礦體及圍岩的工程地質條件
總的來說,礦物資源有三大類
(1)氣體礦物資源——天然氣;
(2)液體礦物資源——石油、地下水;
(3)固體礦物資源——煤炭、各類金屬礦物等。
這里討論的重點是與固體礦物資源開發有關的礦山地質工程問題,故對氣體和液體礦物資源開發的地質工程工作有關的問題暫且不論,但不等於這類礦產開發時沒有問題,實際上,目前已經出現了不少問題,如地下水開發引起地面沉降;石油開采中注水驅油進行強化開采中出現大量井損事故等。這些事故如果事先進行適量的工程地質勘察、研究,採取適當措施,大部分是可以避免的。
就固體礦體來說,其礦床地質構造,從工程地質角度來看,可分為三大類
(1)層狀礦床:煤、磷等礦床,埋藏於層狀沉積岩體內;
(2)層控礦床:銅、鐵、鎳等,以似層狀產狀埋藏於變質岩或岩漿岩、火山岩等塊狀岩體內;
(3)脈狀礦床:鉛、鋅、鎢等脈狀礦體侵入到各類岩體內。
各類礦床與其成礦條件相伴隨的有其自己的工程地質條件規律。地質工程工作者掌握了這些特點後會對所研究的對象具有一定的預見性。舉例如下。
1.煤礦
煤礦是典型的層狀礦床。主要為陸相、海陸交互相(湖相、沼澤相、沖積相等)。從成煤時代上來說,從石炭紀到第三紀都有;
第一石炭—二疊成煤期主要為濱海及海陸交互相及湖相建造。其建造特點是粘土岩、砂岩、頁岩、礫岩互層存在,有的地區還存在有石灰岩。岩相比較穩定,除因構造斷裂破壞外,相變不大,其主要的地質工程問題為:
(1)軟岩:特別是鋁土頁岩,不僅軟,而且易風化、膨脹,巷道變形極為常見;
(2)地應力:由於地應力比較高,隨著采深加大,沖擊地壓及巷道收斂變形極為顯著;
(3)地下水:這些煤礦下部一般直接與奧陶紀石灰岩接觸。中國奧陶紀石灰岩中喀斯特比較發育,地下水比較豐富,即俗稱奧灰水。煤炭開采中由於底板隔水層薄、斷層切割、陷落柱連通等原因,極易引起突水,這些問題在華北地區極為常見。
第二個成煤期為侏羅及白堊紀,主要為內陸盆地相碎屑岩建造。隨著構造作用強度不同,有的平緩展布,岩體結構完整;有的褶皺劇烈,層間錯動發育,構成板裂結構岩體。水平地應力一般大於垂直地應力,距主要含水層奧陶紀石灰岩較遠,突水威脅不大。而白堊紀砂礫岩常構成堅硬難冒頂板,成為採煤過程中的難題。
第三紀煤炭在我國分布也是相當廣泛,東北、新疆、內蒙古、雲南、貴州及台灣都有分布。它們主要為內陸湖相沉積,岩性為粘土岩、砂岩及礫岩互層產出。在構造作用下,層間錯動極發育,多具板裂結構特徵。因埋藏較淺,成岩作用很低,極易風化和在地下水作用下極易泥化,強度軟化系數很低。
2.菱鐵礦
菱鐵礦分布極為廣泛,從地質時代上來說,除新生代外,從古生代到太古宙都有分布。從建造上看,主要為沉積的和變質的碎屑岩—泥質岩—碳酸岩建造及火山—沉積岩系和陸相碎屑—泥質岩—有機岩建造。從成因來說,大體可分為沉積型、火山—沉積型、沉積—熱液改造型、變質沉積型和接觸交代—熱液型礦床。由此決定了這類礦體大部分呈層狀和層控結構特徵,礦床與圍岩整合產出,局限於含礦圍岩中順層延伸,與圍岩同步褶皺和錯斷,少部分與熱液活動有關的呈脈狀、束狀和透鏡體狀。這類礦床在沉積—改造和變質過程中,由於後期熱液活動和構造作用的影響,形成了一些不規則礦體,交切原生沉積層狀礦體和圍岩層(片)理發育,甚至某些呈礦巢、礦瘤和不規則礦體。層狀及層控礦床構成的礦山在開發過程中遇到的問題與煤炭礦山工程地質問題比較類似;脈狀、束狀、透鏡體狀等不規則礦體的礦床盡管具有熱液作用特徵,但近礦體圍岩蝕變很弱或沒有蝕變,礦體與圍岩呈硬接觸。除由采礦形成架空結構使岩體惡化外,原岩體的工程地質條件還是比較好的。
3.與火山岩有關的鐵礦
對地質工程來說,我們最關心的是礦體形狀與圍岩接觸和蝕變關系,前者控制著礦山工程特徵;後者對礦山工程穩定性影響極大。根據國內外資料統計,這類鐵礦體約有80%為層狀或似層狀與圍岩整合產出,少部分為透鏡體狀,穿插於裂隙中的脈狀,圍岩有的破碎,有的完整,大部分圍岩遭受蝕變,也有的無蝕變現象;圍岩蝕變作用主要為矽卡岩、絹雲母化、黑雲母化、高嶺土化,一般強度低,它們構成的接觸帶為軟弱結構面或軟弱夾層,岩體易產生失穩現象;另外還有硅化、方柱石化、鈉長石化,岩體有強化作用,但范圍不大。蝕變帶厚度一般不大,約為數米至數十米,它們構成一種特殊的工程地質岩組。
4.圍岩蝕變
在金屬礦山工程地質研究中,這是一個極為重要的工程地質問題。有色金屬及與火山岩有關的黑色金屬礦床絕大部分都伴有圍岩蝕變作用,實際上,這是岩漿活動的伴生產物。早期形成的岩石在氣化—熱液作用下,兩者之間產生新的化學平衡發生的一系列舊物質為新物質所代替的交代作用。圍岩蝕變是多種多樣的,是由許多因素決定的,其中主要的因素有:①圍岩成分;②氣化—熱液成分和濃度、酸鹼度;③溫度;④壓力。由於形成條件所決定,常見的圍岩蝕變方式和類型有兩種:
(1)氣化高溫熱液蝕變:矽卡岩化、雲英岩化、白雲母化、電氣石化、黑雲母化、方柱石化、陽起石化、綠簾石化、黝簾石化、鉀長石化、鈉長石化、霞石化、霓石化、螢石化等。
(2)中低溫熱液蝕變有:絹雲母化、硅化、石髓化、絹英化、黃鐵礦化、綠泥石化、碳酸鹽化、白雲石化、粘土化、赤鐵礦化、蛇紋石化、鈉黝簾石化、泡沸石化、石膏化等。
上列蝕變產物下劃有「
上述有限資料表明,在研究礦山工程地質條件時必須認真研究礦床形成給地質體帶來的特殊條件和對地質體改造形成的特殊條件。
Ⅳ 有一門「岩體工程地質力學」。我沒搞明白研究的主題是什麼內容能介紹一下嗎
研究內容
1.工程地質岩組的劃分及其特徵;
2.岩體結構及其類型劃分;回
3.褶皺斷裂系統和構造應力場的答地質力學分析;
4.軟弱結構面的形成過程及其特性;
5.岩石和岩體的基本力學特性;
6.岩體的裂隙滲透特性;
7.岩體的變形,破壞機制;
8.岩體的應力狀態和穩定性分析;
9.岩體動力學特性;
10.測試技術及方法研究。
岩體工程地質力學研究的最終目的
評價和研究岩體的穩定性。岩體穩定性是個相對概念,即不同的工程建築所要求的穩定標準是不一樣的。穩定性研究涉及范圍很廣,穩定性評價研究工作還包括預測預報的研究。
Ⅳ 岩土體工程地質類型分區
平原區廣泛分布以沖洪積成因為主的第四系堆積物,低山丘陵區出露多種類型的岩組,沂沭斷裂帶西側的鄌郚-葛溝斷裂、沂水-湯頭斷裂縱貫南北,總體看工程地質條件較復雜(圖1-8-3)。
圖1-8-3 昌樂縣岩土體工程地質類型分區略圖
(一)岩體工程地質類型
1.堅硬的塊狀侵入岩岩組
分布於營邱—河頭一帶,為古元古代呂梁期侵入岩,岩性以弱片麻狀中粒含角閃二長花崗岩、弱片麻狀中粒含黑雲二長花崗岩,岩石堅硬,力學強度高,工程地質性質良好,山區風化帶厚度<3m,丘陵及準平原區20~30m,fc=130~170MPa,fr=90~130MPa(fc為岩石極限干抗壓強度,fr為岩石飽和極限抗壓強度)。
2.堅硬的塊狀-似層狀噴出岩岩組
主要分布在南郝—崔家埠—五圖一線以南、鄌郚-葛溝斷裂以西地區,為新近紀臨朐群牛山組、堯山組火山噴出岩,岩性為玄武岩。岩石堅硬,柱狀節理發育,工程地質性質良好。風化帶厚20~30m,fc=140~160MPa。
3.堅硬的塊狀變質岩岩組
主要分布在鄌郚—阿陀一帶,為新太古代泰山岩群山草峪組黑雲變粒岩,岩石堅硬,風化帶厚度30~40m,fc=180~200MPa。
4.堅硬較堅硬的中厚-厚層狀灰岩岩組
僅分布於朱劉街道、五圖街道一帶,主要為寒武紀長清群硃砂洞組、饅頭組、九龍群張夏組、崮山組和炒米店組白雲質灰岩、泥灰岩、泥質條帶灰岩和生物碎屑灰岩等,局部夾細砂岩。灰岩堅硬,力學強度高,泥灰岩強度低。白雲質灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。
5.較堅硬的中厚—厚層碎屑岩岩組
主要分布在鄌郚-葛溝斷裂帶與沂水-湯頭斷裂帶,以及五圖煤礦一帶,岩性為白堊紀淄博群三台組砂岩、礫岩,萊陽群城山後組角礫岩、砂礫岩、砂岩,青山群八畝地組凝灰岩、集塊角礫岩、粉砂岩,大盛群馬郎溝組粉砂岩、細砂岩,田家樓組泥質粉砂岩、細砂岩、黏土岩,古近紀五圖群朱壁店組礫岩、砂礫岩、礫岩,李家崖組黏土岩、砂岩、黏土岩、油頁岩等。風化帶厚度<40m,砂岩和礫岩fc=30~80MPa,fr=20~50MPa。
6.較堅硬的薄層狀頁岩夾灰岩岩組
局限分布在阿陀東北部,岩性為中寒武系、下寒武系及元古宇土門群頁岩、博層灰岩、泥灰岩。頁岩夾泥灰岩fc=30~40MPa,fr=10~15MPa。
(二)土體工程地質類型
1.北部沖洪積上層黏性土多層或雙層結構
分布於北部山前平原地區,以上層黏性土多層結構為主,上層黏性土厚<5m或5~10m,僅局部>10m,黏性土岩性以粉質黏土、黏土為主,中等壓縮性。砂性土為粉細砂、中細砂,其次粗砂、礫石,砂層顆粒自北至南變粗,工程地質性質良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk為地基承載力標准值)。
2.山前及河谷平原沖洪積上層黏性土雙層、多層結構及黏性土單層結構
分布於山前坡麓、山間河谷地區,上部黏性土為粉質黏土、粉土、黏土,厚度5m左右,中等壓縮性。下部砂性土為中粗砂、細砂、砂礫石,緊密狀態,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。
3.山麓地區坡洪積及殘坡積黏性土單層結構或上層黏性土雙層結構
分布於南部低山丘陵坡麓地帶,以黏性土單層結構或上層為黏性土雙層結構為主。黏性土厚<5m或5~10m,以黃褐色至棕紅色粉質黏土及黏土為主,含鐵錳質及鈣質結核,可塑—硬塑,中等壓縮性,部分地區分布濕陷性黃土。下部夾透鏡體狀碎石土及泥鈣質膠結礫岩,緊密狀態,工程地質性質良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。
總之,昌樂縣工程地質主要問題是沂沭斷裂帶的活動性,其次是地面沉陷、岩溶塌陷、局部黃土濕陷等問題。
Ⅵ 中華人民共和國 《工程岩體分級標准》(GB —)
1 總則
1.0.1 為建立統一的評價工程岩體穩定性的分級方法;為岩石工程建設的勘察、設計、施工和編制定額提供必要的基本依據,制定本標准。
1.0.2 本標准適用於各類型岩石工程的岩體分級。
1.0.3 工程岩體分級,應採用定性與定量相結合的方法,並分兩步進行,先確定岩體基本質量,再結合具體工程的特點確定岩體級別。
1.0.4 工程岩體分級所必需的地質調查和岩石試驗,除應符合本標准外,尚應符合有關現行國家標準的規定。
2 術語、符號(略)
3 岩體基本質量的分級因素
3.1 分級因素及其確定方法
3.1.1 岩體基本質量應由岩石堅硬程度和岩體完整程度兩個因素確定。
3.1.2 岩石堅硬程度和岩體完整程度,應採用定性劃分和定量指標兩種方法確定。
3.2 岩石堅硬程度的定性劃分
3.2.1 岩石堅硬程度,應按表3.2.1進行定性劃分。
表3.2.1 岩石堅硬程度的定性劃分
3.2.2 岩石堅硬程度定性劃分時,其風化程度應按表3.2.2確定。
表3.2.2 岩石風化程度的劃分
3.3 岩體完整程度的定性劃分
3.3.1 岩體完整程度,應按表3.3.1進行定性劃分。
表3.3.1 岩體完整程度的定性劃分
註:平均間距指主要結構面(1~2組)間距的平均值。
3.3.2 結構面的結合程度,應根據結構面特徵,按表3.3.2確定。
表3.3.2 結構面結合程度的劃分
3.4 定量指標的確定和劃分
3.4.1 岩石堅硬程度的定量指標,應採用岩石單軸飽和抗壓強度(R c)。R c 應採用實測值。當無條件取得實測值時,也可採用實測的岩石點荷載強度指數(Is(50))的換算值,並按下式換算:
地質工程學原理
3.4.2 岩石單軸飽和抗壓強度(R c)與定性劃分的岩石堅硬程度的對應關系,可按表3.4.2確定。
表3.4.2 R c 與定性劃分的岩石堅硬程度的對應關系
3.4.3 岩體完整程度的定量指標,應採用岩體完整性指數(K v)。K v 應採用實測值。當無條件取得實測值時,也可用岩體體積節理數(Jv),按表3.4.3確定對應的Kv值。
表3.4.3 J v 與K v 對照表
3.4.4 岩體完整性指數(K v)與定性劃分的岩體完整程度的對應關系,可按表3.4.4確定。
表3.4.4 K v 與定性劃分的岩體完整程度的對應關系
3.4.5 定量指標K v、J v的測定,應符合本標准附錄A的規定。
4 岩體基本質量分級
4.1 基本質量級別的確定
4.1.1 岩體基本質量分級,應根據岩體基本質量的定性特徵和岩體基本質量指標(BQ)兩者相結合,按表4.1.1確定。
表4.1.1 岩體基本質量分級
4.1.2 當根據基本質量定性特徵和基本質量指標(BQ)確定的級別不一致時,應通過對定性劃分和定量指標的綜合分析,確定岩體基本質量級別。必要時,應重新進行測試。
4.2 基本質量的定性特徵和基本質量指標
4.2.1 岩體基本質量的定性特徵,應由表3.2.1和表3.3.1所確定的岩石堅硬程度和岩體完整程度組合確定。
4.2.2 岩體基本質量指標(BQ),應根據分級因素的定量指標Rc的兆帕數值和Kv,按下式計算:
地質工程學原理
註:使用(4.2.2)式時,應遵守限制條件:①當Rc>90Kv+30 時,應以Rc=90Kv+30 和Kv 代入計算BQ值。②當Kv>0.04Rc+0.4時,應以Kv=0.04Rc+0.4和Rc 代入計算BQ值。
5.工程岩體級別的確定
5.1 一般規定
5.1.1 對工程岩體進行初步定級時,宜按表4.1.1規定的岩體基本質量級別作為岩體級別。
5.1.2 對工程岩體進行詳細定級時,應在岩體質量分級的基礎上,結合不同類型工程的特點,考慮地下水狀態、初始應力狀態、工程軸線或走向線的方位與主要軟弱結構面產狀的組合關系等必要的修正因素,其中邊坡岩體,還應考慮地表水的影響。
5.1.3 岩體初始應力狀態,當無實測資料時,可根據工程埋深或開挖深度、地形地貌、地質構造運動史、主要構造線和開挖過程中出現的岩爆、岩心餅化等特殊地質現象,按本標准附錄B作出評估。
5.1.4 當岩體的膨脹性、易溶性以及相對於工程范圍,規模較大、貫通性較好的軟弱結構面成為影響岩體穩定性的主要因素時,應考慮這些因素對工程岩體級別的影響。
5.1.5 岩體初步定級時,岩體物理力學參數,可按本標准附錄 C中表C.0.1選用。結構面抗剪斷峰值強度參數,可根據岩石堅硬程度和結構面結合程度,按本標准附錄C中表C.0.2選用。
5.2 工程岩體級別的確定
5.2.1 地下工程岩體詳細定級時,如遇有下列情況之一時,應對岩體基本質量指標(BQ)進行修正,並以修正後的值按表4.1.1確定岩體級別。
5.2.1.1 有地下水;
5.2.1.2 岩體穩定性受軟弱結構面影響,且由一組起控製作用;
5.2.1.3 存在本標准附錄B表B.0.1所列高初始應力現象。
5.2.2 地下工程岩體基本質量指標修正值([BQ]),可按附錄D計算。
5.2.3 對跨度等於或小於20m的地下工程,當已確定級別的岩體,其實際的自穩能力,與本標准附錄E相應級別的自穩能力不相符時,應對岩體級別作相應調整。
5.2.4 對大型的或特殊的地下工程岩體,除應按本標准確定基本質量級別外,詳細定級時,尚可採用有關標準的方法,進行對比分析,綜合確定岩體級別。
5.2.5 工業與民用建築地基岩體應按表4.1.1規定的基本質量級別定級。
5.2.6 工業與民用建築地基岩體基岩承載力可按下列規定確定:
5.2.6.1 各級岩體基岩承載力基本值(f 0)可按表5.2.6-1確定。
表5.2.6-1 基岩承載力基本值(f 0)
5.2.6.2 考慮基岩形態影響時,基岩承載力標准值(f k)可按下式確定。
地質工程學原理
5.2.6.3 基岩形態影響折減系數(η),可按表5.2.6-2選用。
表5.2.6-2 基岩形態影響折減系數η
註:基岩內結構面傾向與基岩面坡向大致相同為順坡型,相反為反坡型。
5.2.7 邊坡工程岩體詳細定級時,應按不同坡高考慮地下水、地表水、初始應力場、結構面間組合、結構面的產狀與邊坡面間的關系等因素對邊坡岩體級別的影響進行修正。
附錄A K V、J V 測試的規定
A.0.1 岩體完整性指數(KV),應針對不同的工程地質岩組或岩性段,選擇有代表性的點、段,測定岩體彈性縱波速度,並應在同一岩體取樣測定岩石彈性橫波速度。Kv值應按下式計算:
地質工程學原理
式中:Vpm為岩體彈性縱波速度(km/s);Vpr為岩石彈性橫波速度(km/s)。
A.0.2 岩體體積節理數(J v),應針對不同的工程地質岩組或岩性段,選擇有代表性的露頭或開挖壁面進行節理(結構面)統計。除成組節理外,對延伸長度大於1m的分散節理亦應予以統計。已為硅質、鐵質、鈣質充填再膠結的節理不予統計。
每一測點的統計面積,不應小於2×5m2。岩體Jv 值,應根據節理統計結果,按下式計算:
地質工程學原理
式中:Jv為岩體體積節理數(條/m3);Sn為第n組節理每米長測線上的條數;Sk為每立方米岩體非成組節理條數。
附錄B 岩體初始應力場評估
B.0.1 在無實測成果時, 可根據地質勘察資料, 按下列方法對初始應力場作出評估:
(1)較平緩的孤山體,一般情況下,初始應力的垂直向應力為自重應力,水平向應力不大於γH·ν/(1-ν)。
(2)通過對歷次構造形跡的調查和對近期構造運動的分析,以第一序次為准,根據復合關系,確定最新構造體系,據此確定初始應力的最大主應力方向。
當垂直向應力為自重應力,且是主應力之一時,水平向主應力較大的一個,可取(0.8~1.2)γH或更大。
(3)埋深大於1000m,隨著深度的增加,初始應力場逐漸趨向於靜水壓力分布,大於1500m以後,一般可按靜水壓力分布考慮。
(4)在峽谷地段,從谷坡至山體以內,可區分為應力釋放區、應力集中區和應力穩定區。峽谷的影響范圍,在水平方向一般為谷寬的1~3倍。對兩岸山體,最大主應力方向一般平行於河谷,在谷底較深部位,最大主應力趨於水平且轉向垂直於河谷。
(5)地表岩體剝蝕顯著地區,水平向應力仍按原覆蓋厚度計算。
(6)發生岩爆或岩心餅化現象,應考慮存在高初始應力的可能,此時,可根據岩體在開挖過程中出現的主要現象,按表B.0.1評估。
註:H為工程埋深(m),γ為岩體重力密度(kN/m3),ν為岩體泊松比。
表B.0.1 高初始應力地區岩體在開挖過程中出現的主要現象
註:σmax為垂直洞軸線方向的最大初始應力。
附錄C 岩體及結構面物理力學參數
C.0.1 岩體物理力學參數可按表C.0.1選用
表C.0.1 岩體物理力學參數
C.0.2 岩體結構面抗剪斷峰值強度參數可按表C.0.2選用
表C.0.2 岩體結構面抗剪斷峰值強度
附錄D 岩體基本質量指標的修正
D.0.1 岩體基本質量指標修正值([BQ]),可按下式計算:
地質工程學原理
式中:[BQ]為岩體基本質量指標修正值;BQ為岩體基本質量指標;K1 為地下水影響修正系數;K2 為主要軟弱結構面產狀影響修正系數;K3 為初始地應力狀態影響修正系數。
K1、K2、K3值,可分別按表D.0.1-1、D.0.1-2、D.0.1-3確定,無表中所列情況時,修正系數為零。[BQ]出現負值時,應按特殊問題處理。
表D.0.1-1 地下水影響修正系數K 1
表D.0.1-2 主要軟弱結構面產狀影響修正系數K 2
表D.0.1-3 初始應力狀態影響修正系數K 3
附錄E 地下工程岩體自穩能力
E.0.1 地下工程岩體自穩能力,應按表E.0.1確定。
表E.0.1 地下工程岩體自穩能力
續表
①小塌方:塌方高度<3m,或塌方體積<30m3;
②中塌方:塌方高度3~6m,或塌方體積30~100m3;
③大塌方:塌方高度>6m,或塌方體積>100m3。
Ⅶ 工程地質和岩土工程有什麼區別
工程地質和岩土工程的區別:
1、工程地質是地質學的一個分支,其本質是一門應用科學;岩土工程是土木工程的一個分支,其本質是一種工程技術。
2、從事工程地質工作的是地質專家(地質師),側重於地質現象、地質成因和演化、地質規律、地質與工程相互作用的研究;從事岩土工程的是工程師,關心的是如何根據工程目標和地質條件,建造滿足使用要求和安全要求的工程或工程的一部分,解決工程建設中的岩土技術問題。
工程地質:
工程地質學是一門應用地質學的原理為工程應用服務的學科,主要研究內容涉及地質災害,岩石與第四紀沉積物,岩體穩定性,地震等。工程地質學廣泛應用於工程規劃,勘察,設計,施工與維護等各個階段。
工程地質的目的是為了查明各類工程場區的地質條件,對場區及其有關的各種地質問題進行綜合評價,分析、預測在工程建築作用下,地質條件可能出現的變化和作用,選擇最優場地,並提出解決不良地質問題的工程措施,為保證工程的合理設計、順利施工及正常使用提供可靠的科學依據。
工程地質研究的主內容有:
確定岩土組分、組織結構(微觀結構)、物理、化學與力學性質(特別是強度及應變)及其對建築工程穩定性的影響,進行岩土工程地質分類,提出改良岩土的建築性能的方法;
研究由於人類工程活動的影響而破壞的自然環境的平衡,以及自然發生的崩塌、滑坡、泥石流及地震等物理地質作用對工程建築的危害及其預測、評價和防治措施;
研究解決各類工程建築中的地基穩定性,如邊坡、路基、壩基、橋墩、硐室,以及黃土的濕陷、岩石的裂隙的破壞等,制定一套科學的勘察程序、方法和手段,直接為各類工程的設計、施工提供地質依據;
研究建築場區地下水運動規律及其對工程建築的影響,制定必要的利用和防護方案;
研究區域工程地質條件的特徵,預報人類工程活動對其影響而產生的變化,作出區域穩定性評價,進行工程地質分區和編圖。
隨著大規模工程建設的發展,其研究領域日益擴大。除了岩土學和工程動力地質學、專門工程地質學和區域工程地質學外,一些新的分支學科正在逐漸形成,如礦山工程地質學、海洋工程地質學、城市工程地質及環境工程地質學、工程地震學。
岩土工程:
岩土工程是歐美國家於20世紀60年代在土木工程實踐中建立起來的一種新的技術體制。岩土工程是以求解岩體與土體工程問題,包括地基與基礎、邊坡和地下工程等問題,作為自己的研究對象。
地上、地下和水中的各類工程統稱土木工程。土木工程中涉及岩石、土、地下、水中的部分稱岩土工程。
岩土工程專業是土木工程的分支,是運用工程地質學、土力學、岩石力學解決各類工程中關於岩石、土的工程技術問題的科學。按照工程建設階段劃分,工作內容可以分為:岩土工程勘察、岩土工程設計、岩土工程治理、岩土工程監測、岩土工程檢測。
岩土工程主要研究方向:
①城市地下空間與地下工程:以城市地下空間為主體,研究地下空間開發利用過程中的各種環境岩土工程問題,地下空間資源的合理利用策略,以及各類地下結構的設計、計算方法和地下工程的施工技術(如淺埋暗挖、盾構法、凍結法、降水排水法、沉管法、TBM法等)及其優化措施等等。
②邊坡與基坑工程:重點研究基坑開挖(包括基坑降水)對鄰近既有建築和環境的影響,基坑支護結構的設計計算理論和方法,基坑支護結構的優化設計和可靠度分析技術,邊坡穩定分析理論以及新型支護技術的開發應用等。
③地基與基礎工程:重點開展地基模型及其計算方法、參數研究,地基處理新技術、新方法和檢測技術的研究,建築基礎(如柱下條形基礎、十字交叉基礎、筏形基礎、箱形基礎及樁基礎等)與上部結構的共同作用機理和規律研究等。
Ⅷ 煤礦工程地質勘察工作
煤礦工程地質勘察工作應盡量收集已有的地質、水文地質及鄰近礦區的生產資料,充分利用地質孔、水文地質孔來滿足工程地質調查的要求。在詳查階段,勘探孔間距一般500~1000m,用於工程地質目的一般不需增加勘探孔數,孔徑一般採用89mm或108mm,對鬆散層、軟弱岩層及煤層採用雙層管取芯以減少擾動。須安排一定數量的孔全孔取芯。取芯深度一般要求從煤層之上30m至煤層以下10m。
3.1.3.1 鑽孔編錄工作
(1)在鑽進過程中,每一岩層分層的鑽進速度、鑽桿振動以及沖洗液消耗量的變化、水位變化等均應作仔細觀察、記錄。
(2)取樣或破壞岩芯之前,擦凈岩芯表面的泥漿進行彩色拍照,這可提供一個持久良好的記錄,而且可通過這些相片給出節理、自然岩層分層、軟弱岩層及軟弱夾層。
(3)對於取芯的每一岩(土)層,取芯後應立即觀察描述。
黏土類土:首先根據黏土顆粒含量多少(藉助於搓條、刀切等手段)劃分為黏土和亞黏土,再描述其顏色、成分、層理、結核包裹體、化石、滑面及其傾角、接觸面、溫度和可塑性等。
砂類土:首先根據顆粒粒組的百分含量劃分為礫石,粗、中、細、粉砂,再描述其顏色、顆粒成分及含量、分選性、滾圓度、層理、接觸面、化石、結核、濕度和密實程度等。
岩石:要描述每一岩石分層的岩石名稱、顆粒成分及含量、分選性、滾圓度、膠結物成分及含量、膠結方式、層理、接觸類型、該層的岩石質量標志(RQD)、強度、不連續面的密度及崩解、膨脹特性等。
野外可按以下簡易標志描述:
1)RQD:某一地層分層>10cm長的岩芯之和與該分層岩芯總長度的比值(%)。
2)折斷強度:從岩層中取出150mm岩芯,試著用手將其折斷。折斷強度可用下列標准予以估計:高的——手摺不斷,中等的——很少折斷,低的——經常折斷。
3)不連續面密度:以每分層中每米節理或不連續面的數量分級。
高的:>10,結構面極發育,岩體破碎;
較高的:2~10,結構面發育,岩體破裂;
中等的:0.5~2,結構面較發育,岩體呈塊狀;
低的:<0.5,結構面不發育,岩體完整。
4)崩解性:將有代表性的風乾的長25cm的岩芯放入水中10min,據以下標准評價確定。
高的:完全崩解;中等的:有些崩解;低的:很少或沒有崩解。
(4)取樣方法:根據煤層和岩石物理力學性質試驗的要求,對岩(土)層分層依次採取尺寸和數量均符合實驗要求的完整試樣,經包裝、蠟封後運往實驗室,如果是土樣、濕度敏感性較大的岩石均應在取芯後立即取樣,以保持濕度和不被風化。
(5)每個鑽孔應進行物探工作。
(6)鑽孔編錄的綜合成果必須反映在鑽孔工程地質柱狀圖上,該圖應包括下述項目:地層岩性、柱狀、RQD、折斷強度、不連續面密度、崩解性質、綜合評價等。這一圖件對評價地層的冒落特性,查明潛在的地層控制問題,估計平均支護載荷密度都是非常有用的。
1)節理和不連續面的密度和方向,它們之間的接觸關系及充填情況。利用這一資料可評價頂、底板岩層變形性質及分析殘余構造應力的方向。
2)直接頂板地層的厚度和力學特性。這些性質會大大影響工作面後方地層的冒落性、變形特徵、工作面支護載荷、頂底板移近、煤巷支護及岩層移動。
3)詳細調查岩芯丟失的層段,以查明軟弱岩層。
4)黏土岩和砂岩位置及厚度的變化,由此可查出古河床或河漫灘的標志,預計可能出現的地層控制問題。
5)每一地層單位的RQD、強度、崩解性、各岩層間出現離層的可能性。據此可確定平均支護密度及煤巷支護。
3.1.3.2 專門工程地質工作
下面討論更為詳細的工程地質資料的獲得方法。這些資料包括節理和不連續面的性質、原岩應力狀態、岩土層的強度指標、崩解性、岩體變形性質等。
(1)節理和不連續面的密度、間距、形狀和延伸等,這些可在岩石露頭上進行節理裂隙統計得到;也可通過岩心直接測繪,如此需考慮使用雙管鑽進,取得定向岩芯;還可使用物探技術或鑽孔電視於孔內直接測得節理裂隙圖像。
(2)可在鄰近礦井中使用應力解除法,或在鑽孔中通過水力破裂法測定原岩應力狀態。水力破裂法適應於較深處的應力測量,且只能得到水平面上的兩個應力的大小和方向,垂直方向的應力則需按深度和上覆岩層的容重計算得到。以上測量必須在定性分析的基礎上,認為該區有構造應力存在時才進行,否則即按自重應力場計算原岩應力。
(3)實驗室測定的岩(煤)塊強度變形指標有變形模量、泊松比、單軸抗壓強度、單軸抗拉強度、岩塊和節理面的粘聚力與內摩擦角值。這些參數應盡量在較大直徑的岩樣上測定,以便更接近岩體指標。
在進行岩移預計或留設防水煤柱時,尚需得到鬆散層的變形和強度指標,它們是土的壓縮系數、無側限變形模量、泊松比、粘聚力和內摩擦角、無側限抗壓強度,黏土的抗拉強度、固結系數、先期固結壓力,還要得到其他常規的物理性質指標,如含水量、黏土的塑限及液限、砂土的相對密度、顆粒成分等。
(4)水理性質:在水或濕氣作用下,頂、底板岩石的惡化對地層控制是極其不利的。岩石的水理性質可由膨脹和崩解指標表示,決定這一性質的內因是它所含黏土礦物的性質及含量,如含蒙脫石的黏土類岩石最易崩解和膨脹,因此還必須進行岩石的礦物成分分析。
(5)岩體的變形性質:在鑽孔內設置鑽孔膨脹儀以測量直接頂、底板橫向變形性質,通過聲波測井可得到垂直層理方向的岩體變形性質。
3.1.3.3 水文地質調查
包括鬆散層含水層中的地下水和基岩含水層中的地下水的調查。這些調查應提供以下信息:(1)地下開挖時潮濕的區域;(2)開挖區地下水量的預計;(3)采礦引起的地面及岩層移動對地表和地下水變化的影響。為此,必須進行野外鑽孔抽水、注水試驗,以查明地下水水位、水流方向,岩層的滲透性,各主要含水層間的水力聯系等。
3.1.3.4 圖件的編制
工程地質工作的成果應反映在以下圖件上,可便於開采設計和生產使用:
(1)工程地質柱狀圖。在綜合鑽孔編錄及專門工程地質工作的基礎上編制,並需將各岩層劃分為工程地質岩組(指工程地質性質相近的岩層的組合)。它包括以下內容:地層單位、深度、厚度,各岩組岩性描述,岩石(體)的變形指標、強度指標、膨脹崩解特性,節理裂隙的密度和方向,可能離層的部位和岩層的滲透系數等。
(2)工程地質剖面圖。著重反映沿勘探線工程地質條件的變化,包括工程地質岩組、風化帶界線、各岩組主要物理力學性質、地下水位、岩層滲透性等內容。
(3)工程地質問題平面預測圖。根據頂、底板岩性岩相、岩石物理力學指標、岩體變形性質,節理、裂隙、斷層的產狀和密度,地下水活動情況,瓦斯集中的可能性等,對頂、底板岩層進行穩定性評價,預測可能出現的地層控制問題,為選擇採煤設備和頂、底板管理方法提供依據。
Ⅸ 地質工程與岩土工程有什麼區別
一、性質不同
1、地質工程:)是研究地質問題,並利用工程手段來解決問題的科學。
2、岩土工程:是以求解岩體與土體工程問題。
二、研究對象不同
1、地質工程:側重於對地質現象、地質成因和演化、地質規律、地質與工程相互作用的研究。
2、岩土工程:岩土工程勘察、岩土工程設計、岩土工程治理、岩土工程監測、岩土工程檢測等。
(9)工程地質岩組是什麼擴展閱讀:
岩土工程專業的主要研究方向:
1、城市地下空間與地下工程:以城市地下空間為主體,研究地下空間開發利用過程中的各種環境岩土工程問題,地下空間資源的合理利用策略,以及各類地下結構的設計、計算方法和地下工程的施工技術(如淺埋暗挖、盾構法、凍結法、降水排水法、沉管法、TBM法等)及其優化措施等等。
2、邊坡與基坑工程:重點研究基坑開挖(包括基坑降水)對鄰近既有建築和環境的影響,基坑支護結構的設計計算理論和方法,基坑支護結構的優化設計和可靠度分析技術,邊坡穩定分析理論以及新型支護技術的開發應用等。
3、地基與基礎工程:重點開展地基模型及其計算方法、參數研究,地基處理新技術、新方法和檢測技術的研究,建築基礎(如柱下條形基礎、十字交叉基礎、筏形基礎、箱形基礎及樁基礎等)與上部結構的共同作用機理和規律研究等。
Ⅹ 我國工程地質的研究現狀
我國的工程地質學經過近50年的發展,今天已成為一門研究內涵豐富、理論體系嚴謹,具有中國特色的綜合性學科,並且是國際工程地質界的重要一員。
縱覽中國工程地質學的研究領域,是相當廣闊的。主要的有以下幾方面:
一、岩體工程特性研究和岩體工程地質力學的創立
大量的岩體工程實踐遇到的是地基、邊坡和地下工程圍岩的變形破壞問題,促使工程地質學家與岩石力學家、土木工程師們關注對岩體介質特性的研究,認識到岩體與岩石是既有著本質區別又相互聯系的介質。著名工程地質學家谷德振和他的同事們在一系列岩體工程勘察中,發現岩體的力學性質和行為主要受控於軟弱結構面的展布,包括層面、斷裂面、節理、片理等,使岩體成為非連續、非均質、各向異性的介質。他們首先從地質建造著手,劃分工程地質岩組,運用地質力學理論方法,研究結構面的形成機制和空間分布規律,進而研究岩體結構特性,劃分岩體結構類型。再按不同結構類型和工程建築要求進行岩體力學試驗及測試,最後再根據岩體結構特徵和力學屬性,建立力學模型作數學模擬和穩定性分析。將工程地質學與地質力學、岩石力學有機地結合起來,創立了岩體工程地質力學。它的理論體系、研究思路和方法,在國際上獨樹一幟。
20世紀80年代中期以來,在中國科學院地質研究所設立了工程地質力學開放研究實驗室,吸收國內學者共同協作,開展工程地質前沿課題和生產上需要解決的問題的研究工作,每次學術委員會上都要討論工程地質學發展的趨勢和應制定的科研方向。無形中成為我國工程地質學的研究中心,推動著我國工程地質學的不斷發展。
二、區域工程地質和區域地殼穩定性研究
我國地域遼闊,受地質和自然地理條件制約,區域工程地質條件復雜。因此,區域工程地質研究對國土資源開發利用,工程規劃布置以及地質環境保護等意義重大。早在20世紀50年代末,老一輩工程地質學家劉國昌、張咸恭、姜達權等就開展了此項研究工作,出版專著和編制全國工程地質分區圖。幾十年來,各大河流域、部分省區和西南、西北山區都開展了較系統的區域工程地質和環境地質研究,積累了豐富的資料。經過數年的努力,於1990年首次出版了由任國林主編的1∶400萬《中國工程地質圖及說明書》,並附有全國工程地質分區圖;1992年出版了由段永侯主編1∶600萬《中國環境地質圖系》,圖系以工程地質內容為主。標志著我國區域工程地質環境研究取得了豐碩的成果。
「區域地殼穩定性」的術語是由原蘇聯工程地質學家最早提出的,但未作說明和專門研究。在20世紀50年代末,我國學者谷德振和劉國昌倡導此項研究工作。它的涵意是指岩石圈內正在進行的地質、地球物理作用對地殼表層及工程建築安全的影響,即地殼現代活動對工程安全的影響程度。其研究思路是以地質力學理論為指導,強調以地質構造研究為基礎,以斷裂活動性、現代地應力場和地震活動性為主要研究內容,最終進行區域穩定性分級,分區和評價。在該研究領域,胡海濤等依據李四光的「安全島」思想,指導重大工程場址的選擇,取得了重要成果。例如,二灘水電站和大亞灣核電站的成功選址即是。區域地殼穩定性研究對我國工程地質勘察來說,具有特殊的意義,這也是具有中國特色,且在國際上處於領先地位的研究領域。
三、環境工程地質和地質災害的研究
環境工程地質是現代工程地質學的一個分支,是研究由於人類工程—經濟活動所引起的區域性和危害人類及工程安全的工程地質作用。這些有害的工程地質作用是誘發地震、地面沉降、地面塌陷、土地荒漠化、滑坡、泥石流等,它們常導致地質災害。環境工程地質就是研究這些作用(或問題)產生的機制和條件,進行預測和防治,其目的為了合理利用和保護地質環境。我國正式研究環境工程地質始自20世紀60年代的新豐江水庫誘發地震和上海的地面沉降。80年代初以來,共召開了四次全國性的環境工程地質學術討論會,涉及的內容豐富多采。有些研究成果在國際上處於先進地位。例如,上海地面沉降的防治,區域性滑坡預測模型。1995年出版了第一本由劉傳正著的《環境工程地質學導論》,全面論述了環境工程地質理論體系,基本研究內容以及各類環境工程地質作用研究的內容和方法,展示了環境工程地質的前景。
與環境工程地質相關的地質災害的研究,也主要由工程地質界承擔的。近十多年來,對危及人類和工程安全的各種地質災害,都進行了廣泛而深入的研究。在1989年1月召開的全國地質災害防治工作會議期間,成立了主要由工程地質學家參加的全國地質災害研究會,次年又創辦了《中國地質災害及防治學報》,對地質災害的研究起了促進作用,對地質災害的分類,形成機制、分布規律,預測方法及防治對策與措施等研究成果,及時在學報上開展交流。90年代還編制了中國地質災害類型圖,出版了段永侯等的專著《中國地質災害》。眾多的研究成果及著作,還有具體防治工程的成功,確立了我國在這一領域的國際地位。
四、特殊土結構和工程特性的研究
藉助於測試技術的現代化,我國在特殊土的微觀結構及其工程特性的研究方面也有了長足的發展。所謂特殊土,指的是成分和結構特殊,其工程(地質)性質也特殊的土類。我國幾乎所有的特殊土皆有分布,諸如淤泥土、黃土類土、膨脹土、鹽漬土、紅粘土,多年凍土等,它們的分布都具地域性,因此也可稱之為區域性土。由於特殊的不良工程性質,對當地工程建設以及生命財產的安全意義重大,因而促使學者們開展了這方面的研究。這里需要特別指出的是,張宗祜、高國瑞、黃熙齡、孔德坊、李生林等學者長期以來對黃土類土、膨脹土和淤泥類土所進行的卓有成效的研究成果,有關它們的微結構特徵和分類、物質成分、工程特性及指標,建築穩定性評價以及處理措施等,都進行了深入的研究。
五、工程地質勘察的理論和技術方法
工程地質學為工程建設服務是通過勘察工作來實現的。工程建築與其所在的地質環境之間存在著相互作用和相互制約的矛盾關系,要通過工程地質勘察才能搞清楚。50年來,難以計數的大大小小各類工程建築通過勘察,積累了十分豐富的經驗和教訓。總地說,我國的工程地質勘察經歷了三個歷史階段:第一階段是1966年以前,勘察工作體制由全盤學習蘇聯到自主獨立發展,勘察工作嚴格按規范要求進行,為國家基本建設的一批重大工程項目提供了地質依據。當時在工程選址和場地評價中,著重於工程地質條件的闡明和定性評價為主。第二階段是1966年到1978年,「文革」期間工程地質勘察受到嚴重干擾而很不正常,破壞了基本建設程序,一些大工程搞了邊勘察、邊設計、邊施工的「三邊」方針,盲目簡化勘察程序,有的重大工程實際上搞了一次性勘察,造成嚴重損失。如葛洲壩水利樞紐、焦枝鐵路、第二汽車製造廠等工程即是。第三階段1978年以來,以經濟建設為中心的改革開放年代,形成了較完整的工程地質勘察體制,制定新的勘察規范,與國際接軌,勘察質量大大提高。在土木工程中又引進歐美國家的岩土工程技術體制,兩種技術體制並存。一些重大工程採取國際招標方式,以引進國外先進的勘察技術和資金。工程地質勘察工作進入了一個新的歷史階段。
經過數十年實踐和理論研究,逐漸形成和完善了我國工程地質勘察的理論體系,即「以工程地質條件的研究為基礎,以工程地質問題的分析為核心,以工程地質勘察技術方法為手段,以工程地質評價決策為目的。」這一理論體系在由張咸恭、王思敬和張倬元主編的《中國工程地質學》中得到了充分體現。可以無愧地說,我國的工程地質勘察事業在上述勘察理論體系的指引下取得了巨大成就,令世人囑目。例如,三峽、小浪底、二灘、劉家峽、龍羊峽等一批巨型水利樞紐和水電站工程;大亞灣、秦山核電站;寶成、蘭新、成昆、南昆、大秦、京九等鐵路干線;還有許多新興的城市、礦山等等。所取得的優質勘察成果,保證了工程的順利設計、施工和運行,也得到了國際同行們的贊許。在勘察基礎上,形成了「水利水電工程地質」、「鐵路工程地質」、「礦山工程地質」和「城市及房屋建築工程地質」等專門工程地質系列。
當前,新技術方法在工程地質勘探中被推廣應用,已取得了較好效果。例如,遙感圖像(航衛片)在工程地質測繪填圖中的應用;大口徑鑽進和小口徑金剛石鑽進在水電工程地質勘探中的採用,砂卵石層鑽探與取樣新技術,套鑽和岩芯定向鑽進技術;聲波探測、地質雷達、地球物理層析成像技術(CT)、鑽孔彩色電視錄像及圖像處理系統等物探技術的使用;計算機技術在工程地質勘察中普遍採用,各種專用軟體的開發等。
50年來我國的工程地質教育一直興旺不衰。至今全國有十餘所高等學校設置有培養工程地質專業人才的院系,為國家培養輸送了大批研究生和本科生。此外,在中國科學院地質研究所等多所科研機構專門培養工程地質專業研究生。形成了一支宏大的工程地質專業隊伍。在教學實踐中,編寫出了各具特色的系列工程地質專業教材。高校和科研院所還承擔了一些重大的生產和科研課題,既完成了生產、科研任務,又培養了優秀專業人才。
中國工程地質界與國際工程地質協會的聯系密切,在20世紀80年代初不少同行加入了國際工程地質協會,建立中國國家小組,隨工程地質專業委員會一起活動。中國工程地質界積極參加國際工程地質協會組織的學術活動。自1983年起我國組團參加了歷屆國際工程地質大會,所提交的論文數都位居前列。現任國際工程地質與環境協會主席,是我國工程院院士王思敬教授,他是1998年在荷蘭阿姆斯特丹舉行的第8屆國際工程地質大會上被推選擔任此職的,這是中國工程地質界的驕傲!