地理信息系統路徑分析
1. 百度地圖的路徑搜索演算法
這個還是要問程序猿,現在比較流行A*演算法,至於網路是否開發出了新的演算法不得而知,畢竟沒有完全相同的程序。
給你看一篇文獻:
地圖中最短路徑的搜索演算法研究
學生:李小坤 導師:董巒
摘要:目前為止, 國內外大量專家學者對「最短路徑問題」進行了深入的研究。本文通過理論分析, 結合實際應用,從各個方面較系統的比較廣度優先搜索演算法(BFS)、深度優先搜索演算法(DFS)、A* 演算法的優缺點。
關鍵詞:最短路徑演算法;廣度優先演算法;深度優先演算法;A*演算法;
The shortest path of map's search algorithm
Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic.
Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm;
前言:
最短路徑問題是地理信息系統(GIS)網路分析的重要內容之一,而且在圖論中也有著重要的意義。實際生活中許多問題都與「最短路徑問題」有關, 比如: 網路路由選擇, 集成電路設計、布線問題、電子導航、交通旅遊等。本文應用深度優先演算法,廣度優先演算法和A*演算法,對一具體問題進行討論和分析,比較三種算的的優缺點。
在地圖中最短路徑的搜索演算法研究中,每種演算法的優劣的比較原則主要遵循以下三點:[1]
(1)演算法的完全性:提出一個問題,該問題存在答案,該演算法能夠保證找到相應的答案。演算法的完全性強是演算法性能優秀的指標之一。
(2)演算法的時間復雜性: 提出一個問題,該演算法需要多長時間可以找到相應的答案。演算法速度的快慢是演算法優劣的重要體現。
(3)演算法的空間復雜性:演算法在執行搜索問題答案的同時,需要多少存儲空間。演算法佔用資源越少,演算法的性能越好。
地圖中最短路徑的搜索演算法:
1、廣度優先演算法
廣度優先演算法(Breadth-First-Search),又稱作寬度優先搜索,或橫向優先搜索,是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型,Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。廣度優先演算法其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。
廣度優先搜索演算法偽代碼如下:[2-3]
BFS(v)//廣度優先搜索G,從頂點v開始執行
//所有已搜索的頂點i都標記為Visited(i)=1.
//Visited的初始分量值全為0
Visited(v)=1;
Q=[];//將Q初始化為只含有一個元素v的隊列
while Q not null do
u=DelHead(Q);
for 鄰接於u的所有頂點w do
if Visited(w)=0 then
AddQ(w,Q); //將w放於隊列Q之尾
Visited(w)=1;
endif
endfor
endwhile
end BFS
這里調用了兩個函數:AddQ(w,Q)是將w放於隊列Q之尾;DelHead(Q)是從隊列Q取第一個頂點,並將其從Q中刪除。重復DelHead(Q)過程,直到隊列Q空為止。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
時間復雜度:最差情形下,BFS必須尋找所有到可能節點的所有路徑,因此其時間復雜度為,其中|V|是節點的數目,而 |E| 是圖中邊的數目。
空間復雜度:因為所有節點都必須被儲存,因此BFS的空間復雜度為,其中|V|是節點的數目,而|E|是圖中邊的數目。另一種說法稱BFS的空間復雜度為O(B),其中B是最大分支系數,而M是樹的最長路徑長度。由於對空間的大量需求,因此BFS並不適合解非常大的問題。[4-5]
2、深度優先演算法
深度優先搜索演算法(Depth First Search)英文縮寫為DFS,屬於一種回溯演算法,正如演算法名稱那樣,深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。[6]其過程簡要來說是沿著頂點的鄰點一直搜索下去,直到當前被搜索的頂點不再有未被訪問的鄰點為止,此時,從當前輩搜索的頂點原路返回到在它之前被搜索的訪問的頂點,並以此頂點作為當前被搜索頂點。繼續這樣的過程,直至不能執行為止。
深度優先搜索演算法的偽代碼如下:[7]
DFS(v) //訪問由v到達的所有頂點
Visited(v)=1;
for鄰接於v的每個頂點w do
if Visited(w)=0 then
DFS(w);
endif
endfor
end DFS
作為搜索演算法的一種,DFS對於尋找一個解的NP(包括NPC)問題作用很大。但是,搜索演算法畢竟是時間復雜度是O(n!)的階乘級演算法,它的效率比較低,在數據規模變大時,這種演算法就顯得力不從心了。[8]關於深度優先搜索的效率問題,有多種解決方法。最具有通用性的是剪枝,也就是去除沒有用的搜索分支。有可行性剪枝和最優性剪枝兩種。
BFS:對於解決最短或最少問題特別有效,而且尋找深度小,但缺點是內存耗費量大(需要開大量的數組單元用來存儲狀態)。
DFS:對於解決遍歷和求所有問題有效,對於問題搜索深度小的時候處理速度迅速,然而在深度很大的情況下效率不高。
3、A*演算法
1968年的一篇論文,「P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Trans. Syst. Sci. and Cybernetics, SSC-4(2):100-107, 1968」。[9]從此,一種精巧、高效的演算法——A*演算法問世了,並在相關領域得到了廣泛的應用。A* 演算法其實是在寬度優先搜索的基礎上引入了一個估價函數,每次並不是把所有可擴展的結點展開,而是利用估價函數對所有未展開的結點進行估價, 從而找出最應該被展開的結點,將其展開,直到找到目標節點為止。
A*演算法主要搜索過程偽代碼如下:[10]
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
算起點的估價值;
將起點放入OPEN表;
while(OPEN!=NULL) //從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
endif
for(當前節點n 的每個子節點X)
算X的估價值;
if(X in OPEN)
if(X的估價值小於OPEN表的估價值)
把n設置為X的父親;
更新OPEN表中的估價值; //取最小路徑的估價值;
endif
endif
if(X inCLOSE)
if( X的估價值小於CLOSE表的估價值)
把n設置為X的父親;
更新CLOSE表中的估價值;
把X節點放入OPEN //取最小路徑的估價值
endif
endif
if(X not inboth)
把n設置為X的父親;
求X的估價值;
並將X插入OPEN表中; //還沒有排序
endif
end for
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
end while(OPEN!=NULL)
保存路徑,即 從終點開始,每個節點沿著父節點移動直至起點,這就是你的路徑;
A *演算法分析:
DFS和BFS在展開子結點時均屬於盲目型搜索,也就是說,它不會選擇哪個結點在下一次搜索中更優而去跳轉到該結點進行下一步的搜索。在運氣不好的情形中,均需要試探完整個解集空間, 顯然,只能適用於問題規模不大的搜索問題中。而A*演算法與DFS和BFS這類盲目型搜索最大的不同,就在於當前搜索結點往下選擇下一步結點時,可以通過一個啟發函數來進行選擇,選擇代價最少的結點作為下一步搜索結點而跳轉其上。[11]A *演算法就是利用對問題的了解和對問題求解過程的了解, 尋求某種有利於問題求解的啟發信息, 從而利用這些啟發信息去搜索最優路徑.它不用遍歷整個地圖, 而是每一步搜索都根據啟發函數朝著某個方向搜索.當地圖很大很復雜時, 它的計算復雜度大大優於D ijks tr a演算法, 是一種搜索速度非常快、效率非常高的演算法.但是, 相應的A*演算法也有它的缺點.啟發性信息是人為加入的, 有很大的主觀性, 直接取決於操作者的經驗, 對於不同的情形要用不同的啟發信息和啟發函數, 且他們的選取難度比較大,很大程度上找不到最優路徑。
總結:
本文描述了最短路徑演算法的一些步驟,總結了每個演算法的一些優缺點,以及演算法之間的一些關系。對於BFS還是DFS,它們雖然好用,但由於時間和空間的局限性,以至於它們只能解決規模不大的問題,而最短或最少問題應該選用BFS,遍歷和求所有問題時候則應該選用DFS。至於A*演算法,它是一種啟發式搜索演算法,也是一種最好優先的演算法,它適合於小規模、大規模以及超大規模的問題,但啟發式搜索演算法具有很大的主觀性,它的優劣取決於編程者的經驗,以及選用的啟發式函數,所以用A*演算法編寫一個優秀的程序,難度相應是比較大的。每種演算法都有自己的優缺點,對於不同的問題選擇合理的演算法,才是最好的方法。
參考文獻:
[1]陳聖群,滕忠堅,洪親,陳清華.四種最短路徑演算法實例分析[J].電腦知識與技術(學術交流),2007(16):1030-1032
[2]劉樹林,尹玉妹.圖的最短路徑演算法及其在網路中的應用[J].軟體導刊,2011(07):51-53
[3]劉文海,徐榮聰.幾種最短路徑的演算法及比較[J].福建電腦,2008(02):9-12
[4]鄧春燕.兩種最短路徑演算法的比較[J].電腦知識與技術,2008(12):511-513
[5]王蘇男,宋偉,姜文生.最短路徑演算法的比較[J].系統工程與電子技術,1994(05):43-49
[6]徐鳳生,李天志.所有最短路徑的求解演算法[J].計算機工程與科學,2006(12):83-84
[7]李臣波,劉潤濤.一種基於Dijkstra的最短路徑演算法[J].哈爾濱理工大學學報,2008(03):35-37
[8]徐鳳生.求最短路徑的新演算法[J].計算機工程與科學,2006(02).
[9] YanchunShen . An improved Graph-based Depth-First algorithm and Dijkstra algorithm program of police patrol [J] . 2010 International Conference on Electrical Engineering and Automatic Control , 2010(3) : 73-77
[10]部亞松.VC++實現基於Dijkstra演算法的最短路徑[J].科技信息(科學教研),2008(18):36-37
[11] 楊長保,王開義,馬生忠.一種最短路徑分析優化演算法的實現[J]. 吉林大學學報(信息科學版),2002(02):70-74
2. 地理信息系統(GIS)技術系統原理是什麼
最簡單地來說,GIS是以測繪測量為基礎,以資料庫作為數據儲存和使用的數據源,以計算機編程為平台的全球空間分析即使技術。這是GIS的本質,也是核心。
物質世界中的任何事物都被牢牢地打上了時空的烙印。人們的生產和生活中百分之八十以上的信息和地理空間位置有關。地理信息系統( Geographic Information System, 簡稱 GIS)作為獲取、存儲、分析和管理地理空間數據的重要工具、技術和學科,近年來得到了廣泛關注和迅猛發展。由於信息技術的發展,數字時代的來臨,理論上來說,GIS可以運用於現階段任何行業。 從技術和應用的角度, GIS 是解決空間問題的工具、方法和技術;
從學科的角度, GIS 是在地理學、地圖學、測量學和計算機科學等學科基礎上發展起來的一門學科,具有獨立的學科體系;
從功能上, GIS 具有空間數據的獲取、存儲、顯示、編輯、處理、分析、輸出和應用等功能;
從系統學的角度, GIS 具有一定結構和功能,是一個完整的系統。
簡而言之, GIS 是一個基於資料庫管理系統( DBMS )的分析和管理空間對象的信息系統,以地理空間數據為操作對象是地理信息系統與其它信息系統的根本區別。
GIS即地理信息系統(Geographic Information System),經過了40年的發展,到今天已經逐漸成為一門相當成熟的技術,並且得到了極廣泛的應用。尤其是近些年,GIS更以其強大的地理信息空間分析功能,在GPS及路徑優化中發揮著越來越重要的作用。GIS地理信息系統是以地理空間資料庫為基礎,在計算機軟硬體的支持下,運用系統工程和信息科學的理論,科學管理和綜合分析具有空間內涵的地理數據,以提供管理、決策等所需信息的技術系統。簡單的說,地理信息系統就是綜合處理和分析地理空間數據的一種技術系統。
3. ArcGIS地理信息系統空間分析實驗教程的圖書目錄
導論
1.1地理信息系統
1.1.1基本概念
1.1.2 GIS系統構成
1.1.3 GIS功能與應用
1.1.4 GIS技術與發展
1.2 GIS空間分析
1.2.1空間分析
1.2.2基於GIS的空間分析
1.2.3常用GIS平台空間分析功能比較
1.3 ArcGIS 9概述
1.3.1 ArcGIS 9體系結構
L 3.2 ArcGIS 9軟體特色
1.3.3 ArcGIS 9空間分析 ArcGIS應用基礎
2.1 ArcMap基礎
2.1.1 ArcMap的窗口組成
2.1.2新地圖文檔創建
2.1.3數據層的載入
2.1.4數據層的基本操作
2.1.5數據層的保存
2.2 ArcCatalog應用基礎
2.2.1 ArcCatalog基礎操作
2.2.2 目錄內容瀏覽
2.2.3數據搜索
2.2.4地圖與圖層操作
2.2.5地理數據輸出
2.3 Geoprocessing空間處理框架
2.3.1空間處理框架的基本介紹
2.3.2ArcToolbox應用基礎
2.3.3 ArcToolBox內容簡介 空間數據的採集與組織
3.1 Shapefile文件創建
3.1.1創建Shapefile和dBASE表
3.1.2添加和刪除屬性項
3.2 Coverage文件創建
3.2.1創建新的Coverage和INFO表
3.2.2建立拓撲
3.2.3定義Coverage的坐標系統
3.2.4 Coverage維護操作
3.3 Geodatabase資料庫創建
3.3.1 Geodatabase概述
3.3.2 Geodatabase建立的一般過程
3.3.3創建一個新的Geodatabase
3.3.4建立資料庫中的基本組成項
3.3.5向Geodatabase載入數據
3.3.6進一步定義資料庫
3.4數據編輯
3.4.1圖形編輯
3.4.2屬性編輯
3.5實例與練習
3.5.1某地區地塊的拓撲關系建立
3.5.2某市區幾何網路的建立 空間數據的轉換與處理
4.1投影變換
4.1.1定義投影
4.1.2投影變換
4.1.3數據變換
4.2數據格式轉換
4.2.1數據結構轉換
4.2.2數據格式轉換
4.3數據處理
4.3.1數據裁切
4.3.2數據拼接
4.3.3數據提取
4.4練習:數據更新變換 空間數據的可視化表達
5.1數據符號化
5.1.1矢量數據符號化
5.1.2柵格數據符號化
5.2專題地圖編制
5.2.1版面設計
5.2.2制圖數據操作
5.2.3地圖標注
5.2.4地圖整飾
5.2.5地圖輸出
5.3實例與練習——製作上海市行政區劃圖 GIS空間分析導論
6.1空間分析的數據模型
6.2 GIS空間分析的基本原理與方法
6.2.1柵格數據分析的模式
6.2.2矢量數據分析方法
6.2.3空間統計分析與內插
6.2.4三維空間分析
6.3 ArcGIS 9空間分析模塊和功能 矢量數據的空間分析
7.1緩沖區分析
7.1.1基本概念
7.1.2緩沖區的建立
7.2疊置分析
7.2.1圖層擦除(Erase)
7.2.2識別疊加(Identity)
7.2.3交集操作(Intersect)
7.2.4對稱區別(symrnetrical Difference)
7.2.5圖層合並(Union)
7.2.6修正更新(Update)
7.3網路分析
7.3.1網路的組成和建立
7.3.2網路分析的預處理
7.3.3網路分析的基本功能和操作
7.4實例與練習
7.4.1市區擇房分析
7.4.2最短路徑問題分析與應用 柵格數據的空間分析
8.1設置分析環境
8.1.1載入分析模塊
8.1.2設置工作路徑
8.1.3設置單元大小
8.1.4設置分析區域
8.1.5選擇坐標系統
8.1.6管理過程文件
8.2距離制圖
8.2.1距離制圖基礎
8.2.2直線距離
8.2.3區域分配
8.2.4成本距離加權
8.2.5最短路徑
8.3密度制圖
8.4表面分析
8.4.1柵格插值
8.4.2等值線繪制
8.4.3地形因子提取
8.4.4山體陰影
8.5統計分析
8.5.1單元統計
8.5.2鄰域統計
8.5.3分類區統計
8.6重分類
8.6.1新值替代
8.6.2舊值合並
8.6.3重新分類
8.6.4空值設置
8.7柵格計算
8.7.1數學運算
8.7.2函數運算
8.7.3柵格計算器
8.8實例與練習
8.8.1學校選址
8.8.2尋找最佳路徑
8.8.3熊貓分布密度制圖
8.8.4 GDP區域分布圖的生成與對比
8.8.5山頂點的提取 三維分析
9.1創建表面
9.1.1柵格表面的創建
9.1.2 TIN表面的創建
9.2表面分析
9.2.1計算表面積與體積
9.2.2坡度與坡向的計算
9.2.3可視性分析
9.2.4提取斷面
9.2.5表面陰影
9.2.6表面長度的計算
9.3 ArcScene三維可視化
9.3.1要素的立體顯示
9.3.2設置場景屬性
9.3.3飛行動畫
9.4數據轉換
9.4.1二維要素三維化
9.4.2表面數據的矢量轉換
9.5實例與練習
9.5.1地形指標提取
9.5.2地形特徵信息提取
9.5.3表面創建及景觀圖製作
9.5.4污染物在蓄水層中的可視化
9.5.5模擬場景飛行 地統計分析
10.1地統計基礎
10.1.1基本原理
10.1.2克里格插值
10.1.3 ArcGIs地統計分析
10.2探索性數據分析
10.2.1數據分析工具
10.2.2檢驗數據分布
10.2.3尋找數據離群值
10.2.4全局趨勢分析
10.2.5空間自相關及方向變異
10.2.6多數據集協變分析
10.3空間確定性插值
10.3.1反距離加權插值
10.3.2全局多項式插值
10.3.3局部多項式插值
10.3.4徑向基函數插值
10.4地統計插值
10.4.1克里格插值基礎
10.4.2普通克里格插值
10.4.3簡單克里格插值
10.4.4泛克里格插值
10.4.5指示克里格插值
10.4.6概率克里格插值
10.4.7析取克里格插值
10.4.8協同克里格插值
10.5練習:克里格方法內插生成高程曲面 水文分析
11.1無窪地DEM生成
11.1.1水流方向提取
11.1.2窪地計算
11.1.3窪地填充
11.2匯流累積量
11.3水流長度
11.4河網的提取
11.4.1河網的生成
11.4.2 Stream Link的生成
11.4.3河網分級
11.5流域的分割
11.5.1流域盆地的確定
11.5.2匯水區出水口的確定
11.5.3集水流域的生成
11.6實例與練習
11.6.1山脊、山谷線的提取
11.6.2地形鞍部的提取
11.6.3溝谷網路的提取及溝壑密度的計算 空間分析建模
12.1空間分析模型與建模
12.1.1空間分析模型及其分類
12.1.2空間分析建模
12.2圖解建模
12.2.1基本概念及類型
12.2.2圖解模型的形成過程
12.2.3實例分析
12.3腳本文件
12.3.1簡介
12.3.2腳本編寫基礎
12.3.3創建腳本文件
12.4實例與練習
12.4.1明暗等高線製作
12.4.2提取坡向變率(SClA)
參考文獻
4. 地理信息系統概論的目錄
第1章導論
第1節地理信息系統基本概念
一、數據與信息
二、地理信息與地理信息系統
第2節地理信息系統的基本構成
一、系統硬體
二、系統軟體
三、空間數據
四、應用人員
五、應用模型
第3節地理信息系統的功能簡介
一、基本功能
二、應用功能
第4節地理信息系統的發展概況
一、發展概況
二、基礎理論
復習思考題
第2章地理信息系統的數據結構
第1節地理空間及其表達
一、地理空間的概念
二、空間實體的表達
第2節地理空間數據及其特徵
一、GIS空間數據的分類
二、空間數據的基本特徵
三、空間數據的拓撲關系
四、空間數據的計算機表示
第3節空間數據結構的類型
一、矢量數據結構
二、柵格數據結構
三、曲面數據結構
第4節空間數據結構的建立
一、系統功能與數據源間的關系
二、空間數據的分類與編碼
三、矢量數據的輸入與編輯
四、柵格數據的輸入
五、曲面數據的輸入
復習思考題
第3章空間數據處理
第1節空間數據的變換
一、幾何糾正
二、地圖投影及其轉換
第2節空間數據結構的轉換
一、由矢量向柵格的轉換
二、由柵格向矢量的轉換
第3節多元空間數據的融合
一、遙感與GIS數據的融合
二、不同格式數據的融合
第4節空間數據的壓縮與重分類
一、空間數據的壓縮
二、空間數據的重分類
第5節空間數據的內插方法
一、點的內插
二、區域的內插
第6節空間拓撲關系的編輯
一、多邊形連接編輯
二、節點連接編輯
復習思考題
第4章地理信息系統空間資料庫
第1節空間資料庫概述
一、空間資料庫的概念
二、空間資料庫的設計
三、空間資料庫的實現和維護
第2節空間資料庫概念模型設計
一、語義數據模型
二、面向對象的數據模型
第3節空間資料庫邏輯模型設計
一、關系數據模型
二、邏輯模型設計
第4節空間資料庫的物理設計
一、空間資料庫的物理設計概念
二、空間資料庫的物理設計步驟
第5節空間數據查詢
一、空間關系查詢類型
二、屬性數據查詢
三、空間屬性聯合查詢
四、空間查詢語言
第6節空間資料庫索引
一、范圍索引
二、格網空間索引
三、四叉樹空間索引
第7節空間元數據
一、元數據及其作用
二、元數據實例
第8節空間資料庫引擎
一、空間資料庫引擎概述
二、空間資料庫引擎的工作原理
第9節空間時態資料庫
一、空間時態資料庫概述
二、時空一體化數據模型
復習思考題
第5章空間分析的原理與方法
第1節數字地形模型分析
一、地形因子的計算
二、地形剖面線計算
三、DEM的通視分析
第2節空間疊合分析
一、空間疊合分析的概念
二、基於矢量數據的疊合分析
三、基於柵格數據的疊合分析
第3節空間鄰近度分析
一、空間緩沖區分析
二、Voronoi多邊形分析
第4節空間網路分析
一、網路圖論的基本概念
二、計算最短路徑的Dijkstra演算法
復習思考題
第6章地理信息系統的應用模型
第1節GIS應用模型概述
一、GIs應用模型的分類
二、GIS應用模型的構建
第2節土地定級估價模型
一、技術路線
二、土地定級估價模型
三、應用實例
第3節適宜性分析模型
一、一般形式
二、應用實例
第4節發展預測模型
一、一般介紹
二、應用實例
第5節區位選擇模型
一、數據准備階段
二、綜合影響評價階段
三、區位選擇分析階段
第6節交通規劃模型
一、交通發生量預測模型
二、出行分布預測模型
三、交通量最優分配規劃
第7節地球科學模擬模型
一、確定土壤侵蝕的數值分析模型
二、設計土壤侵蝕數據處理流程
三、土壤侵蝕圖的輸出
復習思考題
第7章地理信息系統的設計與評價
第1節應用型GIS設計概述
一、系統設計的目的
二、系統設計的模式
三、系統設計的流程
第2節地理信息系統的設計
一、系統分析
二、系統設計
三、系統實施
四、系統運行和維護
第3節地理信息的標准化
一、地理信息標准化的內容
二、地理信息標准化的制定
第4節地理信息系統的評價
復習思考題
第8章地理信息系統產品的輸出設計
第1節地理信息系統產品的輸出形式
一、地理信息系統產品及其類型
二、網路地圖和數字地球
第2節地理信息系統圖形輸出系統設計
一、圖形坐標系與顏色模型
二、輸出的幾何變換
三、地形圖與專題地圖的輸出組織形式
第3節地理信息系統的可視化與虛擬現實
一、三維空間制圖模型
二、數字高程模型的構造
三、虛擬現實的設計與實現
復習思考題
附錄
參考文獻
……
5. 與GIS有關的最優路徑分析
最短路徑分析,應該先有數據吧,並且對數據進行網路分析等等工作,不是一篇代碼就能搞定的吧。
6. GIS 最優路徑分析如何實現
具體要看你用的是那個平台,一般的平台會有相應的模型或者介面,准備好符合條件的數據然後調用
7. GIS空間分析方法是什麼
指在GIS(地理信息系統)里實現分析空間數據,即從空間數據中獲取有關地理對象的空間位置、分布、形態、形成和演變等信息並進行分析。
根據作用的數據性質不同,可以分為:
1、基於空間圖形數據的分析運算;
2、基於非空間屬性的數據運算;
3、空間和非空間數據的聯合運算。空間分析賴以進行的基礎是地理空間資料庫,其運用的手段包括各種幾何的邏輯運算、數理統計分析,代數運算等數學手段,最終的目的是解決人們所涉及到地理空間的實際問題,提取和傳輸地理空間信息,特別是隱含信息,以輔助決策。
(7)地理信息系統路徑分析擴展閱讀
空間分析源於60年代地理學的計量革命,在開始階段,主要是應用定量(主要是統計)分析手段用於分析點、線、面的空間分布模式。後來更多的是強調地理空間本身的特徵、空間決策過程和復雜空間系統的時空演化過程分析。
實際上自有地圖以來,人們就始終在自覺或不自覺地進行著各種類型的空間分析。如在地圖上量測地理要素之間的距離、方位、面積,乃至利用地圖進行戰術研究和戰略決策等,都是人們利用地圖進行空間分析的實例,而後者實質上已屬較高層次上的空間分析。
8. GIS二次開發中怎樣實現最短路徑分析
這個具體看你用的是那個平台了,一般的平台都會提供相應的模型或者介面啊版之類的,只需權准備符合條件的數據然後調用即可實現,比如說超圖里SuperMap Objects 根據查找結果的需求不同,提供了三種介面來實現最佳路徑分析:1、Path:查找經過一系列有序站點的最佳路徑,結果返回一個路由對象 soGeoLineM。行駛導引通過 GetPathTable 介面導出。2、PathEx:查找經過一系列有序站點的最佳路徑,結果返回一個路由對象soGeoLineM,同時會返迴路徑通過的結點和弧段的標識ID(即在網路分析環境中設置的ID欄位,不一定是SmID)。行駛導引通過 GetPathTable 介面導出。PathEx2:查找經過一系列有序站點的最佳路徑。結果提供 PathTable 行駛導引表,該表記錄了結果路由需要經歷的結點和弧段名稱,以及在每個結點和弧段上的轉向信息,具體花費。新方法提高了分析效率,對返回結果可靈活設置(通過 soPathResultSetting 和 soPathResultInfo )。
具體的實現一般的幫助文檔里會有實例演示,不知道這樣回答滿意不。
9. 地理信息系統
工資可以是3K,,5K,一直往上。。。
地理信息系統專業有前途,但在大學不要光看書,要多交流,多動手。
為什麼這么說?
GIS專業絕對是個好專業,不然,為什麼很多學校都在近些年開設了這些專業呢? 這是社會對GIS人才的需求驅動的結果。
為什麼不能光看書?因為社會對地理信息系統的需求不是單純的GIS理論知識,需要的是GIS應用,用GIS解決現實生活中的問題,比如,GIS解決環境、資源、規劃、公共安全等問題,這些應用需要GIS理論支撐,但更重要的是行業的知識與GIS結合,GIS應用在很多時候是一個手段,比如GIS為相關部門提供決策支持。怎麼學習GIS應用,比如,用ArcGIS軟體,做一個選址分析、做一個污染源分析、路徑分析等等,這些需要理論的支撐(分析的原理),但也要懂GIS軟體的操作。熟悉GIS軟體,是提高自己GIS水平的一個很重要的方法。
為什麼要多交流?學生進入大學,馬上進入理論學習,學生並不知道自己學這些知識做什麼?在什麼地方用?這是很多大學GIS教育的通病。學生更需要的是實踐,更需要的是老師的引導,而不是老師把備課的內容站在講台上講完後,學生抄了筆記,期末考試背一下筆記,拿個80分就是學到了知識。老師應該給學生創造更多的實踐機會,比如,教會學生使用GIS軟體、教會學生如何用GIS軟體進行一些分析,還可以教學生進行一些GIS軟體的二次開發等等。如果老師提供不了這些條件,那是教育方式的不足,那麼學生不要自暴自棄,一定要多交流,通過網路查詢GIS學習的方法(比如,你在網路裡面問這個問題就很好),通過網路了解GIS學習的資源,比如,哪裡可以下到GIS軟體,哪裡可以下載到GIS資料;可以到圖書館閱讀GIS應用、開發等書籍;可以參加大型GIS公司每年舉行的GIS應用開發競賽,比如ESRI公司、超圖公司、MapGIS公司都在搞,這些機會要把握。還可以加入GIS的BBS,看看前輩門在做什麼?成立一個GIS群,大家交流學習經驗、心得等。
為什麼多動手?就是主動地突擊,而不是被動接受,沒有人會主動來教自己學習。實踐很重要。
堅持下去,GIS同行們,中國的GIS發展需要大家。
10. 地理信息系統的歷史發展
古往今來,幾乎人類所有活動都是發生在地球上,都與地球表面位置(即地理空間位置)息息相關,隨著計算機技術的日益發展和普及,地理信息系統(Geography Information System,GIS)以及在此基礎上發展起來的「數字地球」、「數字城市」在人們的生產和生活中起著越來越重要的作用。
GIS可以分為以下五部分:
人員,是GIS中最重要的組成部分。開發人員必須定義GIS中被執行的各種任務,開發處理程序。 熟練的操作人員通常可以克服GIS軟體功能的不足,但是相反的情況就不成立。最好的軟體也無法彌補操作人員對GIS的一無所知所帶來的負作用。
數據,精確的可用的數據可以影響到查詢和分析的結果。
硬體,硬體的性能影響到軟體對數據的處理速度,使用是否方便及可能的輸出方式。
軟體,不僅包含GIS軟體,還包括各種資料庫,繪圖、統計、影像處理及其它程序。
過程,GIS 要求明確定義,一致的方法來生成正確的可驗證的結果。
GIS屬於信息系統的一類,不同在於它能運作和處理地理參照數據。地理參照數據描述地球表面(包括大氣層和較淺的地表下空間)空間要素的位置和屬性,在GIS中的兩種地理數據成分:空間數據,與空間要素幾何特性有關;屬性數據,提供空間要素的信息。
地理信息系統(GIS)與全球定位系統(GPS)、遙感系統(RS)合稱3S系統。
地理信息系統(GIS) 是一種具有信息系統空間專業形式的數據管理系統。在嚴格的意義上, 這是一個具有集中、存儲、操作、和顯示地理參考信息的計算機系統。例如,根據在資料庫中的位置對數據進行識別。實習者通常也認為整個GIS系統包括操作人員以及輸入系統的數據。
地理信息系統(GIS)技術能夠應用於科學調查、資源管理、財產管理、發展規劃、繪圖和路線規劃。例如,一個地理信息系統(GIS)能使應急計劃者在自然災害的情況下較易地計算出應急反應時間,或利用GIS系統來發現那些需要保護不受污染的濕地。
地理數據和地理信息
什麼是信息(Information)?1948年,美國數學家、資訊理論的創始人香農(Claude Elwood Shannon)在題為《通訊的數學理論》的論文中指出:「信息是用來消除隨機不定性的東西」; 1948年,美國著名數學家、控制論的創始人維納(Norbert Wiener)在《控制論》一書中,指出:「信息就是信息,既非物質,也非能量。」 狹義資訊理論將信息定義為「兩次不定性之差」,即指人們獲得信息前後對事物認識的差別;廣義資訊理論認為,信息是指主體(人、生物或機器)與外部客體(環境、其他人、生物或機器)之間相互聯系的一種形式,是主體與客體之間的一切有用的消息或知識。我們認為信息是通過某些介質向人們(或系統)提供關於現實世界新的事實的知識,它來源於數據且不隨載體變化而變化,它具有客觀性、實用性、傳輸性和共享性的特點 。
信息與數據既有區別,又有聯系。數據是定性、定量描述某一目標的原始資料,包括文字、數字、符號、語言、圖像、影像等,它具有可識別性、可存儲性、可擴充性、可壓縮性、可傳遞性及可轉換性等特點。信息與數據是不可分離的,信息來源於數據,數據是信息的載體。數據是客觀對象的表示,而信息則是數據中包含的意義,是數據的內容和解釋。對數據進行處理(運算、排序、編碼、分類、增強等)就是為了得到數據中包含的信息。數據包含原始事實,信息是數據處理的結果,是把數據處理成有意義的和有用的形式。
地理信息作為一種特殊的信息,它同樣來源於地理數據。地理數據是各種地理特徵和現象間關系的符號化表示,是指表徵地理環境中要素的數量、質量、分布特徵及其規律的數字、文字、圖像等的總和。地理數據主要包括空間位置數據、屬性特徵數據及時域特徵數據三個部分。空間位置數據描述地理對象所在的位置,這種位置既包括地理要素的絕對位置(如大地經緯度坐標),也包括地理要素間的相對位置關系(如空間上的相鄰、包含等)。屬性數據有時又稱非空間數據,是描述特定地理要素特徵的定性或定量指標,如公路的等級、寬度、起點、終點等。時域特徵數據是記錄地理數據採集或地理現象發生的時刻或時段。時域特徵數據對環境模擬分析非常重要,正受到地理信息系統學界越來越多的重視。空間位置、屬性及時域特徵構成了地理空間分析的三大基本要素。
地理信息是地理數據中包含的意義,是關於地球表面特定位置的信息,是有關地理實體的性質、特徵和運動狀態的表徵和一切有用的知識。作為一種特殊的信息,地理信息除具備一般信息的基本特徵外,還具有區域性、空間層次性和動態性特點。
當今社會,人們非常依賴計算機以及計算機處理過的信息。在計算機時代,信息系統部分或全部由計算機系統支持,因此,計算機硬體、軟體、數據和用戶是信息系統的四大要素。其中,計算機硬體包括各類計算機處理及終端設備;軟體是支持數據信息的採集、存貯加工、再現和回答用戶問題的計算機程序系統;數據則是系統分析與處理的對象,構成系統的應用基礎;用戶是信息系統所服務的對象。
從20世紀中葉開始,人們就開始開發出許多計算機信息系統,這些系統採用各種技術手段來處理地理信息,它包括:
○ 數字化技術:輸入地理數據,將數據轉換為數字化形式的技術;
○ 存儲技術:將這類信息以壓縮的格式存儲在磁碟、光碟、以及其他數字化存儲介質上的技術;
○ 空間分析技術:對地理數據進行空間分析,完成對地理數據的檢索、查詢,對地理數據的長度、面積、體積等的量算,完成最佳位置的選擇或最佳路徑的分析以及其他許多相關任務的方法;
○ 環境預測與模擬技術:在不同的情況下,對環境的變化進行預測模擬的方法;
○ 可視化技術:用數字、圖像、表格等形式顯示、表達地理信息的技術。
這類系統共同的名字就是地理信息系統(GIS , Geographic Information System),它是用於採集、存儲、處理、分析、檢索和顯示空間數據的計算機系統。與地圖相比,GIS具備的先天優勢是將數據的存儲與數據的表達進行分離,因此基於相同的基礎數據能夠產生出各種不同的產品。
由於不同的部門和不同的應用目的,GIS的定義也有所不同。當前對GIS的定義一般有四種觀點:即面向數據處理過程的定義、面向工具箱的定義、面向專題應用的定義和面向資料庫的定義。Goodchild把GIS定義為「採集、存貯、管理、分析和顯示有關地理現象信息的綜合技術系統」。Burrough認為「GIS是屬於從現實世界中採集、存儲、提取、轉換和顯示空間數據的一組有力的工具」,俄羅斯學者也把GIS定義為「一種解決各種復雜的地理相關問題,以及具有內部聯系的工具集合」。面向資料庫是定義則是在工具箱定義的基礎上,更加強調分析工具和資料庫間的連接,認為GIS是空間分析方法和數據管理系統的結合。面向專題應用的定義是在面向過程定義的基礎上,強調GIS所處理的數據類型,如土地利用GIS、交通GIS等;我們認為地理信息系統它是在計算機硬、軟體系統支持下,對整個或部分地球表層(包括大氣層)空間中的有關地理分布數據進行採集、儲存、管理、運算、分析、顯示和描述的技術系統。它和其他計算系統一樣包括計算機硬體、軟體、數據和用戶四大要素。只不過GIS中的所有數據都具有地理參照,也就是說,數據通過某個坐標系統與地球表面中的特定位置發生聯系。
地理信息系統簡稱GIS,多數人認為是Geographical Information System(地理信息系統),也有人認為是Geo-information System(地學信息系統)等等。人們對GIS理解在不斷深入,內涵在不斷拓展,「GIS」中,「S」的含義包含四層意思:
一是系統(System),是從技術層面的角度論述地理信息系統,即面向區域、資源、環境等規劃、管理和分析,是指處理地理數據的計算機技術系統,但更強調其對地理數據的管理和分析能力,地理信息系統從技術層面意味著幫助構建一個地理信息系統工具,如給現有地理信息系統增加新的功能或開發一個新的地理信息系統或利用現有地理信息系統工具解決一定的問題,如一個地理信息系統項目可能包括以下幾個階段:
(1)定義一個問題;
(2)獲取軟體或硬體;
(3)採集與獲取數據;
(4)建立資料庫;
(5)實施分析;
(6)解釋和展示結果。
這里的地理信息系統技術(Geographic information technologies)是指收集與處理地理信息的技術,包括全球定位系統(GPS)、遙感(Remote Sensing)和GIS。從這個含義看,GIS包含兩大任務,一是空間數據處理;二是GIS應用開發。
二是科學(Science),是廣義上的地理信息系統,常稱之為地理信息科學,是一個具有理論和技術的科學體系,意味著研究存在於GIS和其它地理信息技術後面的理論與觀念(GIScience)。
三是代表著服務(Service),隨著遙感等信息技術、互聯網技術、計算機技術等的應用和普及,地理信息系統已經從單純的技術型和研究型逐步向地理信息服務層面轉移,如導航需要催生了導航GIS的誕生,著名的搜索引擎Google也增加了Google Earth功能,GIS成為人們日常生活中的一部分。當同時論述GIS技術、GIS科學或GIS服務時,為避免混淆,一般用GIS表示技術,GIScience或GISci表示地理信息科學,GIService或GISer表示地理信息服務。
四是研究(Studies),即GIS= Geographic Information Studies,研究有關地理信息技術引起的社會問題(societal context),如法律問題(legal context),私人或機密主題,地理信息的經濟學問題等。
因此,地理信息系統(Geographic Information System,GIS)是一種專門用於採集、存儲、管理、分析和表達空間數據的信息系統,它既是表達、模擬現實空間世界和進行空間數據處理分析的「工具」,也可看作是人們用於解決空間問題的「資源」,同時還是一門關於空間信息處理分析的「科學技術」 。 60年代早期,在核武器研究的推動下,計算機硬體的發展導致通用計算機「繪圖」的應用。
1967年,世界上第一個真正投入應用的地理信息系統由聯邦林業和農村發展部在加拿大安大略省的渥太華研發。羅傑·湯姆林森博士開發的這個系統被稱為加拿大地理信息系統(CGIS ) ,用於存儲,分析和利用加拿大土地統計局( CLI,使用的1:50,000比例尺,利用關於土壤、農業、休閑,野生動物、水禽、林業和土地利用的地理信息,以確定加拿大農村的土地能力。)收集的數據,並增設了等級分類因素來進行分析。
CGIS是「計算機制圖」應用的改進版,它提供了覆蓋,資料數字化/掃描功能。它支持一個橫跨大陸的國家坐標系統,將線編碼為具有真實的嵌入拓撲結構的「弧」,並在單獨的文件中存儲屬性和區位信息。由於這一結果,湯姆林森已經成為稱為「地理信息系統之父」,尤其是因為他在促進收斂地理數據的空間分析中對覆蓋的應用。
CGIS一直持續到20世紀70年代才完成,但耗時太長,因此在其發展初期,不能與如Intergraph這樣的銷售各種商業地圖應用軟體的供應商競爭。CGIS一直使用到20世紀90年代,並在加拿大建立了一個龐大的數字化的土地資源資料庫。它被開發為基於大型機的系統以支持一個在聯邦和省的資源規劃和管理。其能力是大陸范圍內的復雜數據分析。CGIS未被應用於商業 。微型計算機硬體的發展使得象ESRI和CARIS那樣的供應商成功地兼並了大多數的CGIS特徵,並結合了對空間和屬性信息的分離的第一種世代方法與對組織的屬性數據的第二種世代方法入資料庫結構。20世紀80年代和90年代產業成長刺激了應用了GIS的UNIX工作站和個人計算機飛速增長。至20世紀末,在各種系統中迅速增長使得其在相關的少量平台已經得到了鞏固和規范。並且用戶開始提出了在互聯網上查看GIS數據的概念,這要求數據的格式和傳輸標准化。