地質災害危岩體
❶ 災害體規模是什麼意思
地質災害,地質學專業術語,是指在自然或者人為因素的作用下形成的,對人類生命財產、環境造成破壞和損失的地質作用(現象)。如崩塌、滑坡、泥石流、地裂縫、水土流失、土地沙漠化及沼澤化、土壤鹽鹼化,以及地震、火山、地熱害等。
自然科學界的定義
簡稱地災。以地質動力活動或地質環境異常變化為主要成因的自然災害。在地球內動力、外動力或人為地質動力作用下,地球發生異常能量釋放、物質運動、岩土體變形位移以及環境異常變化等,危害人類生命財產、生活與經濟活動或破壞人類賴以生存與發展的資源、環境的現象或過程。不良地質現象通常叫做地質災害,是指自然地質作用和人類活動造成的惡化地質環境,降低了環境質量,直接或間接危害人類安全,並給社會和經濟建設造成損失的地質事件。地質災害是指,在自然或者人為因素的作用下形成的,對人類生命財產、環境造成破壞和損失的地質作用(現象)。如崩塌、滑坡、泥石流、地裂縫、地面沉降、地面塌陷、岩爆、坑道突水、突泥、突瓦斯、煤層自燃、黃土濕陷、岩土膨脹、砂土液化,土地凍融、水土流失、土地沙漠化及沼澤化、土壤鹽鹼化,以及地震、火山、地熱害等。
地質災害的背景
影響或控制地質災害形成與發展的基礎環境和總體條件。它與地質災害形成條件既存在密切聯系又有一定區別。地質災害形成條件指的是造成地質災害的直接因素;地質災害背景指的是控制和影響地質災害的更高層次的基礎條件。地質災害背景由兩個系列組成:
①以地球動力活動為核心的自然背景;
②以人口、經濟、社會發展水平為核心的社會經濟背景。地質災害背景雖然不能直接決定一個具體災害事件的發生和發展,但從宏觀上控制了一個地區一種或多種地質災害的成災程度和變化的總體趨勢。因此研究地質災害背景條件是進行地質災害宏觀評價的重要內容
我國相關法律法規中的界定
根據2003年11月19日國務院頒發的《地質災害防治條例》(中華人民共和國國務院令第394號)規定,地質災害,通常指由於地質作用引起的人民生命財產損失的災害。地質災害可劃分為30多種類型。由降雨、融雪、地震等因素誘發的稱為自然地質災害,由工程開挖、堆載、爆破、棄土等引發的稱為人為地質災害。常見的地質災害主要指危害人民生命和財產安全的崩塌、滑坡、泥石流、地面塌陷、地裂縫、地面沉降等六種與地質作用有關的災害。
基本定義
地質災害是指由於自然或人為作用,多數情況下是二者協同作用引起的,在地球表層比較強烈地破壞人類生命財產和生存環境的岩土體移動事件。地質災害在成因上具備自然演化和人為誘發的雙重性,它既是自然災害的組成部分,同時也屬於人為災害的范疇。在某種意義上,地質災害已經是一個具有社會屬性的問題,已經成為制約社會經嶄發展和人民安居的重要因素。因此,地質災害防治就不僅是指預防、躲避和工程治理,在高層次的社會意識上更表現為努力提高人類自身的素質,通過制定公共政策或政府立法約束公眾的行為,自覺地保護地質環境,從而達到避免或減少地質災害的目的。
地質災害主要是指崩塌(即危岩體)、滑坡、泥石流、岩溶地而塌陷和地裂縫等,它們是比較公認的原地殼表層地質結構的劇烈變化而產生的,且通常被認為是突發性的。
地質環境災害是指區域性地質生態環境變異引起的危害,如區域性地而沉降、海水人侵、乾旱半乾旱地區的荒漠化、石山地區的水土流失、石漠化和區域性地質構造沉降背景下平原或盆地地區的頻繁洪災等,這些問題通常都是由多種因素引起且緩慢發生的,地質界常稱其為緩變性地質災害。
當然,不能簡單地把洪水歸類於地質災害。但長時期、大范圍且爆發頻繁的洪災是與地質環境密切相關的,是人類社會工程經濟活動或防洪治水方略與地質環境演變方向比較長期的不相適應的結果。利用考古資料恢復長江荊江河段近5000 a來洪水位的上升過程,發現近2000 a來是荊江洪水位相對荊北平原上升的主要時期,累計上升13.6 m,特別是近500 a來的洪水位上升的平均視速率達20~27 mm,/a。近500 a來的荊江走堤廈其堤基的決口破壞歷史研究表明,在兩岸干堤地基的滲漏、管涌、潰決、軟上地基變形和崩岸等工程地質問題中,洪水期以北岸的管涌和漬決占絕對優勢,干早期則以南岸的崩岸引人注意,這反映了荊江高水位與其地質環境已不相適應的關系。
從地球表層環境變化而言,地震災害屬於地質環境災害范疇。固其發生的特殊性和危害巨大,地震災害研究已自成一個體系論,作出未來災害危障性預測,初步提出井論證不需治理、合方案的依據、布置與工程概算。
《住宅建築規范》(GB50368-2005)規定,住宅選址時應考慮雜訊、有害物質、電磁輻射和工程地質災害、水文地質災害等的不利影響。
基本特點
編輯
地質災害勘查不同於一般建築地基的岩土工程勘察,其特點至少包括如下幾方面。
(1)重視區域地質環境條件的調查,井從區域因素中尋找地質災害體的形成演化過程和主要作用因素。
(2)充分認識災害體的地質結構,從其結構出發研究其穩定性,
(3)重視變形原因的分析,並把它與外界誘發因素相聯系,研究主要誘發因素的作用特點與強度(靈敏度)。
(4)穩定性評價和防治工程設計參數有較大的不唯一性,霄表現為較強的離散性,應根據災害個體的特點與作用因素綜合確定,進行多狀態的模擬計算。
(5)目前尚未研究出具有昔適性的穩定性計算方法(也許並不存在),現有的方法都有較多的假定條件。
(6)勘查階段結束不等於勘查工作結束,後續的工作如監測或施工開挖常常能補充、修改勘查階段的認識,甚至完全改變以前的結論。因此,地質災害的勘查有者延續性特點,即使是非常認真詳細的工作,也不能過於希望畢其功於一役。
(7)地質災害勘查方法選擇是強讕應用經驗與技巧,尋求以最少的工作量和最低的投資,獲得最佳的勘查效果,
(8)勘查工作量確定的最基本原則是能夠查明地質體的形態結構特徵和變形破壞的作用因襄t滿足穩定性評價對有關參數的需求,而不拘於一般的勘察規程。在此前提下,勘查工作量越少越好,使用的勘查方法越少越好,勘查設備越簡單越好,勘查周期越短越好。一般而言,勘查工作量依據地質災害體的規模、復雜程度和勘查技術方法的效果綜合確定。
(9)勘查隊伍是實現勘查目標、選擇合理勘查方法和優化勘查工作量的關鍵。從事地質災害勘查的工作實體應在地質技術^才,勘查設備和室內分析試驗等方面具備條件,井擁有相應的資質證書。
基本分類
主要分類方法
地質災害的分類,有不同的角度與標准,十分復雜.就其成因而論,主要由自然變異導致的地質災害稱自然地質災害;主要由人為作用誘發的地質災害則稱人為地質災害。就地質環境或地質體變化的速度而言,可分突發性地質災害與緩變性地質災害兩大類。前者如崩塌、滑坡、泥石流、地面塌陷、地裂縫,即習慣上的狹義地質災害;後者如水土流失、土地沙漠化等,又稱環境地質災害。 根據地質災害發生區的地理或地貌特徵,可分山地地質災害,如崩塌、滑坡、泥石流等,平原地質災害,如地質沉降,如此等等。
主要類型介紹
滑坡:是指斜坡上的岩體由於某種原因在重力的作用下沿著一定的軟弱面或軟弱帶整體向下滑動的現象。
崩塌:是指較陡的斜坡上的岩土體在重力的作用下突然脫離母體崩落、滾動堆積在坡腳的地質現象。
典型泥石流示意圖
泥石流:是山區特有的一種自然現象。它是由於降水而形成的一種帶大量泥沙、石塊等固體物質條件的特殊洪流。識別:中游溝身長不對稱,參差不齊;溝槽中構成跌水;形成多級階地等。
地面塌陷:是指地表岩、土體在自然或人為因素作用下向下陷落,並在地面形成塌陷坑的自然現象。
❷ 中國地質災害概況
中國地質災害種類繁多,除地震外,還有崩塌、滑坡、泥石流、地面沉降、地面塌陷、地裂縫、海水入侵、特殊岩土等多種類型。這些災害分布廣泛,活動頻繁,危害嚴重。
據初步調查估計,自新中國成立以後到1994年底,全國共發生明顯破壞作用的突發性地質災害事件(地震除外)達4萬多次;其中,一次死亡數十人以上或經濟損失千萬元以上的比較嚴重的災害事件有幾千次。各種地質災害共造成幾萬人死亡,毀壞房屋達幾千萬間。此外,地質災害還破壞鐵路、公路和內河航運,破壞土地資源和農作物,每年造成的經濟損失為幾億元到幾十億元。現對我國主要地質災害分述如下。
一、崩塌、滑坡、泥石流災害
崩塌、滑坡、泥石流是廣泛發生在山地高原地區的地質災害。它們形成條件和活動規律相近,區域分布密切共生,所以常稱為崩滑流災害。
中國是崩滑流災害十分嚴重的國家。據初步調查,全國大約有中型以上災害點3萬余處,小型災害點多達數十萬甚至100多萬處。1949~1994年的45年間,共發生破壞較大的災害4200多次,造成重大損失的嚴重災害事件至少有900次。
崩滑流災害分布十分廣泛。在全國32個省(市、自治區)中,除上海等個別省(市、自治區)外,均受到不同程度的危害。斜貫中國中部的遼、京、冀、晉、陝、甘、鄂、川、滇、黔地區,是災害活動最強烈的地區;其中,川滇山地、鄂西山地、秦嶺、黃土高原、燕山山地、遼東山地最嚴重。該帶西部和西北部地區災害活動較弱,主要分布在阿爾泰山、天山、祁連山和青藏高原的部分地區。東部和東南部地區,災害活動主要分布在東南丘陵和台灣山地,除局部地區災害嚴重外,災害一般不強。
崩滑流災害是危害最嚴重的地質災害之一,其主要破壞作用有下列5個方面。
1.造成人員傷亡
1949~1990年,我國崩滑流災害至少造成9595人死亡。在城鎮、礦區等人口聚集地區暴發的崩滑流活動常造成一次死亡數百人的災害事件。如:1980年6月3日凌晨,湖北遠安縣鹽池磷礦崩塌,284人喪生;1983年3月7日,甘肅省東鄉自治縣灑勒山發生大型滑坡,三個村莊被摧毀,死亡237人,重傷27人;1989年7月10日,四川華鎣市溪口鎮青龍嘴山發生滑坡後,因暴雨進一步形成泥石流,沿途村莊、工廠被掩埋,221人遇難。
2.破壞城鎮、礦山、企業
全國受崩滑流嚴重侵擾的城市有59座,縣城以下的城鎮數百個。如重慶市共有體積大於500m3的滑坡129處,崩塌58處,解放以來多次發生活動,造成了嚴重損失;目前有66處滑坡處於活動或潛在不穩定狀態,還有82處可能崩塌的危岩體,時刻威脅著城市的安全。一些城鎮,如四川省松潘縣、南坪縣,雲南省蘭坪縣及新疆庫車縣等因崩滑流災害嚴重,不得不搬遷重建。許多建設在山區的工廠,特別是「三線」工廠,常遭到崩滑流災害破壞,因此使一些工廠停產或搬遷。如第二汽車製造廠廠區內,共有崩塌、滑坡270處,總體積達750×104m3,十幾年來,災害頻繁發生,造成嚴重損失。我國多數礦山不同程度地遭受崩滑流災害的破壞或威脅,其中以撫順西露天礦、四川攀鋼藍尖鐵礦、華鎣山煤礦、甘肅白銀露天礦等數十個礦山尤其嚴重。
3.破壞鐵路、公路、航道,威脅交通安全
全國鐵路沿線分布有大型泥石流溝1386條,危險性較大的大中型滑坡有1000多處,崩塌有近萬處。22條鐵路干線上,有9980km長的線路受到比較嚴重的危害或威脅。1949~1990年,因崩滑流災害造成的較大行車事故180起,33個火車站被淤埋41次,毀壞大型橋梁27座,隧道6個,平均每年中斷行車1100h,用於修復整治的工程費約1.5億元。受害最嚴重的線路主要有寶成線、隴海線寶天段、成昆線、川黔線、湘黔線、東川線及鷹廈線等。
幾乎所有的山區公路都不同程度地受到崩滑流災害的破壞。如川藏公路沿線分布有泥石流溝1036條,滑坡419處,崩塌1525處,受害路段總長3176km。川滇、川陝、甘川、昆洛、成蘭、滇黔等公路崩滑流災害也十分嚴重。
大江大河兩岸是崩滑流災害的多發區,對內河航運造成嚴重威脅。如在長江中上游的重慶至宜賓之間的690km河段,發育有滑坡、崩塌和危岩體283處,總體積約15×108m3。金沙江下游的攀枝花至宜賓段,分布有崩塌、滑坡、泥石流935處,平均密度1.2處/km,總體積在35×108m3以上。幾十年來,長江中上游兩岸多次發生特大規模的崩塌、滑坡活動,給長江航運造成嚴重危害。如1985年6月12日發生的新灘滑坡,造成堵江停航12d。
4.破壞水利、水電工程
解放以來,我國有數百座水庫和水電站遭受崩滑流災害破壞。僅雲南一省遭破壞的水庫就有50餘座,水電站有360餘座。劉家峽水庫自1968年蓄水後庫岸不斷崩塌,到1984年總崩塌量達1250×104m3以上,影響了庫容。擬建中的長江三峽工程,庫岸穩定性差,庫區范圍內發育有崩塌、滑坡214處,泥石流溝271條。在三斗坪至江津縣的未來庫岸地帶,發育有5000m3以上的崩塌(危岩)、滑坡體392處,總體積28×108m3;其中,100×104m3以上的災害體189處。全庫岸崩塌(危岩)、滑坡體數量的平均線密度為0.14處/km,平均體積模數為91×104m3/km。如何防治這些災害對水庫工程建設和正常運行是水庫建設和管理的重要問題之一。
5.影響資源開發,阻礙山區經濟發展
為了使山區擺脫貧困面貌,需大力開發土地資源、礦產資源、水利資源等。然而在崩滑流活動區,這些經濟活動受到嚴重阻礙。如四川省攀西地區(我國規劃中的重要礦產基地),在大約6.6×104km2范圍內,發育有體積50×104m3以上的滑坡或滑坡群200餘個,為礦產資源開發造成了嚴重困難。
二、岩溶塌陷
我國岩溶塌陷災害也十分嚴重。據初步調查,全國有岩溶塌陷2840處,塌陷坑約33200個,塌陷總面積為330km2。
中國岩溶塌陷廣泛發育在24個省(市、自治區),以桂、湘、黔、粵、冀、贛、滇等省(自治區)最嚴重。從地理分布看,主要分布在長白山—燕山—呂梁山—四川盆地—哀牢山以東區域。該區域內可劃分為兩大岩溶塌陷分布區:秦嶺和淮河以北的北方岩溶塌陷分布區和以南的南方岩溶塌陷分布區。北方區岩溶塌陷主要分布在遼東半島、伏牛山山麓及一些山間盆地。南方區岩溶塌陷主要分布在川東山地、雲貴高原和幕阜山、九嶺山、羅霄山、南嶺及粵北山地。
岩溶塌陷的危害主要是破壞房屋、鐵路、水壩、電站等工程設施和城市、礦山、企業環境。全國發生岩溶塌陷災害的城市近70個,造成嚴重破壞的44個,主要有唐山、武漢、昆明、黃石、九江、水城、杭州、柳州等。受岩溶塌陷嚴重危害的大中型礦山有60多個,主要有湖南恩口煤礦、湖南水口山鉛鋅礦、湖北銅錄山銅礦、廣西泗頂山鉛鋅礦、廣東凡口鉛鋅礦、山東萊蕪鐵礦等。近年全國鐵路沿線發生岩溶塌陷375處,其中危害嚴重的有55處,受害線路60多段,主要分布在貴昆線、湘桂線以及京廣線、沈大線、膠濟線的部分線段。有30多個車站受到危害,主要有黃石、大冶、水城、昆明、泰安、瓦房店、柳州、玉林等。近40年來,因岩溶塌陷顛覆列車3次,中斷行車達2000多小時。
三、地面沉降
(一)我國地面沉降區的分布
據專門勘查和區域地形變測量結果分析,目前我國發生地面沉降的城市大約有70個。其中,累計沉降量達2m以上的有上海、天津、台北、宜蘭、嘉義等5個城市;1~2m的有西安、太原、滄州、蘇州、無錫等5個城市;0.5~1.0m的有北京、保定、嘉興、常州、衡水、阜陽等6個城市。
從區域分布看,地面沉降活動主要發生在我國東部地區,尤其以沿海城市和華北平原等地區最嚴重。在該區域內,發生地面沉降的城市或地區有的孤立存在,有的則密集成群或斷續相連,形成廣闊的地面沉降區(帶)。主要有下列6個區(帶)。
1.下遼河平原的沈陽—營口沉降區。
2.北部黃淮海平原的天津—滄州—衡水—德州—濱州—東營—濰坊沉降區。這是我國沉降范圍最廣,沉降幅度最大的地區。地面沉降與區域地下水位下降在空間和時間上同步發展。中心區主要在渤海海灣西岸的天津市區及其外圍的寧河、安次、南堡、塘沽、靜海、大港、黃驊、滄州一帶;其次是冀中平原的衡水、冀縣、棗強及其外圍地區;再次是魯北平原的德州—濱州—東營—濰坊地區。
3.南部黃淮海平原的徐州—商丘—開封—鄭州地面沉降區。
4.長江三角洲的上海—蘇州—無錫—常州—鎮江—南通地面沉降區。
5.汾渭河谷平原的太原—侯馬—運城—西安地面沉降帶。
6.台灣山地邊緣的宜蘭—台北—台中—雲林—嘉義—屏東地面沉降帶。
(二)地面沉降的主要危害
1.破壞城市設施,妨礙城市建設
主要表現是:造成房屋和橋梁開裂、傾斜或倒塌;道路凹凸不平或開裂;地下管道錯裂失效;碼頭及其它港口設施下沉或被水淹沒;抽水井管上升,設備須不斷更新等。例如:上海市外輪停靠的碼頭,原標高5.2m,1964年下沉到3.0m,高潮時被水淹沒而無法裝卸,耗資900多萬元進行加高後方可使用;西安市排水管道屢遭破壞,每年花費100多萬元進行維修、改建;上海蘇州河原來每天運輸吞吐量(100~120)×104t,60年代以後減少了一半;天津塘沽海門大橋,兩端沉降差達135mm,引橋發生錯裂,使這座跨度為64m的開啟式提升橋不能按原設計提升,影響了海河航運。
表2-1我國部分城市地面沉降災害情況簡表
①抽水指抽取地下水,下同。
地面沉降還導致觀測和測量標志失效,使河流水位、海洋潮位、地形高程失真,給城市規劃和建設造成困難。
2.積水滯洪,水患和潮災加劇
嚴重的地面沉降活動,把一些城市置於洪水和海潮威脅之下,具體表現如下。
(1)滯汛積水地面沉降城市普遍存在比較嚴重的滯汛積水問題,不僅影響城市交通和環境,而且常使地下室和低層建築物在汛期被水侵沒,造成比較嚴重的經濟損失。例如:天津市1977年7月下旬因暴雨積水造成的直接經濟損失達2億元以上;蘇州、無錫、常州三市在1986年和1988年因積水造成的物資損失達100多萬元。
(2)洪水威脅發生地面沉降的城市一般地勢低平,且大多沿河發展。地面沉降活動不僅使城市高程進一步降低,而且攔河堤壩等防洪設施因沉降而發生破壞。因此,一些城市御洪能力不斷下降,出現嚴重的水患威脅。例如天津市海河幹流兩岸防洪堤,自1959年來普遍下沉1~2m,而且一些堤段因不均勻沉降出現許多裂縫,加上河道淤積影響,使海河泄洪能力由原來的1200m3/s降到400m3/s以下。遇到一般較大汛情,全市即處於高度戒備狀態。如1990年汛期,海河泄洪130m3/s已顯困難,如再遇1963年規模的特大洪水,將導致極其嚴重的損失。上海市區在20年代地面一般高程為4~5m,60年代後普遍降到3.5m以下,部分地區只有2m左右。伴隨地面沉降活動,黃浦江、蘇州河水位不斷上升超過警戒水位的現象頻繁發生,並多次出現黃浦江水倒灌,淹沒市區的現象。為了確保城市安全,1956年開始沿江修建防汛牆,此後伴隨地面沉降的發展,先後5次進行改建和加固,投資達4億多元。目前,上海市區共建防汛牆224km,郊區建34km,外灘一帶牆高已達2.3m,預計到2030年,還須再加高到2.7m左右才能防禦黃浦江水。類似情況在其它一些地面沉降城市也普遍存在。
(3)潮災加劇在濱海地區,地面沉降活動使陸地地面高程下降,海平面相對上升,導致海水侵襲和風暴潮災害加劇。如天津塘沽地區,近幾十年來相對海面上升50cm,而地面高程普遍下降到2m以下,局部降到平均海平面以下,最低處(塘沽河濱公園)為-3.3m。與此同時,濱岸防潮堤不但大幅度沉降,且發生局部開裂;許多防潮閘——耳閘、二道閘、海河閘、金鍾閘等下沉0.4~2.6m。在這種情況下,天津沿海災害性風暴潮日趨嚴重,其頻度、強度和造成的損失均達到歷史最高水平。如1985年8月2日和19日發生的風暴潮,使海水越過防潮堤閘湧入陸地,塘沽一些地區水深達1.3~2.0m,大量企業單位被淹,受災居民1萬多戶,直接損失1.3億元。近年來,寧波市沿甬江上溯的潮水也多次越過防潮堤閘,淹沒沿岸碼頭、倉庫、工廠和居民區,造成嚴重損失。上海以及長江三角洲地區風暴潮災害也日益嚴重,不但潮位越來越高,而且高潮頻次也不斷增加,風暴潮造成的損失愈來愈大。1962年8月,7號台風襲擊上海,吳淞口潮位高5.38m,蘇州河口水位4.76m。在猛烈的潮水沖擊下,防汛牆出現46處決口,半個市區進水,南京東路水深0.5m,直接損失達5億元。
四、地裂縫災害
我國地裂縫類型復雜,除伴隨地震、滑坡、凍融以及特殊土的脹縮或濕陷活動產生的地裂縫外,主要是伴隨構造蠕變活動而產生的構造地裂縫。
構造蠕變地裂縫的分布十分廣泛,在華北和長江中下游地區尤其發育。在該區域中,地裂縫主要集中在汾渭盆地、太行山東麓平原、大別山東北麓平原地區,形成了三個規模巨大的地裂縫密集帶。此外,在豫東、蘇北以及魯中南等地區,還有一些規模較小的地裂縫發育帶(區)。
(一)汾渭盆地地裂縫帶
自六盤山南麓的寶雞,沿渭河向東經西安到風陵渡轉向NE方向,沿汾河經臨汾、太原到大同,發育有一個寬近100km、長近1000km的地裂縫帶。該帶沿汾渭盆地邊緣斷裂帶內側的第四紀沉積區延伸。各地區地裂縫的成因、活動方式等具有基本一致的特徵。自60年代後期開始出現災害性地裂縫,70年代中期以來活動加劇,使西安、大同、寶雞以及周至、臨潼、渭南、華縣、蒲城、韓城、萬榮、運城、絳縣、臨汾、洪洞、祁縣、太谷、榆次等近50個市、縣出現較嚴重的地裂縫災害。
該地裂縫帶自南向北可大致分為四個段落。
1.渭河盆地地裂縫
該區地裂縫分布在渭河兩岸地區,以西安市地裂縫規模最大,危害最嚴重。此外,千陽、寶雞、周至、武功、興平、禮泉、三原、臨潼、長安、渭南、蒲城、華縣、華陰、大荔等20個縣、市也發生不同規模的地裂縫。這些地裂縫給當地人民生活和工程建築以及土地資源造成了不同程度的危害。如地處華山北麓的藍田、華縣、華陰,自1971年以來出現多處地裂縫,至今仍在發展。在華山半導體廠內,有兩個以近EW向為主體,兼有SN向和NE向的地裂縫帶。其長度分別為200m和250m;寬度分別為70m和100m,使剛剛建成投產和一些正在施工的車間、倉庫等主要建築物開裂,局部發生下沉達14.6cm,雖經多次加固處理,但始終不能擺脫地裂縫危害。在華山汽修廠亦有兩條近EW走向的地裂縫帶。其總寬200~300m,長約500m。在其影響范圍內的5幢家屬樓和其它建築設施,相繼發生大面積裂縫和變形,鐵路路基也下陷變形;雖然每年耗費大量資金加固,但裂縫持續發展,防治效果不佳。陝西化肥廠於1972年建成,尚未投產,廠房即發生裂陷,下沉量達20~50cm,多次加固修理,仍未取得安全效果。
2.運城盆地和臨汾盆地地裂縫
地裂縫分布在涑水河和汾河兩岸的運城、夏縣、合陽、韓城、萬榮、聞喜、絳縣、侯馬、翼城、襄汾、臨汾、洪洞等約20個縣、市。這些地裂縫主要延伸方向為NEE、SN、NE、NW四組,單條長度為幾十米到100m以上,寬度一般為0.4~0.2m,可見深度為0.2~0.3m。多條地裂縫常常組合成帶,有時沿一個主導方向呈線狀或串珠狀延伸,構成長達幾公里,甚至幾十公里的地裂縫密集帶;有時不同方向的地裂縫相互交叉,構成密集的地裂縫集中區。分布在工廠、村落、田野中的地裂縫,對房屋建築和土地資源造成危害。例如1983年7月28日傍晚和29日早晨萬榮縣兩次暴雨後,該縣薛店村在29日9時30分地面開裂。地裂縫長1.5km;一般寬為1~2m,最寬達5.2m;一般深1.5~3.0m,最深達12m。大量積水順縫一泄而光。裂縫所經之處,房屋開裂或倒塌,受損房屋300間(受害居民67戶)。村內一口深223m、造價6萬余元的機井也因而塌毀。1984年6月,絳縣電廠地裂。地裂縫長50m,寬40cm。家屬宿舍也隨之開裂。運城東北的半坡鄉,一條NE向延伸的地裂縫(長約9km,寬0.3~1.0m),造成數十間民房開裂,田地成為破碎的溝地。
3.太原盆地地裂縫
地裂縫主要發生在太原市南部的榆次縣、太谷縣、祁縣等地。榆次縣北部王湖至聶村一帶,1982年出現4條近SN向的地裂縫,組成長約500m,寬約15m的地裂縫帶,裂縫深2.5~3.0m,最深12m。處於地裂縫發育帶內的省儲備局倉庫、地區變電所和部隊等單位的辦公樓、食堂、家屬宿舍等建築物出現大量裂縫,成為危房或者廢棄。
4.大同盆地地裂縫
地裂縫主要發生在大同市,以市區西南邊緣的大同機床廠一帶最嚴重。地裂縫始見於1977年,發生在劇場街9號樓附近,長200m,使9號樓出現裂縫。80年代以後,地裂縫迅速發展,1986年延伸到1000m,1988年和1989年進一步發展到5000m,至今仍在活動。地裂縫走向NE57°,寬1~6cm。其南盤相對下滑,垂直相對位移2~5cm,最大18cm。地裂縫破壞帶寬5~20m,所經之處,房屋牆體和過梁開裂,門窗變形,管道錯動。機車廠8幢居民樓和食堂、學校等公用設施嚴重受損,受災建築面積29141m2,危害居民290戶。除市區外,在北部天鎮縣的滹沱店、孫家店、顧家灣、宣家塔和陽高縣的羅文皂以及大同市東南官道村等地,在1982~1984年前後亦發生不同規模的地裂縫,民房和田地受到破壞。
(二)太行山東麓傾斜平原地裂縫帶
該地裂縫帶始於1966年。該年3月在邯鄲市電台和國棉一廠首先發生地裂縫活動。此後,不但在該市迅速發展,而且河北平原和豫北平原的許多地區相繼發生日益嚴重的地裂縫活動,很快形成一個沿太行山東側和東南側傾斜平原延伸的地裂縫分布帶。其北起保定,向南經石家莊、邢台、邯鄲進入豫北的安陽、新鄉、鄭州一帶以後,向西延伸,經洛陽達三門峽一帶,與渭河盆地和運城盆地的地裂縫帶相連,全長約800km。共有50多個縣市發現400多處地裂縫。其中,河北省有39個縣市、200多處,主要有易縣、容城、淶水、保定、定縣、博野、正定、藁城、束鹿、寧晉、新河、柏鄉、臨城、無極、南宮、邢台、南和、永年、邯鄲、肥鄉、廣平、雞澤、大名等;河南省約15個市縣、100多處,主要有南樂、清豐、湯陰、浚縣、輝縣、獲嘉、新安、澠池、三門峽、陝縣、靈寶等。
分布在城鎮和企業、礦山的地裂縫,對房屋和其它工程造成了嚴重危害。河北省邯鄲市1963年發生地裂縫活動。1966年以後地裂縫迅速發展,在國棉一廠、電台、汽車修配廠及前郝村等地形成三條地裂縫。裂縫單條長度為185~700m,組合長度3~8km。地裂縫損壞樓房7處,平房數十間,錯斷管道2處,破壞圍牆10堵,直接經濟損失數百萬元。發生在農村的大量地裂縫,除破壞民房、道路外,還對耕地和水利設施造成了不同程度的破壞。
(三)大別山北麓地裂縫帶
1974年在大別山北麓的山前傾斜平原地區出現了大量地裂縫,主要分布在豫東南的固始、商城、淮濱、潢川、息縣和皖西南的霍丘、穎上、壽縣、六安、金寨、阜南等11個縣市,其范圍南北寬近100km,東西長約150km,可大致分為三個近EW向延伸的地裂縫密集帶:北帶從息縣夏庄經淮濱縣城、固始三河、霍丘周集至壽縣;中帶從潢川隆古、城關、桃林,經固始分水,至霍丘河口、列李集;南帶從潢川仁和,經商城、金寨北部和固始、霍丘、往東延至六發縣境內。每帶寬15~20km,帶內地裂縫密集,帶間地裂縫比較稀少。單個地裂縫規模不等,長度一般在10~300m以上,寬10~50cm,個別達1m左右,深一般3~5m。
1976年唐山地震前後,大別山北麓地裂縫活動加劇,其范圍幾乎擴展到整個淮河流域和長江、黃河中下游地區。據不完全統計,在豫、皖、蘇、魯四個省中有152個縣市出現了地裂縫,形成三個規模較大的地裂縫分布帶:一是從大別山北麓的信陽、六安向東到南通、如東的EW向地裂縫分布帶,其地裂縫除在潢川至壽縣一帶進一步發展外,在東部的馬鞍山至如東一帶也出現不少地裂縫;二是周口—阜陽—壽縣和商丘—永城—蚌埠兩個相近平行延伸的NW向地裂縫分布帶;三是沂水—郯成—宿遷NNE向地裂縫分布帶。
(四)其它地區的構造蠕變地裂縫
除上述三個大規模地裂縫帶外,在其它地區還有一些零星的地裂縫或小規模地裂縫帶。它們亦主要分布在華北的晉、冀、魯、豫地區。如1988年在豫東平原上蔡縣黃埠鄉和太康縣朱口鄉發生的地裂縫活動,造成黃埠鄉尚庄、杜庄等5個自然村,朱口鄉的窪陳、二甲張等12個自然村的許多民房的牆體、門窗開裂0.5~6cm,當地群眾驚恐不安。山東省淄博市南定玻璃廠和傅家、大徐家等地,自1985年以來,地裂縫活動持續發展,在玻璃廠廠區內形成一條近南北向延伸達300m以上的地裂縫,使主車間和其它一些工廠建築、地面和牆體出現無數條2~30cm寬裂縫,工廠被迫搬遷;在傅家和大徐家,除上百戶民房嚴重開裂外,田野、耕地之中亦出現多條延伸數百米的地裂縫。1989年,淄博市旦村水庫的偏壩和附近地面亦發生開裂,使水庫安全受到威脅。
五、海水入侵
海水入侵是由於濱海地區地下水動力條件發生嚴重變化,造成海水或高礦化鹹水向大陸淡水含水層發生的入侵現象。海水入侵主要發生在城鎮、礦山地區,通常是由於強烈開采或疏乾地下水,使地下水水位持續大幅度下降形成的。其主要危害是破壞地下水水源,進而影響人民生活和工農業生產。
我國濱海地區發生明顯海水入侵的地區主要有遼寧大連、河北秦皇島、萊州灣和膠州灣沿岸、廣西北海市等地。全國累計海水入侵面積在1000km2左右,最大入侵距離超過10km,最大入侵速率超過400m/a。
大連市海水入侵發生在1976年以後;到80年代末,海水入侵地區有12處,以大連泡、金縣、南關鎮、甘井子、營城子最嚴重,其次為革鎮堡、大魏家、金紡、後鹽村、周水子、牧城驛、龍眼井。入侵的累計面積為230km2,氯離子含量300~1000mg/L,最高超過7000mg/L。這些地區的地下水水源地遭到嚴重破壞,加劇了大連市水資源供需矛盾。
秦皇島海水入侵發生在北戴河海濱區的棗園水源地,入侵面積24km2,氯離子含量500mg/L以上,水源地瀕臨報廢。
山東省萊州灣、膠州灣沿海地區,是近年海水入侵災害最嚴重的地區。截至1991年4月,累計海水入侵面積為431.2km2,地下鹹水擴侵面積為299.5km2,累計730.7km2。主要發生在萊州市、龍口市、煙台市,其次為青島市、膠州市、招遠縣,再次為蓬萊縣、長島縣、牟平縣、海陽縣、膠南市等地。海水入侵活動使地下水資源遭受嚴重破壞,造成災害區44.5萬人無淡水使用。災害區人民由於飲用劣質鹹水,使身體受到嚴重危害,甲狀腺腫、氟骨症、氟斑牙等地方病患者劇增,達40餘萬人。海水入侵還造成了土地資源嚴重退化,鹽漬化發展,農業生產不斷下降,糧食累計減產(30~45)×108kg。
其它地區還有一些小規模的海水入侵活動,雖然目前危害尚不嚴重,但存在不同程度的進一步發展的趨勢。
六、膨脹土的脹縮災害
膨脹土是一種脹縮能力極大的粘性土,對工程建築具有很大的破壞性。它使房屋等建築地基發生變形,進一步引起房屋沉陷開裂;對鐵路、公路以及水利工程的危害也十分嚴重,導致路基變形,鐵軌移動,大壩開裂等,破壞了運輸安全和水利工程的正常運行。
我國膨脹土分布廣泛,主要發育在雲南、貴州、四川、廣西、湖南、湖北、江蘇、安徽、山東、河南、河北、山西、陝西等21個省(自治區)的205個縣(市),其中以雲南、廣西、河北等地區尤為發育。如湖北省鄖縣縣城,因丹江口水庫蓄水而遷建,新城址膨脹土十分發育,嚴重受害房屋25.9×104m2,佔全部房屋建築的70%;其中,倒塌和被迫折毀房屋近10000m2。因破壞嚴重,縣城被迫再次易地重建,造成直接經濟損失2000多萬元。類似災害在湖北宜昌、貴陽、枝江、應城、孝感、雲夢、新洲和廣東省的廣花盆地、東莞盆地、雷洲半島,河南的平頂山市、南陽市,山西省泌水盆地,廣西南寧,安徽合肥、泗縣、蚌埠,雲南蒙自、雞街,四川成都,山東臨沂、泗水,河北邯鄲等地也有發生。
❸ 地質災害防治設計中的幾個問題
根據鏈子崖黃臘石地質災害防治工作專家組在鏈子崖黃臘石地質災害防治工作中的經驗,對地質災害防治設計工作提出如下建議。
鏈子崖、黃臘石地質災害防治工作專家組,是國家科委牽頭、中央各部委和湖北省人民政府參加組成的防治工作領導小組的技術參謀班子(著者任專家組長),主要任務是向領導小組提出咨詢建議,進行技術把關。專家組自1989年4月成立以來,除日常工作外,召開過九次專家組會議,多次深入現場勘察,召開專門會議,審查工作計劃,討論重大技術問題,解決重大技術難關,提出重大技術建議,審查勘察、設計成果,做了大量工作,於1991年9月圓滿地完成了任務。
鏈子崖和黃臘石地質災害防治工作,不論就其規模、復雜性和難度,在國內外都是少有的。專家組在兩年的工作中遇到了許多新的和難度極大的問題,經過反復的討論,許多問題都取得了一致的認識,向領導小組提出了許多重大建議,有些問題是帶有很大的風險的,風險再大也得決策,專家組均作出了向領導小組提出決策性的意見。這一節就是專家組活動中的指導思想、重大和風險問題的決策依據及有關的經驗。
1.地質災害防治是一項地質工程
開展任何一項工作,不管自覺還是不自覺地,都存在有一個指導這項工作的指導思想和觀點。鏈子崖和黃臘石地質災害防治工作從一開始就有一個明確的指導思想和對這項工作認識的基本觀點。這個指導思想和基本觀點就是,鏈子崖和黃臘石兩處地質災害防治是一項地質工程。地質災害防治工程,從大的方面來說,是一項地質環境治理工程,從小的方面來說,是一項地質體改造工程,簡單地說可以稱為地質工程。這類工程不是土木工程,不是一般的建築工程,而是一項地質工程。這項工程的目的是塑造一個安全穩定的新的地質環境,保障人民安居樂業,保障國民經濟少受損失和國家經濟建設順利發展。要做到這一點,這項工程的建設必須緊緊地依靠地質,地質災害勘察成果的水平將決定這項工程的建設水平,也可以說地質是地質工程的基礎。這項地質體改造工程,從何處下手來作?要進行地質體改造,必須明確改造目的、改造對象、改造技術,這是非常關鍵的。如鏈子崖危岩體挖煤采空是變形產生的主要原因,我們就應該對采空區的應力條件、地質體強度進行改造;對黃臘石滑坡來說,滑坡體內的水是滑動的主要原因,那就應該改造滑坡體的水文地質條件和滑體的受力條件,這就叫做「對症下葯」。換一句話說,地質災害防治的地質體改造工作必須通過認真的勘測工作,查清地質災害產生的原因、活動機制、災害體的結構及其穩定條件,然後「對症下葯」地給出防治方案,進行技術設計和施工,才能奏效,這是非常關鍵的一環,一定要明確這一點。
地質工程有其特殊性,特殊就特殊在它是以地質體結構為建築材料,以地質體結構為建築結構,以地質環境為賦存條件建築環境的一項特殊的建築工程。它不像土木工程已經有幾百年的歷史,有豐富的經驗,有各種各樣的規程、規范可做參考;這方面的經驗是不多的,即使有了,因為地質體十分復雜,也不能生搬硬套。必須在查清地質體結構、地質災害產生的原因、機制以及地質災害體結構的基礎上,進行科學的分析,作出防治方案,再根據結構作用功能進行結構設計,方能成功。在這個過程中,必須有地質人員參加,也可以說,應該以地質人員為主來進行更好些。對這種工程來說,設計人員包打天下肯定是要失敗的。地質人員最有條件認識地質災害產生的原因、機制和地質災害體的結構,最有條件給出科學的防治方案,設計人員一般對地質災害產生的原因、機制和災害體的結構不容易搞清楚,給出的防治方案常常與地質實際不符,工程設計人員要想做好這項工作必須緊密地與地質人員合作,這個問題必須引起重視。
2.地質災害防治的特殊性
地質災害防治不同於一般的地質工程,它除了具有一般的地質工作的共同特性外,尚有其特殊性。其特殊性在於它是處於孕育成災過程中,有的剛具有發生變形跡象,有的處於變形發展過程中,有的則處於成災過程中;有的是初次發生,有的是災體復活,其類型繁多,成因各異,階段不同,狀態不一。這些特點在鏈子崖危岩體和黃臘石滑坡中都存在,鏈子崖危岩體和黃臘石滑坡,這兩者也存在很大的不同。鏈子崖危岩體系處於孕育滑坡過程中的變形階段,或者說,系處於蠕滑變形階段,尚未進入加速變形階段,它也可能變形速率逐漸減小,最後不發生滑動,也可能變形速率逐漸加大,進入加速變形階段,最後產生崩塌滑坡,形成大規模的地質災害,造成巨大的經濟損失,這在歷史上多次重復發生過。黃臘石滑坡系古滑坡復活,在歷史上是否重復發生過沒有記載,但它是一個滑坡群,互相牽連,問題也十分復雜。
鏈子崖危岩體變形已經歷了幾百年的歷史,黃臘石滑坡系1983年暴雨後地表開始出現裂縫,以後逐年發展。鏈子崖危岩體系位於基岩內、黃臘石滑坡系位於鬆散堆積層中。據現在已掌握的資料分析認為,鏈子崖危岩體系在挖煤采空區下沉變形誘發下,追蹤構造裂隙產生的裂縫,其前緣「五萬方」的險兆十分明顯;黃臘石滑坡,據已有的資料判斷,最可能是沿上滑面滑動,但還存在有一個沿潛伏的下滑動面滑動的可能性。各有各的特點,必須區別對待。
地質災害防治不是像地基、邊坡、隧道建築那樣的地質工程。地基、邊坡、隧道建築是在穩定的地質體上建築地質工程,工程地質勘察的目的是查清現狀的地質體組成成分、地質體結構,以及地質體賦存環境條件和地質體的物理力學性質資料,為地質工程結構設計提供基本資料。而地質災害防治工程是對不穩定的地質體進行改造,變不穩定的地質體為穩定的地質體。這就提出,地質災害勘察工作目的是查清地質災害產生的原因、運動機制、穩定狀況及地質災害體的結構和水文地質、工程地質條件,為地質災害防治提供基礎資料。
地質災害防治與一般的地質工程不同之處,在於它的研究工作內容是,通過地質體改造防治已經產生的或將要產生的地質災害,這項工作中最重要的是查清地質災害產生原因、運動機制、災害體的結構及穩定性條件,這是制定正確的防治方案和取得防治效果的關鍵所在。在證論過程中對鏈子崖危岩體變形原因是有很大爭論的,有的認為是剝蝕卸荷,地應力調整引起的;有的認為是崖腳強度不足產生傾倒變形;有的認為是挖煤采空區卸荷引起地面下沉造成的,等等。不同的產生原因就有不同的防治方案,如認為是崖邊卸荷產生的,就提出了錨固為主的防治方案;認為是采空區引起的,則提出了承重抗滑鍵為主的防治方案。對此進行了反復論證,比較一致的意見是地下采空區是鏈子崖危岩體變形的主要原因,崖邊卸荷是附加因素。據此,最後制定了承重抗滑鍵為主和崖邊錨固為輔的綜合治理方案。這就是有的放矢的原則。
防治決策必須考慮致災可能性,成災的經濟損失和防治效益。上面論述了鏈子崖危岩體和黃臘石滑坡防治是一項地質工程,還應該承認鏈子崖危岩體和黃臘石滑坡防治是一項防災工程,這也是地質災害防治的特殊性,它不是一般的地質工程,而是一項防災工程。防災工程就有一個該防不該防的問題,該防不該防的標準是什麼?主要是經濟效益,即投資和收益的關系問題。一般認為災害防治的效益可以取得1∶10,著者認為地質災害防治的效益可以達到1∶20以上,據此著者認為根據我國目前經濟實力,我國地質災害該防不該防的投資和收益的比值界限定為1∶20為宜。根據這一指標,我們來看看鏈子崖危岩體和黃臘石滑坡該不該防治?在立項申請報告時著者曾估算過鏈子崖危岩體如果不防治,如果僅前緣「五萬方」產生崩塌,不會造成堵江、礙航和斷航災害,沒有必要進行防治;如果250萬立方米變形體產生鹽池河式崩塌破壞,崩塌體一旦入江將可能造成堵江、礙航,甚至出現斷航的危險,如果產生這種情況,可能造成的經濟損失約為50~60億元人民幣,如果進行防治,防治投資約為1億元人民幣左右,防治效益大約為1∶50~1∶60左右,顯然是應該進行防治的,這是鏈子崖危岩體立項防治的主要依據。黃臘石滑坡防治的效益也是很大的,尤其是對保護巴東縣城免於滑坡發生時產生的涌浪襲擊具有重大意義。上述表明,除了經濟因素外,社會意義也很重要,這兩處地質災害如果不防治,一旦發生災害,將對人民生存和生活產生巨大的影響,甚至有可能引起社會動亂。顯然,進行防治是完全應該的,合理的,這就是該不該防治的決策依據,在地質災害防治時必須掌握這些特殊性。
3.不確定性問題的決策
一般來說,地質體是復雜的,地質災害勘察和測試結果或多或少都存在有一些不確定性成分,這些不確定性成分有的是隨機性的,有的是定向性的。隨機性的可以採用數理統計分析方法作出判斷;定向性的原則上不能簡單地用數理統計分析的方法進行判斷。不論情況如何,在利用這些資料時,不能就事論事,而應該進行綜合分析,權衡利弊地進行。為此,就需要選擇一種相應的方法進行判斷,專家經驗評判法或者稱為德爾菲法就是適合的方法,在鏈子崖和黃臘石地質災害防治方案論證中就利用了這種方法。這里存在一個影響程度大小問題,有的是對防治方案具有控製作用,有的是對技術設計有影響的。顯然,對防治方案具有控製作用的權比對技術設計具有影響作用的權要大得多。這就是說,防治方案正確與否是防治工作成敗的關鍵。因此,對防治方案具有控製作用的不確定性的地質因素的判斷決策尤為重要,必須認真對待,絕不能憑想像簡單從事。在鏈子崖和黃臘石地質災害防治方案論證中各存在一個對防治方案具有控製作用,爭議較大的問題,即鏈子崖危岩體是否存在整體滑動可能性和黃臘石滑坡是否存在深層滑動可能性問題,我們在解決這個問題中採用的判斷決策方法是專家經驗判斷法,即德爾菲法。
黃臘石滑坡是否存在深層滑動問題比較易於解決,黃臘石滑坡在地質勘探中發現在鬆散滑坡體滑動面下面的基岩內還存在有一個斷續分布的破裂面。有的專家認為這個面是構造成因的;有的專家認為這個破裂面是上部滑動的影響帶;有的專家認為黃臘石滑坡復活有可能沿著這個面滑動;有的專家認為不可能沿著這個面滑動,但大多數專家認為近期不會沿著這個面滑動,在地下水長期作用下,破裂帶物質軟化,沿著這個面滑動的可能性還是存在的,監測資料亦有跡象表明,目前黃臘石滑坡活動系沿著淺層滑動面滑動。另一方面,考慮到長江三峽工程在不久的將來即將建成,三峽水庫蓄水後水深和水面都將大大增大,黃臘石滑坡即使沿著深層破裂面滑動入江,也不會造成重大的地質災害。據此,長江三峽鏈子崖、黃臘石地質災害防治可行性研究階段,專家組根據多數專家的意見,作出的結論是:黃臘石滑坡防治主要考慮淺層滑動面,在防治中不要擾動深層破裂帶(包括防止地下水滲入)。
鏈子崖危岩體能否產生整體滑動問題爭議比較大,多次召開專家組和專家組擴大會議進行論證。長江三峽鏈子崖、黃臘石地質災害防治可行性研究階段,專家組根據多數專家的意見作出的結論是:「危岩體山體開裂變形有多方面因素,其中以挖煤采空占重要地位。T8~T12縫段危岩體的變形破壞方式,預測以崩塌為主,但不能排除在特殊不利的情況下發生較大規模滑移(即整體滑動)的可能性,防治原則應當是既防崩又防滑,……」其根據有如下幾點:
(1)T8~T12縫段後緣已經形成弧形拉裂縫;
(2)變形監測結果T8、T9及「五萬立方米」地段變形量和變形速率大體相近;
(3)1988年安裝監測點時工人聽到在T8縫附近地下產生岩體破裂聲,且聞到上溢的硫化氫氣體;
(4)近年來,1#洞內滲水量增多,地表黃泥通過T8、T9淋濾帶到1#洞內,證明T8和T9縫已與地下的1#洞連通;
(5)1#洞頂板及襯砌出現縱張裂縫;
(6)1#洞內觀測到的頂板下沉變形與采空區范圍相當;
(7)T8~T12包圍的危岩體內部已經存在著缺陷(微破裂面),岩體已經受到損傷,在外界因素作用下,損傷會不斷擴大,岩體強度將逐漸降低;
(8)中國科學院地質研究所三維有限元應力分析結果表明,采空區外到臨空岩壁間的未採掘的煤體寬度如果大於120m時將不產生塑性化,如果小於70m時,則未開采部分煤體將產生塑性化,即出現流動變形現象,一旦進入加速流變階段,即將導致產生大規模破壞。
(9)1#洞內變形監測結果表明,1991年以來,變形速率有加劇的跡象,這一現象必須引起高度重視。
(10)另據秭歸縣志記載:長江三峽鏈子崖崩塌存在有380~400年的周期,而鏈子崖危岩體目前也正處於此周期當中。
上述表明,T8~T12縫段產生大規模破壞的可能性是存在的,問題還在於產生大規模滑動破壞後能否成災,災害損失有多大。在三峽工程未建成前,產生大規模破壞時,產生礙航或斷航的可能性是完全存在,造成的損失是十分巨大的。三峽水庫蓄水後,如果產生大規模破壞時問題會怎麼樣?這也是必須認真考慮的。我們所指的大規模破壞或整個滑動系指250萬立方米規模的崩塌,這是立項防治的主要對象。三峽水庫的最高水位為175m,正常蓄水位為150m,枯水季節的低水位130m,河床標高約30m,且兵書寶劍峽峽谷出口處河谷狹窄。假設崩塌體入江後堆積坡角為40°,水庫蓄水後流速很小,帶走量很少。250萬立方米危岩體如果產生類似於鹽池河形式崩塌,假設崩塌體松脹系數為1.3,則鬆散堆積體積為325萬立方米,如果崩塌入江,在河床堆積高度可能超過130~140m,三峽水庫蓄水後,造成礙航,甚至斷航的可能性依然存在,即大規模成災的可能性依然存在。因此,在鏈子崖危岩體防治中必須考慮整體滑動的可能性,這就是長江三峽鏈子崖、黃臘石地質災害防治可行性研究階段專家組作出「鏈子崖危岩體整治不能排除整體滑動可能性」,且防治的主要對象為250萬立方米的依據。
上述表明,在地質災害防治工作中,對不確定性問題決策時,除應充分考慮地質現象外,還必須認真考慮成災可能性及可能造成的損失狀況,這是非常重要的,這也是地質災害防治的特殊性所在。
4.防治技術適宜性問題
防治目標和防治方案確定以後,防治技術選擇和設計將是防治效果和防治工程成敗的關鍵。
危岩體和滑坡防治主要原理是改變危岩體和滑坡體內的應力狀態和保持其強度,從理論上講,常用的技術原理為削頭、壓腳、排水。從具體技術措施來講,常用的有卸荷、支擋、錨固、地表排水、地下疏乾等。這些技術使用得當,會收到很好的效果;如果使用不當,將會出現事與願違的後果。在鏈子崖危岩體防治方案論證中,曾遇這樣的問題:為了防止煤層采空區頂板繼續下沉和煤層下沉引起鏈子崖危岩體整體滑動,在采空區設置承重抗滑鍵。承重的作用在於防止頂板繼續下沉,導致殘留煤柱繼續破壞和強度繼續降低;抗滑的作用在於防止殘留煤柱破壞導致抗剪強度降低,引起鏈子岩危岩體整體滑動。這是鏈子崖危岩體防治方案中的一個重要組成部分,是一個正確的防治方案。但在設計中採取了承重抗滑鍵布置方向與原採煤巷道方向直交,這就是說,施工時將要把巷道洞間的煤柱(壁)再挖掉一部分,這樣將使殘留的煤柱面積進一步減小,使采空區殘留煤柱的承重能力降低,有可能在施工過程中出現加速破壞的可能性,顯然,這一技術設計選擇是大有問題的。另一個例子是黃臘石滑坡防治方案中地面排水工程問題。黃臘石滑坡復活主要原因是大氣降水滲入滑坡體內,導致地下水位升高,滑坡體重量增大,孔隙水壓力增高,滑坡體失穩。很明顯,解決黃臘石滑坡復活的主要技術,是採用排水為主,具體地說就是採取地表排水和地下疏干相結合的技術。有一種設想是,只做地表排水就行了,這里同樣存在一個技術原理問題,地表排水的作用主要是排出大氣降水在地表形成的地面徑流。因此,在地表排水設計中必須包括地表整平,消除地面坑窪積水或設置支溝將窪地積水引出,防止或盡量減少大氣降水向滑坡體內入滲,而入滲的水量遠遠小於滑坡體疏干排水的能力,這是有效的,可是在大氣降水在地表形不成地表徑流的情況下,地表排水就無效了。這時如果大氣降水入滲量小於滑坡體的排水能力,也不至於引起地下水位上長,也不會有問題;如果大氣降水入滲量大於滑坡體的排水能力,將會引起地下水位上升,滑坡體重量增大,孔隙水壓力增高,也有導致滑坡復活的可能。因此,在選用地表排水為主的情況下,還必須配合採用地下疏干措施,在極為重要的地段還應該校核是否需要增加錨固措施,不能簡單地把地表排水看成是萬能的。上述表明,在進行危岩體和滑坡體防治技術選擇中必須認真考慮各項防治技術的原理、適用范圍、經濟造價和施工難度,不能簡單地拿來就用。
5.孕災體穩定性評價問題
這是地質災害防治中的重要問題之一,它是該防治和不該防治決策的重要依據之一。如果孕災體是穩定的或趨向於穩定的,那就沒有必要投資進行防治;如果是不穩定的,防治效益大於1∶20,那就有必要投資進行防治。如何評價孕災體的穩定性?目前常用的方法是採用數理分析,有的採用確定性模型進行數學力學計算,有的採用不確定性模型進行概率分析。這種分析中存在著一個很大的不確定性問題,就是分析計算中的模型選擇和參數取值。模型選擇牽扯到地質災害成因、機制和孕災體的結構,這個問題必須在詳細的地質研究基礎上,加上經驗判斷給出。如何根據已取得的資料給出合理的分析計算模型,這里存在著很大的不確定性問題,在解決這個問題上經驗是很重要的。例如鏈子崖危岩體的穩定性,許多人進行過計算分析,計算結果求得的安全系數有的高達3.7,有的達1.7,都是穩定的。實際上變形監測結果是,鏈子崖危岩體的變形與日俱增,不斷地在發展,這表明計算結果是不符合實際的。其原因除了力學模型選擇中存在著不確定因素外,還有一個重要因素,即參數選擇問題,選用的參數多數來自於試驗,部分地來自於經驗。試驗值的分散性是很大的,也就是說,取值中的不確定性是很大的;經驗也存在著很大不確定性,這與一個人的工作實踐經歷有很大的關系,經驗豐富的人給出的參數值可靠性就高一些,經驗欠缺的人給出的參數值的可靠性就差一些。以參數c、φ值為例,給高一些,計算結果得到的穩定性系數就高一些;如果給低一些,計算得出的穩定性系數就低一些,究竟哪個對?很難說。顯然,這個方法中的不確定性是很大的,用這個結果作依據決策該不該防治的理由是不充分的;用這個結果進行防治工程結構設計,是帶有很大的危險性的。這不能作為科學的決策依據,那麼這個問題該怎麼解決?著者認為最最重要的,也是最科學的方法是地質分析方法。
地質分析的依據是什麼?主要依據有兩個方面的資料,一個是災害體的外觀形態特徵,或者稱為地貌特徵;另一個是變形監測資料。這兩者結合起來是最最科學的,最可靠的,僅僅形態特徵資料有時也不一定靠得住。如山坡上出現一條裂縫,就說是滑坡引起的,實際上不一定,引起山坡產生變形的原因可以有很多,不一定都是滑坡。又如,山坡上常出現有馬刀樹,這也不一定就是滑坡,暴風也可以將樹吹歪,然後再長直,而形成馬刀形。外觀形態特徵分析絕不能簡單地採用一、兩個現象為依據,必須收集多方面資料進行綜合判斷,變形監測結果也是一樣,其中也存在意外情況,在採用這方面資料之前必須剔除意外資料,否則,其結果也是靠不住的。在地質分析中,不管是外觀形態特徵資料也好,監測資料也好,必須認真地進行分析,首先要去偽存真,然後再進行去粗取精,這樣才能得到科學的結論,這是非常重要的。
在穩定性判斷中還有一個方面的資料應該充分利用,這就是歷史資料。地質災害的發生發展常常具有周期性的規律,地質災害發生發展也存在著高低、急緩、起伏的過程,它和其他方面的自然作用一樣,具有作用活動的周期性。如大氣降水,有豐水年和枯水年。與豐水年相應地,則地質災害發展就活躍;與枯水年相應地,地質災害發展就減緩,甚至暫時休止,在這個時期變形監測結果可能是沒有活動跡象,這一點是非常重要的。前面談到過,秭歸縣志記載表明,長江三峽鏈子崖崩塌就有380~400年的周期,而從自然災害發展規律來說,目前正處於自然災害活躍時期。因此,鏈子崖危岩體變形近一個時期也比較明顯,監測結果表明,變形也一直在發展;而鏈子崖崩塌現在也正處於380~400年的周期當中,我們在評價鏈子崖危岩體穩定性時充分考慮了這些因素,最後才作出鏈子崖危岩體必須進行防治的結論。上述結果表明,地質災害穩定性評價必須充分採用地質分析和數理分析兩個方面的方法進行,而其中最重要的是地質分析。地質分析中又可分為:地質地貌特徵分析、變形監測分析和歷史分析等三個方面。地質災害穩定性評價必須採用地質地貌特徵分析、變形監測分析、歷史分析、數理分析和綜合分析的辦法才能得到可靠的結果。
6.安全系數選擇問題
安全系數取值幾乎可以說貫穿於整個地質災害防治過程中。在判斷地質災害體是否穩定時,要採用安全系數;評價防治工程的可靠度要用安全系數表徵;在結構設計時,進行作用力取值要採用安全系數;結構材料與構件強度取值要用安全系數,在施工工藝可靠性方面也要採用安全系數。這么多安全系數怎麼取用?在這個問題上有時有些混亂。在鏈子崖和黃臘石地質災害防治工作中由於各位專家採用的概念或所闡述的對象不同,在討論中涉及安全系數時常常各持己見,這也是地質災害防治與其他地質工程建築的一個不同之處,在這里,著者再談談這個問題。
在判斷地質災害體是否穩定時科學的評價指標是穩定性系數η,但有一些工程設計人員常常也用安全系數來表述,這也是無可非議的。安全系數除包含有穩定性因素外,還包含很多環境因素和社會因素,對地質災害評價來說,還是用穩定性系數表示為好。穩定性系數取值也存在著很大的不確定性,上面曾談到鏈子崖危岩體不少人對其穩定性系數進行過分析,得到的結果相差很大,其原因在於兩方面:一是計算模型選擇上;另一方面在於力學參數選取上,這兩方面都存在有不確定性。由此決定著在評價地質災害體穩定性時,穩定性系數指標取值就受這兩方面因素的控制。穩定性系數取值大小主要決定於計算模型選擇的可靠性和力學參數取值的可靠性上,這兩方面取值的可靠性,很大程度上決定於進行取值的專家的科學技術水平,也可以說是經驗水平。一般來說,比較有經驗的專家也只能有80%~90%的把握,即各自的可靠度最低也不能低於1.1~1.2。
地質災害的穩定性系數應該是力學模型的可靠度與力學參數的可靠度的乘積,由此看來,科學的穩定性系數η應該是1.1×1.1~1.2×1.2,即為1.21~1.44,不應該低於此值,具體取值時還要考慮防治工程的重要性和取值人的實踐經驗水平。
在評價防治工程的可靠度時用安全系數K表示是正確的。一般來說,這個安全系數K系由三個部分組成,即作用力取值安全系數K1,材料與構件強度取值安全系數K2及施工工藝安全系數K3組成,即K=K1×K2×K3。其中作用力安全系數K1影響因素與穩定性系數η相當,即可在1.21~1.44之間取值。材料與構件強度取值安全系數K2與材料和構件使用方法關系極大,如材料為單一的鋼材,安全系數可取1.05~1.1;鋼筋混凝土構件安全系數可取1.50~1.65;混凝土結構構件安全系數可在1.6~2.5之間取值。地質災害防治中所採用的構件和材料一般多為鋼筋混凝土構件,故安全系數一般取在1.5~1.65之間。施工工藝安全系數與施工方法技術水平有很大關系,這個系數是很難琢磨的,大體上在1.2~1.5之間。由此決定,防治工程安全系數K變化於1.21×1.5×1.2=2.2至1.44×1.65×1.5=3.65之間。鏈子崖危岩體防治可行性論證中作用力的安全系數選用中參照了各種規程規范和工程實例,選用值為1.35,這是比較合適的,其地方面的安全系數將在初步設計中進一步論證。
安全系數是極為復雜的,影響因素是變化多端的,不僅受地質因素影響,結構材料因素影響,施工工藝影響,還有環境因素影響。環境影響因素絕不可忽視,其中最主要的則為地下水的水質和大氣化學成分及溫度的影響,對這些因素的影響必須進行科學的論證。安全系數取低了,防治的安全度不足而蘊藏著隱患;安全系數取高了,造價太高,則又可能蘊藏著浪費,這個問題必須認真論證。
在結束本章論述時,簡要歸納一下,在地質災害防治設計中必須遵守的基本觀點,這些基本觀點有:
地質災害是威脅人類生活和生存,造成資源和財產損失的地質事件。地質災害防治是一項地質工程,它又與一般的土木工程和地質工程不同,它具有很大的特殊性。其特殊性在於地質災害防治工程是通過地質改造手段將已經產生破壞或即將產生破壞的不穩定性的地質災害體進行改造,達到穩定的和安全的地質環境,保障人類生存和美好的生活,簡單地說是一項防災工程。具體地來講,地質災害防治對象是已經產生破壞和即將產生破壞而處於不穩定的地質體,對其進行防治工作中最最重要的是必須查清地質災害產生的原因,活動機制和災害體的結構。在此基礎上才能作出正確的防治方案和防治工程結構設計,地質災害防治必須與經濟效益掛鉤,這是決策該不該立項防治的關鍵,也是防治投資額度決策的依據。一般來說,根據我國目前經濟實力,防治投資效益取1∶20作為立項防治依據為宜,穩定性分析和安全系數選取是地質災害防治中的兩個重要技術問題。穩定性分析必須以地質分析為基礎,參照數理分析,歷史分析進行綜合判斷。安全系數選取必須全面地分析地質的、結構的、施工工藝、環境條件、社會效益等方面的因素綜合分析選定。地質災害防治是一項巨型的系統工程,必須認真對待,只准成功,不能失敗,一旦失敗,其後果是極為嚴重的。
❹ 地質災害防治措施
崩塌災害防治的工程措施:
1、攔擋:對中、小型崩塌可修築遮擋建築物或攔截建築物。攔截建築物有落石平台、落石槽、攔石堤或攔石牆等,遮擋建築物有明洞、棚洞等。
2、支撐與坡面防護:支撐是指對懸於上方、可能拉斷墜落的懸臂狀或拱橋狀等危岩採用墩、柱、牆或其組合形式支撐加固,以達到治理危岩的目的。對危險塊體連片分布,並存在軟弱夾層或軟弱結構面的危岩區,首先清除部分松動塊體,修建條石護壁支撐牆保護斜坡坡面。
3、錨固:板狀、柱狀和倒錐狀危岩體極易發生崩塌錯落,利用預應力錨桿(索)可對其進行加固處理,防止崩塌的發生。錨固措施可使臨空面附近的岩體裂縫寬度減小,提高岩體的完整性。
4、灌漿加固:固結灌漿可增強岩石完整性和岩體強度。一般先進行錨固,再逐段灌漿加固。
5、疏干岸坡與排水防滲:通過修建地表排水系統,將降雨產生的徑流攔截匯集,利用排水溝排出坡外。對於滑坡體中的地下水,可利用排水孔將地下水排出,從而減小孔隙水壓力、減低地下水對滑坡岩土體的軟化作用。
滑坡災害防治的工程措施
1、排除地表水和地下水:滑坡滑動多與地表水或地下水活動有關。因此在滑坡防治中往往要設法排除地表水和地下水,避免地表水滲入滑體,減少地表水對滑坡岩土體的沖蝕和地下水對滑體的浮托,提高滑帶土的抗剪強度和滑坡的整體穩定性。
2、減重與載入:通過削方減載或填方載入方式來改變滑體的力學平衡條件,也可以達到治理滑坡的目的。但這種措施只有在滑坡的抗滑地段載入,主滑地段或牽引地段減重才有效果。
泥石流災害防治的工程措施
1、跨越工程:在泥石流溝上方修築橋梁、涵洞跨越避險工程,使泥石流有排泄通道,又能保證道路的暢通。
2、穿越工程:在泥石流下方修築隧道、明硐和渡槽的穿越工程,使泥石流從上方排泄,下方交通不受影響。這是通過泥石流地區的又一種主要工程形式,對於隧道、明洞和渡槽設計的選擇,總的原則是因地制宜。
3、防護工程:對泥石流地區的橋梁、隧道、路基及重要工程設施修築護坡、擋牆、順壩和丁壩等防護工程,從而抵禦泥石流的沖刷、沖擊、側蝕和淤埋等危害。
4、排導工程:修築導流堤、急流槽、束流堤等排導工程,改善泥石流流勢、增大橋梁等建築物的排泄能力。
5、攔擋工程:修築攔砂壩、固床壩、儲淤場、支擋工程、截洪工程等攔擋工程,控制泥石流的固體物質和雨洪徑流,削弱泥石流的流量、下泄量和能量,以減緩泥石流的沖刷、撞擊和淤埋等危害。
(4)地質災害危岩體擴展閱讀:
誘發地質災害的因素主要有:
1、採掘礦產資源不規范,預留礦柱少,造成采空坍塌,山體開裂,繼而發生滑坡。
2、開挖邊坡:指修建公路、依山建房等建設中,形成人工高陡邊坡,造成滑坡。
3、山區水庫與渠道滲漏,增加了浸潤和軟化作用導致滑坡泥石流發生。
4、其它破壞土質環境的活動如採石放炮,堆填載入、亂砍亂伐,也是導致發生地質災害的致災作用。
❺ 鏈子崖危岩體防治工程效果評價
王洪德金梟豪
(中國地質調查局水文地質工程地質技術方法研究所,河北保定,)
【摘要】長江三峽鏈子崖危岩體防治工程1995年開工,1999年8月竣工。危岩體經過施工階段和竣工後的應力重新調整,岩體逐漸趨於新的穩定,且危岩體安全度有了很大提高,防治工程效果日漸顯著。本文通過對鏈子崖危岩體防治前後監測資料分析、對比,評價危岩體的穩定性,預測危岩體變形趨勢,並對工程治理效果作出初步評價。
【關鍵詞】鏈子崖危岩體防治工程效果評價
1概述
1.1地質概況
長江三峽鏈子崖危岩體位於湖北省秭歸縣屈原鎮(原新灘鎮)境內,與黃崖老崩塌體、新灘滑坡區及其他隱患區共同組成長江西陵峽崩滑隱患區。鏈子崖危岩體北端危岩高聳百米以上,俯視長江。總體呈近南北向分布,與長江呈60°~700角斜交,南高北低,北寬南窄,崖頂向北西傾斜,坡角20°~30°,分布高程由南500m降至北臨江180m。危岩體由下二疊統棲霞組灰岩夾數層薄層灰岩、頁岩組成,其下為厚1.6~4.2m的馬鞍山組煤層。危岩體內發育有30多條寬、大裂縫。山體被切割成3個大小不等的危岩區,Ⅰ區為T0—T6縫段;Ⅱ區為T7縫段;Ⅲ區為T8—T12縫段。
1.2工程概況
鏈子崖危岩體防治工程於1994年10月開始,整個體系主要由 T0—T12縫段地表排水工程、T8—T12縫段煤硐承重阻滑鍵工程、「五萬方」及「七千方」錨索工程、猴子嶺防沖攔石壩工程等組成。防治的重點為T8—T12縫段(250萬 m2)危岩。兩大主體工程——承重阻滑鍵工程和錨索工程於1995年5月開始,分別於1997年8月、1999年8月竣工,標志著危岩體防治工程施工部分於1999年8月結束,而後全面轉入防治工程效果監測階段。
1.3監測系統概況
鏈子崖危岩體監測系統從20世紀70年代起逐步建立,到防治工程結束時,形成了監測手段多樣、數據採集及處理自動化的立體監測系統,包括:
(1)岩體表面絕對位移監測點(大地形變)30個;
(2)裂縫相對位移自動監測點26處39點;
(3)水平孔多點位移計自動監測點3處11點;
(4)預應力錨索測力計監測點9個;
(5)承重阻滑鍵岩體應力監測點41點;
(6)岩體深部位移監測(鑽孔傾斜儀)5處;
(7)中心處理機房1處,可24小時隨時採集、處理監測數據。目前,上述監測設備均正常運行。
圖1鏈子崖危岩體裂縫分布及承重阻滑工程布置圖
1.承重阻滑鍵;2.地表裂縫;3.平硐入口;4.深部位移監測鑽孔
2 工程施工前危岩體變形狀況
2.1T8—T9縫段
據1978~1994年監測資料,危岩體治理前,崖頂岩體朝 NW向蠕動,即大體上順岩層傾向運動。其中東部朝N17°W水平位移1.2mm/a,下沉0.9mm/a;地表中、西部則向NW向水平位移0.7~2.5mm/a,下沉0.4~0.9mm/a;崖下T9縫南側岩體向NNE位移,水平位移為2.3mm/a(見表1)。
表1鏈子崖 T8—T9縫段岩體治理前年平均位移量表
2.2T9—T11縫段
長期以來,T9—T11縫段岩塊以不均一的蠕動朝 NNW—NNE方向運動,據1978~1994年絕對位移監測資料:東部崖頂向 NNW向位移,速率為1.4~1.7mm/a,下沉0.5~0.8mm/a;中西部崖頂岩體向N22°~29°W位移,速率為1.6~1.9mm/a,下沉0.6~0.7mm/a;東部崖下岩體向近N方向位移,速率為1.8~2.0mm/a(見表2)。
表2鏈子崖 T9—T11縫段岩體治理前年平均位移量表
2.3「七千方」滑體
「七千方」表層滑移體長期以來一直順傾向以R402為滑面向NW向滑移。據S7點監測資料,該滑體1995年以前,順R402軟層朝N30°~45°W累進位移34.36mm,速率為4.9mm/a,滑移角30°,與岩層產狀基本一致(岩層傾角27°~35°)。
2.4「五萬方」岩體
崖頂 G上點自1978~1995年朝 N20°W位移,速率為1.5mm/a,下沉0.7mm/a,F/H=1/0.47。表明「五萬方」在治理以前的變形特徵為順岩層傾向蠕滑並伴隨下沉。
2.5雷劈石滑體
1978~1995年底,雷劈石滑體朝NW方向位移,速率為1.6~2.0mm/a(T801和T802點)。
可以看出:工程施工前,T8—T12縫段崖上岩體及「七千方」滑體、「雷劈石」滑體主要以NW向順層滑移變形為主,崖下岩體則朝近N向長江方向位移。
3工程施工後危岩體變形狀況
3.1T8—T9縫段
根據1997~2003年監測資料(見表3),危岩體治理後,T8—T9縫段岩體崖頂東部水平位移量由治理前2.5mm/a減小為2003年2.0mm/a(T81點),下沉量由治理前0.9mm/a減小為2003年0.4mm/a(T81點);西部水平位移量由治理前0.7~1.8mm/a減小為2003年0.6~1.1mm/a,下沉量由治理前0~0.4mm/a減小為2003年0~0.2mm/a(T82、T83點);變形方向由治理前NW變為NE方向;崖下T9縫南側岩體由NNE轉向SW方向位移,水平位移量由治理前2.3mm/a減小為2003年0.8~1.7mm/a(T9x1、A下點)。
岩體變形趨於穩定狀態(見圖2、圖3、圖4),說明防治工程已經發揮效力。
圖2T8—T9縫段T81點年變化量—時間曲線圖
相對位移監測資料(見表4)也可以看出危岩體工程治理以後,岩體經過應力調整變形逐漸趨於相對穩定。
圖3T8—T9縫段T83點年變化量—時間曲線圖
圖4T8—T9縫段T82點年變化量—時間曲線圖
表3T8—T9縫段岩體治理前後絕對位移監測點年變化量表
表4T8—T9縫段岩體相對位移年變化量表
3.2T9—T11縫段
根據多年的絕對位移監測資料,T9—T11縫段岩塊在治理前一直以不均一的蠕動朝 NNW—NNE方向運動,治理後絕對位移監測資料顯示(見表5),該縫段崖頂岩塊水平位移量由治理前1.4~1.9mm/a減小為2003年0.6~1.9mm/a,下沉量由治理前0.5~0.8mm/a減小為2003年0.1~0.5mm/a,變形方向基本上為NNE—NE—NS;崖下岩體由近 N方向轉向 NNE、NE方向位移,位移量由治理前1.8~2.0mm/a減小為2003年1.3~1.7mm/a(B下、T9x2點)
圖5T9—T11縫段B上點年變化量—時間曲線圖
表5T9—T11縫段岩體治理前後絕對位移監測點年變化量表
該縫區岩體治理後位移變形量及下沉量逐步減小並且低於多年平均位移速率,其值均小於點位中誤差,並且變形趨勢已經基本相對穩定(見圖5、圖6),這表明岩體位移變形不明顯,防治工程已經發揮效力。
圖6T9—T11縫段 F上點年變化量—時間曲線圖
3.3「七千方」滑體
「七千方」表層滑移體長期以來一直沿傾向以R402為滑面向NW向滑移。根據絕對位移監測資料(見表6),「七千方」滑體錨固工程加固以後,岩體朝錨索拉張力方向位移,此後沿該方向的位移量逐步減小,位移量由治理前4.9mm/a減小為2003年1.3mm/a(S7點),並且變形趨勢(見圖7)已經基本上趨於相對穩定狀態。說明防治工程已經發揮效力。
表6「七千方」滑體治理前後位移年變化量表
地質災害調查與監測技術方法論文集
圖7「七千方」滑體S7點年變化量—時間曲線圖
「七千方」滑體治理後相對位移監測資料(見表7)分析可以知道岩體變形趨於穩定狀態,說明防治工程已經發揮效力。
表7「七千方」滑體治理後相對位移監測點年變化量表
3.4「五萬方」岩體
「五萬方」危岩體經歷了NW向順層滑移(施工前)到朝SE向運動,再朝SE、SW向緩慢位移,位移量由大到危岩體逐漸趨於穩定的過程(見表8)。錨索工程施工後,「五萬方」岩體均朝有利於岩體穩定的方向位移且變形量漸趨穩定。以崖頂G上點為例,治理前多年平均水平位移量為1.5mm/a,2003年為0.8mm/a,治理前下沉量0.7mm/a,2003年該點垂向沒有發生變形(見圖8)。其他各監測點變形情況與G上點類似。
錨索測力計監測也反映了上述變形現象(見圖9,圖10,表9),該危岩體1996年、1997年經錨索加固鎖定後,錨索鎖定力逐漸變小(測力計年變數為負值,且絕對值越來越小),表明危岩體朝錨固力方向位移,位移變化量由大到小。1999年錨索測力計年變數多為正數,顯示錨索持力之特點,與位移監測表明的岩體變形現象一致,通過近幾年的監測資料岩體應力已經重新調整並趨於相對穩定狀態,說明錨固工程效力已經發揮。
表8「五萬方」絕對位移監測點年變化量表
圖8「五萬方」危岩體G上點年變化量—時間曲線圖
圖9「五萬方」危岩體錨索測力計監測數據—時間曲線圖
圖10「五萬方」危岩體錨索測力計位移—時間曲線圖
表9錨索測力計監測年變化量統計表
相對位移監測資料(見表10,圖11)顯示治理後由於防治工程發揮效力,危岩體變形已經趨於相對穩定狀態。
表10「五萬方」危岩體相對位移監測點年變化量表
圖11「五萬方」危岩體裂縫相對位移歷時曲線
3.5雷劈石滑體
雷劈石滑體位移量由治理前1.6~2.0mm/a減小為治理後(見表11)2002年0.6~1.7mm/a(T801和T802點),變形量逐步減小並且相對穩定,變形方向由治理前NW方向改為基本上向NE方向。
表11雷劈石滑體絕對位移監測點(T801、T802)年變化量表
從監測資料分析可以看出,危岩體在防治前後變形趨勢明顯減緩並且趨於相對穩定,這表明防治工程已經發揮效力,有效遏制了危岩體向不利於岩體穩定方向的變形。
4效果評價
以上分析表明,防治工程結束以後,T8—T9縫段岩體、T9—T11縫段岩體、「七千方」岩體、「五萬方」岩體和雷劈石滑體位移變形已不明顯;塊體間無明顯的位移變形。從變形趨勢來看,危岩體在防治工程結束以後,岩體應力重新調整,變形趨勢逐步趨於穩定。表明防治工程已經發揮效力。
綜合分析認為,防治工程結束以來,危岩體在經歷了變形調整後,岩體變形進入相對穩定期,岩體的穩定性明顯提高。危岩體已經達到相對穩定狀態。防治工程效果已經初步體現。
5結語
鏈子崖危岩體防治工程竣工後,通過危岩體監測資料進行分析,對危岩區的岩體變形可得出:危岩體各縫段岩體變形明顯減小,已經趨於相對穩定;各縫間岩體變形已趨於相對穩定。這表明防治工程已經發揮效力,防治工程效果已經初步體現,危岩體已經處於相對穩定狀態。
參考文獻
[1] 殷躍平,康宏達,張穎.三峽鏈子崖危岩體錨固工程施工方案[J].中國地質災害與防治學報,1996,7(1):44~51
[2] 王景宏.鏈子崖危岩體穩定性分析與治理[J].中國地質災害與防治學報,1994,5(3):56~62
[3] 徐衛亞,孫廣忠.鏈子崖危岩體整治工程地質適應性[J].中國地質災害與防治學報,1994,5(3):43~55
[4] 王尚慶.鏈子崖危岩體監測預報初步研究[J].中國地質災害與防治學報,1994,5(3):79~89
[5] 王洪德,高幼龍,薛星橋等.鏈子崖危岩體防治工程監測預報系統功能及效果[J].中國地質災害與防治學報,2001,12(2):59~63
[6] 王洪德,韓子夜.監測工作在鏈子崖危岩體防治工程中的重要作用,2004(未出版)
[7] 王洪德,姚秀菊,高幼龍等.防治工程施工對鏈子崖危岩體的擾動[J].地球學報,2003,24(4):375~378
❻ 地質災害危險性現狀評估
以定性分析為主,定量為輔的評估方法,按「技術要求」規定,根據評估區地質環境條件和已有取得資料,採用地質歷史分析法、工程地質類比法和穩定狀態,按大、中等、小三級(表5-14)對各類地質災害危險性現狀進行評估。
表5-14 地質災害危險性分級表
(一)崩塌(危岩)
首先對其穩定性進行評價,之後結合危害對象進行災害(危害)程度分級評價,在此基礎上進行危險性分級,如穩定性好,危害程度輕,則危險性小,相反即為危險性大,介於二者之間為危險性中等。
1.穩定性評價
根據崩塌體所處的地質環境條件,重點依據變形跡象,並與以往同類崩塌發生條件進行類比,綜合分析後判定其穩定性。評估區內崩塌大部分穩定性為較差至差,其中差的有19處,較差的有72處,好的有14處。差和較差者存在有再次滑塌的可能。
2.災害(危害)程度分級評價
根據調查,區內已發生崩塌災情均為一般級。現依據「基本要求」對崩塌危害程度進行分級評價,其中屬於重的有1處,編號b117,位於清水縣土門鄉老墳村(天水支線38km附近);該危岩體為黃土及下伏新近系泥岩組成的陡坡,由於人為開挖削坡形成,方量1.2×104m3,坡下學校被危及,管道也在下方通過。中等的有5處,其餘99處均為輕度危害。主要危害對象為農田和簡易公路,少數危害居民、學校,同時為泥石流提供了鬆散固體物質。
3.危險性評價
結合穩定性和災害(危害)程度結果,評價得出危險性大的有3處,分別位於張家川木河(b80)、清水縣土門(b117)、北道區北部(b120);中等的有 10處,主要分布於皋蘭山、清水金集—北道等地;其餘92處均為危險性小的。危險性大的前2處距管線較近。
(二)滑坡
對穩定性和危險性分別進行評價。
1.穩定性評價
按滑坡穩定性判別表(表5-15)進行評價,其中穩定性差的有7處,分別位於通渭碧玉、張家川木河、清水金集—北道;較差的有28處,分別位於蘭州范家坪、馬營—通渭、靜寧仁大—秦安蓮花、清水土門—天水北道等地;穩定性好的有23處。
現將2處典型滑坡的特徵分析一下。
(1)下河裡滑坡(h28)
位於張家川木河鄉下河裡村東側。滑坡發育在木河上游北岸,溝谷較窄,谷地寬約 100~180m,呈「U」型,發育有一級階地,高出河床3~5m,溝谷兩側為黃土丘陵,相對高差為80~100m。出露地層為新近系砂質泥岩並夾有灰綠色泥岩條帶,出露段表層風化強烈,其上為馬蘭黃土,厚約30~50m,坡體有細小沖蝕溝槽和零星落水洞。
表5-15 滑坡穩定性判別表
該滑坡為黃土—泥岩滑坡,滑坡體長500m,寬300~350m,平均土體厚20m,約40×104m3。滑距約100m,為一老滑坡,滑體下陡、上緩,坡度25°~40°,成因是地表水流側蝕形成。目前該滑坡前緣因修路削坡,形成一定的臨空面,局部已出現崩塌和漿砌護坡鼓脹開裂,極可能導致開挖段部分滑體復活。現場調查,推斷復活體長約50~60m,寬約100~150m,推測滑體厚度5~10m。現狀主要威脅對象為公路和農田,有再次發生的可能(圖5-5)。管線滑坡體下方,距其前緣剪出口約40m。
圖5-5 下河裡滑坡示意剖面圖
1.黃土 2.泥岩及砂質泥岩 3.黃土狀土 4.滑坡堆積物 5.滑床及滑向 6.推測復活體滑床及滑向
(2)蓮花城—郭家河滑坡群
位於清水河河谷北岸,共有5處,由巨型和大型老滑坡組成(圖5-6),自西向東編號依次為:h127、h128、h129、h130、h131。相應的管道里程樁號283km~288km。該段相對高差120~180m,平均坡度30~35°,出露地層為新近系泥岩、第四系黃土、黃土狀土,黃土厚約40~60m,披覆於谷坡及頂部,落水洞及沖蝕溝發育。
圖5-6 蓮花城—郭家河滑坡群平面分布圖
5處滑坡均為黃土—泥岩滑坡,上覆第四系馬蘭黃土,下伏新近系泥岩夾砂質泥岩。滑坡後壁高約10~30m,滑坡形態清晰,坡體長300~500m不等,寬500~800m,推測平均厚度30~40m,主滑方向垂直清水河流向。由於本段所發育的滑坡全是老滑坡,滑坡體受水流沖蝕切割強烈,坡體表面樹枝狀沖溝十分發育,切割較深的沖溝兩側小型崩塌發育,部分滑坡後壁在黃土與泥岩接觸處有泉水出露。滑坡群整體穩定,但組成物較鬆散,現狀前緣受河流側蝕和開挖削坡的影響,局部出現掉塊和崩塌等輕微的變形跡象,可能導致前緣較陡段復活。目前受威脅的對象為村莊、公路。管線在該5處滑坡下方通過(圖5-7)。
圖5-7 h131滑坡示意剖面圖
1.黃土 2.黃土狀土及砂礫石 3.泥岩及砂質泥岩 4.滑坡堆積物 5.滑床及滑向 6.泉
2.危險性評價
據調查結果,區內已發生滑坡災情從一般級到特大級都存在。危害程度嚴重的有3處,主要位於通渭碧玉等地;危害程度中等的有6處,主要位於秦安蓮花、天水北道等地;其餘49處屬於危害程度輕的。主要危害農田、公路、零星住戶,同時構成泥石流的鬆散補給物質。
根據滑坡穩定性和危害程度評判結果,評估區危險性大的滑坡有4處,分別位於范家坪—彭家大山(h3、h5)、通渭碧玉峽口(h49)、張家川木河(h28);中等的有30處,分別位於蘭州范家坪、靜寧仁大—秦安蓮花、清水土門~天水北道等地;危險性小的24處。
(三)泥石流
分泥石流災情和現狀危險性評估兩部分。
1.泥石流災情評估
區內已發生過多次災害性泥石流,按表5-16分級標准進行災情評估與分級,經調查後初步認為,評估區災害程度中和輕的較多,特重程度的泥石流一般很少發生。由於無法取得准確的資料,只能從簡單的走訪中了解。
表5-16 地質災害災情與危害程度分級標准
2.泥石流現狀危險性評估
按泥石流規模、易發性以及危害情況綜合評估危險性。
(1)泥石流規模。
本次按一次最大沖出量劃分(表5-17),計算方法採用徑流折演算法概算,經驗公式為:
WH=1000K·H.a.F.
式中:
WH——一次最大沖出量(104m3);
K——系數,取0.1~0.5;
H——小時最大降水量(mm);
a——系數,取0.73;
F——流域匯水面積(km2);
根據公式
計算得出區內一次最大沖出量介於0.1×104m3~7.5×104m3之間,其中屬於小一型的16條,小二型的47條。
(2)泥石流易發性
主要依據已經作過的《縣(市)地質災害調查與區劃》成果進行易發程度分區評價。在沒有作過此項工作的地區,首先按表5-18進行泥石流易發程度分級評價,其中易發程度(嚴重程度)按表5-19進行量化。
區內共有泥石流溝57條,中易發性泥石流溝有21條,低易發32條,不易發者4條。
表5-17 評估區泥石流規模劃分標准表
表5-18 泥石流易發程度分級表
(3)泥石流危害程度及危險性
評估區泥石流溝多屬深切溝谷,而村莊一般均座落於溝谷較高地段,泥石流危害相對較輕,僅對靠近溝口的村莊、農田以及公路有輕微危害,但在城鎮附近和人口集中的地方泥石流危害最大,往往對溝谷兩側及溝口設施形成大的威脅和危害,並誘發一些崩塌和滑坡發生,如通渭碧玉、秦安蓮花城、張家川韓家硤等地。區內泥石流危害程度輕的有24條,危害程度中等的有33條。
表5-19 泥石流易發程度(嚴重程度)數量化表
根據泥石流的易發性、規模和危害程度,區內危險性大的泥石流溝有2條,位於燕麥庄(N8)和高崖(N9);危險性中等的泥石流溝有31條,分別位於蘭州小坪子、馬營鎮、蓮花城、閻家店等地;危險性小的泥石流溝有24條。2條危險性大的泥石流溝距管線有一定距離,影響小。
(四)洪水沖蝕
洪水沖蝕強度東部大於西部,相應的危害性和威脅性也較大。通渭以西年降水量較低,屬中易發區,除少數河溝外,主要對農田、道路的威脅大,危害程度較小~中等。通渭以東,年降水量較多,特別是局地性陣雨及暴雨突發頻率較高,汛期洪峰流量大,來勢猛,對居民區和道路構成威脅,危害程度中等。除上述危害外,由於水流的不斷沖刷、浸泡和側蝕作用,常引起溝岸坍塌,加劇了水土流失,據有關部門資料和本次調查情況,通渭以西侵蝕模數500~2000t/(km2·a),強側蝕段坍岸速度0.1~0.5m/a,危害程度輕。通渭以東侵蝕模數小於2000~5000t/(km2·a),局部大於5000 t/(km2·a),危害程度中等。
依據調查成果,對評估區內洪水沖蝕災情和危險性分別給予評估。
災情評估依據表5-16分級標准進行,評價結果:屬於輕度災害的有4次,中等災害的有5次,重災害有2次(表5-20),表明本區洪水沖蝕危害一般為輕和中等,當遇降水多的年份或遇暴雨很可能造成較大的災害損失。
表5-20 已發生主要洪水沖蝕災害災情一覽表
易發性根據實地調查結果,並結合溝谷已發生洪水頻次和降水量分布情況確定。評價結果:高易發1處、中易發者1處,低易發10處(表5-21)。
根據洪水沖蝕災情和易發性結果,區內洪水沖蝕危險性小的有8處,中等的有4處(見表5-21)。
表5-21 評估區區洪水沖蝕溝現狀危險性評估一覽表
(五)地面塌陷
根據野外調查,評估區采空區目前僅有蘭州西固人防工程、地下水位上升引起的地面塌陷,人防工程與管線距離>1.5km,黃土丘陵區開挖窯洞引起的地面塌陷很少,其他地段不存在地面塌陷現象。所以評估區內地面塌陷危害小,危險性小。
(六)特殊岩土災害
1.黃土濕陷和潛蝕
根據《濕陷性黃土地區建築規范》,對黃土的濕陷類型及等級作了初步評價。丘陵區黃土為Ⅱ-Ⅳ級自重濕陷性土,屬中等—很嚴重等級,河谷區黃土狀土多為Ⅰ—Ⅱ級非自重濕陷性土,僅黃河、渭河二級階地局部地段為Ⅱ級自重濕陷性土,屬輕微—中等級。
黃土濕陷和潛蝕現象主要表現為陷穴、陷坑、落水洞和豎井等。多零星分布於地形低窪地帶和陡岸處,規模均較小,落水洞一般深2~5m,洞口直徑0.5~2.5m。目前主要危害公路、渠道和農田,另外,引起崩塌、滑坡和水土流失發生。在黃土丘陵和河谷地帶對鄉間公路危害較大,危險性中等,其餘地段危害小,危險性小。
2.鹽漬土的鹽脹和腐蝕
鹽漬土以硫酸—氯化物型為主,經收集資料分析,通渭以西0.0~1.0m段土壤平均含鹽量為3.4%,最大可達 8%~15%左右,表層有弱脹縮性和腐蝕性;該類土現狀分布面積很小,對農田等不具危害性,因此危害小,危險性小。對建築基礎工程有一定影響,但危害小,危險性小。
高礦度水分布區,礦化度1.7~3.2g/L,p H值1~8,氯離子和硫酸根離子含量大於500mg/L,對混凝土和鋼結構有一定的腐蝕性,按《岩土工程勘察規范》(GB50021—2001)指標對比評價,評價區高礦化度水對混凝土具弱—中等結晶性侵蝕,小面積強腐蝕區位於黃河二級階地後緣和葫蘆河、牛谷河及關川河等地;對鋼材的腐蝕性均為中等(表5-22)。
3.膨脹岩的脹縮
根據岩樣分析結果,白堊系泥岩自由膨脹率(Fs)為20%~60%,蒙脫石含量8.17%~19.09%;頁岩自由膨脹率(Fs)為40%~54.3%,蒙脫石含量8.94%~15.59%。
新近系泥岩自由膨脹率(Fs)為11%~59%,膨脹力(Ps)(4~25)k Pa,飽和吸水率(Wsa)9.9%~34.9%。
依據《岩土工程勘察規范》,按自由膨脹率(Fs)分類(表5-23)評價,本區膨脹岩在大部分地段具脹縮性,但均屬弱膨脹潛勢,主要危害是剝落、掉塊造成農田、道路和水利設施等的掩埋,致災現狀輕微,危險性小。此外黃土自由膨脹率變化較大,現狀危害輕微,危險性小。
表5-22 高礦化水對混凝土和鋼結構腐蝕性評價結果表
表5-23 膨脹岩的膨脹潛勢分類表
❼ 對危岩體清除有什麼好方法
1,採用聘請專業隊伍對危岩體採取一小塊小一塊分割切除的方法,永絕後患;2,削坡減載加固等方式成功清除危岩體,排除險情。PS:有關部門清除危岩體,至少在公路上要樹立警示標志
❽ 地質災害危岩治理保修期是多久
地質災害危岩治理保修期沒有明確規定,雙方可在工程合同里具體約定。
一些岩體內雖然還沒有發生容崩塌,但具備發生崩塌的主要條件,而且已出現崩塌前兆現象,因此預示不久可能發生崩塌,這樣的岩體稱為危岩體。危岩體是潛在的崩塌體。其判別的主要根據是:高差大,或者坡體是孤立陡峭的山嘴,坡體前有巨大臨空面的凹形陡坡;坡體內裂隙發育,岩體結構不完整,有大量與斜坡傾向一致或平行延伸的裂隙或軟弱帶;坡腳崩塌物發育,表明曾發生過崩塌活動;坡體上二部已有拉張裂隙出現,並不斷擴展;岩體發生蠕變,出現墜石,預示崩塌隨時可能發生。
❾ 地質災害防治措施與防治原則
一、地質災害防治途徑與基本方法
如前所述,地質災害的形成必須具備災害體和受災體。這兩方面條件決定了成災程度。因此,防治地質災害的基本途徑主要有兩方面:第一,限制災害源,消除或消弱災害體活動能量,解除或緩解災害活動威脅;第二,對受災體採取防避保護措施,使其免受災害破壞,或增強受災體對災害的抵禦能力。
防治地質災害的具體方法主要包括:
保護和治理區域地質自然環境,消弱災害活動的基礎條件。其基本措施是根據區域條件,科學地進行資源開發和工程建設活動,特別注意合理利用土地資源、水資源、生物資源,避免過度開發。在廣大山區應廣泛植樹造林,治山治水,宜農則農,宜牧則牧,宜林則林,涵養水土,防治水土流失。在城鎮和沿海地區,尤其注意合理開發利用地下水資源,量入為出,保持地下水動態平衡,防止地下水環境惡化,預防地面沉陷和海水入侵等活動。
加強地質災害勘查。弄清地質災害的分布情況與形成條件。合理制定城鎮規劃,選擇工程建設場地,盡可能避開地質災害危害區;對於必須在地質災害危險區實施的工程建設,制定防災規劃,實施預防措施。
對重要受災體實施專門性防治工程。為了保護城鎮、企業和鐵路、公路、橋梁、房屋等工程建設安全,應專門實施不同的防護工程、加固工程等。對不同防災工程措施不一,將在下面進行專門論述。
加強災害監測,有效地進行災害預測預報。應根據需要及時疏散人口、財產、或採取其它措施,最大限度地減少災害損失。
二、地質災害防治措施
雖然各種地質災害的防治途徑基本相同,但具體措施不一。所以,無論是哪種地質災害,都必須首先進行深入細致的勘查工作,以查清災害體范圍、性質、活動條件和受災體類型、分布情況等。在勘查的基礎上選擇防治措施,並合理地設計工程規模,取得充分的減災效果。
(一)崩塌(危岩)災害防治措施
1.清除危岩
對規模小、危險程度高的危岩體可採用靜態爆破或手工方法予以清除,消滅隱患。
2.部分削坡
對於規模較大的危岩體,難以全部清除其隱患。但可以在危岩體上部清除部分岩土體,降低臨空面的高度,減小斜坡坡度和上部荷載,提高斜坡穩定性,從而降低危岩的危險程度或減少其它防治工程的工程量。
3.排水防滲
在危岩體及其周圍地帶,應修建地面排水系統和堵塞裂隙孔洞,以防治過量地表水進入危岩斜坡,從而提高危岩穩定程度,減少崩塌機會。
4.加固斜坡、改善危岩岩土結構,提高斜坡穩定程度
所採取的措施,其具體內容有:①灌漿加固,以增強岩體完整性,提高岩體強度。②採用支撐墩、支撐柱、支撐牆等支撐措施保護斜坡,防止坍落。③採用預應力錨桿或錨索等錨固措施加固危岩體,防止崩落。④軟基加固,即在危岩或陡崖底部發育有泥岩等軟弱岩層時,採用噴漿護壁等方法保護軟基,防止強烈的風化作用和水體浸泡。如在軟基發育部位已形成風化凹腔,應根據規模、形態,採用嵌補、支撐、噴漿護壁等方法保護加固;如凹腔內積水,應進行疏干,並採取措施防止繼續浸水。
5.攔截
對於在雨季才發生活動的墜石、剝落或小型崩塌活動,可在岩石崩落滾動途中修建落石平台、落石槽、擋石牆等,以攔截落石,防止破壞建築設施。
6.遮擋
為了防止小型崩塌對鐵路等工程設施的破壞,可修建明硐、棚硐等對工程設施進行保護。
7.加強監測預報
(1)危岩體形變監測主要手段包括:通過地面觀察、形變測量、地傾斜測量、綜合自動監測等方法從外部監測危岩體位移、裂縫變形、地面傾斜等現象;採用鑽孔傾斜測量、電測、聲發射監測、地應力測量等方法從內部監測危岩體深部變形位移及應力變化情況。
(2)激發崩塌活動要素監測主要包括雨量監測、水文動態監測、地下水動態監測、地溫場監測、地震監測等。
(3)綜合分析與預測預報基本方法是分析斜坡穩定程度,建立危岩變形數值模型,確定崩塌活動的臨界值。在條件允許時,應建立預警系統,進行有效的災害預報。
8.躲避搬遷對於威脅嚴重,防治困難的建築設施,應選址搬遷,避免受害。
(二)滑坡災害防治措施
1.消除或減輕地表水、地下水對滑坡的誘發作用
(1)修建排水溝,攔截地表水,減少進入滑坡體的地表水量,並及時將滑坡體發育范圍內的地表水排走,減輕地表水對斜坡的破壞。
(2)修建截水盲溝和支撐盲溝、開挖滲井或截水盲洞、敷設排水滲管、實施排水鑽孔等,以攔截疏導地下水,減輕地下水對斜坡的破壞。
2.改善斜坡狀況,增加滑坡平衡穩定條件
(1)在滑坡體上部削坡減重,在坡腳加填,改變斜坡外形,降低斜坡重心,提高滑坡穩定程度。
(2)修建抗滑垛、抗滑柱、抗滑牆、抗滑洞等支擋工程,阻止滑坡體滑動,提高斜坡穩定程度。
(3)實施錨固工程,「加固」滑坡,提高斜坡穩定程度。
(4)採用焙燒法、電滲排水法、灌漿法等物理方法或化學方法,改善滑坡體岩土性質,提高軟弱岩土層強度,提高斜坡穩定程度。
3.加強監測預報
(1)滑坡體形變監測通過地面觀察、形變測量、地傾斜測量、綜合自動監測等方法監測裂縫變形、滑坡體水平位移、垂直形變以及滑坡體上樹木、房屋等工程設施形變等情況。採用傾斜儀測量、短基線測量、地應力測量等監測滑坡體內部形變位移情況。
(2)激發滑坡活動的外界要素監測主要包括降水監測、水文動態監測、地下水動態監測、地震監測等。
(3)綜合分析與預測預報方法與崩塌預測預報基本相同。
4.躲避搬遷
對於威脅嚴重,防治困難的工程建築,應選址搬遷,避免災害破壞。
(三)泥石流災害防治措施
1.實施生物措施,保護水土,消弱泥石流活動的基本條件
基本方法是保護森林植被。禁止濫砍亂伐,合理耕牧,並且有計劃地植樹種草,以提高森林覆蓋率和植被覆蓋率,抑制水土流失,減緩泥石流活動。
2.實施工程措施,限制泥石流活動,保護耕地與工程設施
(1)攔擋工程修建谷坊、攔砂壩、格柵壩等,蓄水攔砂,減小泥石流流速、容重、規模,抬高局部溝段侵蝕基準,護床固坡,降低泥石流沖刷破壞能力,減輕溝床侵蝕。
(2)排導工程修建導流堤、急流槽、束流堤等,引水輸砂,規范泥石流路徑,防止漫流,降低泥石流流速,削弱泥石流沖擊破壞能力。
(3)停淤工程根據泥石流發育地區地形條件,修建停淤場,將泥石流引入預定場所減速停淤,防止漫流。
(4)溝道整治工程採用固床砂壩、水泥砂漿砌石、石籠等方法保護泥石流溝坡,防止岸坡坍塌、滑移;在溝底進行鋪砌或修建肋板穩固溝底,減少溝底沖刷。
(5)防護工程與錯避工程對泥石流地區的鐵路、公路、橋梁、隧道、房屋等工程設施,進行防護或錯避,抵禦或避開泥石流的危害。防護工程包括修建護坡、擋牆、順壩、丁壩等。錯避工程主要包括跨越式錯避、穿過式錯避等。跨越式錯避是指修建橋梁,使工程設施凌架於泥石流溝上空,免受泥石流破壞。穿過式錯避則是將工程設施置於泥石流溝地下,避開泥石流破壞。
3.監測預報
除利用遙感技術,結合氣象資料分析,進行區域泥石流活動中長期預報外,主要是利用降雨預測進行泥石流活動的短期預報和臨災警報。此外,還可利用泥石流遙測地聲警報器、泥石流超聲波泥位警報器、地震式泥石流警報器等儀器直接監測泥石流活動,並進行短期預報和臨災警報。
4.躲避搬遷
對於威脅嚴重,難以防護的工程建築,應選址搬遷,避免災害破壞。
(四)岩溶塌陷災害防治措施
1.控水措施
(1)地表水防水措施在塌陷區周圍修建排水溝,防止地表水進入塌陷區,減少向地下的滲入量。在地勢低窪、洪水嚴重的防治區圍堤築壩,防止洪水入侵灌入塌陷洞或岩溶孔洞。對塌陷區內嚴重淤塞的河道進行清理疏通,加速泄流,減少對岩溶水的滲漏補給。對嚴重漏水的河溪、庫塘,鋪底防漏或人工改道,減少地表水倒灌。對嚴重灌水的塌陷洞隙採用粘土或水泥灌注填實,減少地表水入滲倒灌。採用混凝土、氯丁橡膠、玻璃纖維塗料等封閉地面,增強地表土層強度,防止地表水沖刷入滲。
(2)地下水控水措施根據水資源條件規劃地下水開采層位、開采強度、開采時間,合理開采地下水。必要時進行人工回灌,控制地下水動態,限制地下水位的頻繁升降,並使動水位最低水位不低於基岩面,保持岩溶水承壓狀態。在地下水主要逕流帶修建堵水帷幕,減少區域地下水補給,促使外圍地下水位升高,防止塌陷向外圍地帶擴展。在礦區井下修建防水閘門,建立有效的排水系統,對水量較大的突水點進行注漿封閉,控制礦井突水、突泥,避免礦區地下水大排大放,防止地下水位和岩溶水壓力的大起大落,控制地面塌陷活動。
2.加固措施
(1)挖填當孔洞規模和埋藏深度較小時,可清除岩溶上部覆蓋層中的軟弱土層和洞穴中的軟弱充填物,回填碎石或混凝土,改善建築場地條件,提高地基強度。
(2)強夯在土體厚度較小,地形平坦情況下,採用強夯砸實覆蓋層,破壞土洞,提高土層強度。
(3)灌注填充在溶洞埋藏較深時,通過鑽孔灌注水泥砂漿,填充岩溶孔洞,提高強度。
(4)鑽孔充氣鑽孔深入到基岩面下溶蝕裂隙或溶洞的適當深度,破壞真空腔的岩溶封閉條件,減少發生塌陷的機會。
(5)採用錨固柱、柵欄柱,支撐建築物,防止洞穴坍塌。
(6)跨蓋採用梁式基礎、拱形結構,或以剛性大的平板基礎跨越、敷蓋溶洞,避免塌陷危害。
3.監測預測
目前對岩溶塌陷還沒有建立有效的預報方法,只能根據專門地質調查,查明岩溶分布情況和岩溶塌陷的活動規律,結合淺層地質雷達探測和地下水動態監測、水文動態監測、氣象預報等方法,進行一般性預測。
(五)地裂縫災害防治措施
1.控制人為因素對地裂縫活動的強化作用
主要是合理開采地下水,限制地下水位大幅度下降,從而控制地面沉降活動,防止地面沉降對地裂縫的促進活動。其次是在礦區井下開采時,根據實際情況,控制開采范圍,增多、增大預留保安柱,防止礦井坍塌誘發地裂縫。
2.建築設施避災、防災措施
(1)查明地裂縫發育帶及潛在危害區,據以作好城鎮發展規劃和場地工程地質勘查,合理規劃工程建築物布局,使工程設施盡可能避開地裂縫危險帶,特別是嚴格限制永久性建築設施橫跨地裂縫,一般避讓寬度不少於4~10m。
(2)對於已建在地裂縫危害帶內的工程設施,應根據具體情況採取加固措施進行加固。對於必須建在地裂縫危害帶內的新的工程設施,應實施設防措施。如跨越地裂縫的地下管道工程,可採用外廊道隔離、內懸支座或內支座式管道活動軟接頭連結措施預防地裂縫的破壞。對於已受地裂縫嚴重破壞的工程設施,進行局部拆除或全部拆除,防止對整體建築或相鄰建築造成更大規模破壞。
3.監測預測措施
通過地面勘查、地形變測量、斷層位移測量以及音頻大地電場測量、高分辨縱波反射測量等方法監測地裂縫活動發展情況,預測預報地裂縫發展方向、速率及可能危害范圍。
(六)地面沉降災害防治措施
1.控制人為活動對地面沉降的促進作用
(1)根據水資源條件,限制地下水開采量,防止地下水水位大幅度持續下降,控制地下水降落漏斗規模。
(2)根據地下水資源的分布情況,合理選擇開采區,調整開采層和開采時間,避免開采地區、層位、時間過分集中。
(3)人工回灌地下水,補充地下水水量,提高地下水水位。
2.防護措施
地面沉降除有時會引起工程建築不均勻沉降外,主要是因沉降區地面標高降低,導致積洪滯澇,海水擴侵等次生災害。次生災害可造成十分嚴重的破壞損失。針對這些次生災害,採取的主要防護措施是修建或加高、加固防洪堤、防潮堤、防洪閘、防潮閘以及疏導河道,興建排洪排澇工程等。
3.監測預測
基本方法是設置分層標、基岩標、孔隙水壓力標、水準點、水動態監測網、水文觀測點、海平面觀測點等。定期進行水準測量;進行地下水開采量、地下水位、地下水壓力、地下水水質監測及回灌監測;進行河流水位、流量監測;進行潮汐及海平面變化監測等。根據地面沉降活動條件和發展趨勢,預測地面沉降速度、幅度、范圍及可能危害。
(七)海水入侵災害防治措施
1.控制人為活動對海水入侵活動的促進作用
(1)限制地下水開采量,防止地下水水位持續下降。使地下水位保持在海平面或地下鹹水水位以上,並具有一定的水頭壓力。使其能維持濱海地區地下水與海水動力平衡,扼制海水入侵。
(2)利用回灌井、回灌廊道等實行人工回灌,補充地下水,提高濱海地區地下水水位。
(3)在發生海水入侵或容易誘發海水入侵的濱海地帶,禁止挖砂,保護海岸,防治海岸侵蝕,削弱海水沿河上溯活動。規范曬鹽、海產養殖,防止人為將大量海水抽引到陸地,減少海水補給源。
2.限制海水入侵的工程措施
(1)修建防潮閘,抑制海水沿河上溯活動。
(2)建造隔水牆或防滲圍幕,阻斷海水入侵通道,扼止海水擴侵。
3.監測預測
主要監測手段是建立地下水動態監測網,進行水位、水化學監測,必要時輔以海水水文動態監測。根據海水入侵活動機制和歷史海水入侵規律,預測海水入侵速率、規模、危害范圍。
(八)膨脹土脹縮災害防治措施
主要包括避災措施和防災、治災措施。
在進行城鎮規劃和建築工程選址時,要進行充分的地質勘查,查明工程地質條件,弄清膨脹土的分布范圍、發育厚度、埋藏深度以及膨脹土的物理力學性質;在此基礎上合理規劃建築布局,使容易受害的建築工程盡可能避開膨脹土發育區。在膨脹土分布面積比較大,難以選擇非膨脹土工程場地時,盡可能選擇地形簡單、膨脹土脹縮性相對較弱、厚度較小而且地下水水位變化較小、容易排水,而且沒有淺層滑坡和地裂縫的地段進行工程建築,最大限度地減少膨脹土的危害。
在膨脹土發育區進行工程建築時,應避免大挖大填,加寬建築物四周散水,設置圈樑,敷設砂墊。鐵路、公路施工避免深長路塹,多填少挖,路堤底部墊砂,路塹設置擋土牆,邊坡植草鋪砂。水利工程要快速施工,合理堆放棄土;必要時設置抗滑樁、擋土牆;渠道要合理選擇渠坡坡角;穿過壠崗時使用涵管、隧洞。工程設施附近要修建排水設施,避免降雨、地表水、城鎮廢水等大量滲入地下。同時要合理開采地下水,保持地下水位相對穩定,避免地下水位大幅度地頻繁升降,防止膨脹土反復脹縮。
對於已受膨脹土破壞的工程設施則視具體情況,採用加固、拆除重建等措施進行治理。
綜合上述8種地質災害的防治措施,基本可分為4個方面,即:削弱災害活動強度措施;受災體防護措施;監測預報措施;避災措施。不同災害的具體方法不同(表8-1)。
三、地質災害防治基本原則
地質災害防治的根本目標是取得最充分的減災效果。然而要實現這個目的,必須遵照下列原則科學地規劃、設計、實施防治工程。
(一)預防為主的原則
地質災害雖然是一種不可避免和無法准確預測的自然現象。隨著人類科學技術水平及社會生產力水平的不斷發展,人類對地質災害的認識水平逐漸提高,因此,在災害面前擁有了越來越大的自主能力。這主要表現在兩個方面:第一,在一定程度上可以減少災害發生機會,削弱災害活動強度;特別是對於那些主要因人為活動控制的地質災害,可以通過調整人類活動基本扼制災害的發展,防止或減少災害的破壞損失。例如,可以通過人工改變斜坡形態、負荷,減少地表水入滲,加固斜坡等方法增強斜坡穩定程度,減少發生崩塌、滑坡發生的可能;可以通過限制地下水開采量,調整地下水開采層等方法,控制地下水水位,預防和限制地面沉降、海水入侵的發生與發展。第二,有效地進行災害預測預報,及時避災。在地面塌陷、地裂縫和膨脹土發育地區,盡可能使工程設施避開高危險區。對於崩塌、滑坡、泥石流等突發性災害可進行綜合監測,根據災害發生的危險程度,及時疏散人口、財產,減少災害損失。實踐證明,適時採取預防措施是防止災害破壞,減少災害損失的最有效途徑。
(二)防災減災的相對性、持續性原則
盡管人類對地質災害的防治手段越來越豐富,防治技術越來越高超,但要想制止地質災害的發生,或者是完全預測預報地質災害,徹底防治地質災害是不可能的;無論是現在,還是將來,對地質災害的防治效果永遠也不會達到百分之百。因此,任何時候人類所進行的防治工作都是相對的。基於這種現實,地質災害的防治是一項長期的、艱巨的任務。為了促進社會經濟的健康發展,地質災害防治要長期持續地進行下去,在不同社會經濟發展階段,力求取得與之相應的減災效果。
表8-1地質災害主要防治措施
(三)全面規劃與重點防治相結合的原則
地質災害防治除了具有長期性特點外,還具有廣泛性特點。因此,要取得充分的減災效果,首先要做好防治規劃,根據不同地區地質災害發育情況和不同時期社會經濟發展需要,提出地質災害防治目標、防治對策與措施,從總體上指導地質災害防治工作。
由於我國是一個發展中國家,目前科學技術水平和社會財力還都不高,因此,不可能對所有地質災害進行全方位的徹底防治。在這種情況下,只能在全國和地區災害防治規劃指導下,一方面加強區域環境保護與治理,改善地質自然環境,削除或削弱地質災害活動的背景條件;另一方面選擇受地質災害威脅強烈,破壞損失嚴重的城鎮、交通干線、重要企業等實施重點防治,使有限的資金發揮最大的減災效果,真正做到「好鋼用在刀刃上」。
(四)防治地質災害與其它社會經濟活動相結合的原則
實踐證明,地質災害防治工作常常並不是孤立進行的,它與其它社會經濟活動具有不同程度的聯系。因此,把防治地質災害措施與其它環境治理結合起來,並且把地質災害防治納入國家和地區社會經濟規劃,可以取得充分的效果。
首先,從宏觀上看,地質災害防治與土地資源開發、水資源開發、礦產資源開發、植被資源開發以及城鎮建設、交通建設等具有直接關系。因此,地質災害防治應該與這些活動有機地結合起來:一方面在這些活動中積極主動地進行相應地質災害的防治工作;另一方面地質災害的有效防治將促進這些活動的正常進行,二者取得相互促進的效果。另外,地質災害防治不僅是中央政府的責任,而且是一種廣泛的社會行為。因此,隨著國家改革開放的深入和市場經濟的發展,地方政府、企業以及個人在發展經濟活動中,為了免受災害損失,取得效益和利潤,就應該將所涉及的地質災害防治工作納入經濟活動之中,在市場經濟利益驅使下開展防治工作。
(五)防治工程最優化原則
地質災害防治工程一般需要比較巨大的投入。它所防治的對象是復雜的自然現象,所以地質災害防治工程既是復雜的技術工作,又是復雜的經濟工作。無論是哪個部門實施哪種防治工程都需要本著最優化原則審慎對待。最優化原則的核心就是實現科學性、可操作性與最小風險、最大效益的有機結合。
1.科學性
其科學性主要體現在:防治工程類型選擇要有充分依據,符合地質災害的減災特點或受災體的防護需要;防治工程設計要有針對性,符合國家有關標准和規范要求。
2.可操作性
其可操作性主要體現在:在目前技術水平條件下能順利實施;在人力、物力、財力方面有充分保障;現場環境沒有嚴重障礙。
3.最小風險
地質災害防治工程是在對災害評價基礎上實施的。由於對災害破壞損失認識的不徹底性,所以防治工程具有一定的風險。其主要表現在:防治工程不完全符合地質災害成災特點和受災體防護需要;設防標准不完全符合災害活動概率和成災規模,因而導致防治工程部分失效、完全失效或者超標准運行;防治工程不符合施工標准,達不到預期功能或達不到使用年限。基於這種性質,在設計、實施防治工程時,要力求將風險程度降到最低程度。
4.最大效益
其主要表現是以盡可能少的人力、物力、財力和時間投入,取得最大、最長效的經濟效益和社會效益、環境效益。