當前位置:首頁 » 地質工程 » 工程地質失事案例

工程地質失事案例

發布時間: 2021-02-28 03:58:51

① 建築工程質量事故分析案例,求答題方向。。。

案例:某工廠新建一生活區,共14 幢七層磚混結構住宅(其中10幢為條形建築,4幢為點式建築)。在工程建設前,廠方委託一家工程地質勘察單位按要求對建築地基進行了詳細的勘察。工程於一九九三年至一九九四年相繼開工,一九九五年至一九九六年相繼建成完工。一年後在未曾使用之前,相繼發現10幢條形建築中的6幢建築的部分牆體開裂,裂縫多為斜向裂縫,從一樓到七樓均有出現,且部分有呈外傾之勢;3幢點式住宅發生整體傾斜。後來經仔細觀察 分析 ,出現 問題 的9幢建築均產生嚴重的地基不均勻沉降,最大沉降差達160mm以上。

事故發生後,有關部門對該工程質量事故進行了鑒定,審查了工程的有關勘察、設計、施工資料,對工程地質又進行了詳細的補勘。經查明,在該廠修建生活區的地下有一古河道通過,古河道溝谷內沉積了淤泥層,該淤泥層系新近沉積物,土質特別柔軟,屬於高壓縮性、低承載力土層,且厚度較大,在建築基底附加壓力作用下,產生較大的沉降。凡古河道通過的9棟建築物均產生了嚴重的地基不均勻沉降,均需要對地基進行加固處理,生活區內其它建築物(古河道未通過)均未出現類似情況。該工程地質勘察單位在對工程地質進行詳勘時,對所勘察的數據(如淤泥質土的標准貫入度僅為3,而其它地方為 7~12)未能引起足夠的重視,對地下土層出現了較低承載力的現象未引起重視,輕易的對地基土進行分類判定,將淤泥定為淤泥質粉土,提出其承載力為 100kN, Es為4Mpa.設計單位根據地質勘察報告,設計基礎為淺基礎,寬度為2800mm,每延米設計荷載為270kN,其埋深為- 1.4m~2m左右。該工程後經地基加固處理後投入正常使用,但造成了較大的 經濟 損失,經法院審理判決,工程地質勘察單位向廠方賠償經濟損失329萬元。

②  崩塌勘查典型實例示範

1.5.1長江三峽鏈子崖音頻大地電場法、甚低頻電磁法裂縫、岩溶、煤洞勘測

鏈子崖位於長江三峽兵書寶劍峽出口處右岸,瀕臨江邊的陡崖主體由二疊系棲霞組灰岩構成,底部為煤系軟弱層。在長約700m,寬30~180m范圍內發育有58條裂縫,將岩體切割成3個危岩區,即南部的I區To至T6縫區和北部的Ⅲ區T8至T12縫區以及中部的Ⅱ區T7縫區。其中T8至T12縫區危岩體緊臨長江,南、西分別被T8、T9、T11縫和T12縫切割,北、東兩側臨空,底部煤層基本被采空,是防災治理、監測預報的重點險段。

到20世紀80年代中期,經過長期的大量調查研究工作,鏈子崖可見裂縫的分布情況已基本查清;但是,在表土覆蓋地段的裂縫分布、延伸、連通交切情況,隱伏構造、岩溶、煤洞的分布等尚不清楚。針對上述問題,地質礦產部水文地質工程地質技術方法研究所於1988年採用了音頻大地電場法、甚低頻電磁法勘測裂縫、岩溶、煤洞的分布情況。

1.5.1.1 隱伏裂縫勘測

基於裂縫發育的不規則性和地形條件,勘測中採用了異常追蹤法:即從已知裂縫的隱沒端開始,根據裂縫和異常發育趨勢布設勘探剖面,同時輔以現場地質調查,進行異常的定點、連接,循序漸進,直至查明(圖1-1)。裂縫上方的音頻大地電場和甚低頻電阻率異常曲線一般形態尖銳,幅值較大(圖1-2)。

裂縫勘測結果表明:鏈子崖南部Ⅲ區和北部I區裂縫已相互連通。特別是確定了Ⅲ區分布的 T8-1、T8-1-2、T9、T11裂縫均與T12裂縫連通以及T8-0縫向SE方向延伸至陡壁邊緣,對危岩體穩定性評價至關重要。勘探結果在隨後的工程探槽(圖1-3)和聲波跨孔測試中得到驗證。

1.5.1.2隱伏煤洞勘測

圖1-1追蹤裂縫的測線布置及異常分布

鏈子崖的變形與底部馬鞍山組(P1mn)煤層采空有直接關系。根據調查訪問資料,鏈子崖底部有採煤巷道20餘條,基本沿地層走向分布。為了解其存在狀況,用音頻大地電場法和甚低頻電磁法在鏈子崖頂部展開了面積性勘測。

煤洞的電場異常不同於裂縫,一是幅值較小、寬度較大、規律性較強(圖1-4a)。

勘測共確定煤洞14條,煤洞走向與岩層走向基本一致(SW—NE),長度300~400m,間隔30~40m,勘測結果和實際情況相符。

1.5.1.3隱伏岩溶勘測

平行於鏈子崖陡崖,勘測中追蹤發現一條幅值高、寬度大的異常(圖1-4b)帶近南北向發育,其東側裂縫發育,西側則明顯減少;該異常帶與北部的黃泥巴壁相接,根據異常形態、結合地質特徵分析,推測為一岩溶發育帶,後期的勘探工程證實了這一推測(連克等,1991)。

圖1-2隱伏裂縫實測剖面(T9縫前端)

圖1-3TC3工程探槽展示圖

1.5.2鏈子崖隱伏裂縫的聲波檢測

鏈子崖危岩體存在12組50餘條裂縫,出露最寬約2m,深不可測。其中T8及T9裂縫,北端隱伏於覆蓋層下,是否延伸與T12縫貫通,成為查明岩體結構與方量和確定治理工程設計的關鍵,為此,在上述裂縫延伸的關鍵部位,布兩鑽孔,孔距21m,深150餘m。由地質礦產部水文地質工程地質技術方法研究所於1989年承擔跨孔聲波測試,查明裂縫的延伸及傾向。

現場地質剖面概況及跨孔聲波測試示意圖如圖1-5a。採用等高同步測試法、扇面測試法,測取的波形記錄分別如圖1-5b及圖1-5c。這些記錄的推論是:接收到的是繞射波,其地質模型應如圖1-5d,即裂縫張開無充填。顯然,只有存在地表覆蓋層的繞射波,才會出現發射與接收點靠近覆蓋層聲傳播時間短,遠離覆蓋層則聲傳播時間加長。為證實現場測試推斷是正確的,在室內按推理的地層模型,進行模型超聲測試,取得和現場一致的測試結果。

圖1-4Ex、ρ曲線圖

另外,在一個孔內逐點發射,並接收裂縫的反射波,根據反射波的聲波走時,推斷出裂縫的傾向,與地質工程師從地質構造的推論相一致。至此對裂縫的性狀給出明確的結論,為鏈子崖危岩體的治理,提供了依據,受到國家科委表彰(展建設等,1991)。

1.5.3危岩錨固鑽孔內裂縫及裂縫密集帶聲波檢測

長江三峽鏈子崖50000方危岩體防治工程,採用錨索加固處理,錨固孔深30~40m不等,最深達64.2m。危岩體主要以棲霞灰岩為主,裂隙發育且為張性,局部成破碎軟弱帶。錨固施工需掌握上述裂縫、軟弱結構面在錨固孔中的位置,分布及幾何尺寸。地質礦產部水文地質工程地質技術方法研究所承擔此項特種檢測任務,研製一發一收干耦合換能器,在不能存留井液的水平干孔中,完成了共2670m的測試,指導了施工。圖1-6其中三個鑽孔的測試結果,其中視聲速低於1000m/s(圖中粗實線部分)的低速孔段均為裂隙及裂隙密集帶(展建設、曹修定實測,1996)。

1.5.4岩崩堆積體灌漿補強效果聲波測試

1998年地質礦產部水文地質工程地質技術方法研究所在三峽庫區遷建城鎮新址岩崩堆積體工程改造現場,完成了灌漿補強前後岩體物理力學強度變化試驗工作。採用「一發雙收」單孔及跨孔聲波檢測對半徑為1.7m圓周等分的六個鑽孔中等邊三角形分布的三個鑽孔作為實施灌漿孔,另三個按等邊三角形分布的鑽孔及圓心的鑽孔作為聲波檢測孔。採用灌漿前、灌漿後7d、灌漿後28d進行聲波單孔測試及跨孔聲波透視。

圖1-5各種方法測試示意圖及推測的地層模型

圖1-6危岩錨固孔內裂隙及軟弱破碎帶聲波測試聲速-孔深曲線粗實線為裂隙及破碎帶

單孔測試採用敲擊作震源產生縱波及橫波,以三分量檢測器貼壁接收;跨孔測試用小葯量爆炸震源的以三分量檢測器貼壁接收。

岩崩堆積灌漿補強分別在四川奉節及巫山兩地各做兩組試驗,現僅以奉節組試驗為例加以說明。圖1-7為灌漿前後單孔一發雙收的時差-孔深對比曲線;圖1-8為灌漿前後跨孔的聲速-孔深對比曲線。由跨孔測試結果可見灌漿後聲速有明顯提高,最高可達60%以上;而單孔測試最高14%、最小僅2%。單孔測試聲速變化小的原因是此法能了解沿孔壁一個波長范圍的聲速,單孔聲速的提高,說明灌漿范圍已達聲波觀測孔的孔壁;而跨孔測試是直接了解兩孔連線間的岩體灌漿情況。

圖1-7灌漿前後單孔一發雙收的時差-孔深對深對比曲線

圖1-8灌漿前後跨孔的聲速-孔深對比曲線

由於測試縱波聲速的同時,還測試了橫波聲速,因此可計算出岩崩堆積體灌漿前後的動彈性力學性能的變化,見表1-4(李洪濤等實測,1998)。

1.5.5長江三峽鏈子崖煤層采空區老空洞探地雷達探測

長江三峽鏈子崖底部煤層采空區的分布及其後期充填情況是評價鏈子崖危岩體穩定性的重要資料,同時也是確定治理工程混凝土承重阻滑鍵布置的重要依據。為此,在充分的地質調查分析基礎上,委託煤炭科學研究總院採用地質雷達技術,利用PD2、PD6和PD1三個勘探平硐對煤層采空區的空洞或充填疏鬆地帶進行了探測,取得了較好的效果。

表1-4奉節動彈性力學參數

地質雷達資料的解釋是靠圖形識別來進行的。具體解釋過程是在資料處理後進行的對比,即對比波在相位、周期(頻率)、同相軸和波形等運動學方面的特點,以及測點間在二維(橫向與縱向)方向上組成的圖形特徵。同時,還應注意到相位的強弱(動力學特點)。圖1-9為PD2沿線的一段探地雷達圖像,圖中44~61m之間顯示為灰岩分布區,在76~85測點之間出現周期加大,相位改變,呈現明顯弧形同相軸,反映的是煤層采空區。根據采空區的這種特徵所得PD2平硐的探測成果列於圖1-10與表1-5中(劉傳正,2000)。

圖1-9PD2Z線雷達圖像(100MHz)

1.5.6金麗溫高速公路崩塌體井內電視探測

由於浙江金麗溫高速公路k81段高邊坡地質條件復雜,岩層破碎,構造擠壓,節理裂隙及斷裂構造十分發育,處於崩塌體范圍內。根據甲方要求對錨索孔B6-5、B6-9、B4-8、B6-16、B6-19、B6-23進行測試,以上各孔孔徑為φ130mm,錨索鑽孔俯角15°。主要查找鑽孔中裂縫(圖1-11)及破碎情況(封紹武實測,2002)。

圖1-10PD2平硐雷達測線布置與探測成果

1—煤層采空區;2—充填但未壓實的采空區

表1-5PD2平硐探地雷達勘查異常解釋綜合表

圖1-11浙江金麗溫高速路k81段高邊坡(水平鑽孔—干孔)裂縫圖片

參考文獻

段永侯,羅元華,柳源等.1993.中國地質災害.北京:中國建築工業出版社

郭建強,彭成,孫黨生等.2003.鏈子崖危岩體勘查中物探技術的應用.水文地質工程地質

胡厚田.1989.崩塌與落石.北京:中國鐵道出版社

李媛,張穎,鍾立勛.1992.中國滑坡崩塌類型及分布圖說明書.北京:中國地圖出版社

李智毅,王智濟,楊裕雲.1996.工程地質學基礎.武漢:中國地質大學出版社

李智毅,唐輝明.2000.岩土工程勘查.武漢:中國地質大學出版社

李大心.1994.探地雷達方法及其應用.北京:地質出版社

連克,朱汝裂,郭建強.1991.音頻大地電場法在地質災害調查中的應用嘗試——長江三峽鏈子崖危岩體隱伏地質結構的探測.中國地質災害與防治學報

劉傳正.2000.地質災害勘查指南.北京:地質出版社

晏同珍,楊順安,方雲.2000.滑坡學.武漢:中國地質大學出版社

展建設,吳慶曾.1991.跨孔聲波穿透法在探測三峽鏈子崖隱伏裂縫中的應用.中國地質災害與防治學報

張咸恭,李智毅等.1998.專門工程地質學.北京:地質出版社

③ 工程事故案例分析

四川省工程質量事故典型案例

最近幾年來,在對工程質量事故鑒定工作中,我們收集了一些典型的工程質量事故案例。這些案例涉及基本建設程序、工程地質勘察、工程設計、工程施工、材料供應以及質量檢測等各方面。現列舉一部分,供大家參考。

案例一:
某工廠新建一生活區,共14幢七層磚混結構住宅(其中10幢為條形建築,4幢為點式建築)。在工程建設前,廠方委託一家工程地質勘察單位按要求對建築地基進行了詳細的勘察。工程於一九九三年至一九九四年相繼開工,一九九五年至一九九六年相繼建成完工。一年後在未曾使用之前,相繼發現10幢條形建築中的6幢建築的部分牆體開裂,裂縫多為斜向裂縫,從一樓到七樓均有出現,且部分有呈外傾之勢;3幢點式住宅發生整體傾斜。後來經仔細觀察分析,出現問題的9幢建築均產生嚴重的地基不均勻沉降,最大沉降差達160mm以上。事故發生後,有關部門對該工程質量事故進行了鑒定,審查了工程的有關勘察、設計、施工資料,對工程地質又進行了詳細的補勘。經查明,在該廠修建生活區的地下有一古河道通過,古河道溝谷內沉積了淤泥層,該淤泥層系新近沉積物,土質特別柔軟,屬於高壓縮性、低承載力土層,且厚度較大,在建築基底附加壓力作用下,產生較大的沉降。凡古河道通過的9棟建築物均產生了嚴重的地基不均勻沉降,均需要對地基進行加固處理,生活區內其它建築物(古河道未通過)均未出現類似情況。該工程地質勘察單位在對工程地質進行詳勘時,對所勘察的數據(如淤泥質土的標准貫入度僅為3,而其它地方為7~12)未能引起足夠的重視,對地下土層出現了較低承載力的現象未引起重視,輕易的對地基土進行分類判定,將淤泥定為淤泥質粉土,提出其承載力為100kN, Es為4Mpa。設計單位根據地質勘察報告,設計基礎為淺基礎,寬度為2800mm,每延米設計荷載為270kN,其埋深為-1.4m~2m左右。該工程後經地基加固處理後投入正常使用,但造成了較大的經濟損失,經法院審理判決,工程地質勘察單位向廠方賠償經濟損失329萬元。

案例二
某市一商品房開發商擬建10棟商品房,根據工程地質勘察資料和設計要求,採用振動沉管灌注樁,樁尖深入沙夾卵石層500以上,按地勘報告樁長應在9~10米以上。該工程振動沉管灌注樁施工完後,由某工程質量檢測機構採用低應變動測方式對該批樁進行樁身完整性檢測,並出具了相應的檢測報告。施工單位按規定進行主體施工,個別棟號在施工進行到3層左右時,由於當地質量監督人員對檢測報告有爭議,故經研究決定又從外地請了兩家檢測機構對部分樁進行了抽檢。這兩家檢測機構由於未按規范要求進行檢測,未及時發現問題。後經省建築科學研究院對其檢測報告進行了審核,在現場對部分樁進行了高、低應變檢測,發現該工程振動沉管灌注樁存在非常嚴重的質量問題,有的樁身未能進入持力層,有的樁身嚴重縮頸,有的樁甚至是斷樁。後經查證該工程地質報告顯示,在自然地坪以下4~6m深處,有淤泥層,在此施工振動沉管灌注樁由於工藝方面的問題,容易發生縮頸和斷樁。該市檢測機構個別檢測人員思想素質差,一味地迎合施工單位的施工記錄樁長(施工單位由於單方造價報的低,經常利用多報樁長的方法來彌補造價),將砼測試波速由3600米/秒左右調整到4700~4800米/秒,個別樁身經實測波速推定樁身測試長度為5.8m,而當時測試樁長為9.4m,兩者相差達3.6m。這樣一來,原本未進入持力層的樁,嚴重縮頸樁和斷樁就成為了與施工單位記錄樁長一樣的完整樁。該工程後經加固處理達到了要求,但造成了很大的經濟損失。

案例三
某市一開發商修建一商品房,為了追求較多的利潤,要求設計、施工等單位按其要求進行設計施工。設計上採用底層框架(局部為二層框架)上面砌築九層磚混結構,總高度最高達33.3m,嚴重違反國家現行規范〈建築抗 設計規范〉GBJ11-89和地方標准〈四川省建築結構設計統一規定〉DB51/5001-92的要求,框架頂層未採用現澆結構,平面布置不規則、對稱,質量和剛度不均勻,在較大洞口兩側未設置構造柱。在施工過程中六至十一層採用灰砂磚牆體。住戶在使用過程中,發現房屋內牆體產生較多的裂縫,經檢查有正八字、倒八字裂縫;豎向裂縫;局部牆面出現水平裂縫,以及大量的界面裂縫,引起住戶強烈不滿,多次向各級政府有關部門投訴,產生了極壞的影響。

案例四:
某縣一機關修建職工住宅樓,共六棟,設計均為七層磚混結構,建築面積10001平方米,主體完工後進行牆面抹灰,採用某水泥廠生產的325水泥。抹灰後在兩個月內相繼發現該工程牆面抹灰出現開裂,並迅速發展。開始由牆面一點產生膨脹變形,形成不規則的放射狀裂縫,多點裂縫相繼貫通,成為典型的龜狀裂縫,並且空鼓,實際上此時抹灰與牆體已產生剝離。後經查證,該工程所用水泥中氧化鎂含量嚴重超高,致使水泥安定性不合格,施工單位未對水泥進行進場檢驗就直接使用,因此產生大面積的空鼓開裂。最後該工程牆面抹灰全面返工,造成嚴重的經濟損失。

案例五:
某縣級市一鄉村修建小學教學樓和教師辦公住宿綜合樓,鄉上個別領導不按照有關基本建設程序辦事,自行決定由一農村工匠承攬該工程建設。工程無地質勘察報告,無設計圖紙(抄襲其它學校的圖紙),原材未經檢驗,施工無任何質量保證措施,無水無電,砼和砂漿全部人工拌和,鋼筋砼大梁、柱子人工澆注振搗,密實度和強度無法得到保證。工程投入使用後,綜合樓和教學由於多處大梁和牆面發生較嚴重的裂縫,致使學校被迫停課。經檢查,該綜合樓基礎一半置於風化頁岩上,一半置於回填土上(未按規定進行夯實),地基已發生嚴重不均勻沉降,導致牆體出現嚴重裂縫;教學樓大梁砼存在嚴重的空洞受力鋼筋已嚴重銹蝕,兩棟樓的砌體砂漿強度幾乎為零(更有甚者個別地方砂漿中還夾著黃泥),樓梯橫梁擱置長度僅50mm,梁下砌體已出現壓碎現象。經鑒定該工程主體結構存在嚴重的安全隱患,已失去了加固補強的意義,被有關部門強行拆除,有關責任人受到了法律的懲辦。

案例六:
某縣有關部門為教師建一廣廈工程,位於河邊,其上游數百米為電站大壩。該工程於1995年11於月開工建設,1997年元月竣工。具有關資料表明,該工程所在地20年一遇洪水水位313.50(絕對標高),但建設、施工單位擅自將該工程±0.00標高由314.40m降到308.16m。致使該工程自1997年投入使用以來,遭遇洪水淹沒五次,洪水水位高出二樓地面約70cm(相當於絕對標高312m),底樓地面受洪水沖刷已多處出現直徑約1m~2m、深約0.5m~1m的管涌坑,直接危及地基基礎的長期穩定和上部結構的安全。受電站卸洪浪涌沖擊壓力影響,二樓樓面板向上反拱(據住戶反應由二樓板縫冒出的水柱高達70cm),室內瓜米石地坪多處破損並與空心板剝離,二樓部分樓面板已不滿足建築構件安全使用要求。工程設計二個單元九層,實際建造四個單元十層,頂層部分住戶擅自加建到十一層,不滿足現行國家標准《砌體結構設計規范》GBJ3—88》和《建築抗震設計規范》GBJ11—89~要求。該工程經有關部門鑒定為不合格工程。

案例七:
四川省某市玻璃廠1999年4月為增加生產規模擴建廠房,在原來天然坡度約22°的岩石地表平整場地,即在原地表向下開挖近5m,並距水廠原蓄水池3m左右,該蓄水池長12m、寬9m、深8.2m,容水約900m3。玻璃廠及水廠廠方為安全起見,通過熟人介紹,請了一高級工程師對玻璃廠擴建開挖坡角是否會影響水廠蓄水池安全作一技術鑒定。該高工在其出具的書面技術鑒定中認定:「該水池地基基礎穩定,不可能產生滑移形成滑坡影響安全;可以從距水池3m處按5%開挖放坡,開挖時沿水池邊先打槽隔開,用小葯量淺孔爆破,只要施工得當,不會影響水池安全;平整場地後,沿陡坡砌築條石護坡;......本人負該鑒定的技術法律責任」。最後還蓋了縣勘察設計室的「圖紙專用章」予以認可。
工程於7月初按此方案平基結束後,就開始廠房工程施工,至9月6日建成完工。然而,就在9月7日下午5時許,邊坡岩體突然崩塌,岩體及水流砸毀新建廠房兩榀屋架,其中的工人3死5傷,釀成了一起重大傷亡事故。
該工程邊坡岩體屬於裂隙發育、遇水可以軟化的軟質岩石,雖然屬於中小型工程,但環境條件復雜,施工爆破、水池滲漏、坡體卸荷變形等不確定的不利影響因素甚多,在沒有基本的勘察設計資料的前提下採用直立邊坡,破壞了原邊坡的穩定坡角,而且未採用任何有效的支擋結構措施,該邊坡失穩是必然會發生的。若有正確的工程鑒定,並嚴格按基建程序辦事,採用經過勘察設計的岩石錨樁(或錨桿)擋牆和做好水池防滲處理措施則是能夠有效保證工程邊坡安全的。
該高工的「技術鑒定」內容過於簡略,分析評價膚淺、武斷,未明確指出及貫徹執行現行勘察設計技術規范規定的技術原則及技術方法,主要結論建議缺乏技術依據,盡管其中有關地基施工中關於松動爆破和開槽減震的建議是正確的,也是有針對性的,但未經設計計算的有關邊坡穩定的結論是不恰當的。有關用條石擋牆護坡的建議也不是該工程邊坡條件下能確保邊坡安全的有效支擋結構技術措施,而有關採用坡度為1:0.05的放坡建議,則更是沒有貫徹現行規范的基本規定,缺少相應的論證分析,它的誤導為該工程事故埋下了安全隱患。該「技術鑒定」雖然蓋有縣勘察設計室的「圖紙專用章」,但卻無一般勘察、設計單位通常執行的「審核」、「批准」等技術管理和質量保證體系,從技術鑒定的內容到形式都缺乏嚴肅性;而且這種技術鑒定缺乏委託方與承擔方之間的有關目的、任務、質量要求等基本的書面約定,這就從根本上影響了技術鑒定工作的深度和技術質量。
平基施工過程中及完工前後所發現的漏水等邊坡岩體不穩定因素的徵兆,雖然有關各方曾予以一定程度的重視與研究,但由於缺乏岩土工程及支擋結構方面的專業技術知識與經驗,對隱患認識不足,未能採取相應措施,而繼續盲目施工至全部工程(人工邊坡及廠房擴建)結束和水池繼續運行,並在7月3日決定將水池蓄水至7m水深,使整個工程的安危事實上依賴於個人狹隘的專業技術知識與經驗上。
綜上所述,此次事故造成人員傷亡,經濟損失巨大,以及負面社會影響,主要是由於違章進行工程鑒定、處理方案錯誤所至。從事工程鑒定的技術人員以及管理者應從此次事故中汲取經驗教訓,嚴格按照國家的統一鑒定方法與標准進行工程鑒定,即按照:客戶委託,確定鑒定目的、范圍和內容;初步調查;詳細調查及檢測驗算;安全性、使用性鑒定評級;可靠性評級;出具鑒定報告及處理意見的基本鑒定程序規范、標准地進行工程鑒定。

④ 求關於水利工程由於質量問題引發事故的案例

五強溪,薩彥-舒申斯克,駐馬店,阿斯旺,板橋水庫大壩等。

世界水回壩事故

水庫垮壩答悲劇,如同陰影,伴隨著人類自進入「工業革命」時代以來的水庫興建史,一再重演:

1864年,英國戴爾戴克水庫在蓄水中發生裂縫垮壩,死亡250人,800所房屋被毀。

1889年,美國約翰斯敦水庫洪水漫頂垮壩,死亡4000—10000人。

1959年,西班牙佛台特拉水庫發生沉陷垮壩,死亡144人。

1959年,法國瑪爾帕塞水庫因地質問題發生垮壩,死亡421人。

1960年,巴西奧羅斯水庫在施工期間被洪水沖垮,死亡1000人。

1961年,蘇聯巴比亞水庫洪水漫頂垮壩,死亡145人。

1963年,義大利瓦伊昂拱壩水庫失事,死亡2600人。

1963年,中國河北劉家台土壩水庫失事,死亡943人。

1967年,印度柯依那水庫誘發地震,壩體震裂,死亡180人。

1979年,印度曼朱二號水庫垮壩,死亡5000—10000人。

⑤ 因地質問題而失效的水利工程案例有哪些

水利工程的建設主要面臨的地質問題:
1、水庫開發對周邊山體切割導致滑坡;專
2、蓄水壓力作用可能屬導致地震;
3、水庫滲水導致周邊地下塌陷、溶洞等.
水電工程地質存在的問題很多,除了與其他工程類似的區域地殼穩定、壩基、邊坡和地下洞室岩土體的穩定性等問題外,還有庫壩滲漏、水庫庫岸穩定、水庫淤積、濱庫地區浸沒、水庫誘發地震的問題。
一般解決的思路是針對具體的工程地質問題分階段進行專門勘察,並進行穩定性計算和治理設計,然後付諸施工,用工程的方法進行改善.例如邊坡問題,先進行地質填圖調查,然後設計勘探類型和位置,等勘探施工完成後計算邊坡穩定性,如果不夠穩定即進行治理,設計抗滑樁,盲溝等等,最後是治理措施的施工.

⑥ 工程地質案例分析

給我你扣扣,我目前正在做一個這個方面的東西

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864