最新工程地質調查規范
⑴ 勘察中工程地質調查怎麼寫
按《中國地質調查局項目設計預算編制暫行辦法》的要求編寫。
第九章
保證措施
按地調局質量監督部門的要求填寫。
呵呵,很容易搜到
⑵ 對《水文地質工程地質環境地質災害地質勘查檔案立卷歸檔規則》徵求意見稿的幾點意見
梁其華
(河北省環境地質勘查院,石家莊050021)
摘要 本文主要闡述了對《水文地質工程地質環境地質災害地質勘查檔案立卷歸檔規則》 徵求意見稿的五點看法和修改建議。
關鍵詞 水文地質;環境地質;分類;意見及建議
1 對徵求意見稿的看法
地質原本檔案是地質科技檔案的一部分,是地質資料開發利用的基礎,服務於經濟社會的各個方面。目前,隨著地質檔案管理技術含量的提高和社會對檔案信息資源開發利用提出的全新要求,地質檔案管理方法和理論應用的內容都需要進行相應的改進、充實和提高,把地質檔案管理流程規范化、程序化、數據化和標准化。筆者根據幾年來工作中遇到的實際情況淺談對國土資源部下發的《水文地質工程地質環境地質災害地質勘查檔案立卷歸檔規則》徵求意見稿的幾點看法。
標准使用過程中,一些地質技術人員對原本資料分類認為比較繁瑣,在整理分類過程認為因分類多麻煩且又增加工作量,建議少分幾類。筆者認為:原本檔案分類目的是為了更好地保存、查詢和利用;重點既要保持資料內在聯系又要說明問題簡單。所以只要我們編目有序、有律、清楚,一份一號,少劃分幾個類對資料歸檔合理性並不受影響。
由於近幾年地質項目新增了質量認證資料和質量自護檢資料。這些資料怎樣歸類,試行辦法中沒有提到。
《地質檔案立卷歸檔備考表》中審查意見一欄是項目負責人簽名。因多數單位原本檔案地質資料初步驗收是由管理部門技術人員、項目負責人和資料管理人員組成,若單獨由項目負責人簽名不能反映出其他評審成員,筆者認為應改審核人簽名較為合理。
現執行的原本檔案立卷規則是地礦部1964年頒布的辦法相對滯後,已不能指導目前新增的資料類別歸類。致使在工作中缺乏行之有效的法規依據,建議加快制定新標准。
對類目編排順序內容幾點不同看法一一列舉如下。
(1)A3地形測量類(代字:測)。
A3.1 成果底圖(此條和「底」字類第A1.3 條類似,在歸類時易混淆)
A3.3 各類地質觀測點、監測點、孔、坑、槽、硐等勘探工程點的三維坐標測量成果,勘探剖面起止坐標等(和「觀」字類第A4.3條中的「調查觀測點」有類似之處)
A3.4 質量檢查驗收意見(和「 物」字類第A8.7 條、「文」字類第A9.5 條類似)
A3.5 各種測量觀測記錄簿、計算簿、儀器檢查手簿(建議去掉「 觀測」兩字,觀測記錄簿歸入「觀」字類)
(2)A4地質觀測(調查)類(代字:觀)。
因為「監」和「觀」都是指野外的工作地質資料,在實際工作中也常把「監」類資料和「觀」類資料放在一起。為了保持資料內部的聯系性和減少歸類的難度、繁瑣,建議合並「觀」和「監」字兩類,統為「監」字類。
(3)A5勘探工程及現場試驗類(代字:探)。
A5.1.8 簡易水文地質觀測記錄;A5.1.9 地下水穩定水位觀測記錄(從概念上看水文地質觀測記錄建議歸「觀」字類)
(4)A8物探類(代字:物)。
A8.1 報告及其附圖、附表、附件(和「 底」類相似)
A8.2 實際材料圖(和「 觀」字類第A4.2 條類似)
實際工作中涉及此類資料並不多,建議刪去物探類。
2 原本檔案歸檔修改建議
通過以上分析,按各類之間的內在聯系和實用性建議把地質科技文件材料類別歸為:文、底、測、監、遙、探、樣、物、設、研、機、實十二類。類的設置原則是:按本標准設類,有則設之,無則空缺,不得增設;類別不明確的科技文件材料應歸入相近的類別。新增的各類質量自護檢資料應歸入母本類中。
A1 技術文件類(代字:文)。包括上級下達的工作計劃、任務書、委託書、合同書、協議書、勘查申請登記材料、技術指示文件、專家建議、專家會議紀要、重要技術措施、技術請示匯報、技術總結、野外質量評審文件、質量認證資料、申報獎勵等。
A2 底稿、底圖類(代字:底)。包括最終成果報告及其附圖、附表、附件的底稿和最終成果評審、認定文據。
A3 地形測量類(代字:測)。包括地形測量成果底圖、實際材料點的測量成果、測量手簿、測量計算手簿和測量技術總結等。
A4 地質監、觀(調查)類(代字:監)。包括長期觀測點記錄、動態曲線、統計表及觀測收集氣象、水文、地震、工程活動資料。野外原圖、清圖、實際材料圖、實測剖面圖、觀測記錄簿(卡片)、照片、底片等。
A5 遙感解譯類(代字:遙)。包括附有遙感解譯報告或說明書、解譯圖、航衛片、解譯卡片等。
A6 勘探工程及現場試驗類(代字:探)。包括鑽孔、各類野外試驗記錄及成果、坑槽、井的原始記錄、素描圖、柱狀圖、展示圖等。
A7 樣品實驗測試類(代字:樣)。包括岩、土、水的化學分析成果,岩礦鑒定成果,岩、土物理力學性質試驗成果,岩、土測年成果、樣品的採集存根及送樣單等。
A8 物探類(代字:物)。包括各類物探成果報告、實際材料圖、野外記錄簿、計算簿、儀器原始記錄圖紙、照片、電算數據處理成果圖等。
A9 技術設計類(代字:設)。包括勘查項目總體設計、各類不同專業等的設計及其附圖、附表的復制本。
A10 綜合研究類(代字:研)。包括各類專題性、綜合性研究成果資料,作為成果報告依據的中間性分析、計算成果。
A11 電子文件類(代字:機)。包括勘查過程中形成的以磁帶、磁碟、光碟為載體的文本、圖表、圖像等數據文件。
A12 實物地質資料類(代字:實)。包括重要建築物軸線或代表性勘查剖面的岩心樣及岩石(土)標本,不良地質體代表性標本,重要實驗、測試樣品副樣,重要礦物、化石標本及光片、薄片等。
⑶ 工程地質條件
你好,根據你的提問,我認為工程地質的條件一般是指在比較平坦的道路上或者是比較適合施工的地質。
⑷ 工程地質勘察報告書
工程地質勘察任務書
建 設 單 位 工 程 名 稱 場 地 位 置
設 計 單 位 要求提交勘察資料內容 提 出 任 務 日 期
要 求
勘探技術 要求提交資料日期
要求提交資料份數
隨 任 務 書 附 圖
順 序 號 總 圖 編 號 物 名 稱
建 (構) 築 設計地層標高 米 層 數 高 度 米 建(構 築物等級 結 構 類 型 對差異沉降敏感程度 建(構 )築物基地 主 要 設 備 說 明 地下室或地下設備情況 備 注
形 狀
尺 寸
米
×
米 材 料 砌 置 深 度 單位
荷載
(噸/米)
或總
荷重
(噸) 設 備 名 稱 設 備 基 礎 對差異沉降敏感程度 使用期間荷重善說明
形 狀 尺
寸
米
×
米
砌 置 深 度 米 單位荷載
(噸/米)
或總荷重
(噸)
提出任務單位 (公章) 設計總負責人: 提出任務書人: 地址:
工程聯系人: 電 話 號 碼:
⑸ 工程地質勘查分級
甲級:工程重要性等級、場地復雜程度等級、地基復雜程度等級有一項或多項為一級。
乙級:除勘察等級為甲級或丙級以外的勘察等級。
丙級:工程重要性等級、場地復雜程度等級、地基復雜程度等級均為三級。
⑹ 工程地質鑽探規程91年的最新嗎
是最新的。DZ/T 0017-91 工程地質鑽探規程;現行版本。規定了進行區域工程地質專調查和各類建屬築工程場(廠)址基礎工程地質勘察鑽探的各項生產活動的技術要求,它既包含技術工作要求,又包括有關工藝操作規定。適用於區域工程地質調查和各類場(廠)址基礎工程地質勘察鑽探的設計、施工、管理和檢查,是進行各類工程地質鑽探各項工作的重要依據和准則。不適用於大口徑基礎樁施工工程鑽探。
⑺ 在工程地質調查中的應用
一、在水利工程中的應用
水利工程有堤壩、堤岸、渠道、輸水洞等。地球物理方法在水利工程中的應用,一方面用於工程場地的選址勘查,查明被選區域的岩溶發育情況、覆蓋層厚度、風化層厚度以及地質構造等情況,對擬建工程場址的穩定性和建築適宜性作出評價;另一方面用於水利工程的質量隱患檢測,查明壩體是否存在有裂縫、空洞、動物巢穴、管涌等工程質量隱患,為水利工程的消險加固提供依據。目前,常用於水利工程隱患檢測的物探方法有地質雷達、自然電位法、高密度電阻率法、人工地震勘探以及聲波測試等方法。
1.探測堤壩蟻巢與洞穴
土體堤壩中因碾壓不實、庫水浸透或動物危害等因素,在壩體中常出現土洞、動物巢穴等危害壩體安全的隱患。在我國南方各省(區)水利工程中白蟻巢穴是一種常見的隱患,白蟻主巢直徑一般在40~60 cm,大者可達數米,主巢周圍分布著幾十個甚至數百個衛星菌圃,其間由四通八達的蟻道溝通,且有的貫穿堤壩的內處坡。因此,深藏於堤壩中的白蟻危害造成的堤壩險情和潰堤率遠高於其他原因,找出堤壩白蟻巢是消除堤壩白蟻隱患的關鍵。地質雷達和高密度電法是對壩體中的土洞、動物巢穴探測的有效方法。圖5-1-1是埋深約3m的白蟻主巢的地質雷達圖像,白蟻巢在圖像上的反射波形態特徵為多重強弱交錯的凸形條紋區,與周圍土壤有明顯的分界。
圖5-1-1 某堤壩白蟻巢穴的地質雷達圖像
2.水壩滲漏的地球物理探測
滲漏是水壩常見的隱患,是造成水壩發生事故的主要原因。水壩滲漏可分為壩基滲漏和壩體及附屬結構滲漏,壩基滲漏較為常見。造成水壩滲漏的原因與水壩基礎處理的好壞、壩體施工質量、壩基下方地質構造等因素有關。
自然電位法探測水壩滲漏點和滲漏通道是一程常用的方法。由於庫水具有天然吸附帶電離子的能力,當水庫發生滲漏時,帶電離子也一起運動,形成電流場,在滲漏位置上自然電位出現負異常,其負異常的大小與滲漏水量有關。圖5-1-2是利用自然電場法確定地下水和地表水補給關系的實例。當地下水補給地表水時,在地面上觀測到自然電位正異常。圖5-1-2(a)為灰岩和花崗岩接觸帶上的上升泉的自電正異常;圖5-1-2(b)為水庫滲漏地點上出現的自然電位負異常。
圖5-1-2 用自然電位法確定地下水與地表水的補給關系
地質雷達方法用於探測水壩滲漏點和滲漏通道也具有較好的效果。滲漏部位土體的含水量變大,與未發生滲漏的土體形成明顯的介電常數上的差異,為採用地質雷達方法探測水壩滲漏位置提供了地球物理條件。黑龍江省某水壩為均質土壩,1998年遭受百年不遇的洪水後,在水壩後坡出現多處面積不等的漏水點。為了查明漏水點在壩體內的分布情況,採用地質雷達在壩頂、壩前坡和後坡進行了探測。圖5-1-3為壩頂測線K0+240—K0+400的地質雷達剖面。圖中強振幅異常推斷為壩體內受到水浸較重的部位,異常埋深為10~12 m。鑽探結果表明地質雷達推斷的異常區域是發生滲漏的嚴重區段。
圖5-1-3 黑龍江省某水壩地質雷達探測剖
3.壩基帷幕灌漿效果檢測
對病險水庫的維護處理一般採用帷幕灌漿等方法,灌漿效果的好壞需要採用物探方法檢查。某電站大壩岩基帷幕灌漿前後進行超聲波探測,圖5-1-4是質量檢查孔在灌漿前、後的超聲波檢測曲線,圖中可見,在檢查孔中上部,灌漿前和灌漿後的波速值差異非常明顯,灌漿前岩體的裂隙率高,波速較低;灌漿後岩體裂隙被水泥漿填充,且粘結牢固,波速明顯升高。在檢查孔的下部,灌漿前和灌漿後波速差異微小,波速較高,這說明岩體本身比較完整,滲透性小。
圖5-1-4 質量檢查孔灌漿前後聲波檢測結果
地質雷達對水壩帷幕灌漿質量檢測也有較好的探測效果,根據地質雷達圖像上灌漿物的影像可計算出有效灌漿深度和水泥漿擴散半徑。根據壩體土體和基岩處的強反射弧形影像,可判別已被灌漿物充填的溶洞的大小、形態和深度以及未被灌漿物充填的溶洞、土洞等隱患。
4.古河道的地球物理勘查
古河道常引起大量滲漏,在水庫建壩時需對壩基下古河道的地質情況進行詳細勘查,了解古河道的分布范圍,埋深以及砂礫石厚度等。探測古河道常用的物探方法是電測深法、自然電位法、地震勘探和地質雷達等方法。
圖5-1-5 用對稱四極剖面法追索古河道的ρs剖面平面圖
圖5-1-6 橫穿古河道的對稱四極剖面ρs曲線
圖5-1-5和圖5-1-6為對稱四極剖面法探測和追索古河道的實例。由圖5-1-5中各對稱四極剖面特徵可以看出,在低阻背景上有一高阻異常帶。該高阻異常帶推斷為古河道的反映,該河道由一條主流和一條支流組成。此外,利用ρs曲線特徵可大致確定出古河道的形態、中心位置和寬度。若ρs曲線具有對稱性,ρs曲線極大值對應於古河床最深的中心位置。若ρs曲線不對稱,可根據曲線兩翼陡緩推斷古河道兩岸坡度的大小(圖5-1-6),其視寬度可由ρs曲線的拐點位置大致確定。通過等ρs斷面圖上的等值線形狀可反映出古河道的斷面形態。由圖5-1-7可見,在371號點附近ρs等值線呈高阻閉合圈。結合當地的水文地質條件,推斷該異常為一淺層古河道引起。經ZK8、ZK10、ZK11孔驗證,證實了古河道的存在,ZK11打到了富含地下水的砂礫石層。
圖5-1-7 雲南某地尋找淺層砂礫石富水地段(古河道)成果圖
圖5-1-8為地震橫波法探測古河道的實例剖面圖。根據鑽探資料推測該區域一帶有一條古河道,河道埋深為20~30 m,為了查明古河道的位置,採用橫波地震勘探。圖中可見,40 ms左右的同相軸為第四系地層內部的反射,同相軸連續性好、起伏小;140~220 ms為古河道及兩岸附近地層的反射,同相軸連續性好、起伏較大,其形態特徵反映了古河道的形態,河道埋深為28 m左右,視寬度約為130 m。
圖5-1-8 橫波t0時間剖面
二、在交通建設和維護中的應用
1.公路質量檢測
公路質量檢測的原始方法是採用鑽探取心法,該方法不僅效率低、代表性差,而且對公路有破壞。為了快速、准確和科學地評價公路質量,必須採用無損檢測方法。目前,常用於公路檢測的物探方法有地質雷達、瞬態面波法、高密度電阻率法和人工地震等方法。在這些物探方法中,由於地質雷達方法具有快速、連續、無損檢測的特點。因此,在公路質量檢測中得到更加廣泛的應用。
圖5-1-9 電磁波在公路剖面中的傳播
高速公路是由土基礎、二灰土、二灰碎石、面層等構成,由於空氣、瀝青面層、二灰碎石、土壤等介質的介電常數不同,電磁波將在其介質發生變化的界面產生反射波。圖5-1-9為電磁波在公路剖面中各界面的傳播、反射途經示意圖。圖5-1-10為電磁波在公路剖面中各界面的掃描示意圖。
圖5-1-10 電磁波在公路剖面中各界面的掃描
長春至四平高速公路採用瀝青路面,路面下為碎石墊層。路面分三次鋪設完成,設計路面厚度為25 cm。在工程竣工前採用地質雷達進行了路面厚度檢測。
工作中使用的地質雷達為SIR-2型,工作天線頻率為900 MHz。圖5-1-11為長春至四平高速公路上某段路面的地質雷達檢測剖面圖,圖中5.8 ns附近的強反射為瀝青面層與碎石墊層界面的反射,根據反射界面的雙程走時和電磁波在瀝青路面中的傳播速度計算出路面厚度。瀝青路面的電磁波速度採用實驗標定並進行統計後得到。檢測結果表明,由於二灰石墊層凸凹不平,導致瀝青路面厚度有較大變化,最薄為26 cm,最厚為43 cm。達到了設計的要求。路面厚度評價按國家公路路面結構層厚度評價標准進行。在經數據處理後的地質雷達剖面中讀取電磁波在面層中的反射波雙程走時,計算出面層厚度並作出厚度評價結果。
地質雷達方法在公路質量檢測中除可進行路面厚度檢測外,還可進行路基隱患(脫空、裂縫等)的檢測以及橋涵的質量檢測。有些學者開展了地質雷達對公路壓實度、強度及含水量的檢測研究,也取得了較好的檢測效果。
圖5-1-11 長春至四平高速公路某段路面的地質雷達檢測剖面
2.鐵路路基病害勘查
鐵路路基病害一般指鐵路路基平台頂部結構不堅實而且滲水,以及原填充物的不均勻性,經長期雨水沖刷和滲透,行車振動等所形成的一定規模的充坑,洞穴或渣石填充物。路基病害比較隱蔽,一旦受到外界因素影響造成塌陷,將直接威脅行車安全,因此,鐵路病害的勘查十分重要。
路基勘查中,由於受到電磁干擾、鐵軌干擾及行車震動干擾的影響,限制了一些地球物理方法的應用。因此,目前常用於對鐵路病害檢測的物探方法是微重力測量。
由於路基的病害地段和完整地段有一定的密度差異,為微重力測量提供了前提。圖5-1-12是法國波爾多至塞特鐵路線上路堤下喀斯特溶洞的微重力異常等值線圖,測量位置位於鐵路線巴爾薩克處,勘查對象是5 m高的路堤和路基部。圖中可見,在該帶中部有一處密度較大的地段(異常達3×10-1g.u.),這是一處過去曾進行過灌漿處理的地段。在過去處理時,由於突然塌陷,未能進行專門研究。在地段兩端出現-2×10-1~-6×10-1g.u.兩處異常,位於邊坡基部並向路基底下延伸。經對異常的解釋和鑽探驗證,證實在路基下3~6 m深處的灰岩中存在喀斯特溶洞。
圖5-1-12 波爾多至塞特鐵路線上路堤下喀斯特溶洞的測定和處理
鐵路路基多是用耕土堆墊壓實而成,如果出現路基病害,必將引起電性差異。路基位於地面以上(或潛水面以上),所以無論是洞穴或渣石充填物都可使勘探體積所涉及范圍內的視電阻率增大,由此對稱四極剖面會出現高阻異常。路基病害越嚴重,規模越大,高阻異常越明顯。例如,圖5-1-13是隴海路某段採用對稱四極剖面法實測曲線,採用AB=7 m,MN=1 m裝置,由圖可見,全線有三種病害形式:①較大洞穴或渣石填充物的嚴重病害段,視電阻率曲線值很高;②病害較重段,視電阻率曲線呈高低交錯;③輕度病害段,視電阻率較高,視電阻率曲線呈高低交錯。病害嚴重段的影響可至路基外側鋼軌下,是亟需處理部位。輕度病害段,短期內不會形成大的病害,可作為今後雨季的防範對象。
根據物探測量和鑽孔所提供的資料,可以確定出需要灌漿地帶,得出最佳的工程計劃。灌漿處理後,除打鑽檢查外,還可以進行微重力測量,以圈出灌漿不足或灌漿過量的地層。圖5-1-14是在一已知灌漿地帶,對灌漿後地層的重力異常變化,與計算機根據模型(用灌漿前的鑽孔資料製作的地質模型)計算出來的理論異常曲線對比圖5-1-14(a),可以看出,該地帶的右半部灌注未超出預計范圍,也未出現重力異常。在模型左半部出現剩餘異常,表明灌漿不足。圖5-1-14(b)是灌漿容量對比圖,圖5-1-14(c)是地質模型(沿Ⅰ號測線的剖面)。
圖5-1-13 路基勘查剖面圖(選段)
圖5-1-14 巴黎—斯特拉斯堡鐵路線上瓦朗吉維爾處
近年來,使用瞬態面波進行鐵路路基承載力的檢測也取得了較好的結果,為路基病害的確定和治理提供了可靠數據。
利用瞬態瑞雷面波法測試線路路基承載力時,由於受到行車影響,在測線布置時只能在枕軌外側或路肩上進行。由於瑞雷面波是一個體波,具有體積勘探的特點,因此可代表路基道心的實際情況。瞬態面波數據採集時使用面波儀和低頻檢波器測量。震源採用18磅大錘和鐵板。道間距隨著勘探深度的增大而相應增大。數據處理主要是求取頻率—速度頻散曲線,對頻散曲線經過反演擬合並結合路基的實際情況進行分層,計算出各層厚度及瑞雷波的層速度。通過頻散曲線上vR數值的大小可以定性地判斷測點處瑞雷波速度隨深度的變化情況和路基的相對強度特徵,vR較高區域反映路基強度較高,vR較低區域反映路基強度較低。
在部分瑞雷波測點上作輕型動力觸探(N10)值,根據鐵道部輕型動力觸探技術規定(TBJ18—87)將N10值換算為乘承載力σ0(σ0=8N10-20),然後將瑞雷面波速度vR與相對應測點的輕型動力觸探(N10)擊數進行數學統計分析,得到vR與N10的相關關系式:
環境地球物理教程
式中A、B為常數。當相關系數r>0.7時,說明vR與N10是相關的,可用vR代替N10來計算承載力σ0的大小,即:
環境地球物理教程
根據此式可用vR定量計算路基的承載力。
圖5-1-15 承載力等值線圖
圖5-1-15為京廣線部分區段K2011+170—K2100+270段路基瑞雷波測試,並按上述換算關系(取A=91.07913,B=2.940517)換算得到的承載力等值線圖。圖中在K2011+230附近路基的承載力偏低,約為80 kPa。而在其兩側的路基的承載力相對偏高,約為180 kPa。此結果與現場實際的情況非常吻合。
3.隧道掌子面前方地質情況預報
在隧道挖掘過程中常因掌子面前地質情況不詳,在不良地質地段經常出現塌方、涌水等現象,嚴重時會造成人身傷亡和設備損壞等重大事故,造成巨大的經濟損失。因此,在隧道掘進過程中及時了解掌子面前方地質情況,特別是斷層、破碎帶等不良地質構造的規模和特徵,這對確保施工安全、合理安排掘進方案、掘進速度和支護措施至關重要。
隧道掌子面前方地質情況預報可分為中長距離預報和短距離預報,中長距離預報採用的物探方法一般是人工地震,短距離預報可採用地質雷達或聲波探測。
吉林省某公路隧道岩石以花崗岩為主,其中穿插有角閃岩及綠泥角閃岩破碎帶,岩石節理裂隙發育。在掘進方向上有兩組斷裂(走向為NNE及NNW)交替出現,與EW向小斷層及破碎帶相切割,形成屋頂形,易產生大塊脫落體。為了施工安全及合理設計掘進方案,採用人工地震和地質雷達相結合進行掌子面前方地質情況預報。人工地震方法的實施是在掌子面不同高程上水平布置幾條地震測線,用石膏在掌子面上等距離粘接檢波器,使用大錘在測線兩側激發和接收地震波。地質雷達方法的實施是在掌子面兩側洞壁及掌子面上水平布置雷達測線,使用100MHz天線等距離點測採集。
圖5-1-16為在樁號K241+138掌子面上人工地震中長距離預報的解釋結果,在K241+138—K241+063段有斷層3處,岩性異常帶一處。推斷位置為K241+115、K241+120、K241+136和K241+068。挖掘證明,有斷層2條(F115、F136),出露位置與推測位置相差1 m左右,走向近EW,斷距0.3 m。樁號K241+068處為破碎帶,寬度約10 m,系由偉晶岩及角閃岩多次侵入造成。
圖5-1-16 樁號K241+138地震中期預報結果示意圖
圖5-1-17 樁號K241+247雷達短期預報結果示意圖
圖5-1-17為K241+247掌子面上地質雷達短距離預報的解釋結果。洞兩壁檢測到斷層3條(F1、F2、F3),走向為NNE和NNW。按幾何關系推測,F1與F3在掌子面前方10 m附近相互交會,F2與F3在掌子面前方約35 m附近相互交會。掌子面上測量到前方斷裂5條,分別為F242、F239、F235、F230、F225,走向近EW,與F1和F3斷層相切割,洞頂極易形成塌落的塊體,對施工安全有嚴重危害。挖掘證明,掌子面上地震與地雷達探測所預報的結果與地質構造出露位置接近。根據預報的結果,施工單位及時調整掘進方案和掘進速度,採取了更合理的安全防範措施。
4.隧道襯砌質量檢測
隧道襯砌後,受諸多因素影響,襯砌混凝土可能出現厚度未達到設計要求或有脫空等質量問題。為及時發現襯砌質量問題,需對隧道襯砌質量進行快速和高解析度的檢測,為隧道工程的科學管理提供依據。在隧道質量檢測中最常用的地球物理方法是地質雷達方法。
地質雷達法進行隧道襯砌質量檢測的主要內容是混凝土密實性、脫空和襯砌厚度。檢測中一般採用500 MHz 或900 MHz高頻天線,檢測厚度可達幾十厘米。測線一般布置在隧道的拱頂、拱腰及邊牆三個部位(圖5-1-18),拱頂為隧道的正頂部附近,拱腰為隧道的起拱線以上1 m左右,邊牆為排水蓋板以上1.5 m左右。測量方式採用剖面法,測點間隔一般為幾厘米~幾十厘米,由測量輪跟蹤測量里程。
圖5-1-18 測線分布圖
隧道襯砌厚度檢測中,相關介質的物理參數如表5-1-1所示。
襯砌厚度評價,首先在地質雷達剖面上確認出混凝土與岩石界面間的反射波同相軸,讀取反射波雙程旅行時間,按公式h=v×計算出混凝土襯砌厚度,速度V可通過明洞地段或鑽孔資料標定。密實度的評價可根據探地雷達剖面反射波振幅、相位和頻率特徵劃分為密實和不密實兩種類型。不密實的混凝土體在雷達剖面上波形雜亂,同相軸錯斷;脫空體在雷達剖面上在混凝土與圍岩交接面處反射波同相軸呈弧形,與相鄰道之間發生錯位,依此特徵可計算出空洞的范圍。由於爆破使圍岩表面凹凸不平,因此,在確定脫空時應對剖面上的異常加以細致的分析和確認。
表5-1-1 隧道襯砌厚度檢測中相關介質的物理參數表
某公路隧道全長約1.6 km,為全面了解襯砌質量,在隧道即將貫通前開展了地質雷達檢測。該隧道襯砌類型有:Sm3、Sm4、Sm5,設計襯砌厚度分別為40 cm、35 cm、30 cm。圖5-1-19為里程號K21+390—K21+430區段邊牆測線的地質雷達剖面。該區段襯砌類型為Sm5。圖中10 ns附近起伏變化的同相軸為圍岩界面反射波同相軸,圖5-1-20為計算出的混凝土襯砌厚度曲線。
圖5-1-19 K21+390K21+430區段邊牆測線的地質雷達剖面
圖5-1-20 K21+390K21+430區段邊牆測線混凝土襯砌厚度解釋曲線