當前位置:首頁 » 地質工程 » 地質災害技術

地質災害技術

發布時間: 2021-01-20 14:52:18

A. 地質災害的遙感技術在地質災害中的應用

(一 ) 地質災害分級
地質災害按照人員傷亡、經濟損失的大小,分為特大型、大型、中型和小型四個等級。具體標准如下 :
1. 特大型 :
因災死亡和失蹤30人以上或者直接經濟損失1000萬元以上的;
2. 大型 :
因災死亡和失蹤 10 人以上 30 人以下或者直接經濟損失500萬元以上 1000 萬元以下的;
3. 中型 :
因災死亡和失蹤3人以上10人以下或者直接經濟損失100萬元以上 500 萬元以下的 ;
4. 小型:
因災死亡和失蹤 3 人以下或者直接經濟損失100萬元以下的。
( 二)速報原則
情況准確,上報迅速,縣為基礎,續報完整。
( 三)速報程序
1. 發生特大型地質災害後,災害所在縣(市)國土資源主管部門應於6小時內速報市 (地)級國土資源主管部門,同時越級速報省級國土資源主管部門和國土資源部,並根據災情進展,隨時續報,直至調查結束;
特大型地質災害由國土資源部或委託省(區、市)國土資源主管部門及時組織調查和作出應急處理。委託省(區、市)國土資源主管部門進行調查處理的,最終形成的應急調查報告應盡快上報國土資源部。
2. 發生大型地質災害後,災害所在縣(市)國土資源主管部門應於 12 小時內速報市 ( 地〉級國土資源主管部門,同時越級速報省級國土資源主管部門和國土資源部,並根據災情進展,隨時續報,直至調查結束。大型地質災害由省級國土資源主管部門及時組織調查和作出應急處理,並將最終形成的應急調查報告上報國土資源部。
3. 發生中型地質災害後,災害所在縣(市)國土資源主管部門應於24小時內速報市(地)級國土資源主管部門,同時越級速報省級國土資源主管部門。中型地質災害由市(地)級國土資源主管部門及時組織調查和作出應急處理,並將應急調查報告上報省級國土資源主管部門。
4. 發生小型地質災害後,災害所在縣(市)國土資源主管部門應及時向市 ( 地〉級國土資源主管部門報告,並負責組織調查和作出應急處理;
(四)速報內容
1.速報報告:負責報告的部門應根據已掌握的災情信息,盡可能詳細說明地質災害發生的地點、時間、傷亡和失蹤的人數、地質災害類型、災害體的規模、可能的誘發因素、地質成因和發展趨勢等,同時提出主管部門採取的對策和措施。
2.應急調查報告:地質災害應急調查結束後,有關部門應及時提交地質災害應急調查報告。報告內容包括:
(1) 搶險救災工作;
(2)基本災情;
(3)地質災害類型和規模;
(4)地質災害成災原因,包括地質條件和誘發因素(人為因素和自然因素);
(5)發展趨勢;
(6) 已經採取的防範對策、措施;
(7)今後的防治工作建議。 對於發現的直接受地質災害威脅人數超過1000人或者潛在經濟損失超過1億元的特大型地質災害隱患點,地方各級國土資源主管部門接報後,要在2日內將險情和採取的應急防治措施上報國土資源部,並根據地質災害隱患變化情況,隨時做好續報工作。

B. 地質災害防治工程中監測新技術的開發應用與展望

季偉峰

中國地質科學院探礦工藝研究所,四川成都,610081)

【摘要】地質災害防治工程中對地質災害體的監測十分必要。本文簡要介紹了我國當前地質災害監測的主要方法及新技術在工程實踐中的應用,指出了地質災害監測工程實踐中存在的主要問題,展望了我國在本領域技術發展的趨勢。

【關鍵詞】地質災害監測技術應用展望

自然地質環境和人為活動是引發地質災害的兩大主要原因。在最近的20多年時間里,隨著我國人口的增加,經濟建設的快速發展,特別是基礎設施建設規模的擴大,建設與用地的矛盾十分突出。植被的破壞嚴重,使山體滑坡、泥石流、地面沉降等地質災害在全國許多地區頻繁發生,嚴重阻礙了災害發生地的經濟建設和社會發展。

1我國主要的地質災害形式及危害

1.1地質災害及常見形式

地質災害是指由自然地質作用和人為活動作用形成的,對人類生存和工程建設可能構成危害的各種特有的自然環境災害的總稱。

常見的地質災害形式主要有6種,它們是崩塌、滑坡、泥石流、地面塌陷、地裂縫和地面沉降,簡稱為崩、滑、流、塌、裂、沉。

1.2三峽庫區的主要地質災害

三峽水利工程建成後將產生巨大的經濟效益和社會效益。但它的建設對庫區的自然環境也帶來一定的直接或潛在影響。三峽工程的一期蓄水、二期蓄水和新城鎮的建設已經給庫區帶來了不少地質災害問題。在淹沒區的新城鎮建設中,由於在選址時考慮地質環境因素不夠,使有些新城鎮從建設一開始就與地質災害結下了「不解之緣」。主要表現形式為人為高切坡和深基坑誘發的滑坡和崩塌。湖北的巴東、秭歸,重慶的巫山、奉節、雲陽、萬縣等地在新城鎮的建設中都引發了大量的地質災害,如何趨利避害是擺在我們面前的重大課題。

1.3地質災害的主要危害

地質災害的危害是顯而易見的。我國幅員遼闊,地質構造復雜,地貌千姿百態,山地和丘陵面積占國土總面積的2/3以上。全國34個省、直轄市、自治區以及特別行政區均存在著不同形式和不同程度的地質災害,每年都要造成慘重的人員傷亡和財產損失。其中滑坡、泥石流和山洪等突發性地質災害被定為國際減災10年的主要災種,由於這些災害具有潛在性和突發性,一旦發生,來勢兇猛,常造成斷道、斷航、構築物損毀、人員傷亡和財產損失。在我國,每年喪生地質災害的總人數達800~1000人,經濟損失超過100億元人民幣。

1.4地質災害監測的特點

(1)滑坡等變形體分布通常較為分散,成因機制復雜。開展監測工作前,需有一定前期地質環境勘察、研究工作基礎;

(2)地質災害體大多位於交通、通訊十分不便地區,電源接入也很困難;

(3)目前大多數監測以手動為主,數據匯交速度相對較慢,人工勞務成本較高;

(4)與大壩、橋梁、隧道等固定建築物、構築物的安全監測相比,地質災害監測具有開放的監測邊界,條件復雜,自動化監測和遙測等監測手段、監測儀器的選擇、固定安裝、運行等須注意儀器設備的環境適應性和抗干擾性能,保證正常使用和安全運行。

2地質災害防治工程中監測的必要性

地質災害防治工程的監測根據工程所處的不同階段,可分為施工安全監測、防治效果監測和長期穩定性監測,目前一般簡單地統稱為監測。在以往的工作實踐中經常發現,除經濟原因外,在地質災害的治理過程中存在一定的盲目性。有些地質災害進行了治理,理由是認為它不穩定。有些沒有進行治理,理由是認為它是穩定的。除一些簡單粗糙的勘察資料外,幾乎沒有充分的證據證明一個變形體穩定與否,是否需要進行工程治理。如果對滑坡等變形體進行必要的監測,將會減少這種盲目性,收到事半功倍的效果。

2.1對於已採取工程措施的地質災害體

對於已採取工程措施的地質災害防治工程,在治理過程中,根據監測結果進行效果評價,指導施工,及時對設計進行修改;防治工程竣工後,隨著周圍環境條件的變化,約束條件也會發生變化。如錨索的腐蝕和鬆弛、地下水位變化、臨空面加大、工程質量不高、巨大外力(如地震和大爆破)等,都有可能使一些已經治理過、暫時處於相對穩定的滑坡變形體重新失穩,如不進行持久的監測,它們具有更大的欺騙性和危險性,並非就可以高枕無憂,仍需通過必要的監測來評判它的治理效果和長期穩定性。

2.2對於未採取工程措施的地質災害體

對於一些未經治理、而又具有潛在危害的地質災害體,監測也是十分必要的。一些暫時沒有資金進行工程整治但又對人民生命財產構成較大潛在威脅的大型滑坡變形體,以投資較小的監測工作來彌補是有效的方法和途徑。通過有效的監測既可對其穩定性進行評價,監測結果又可為是否治理和如何治理提供設計依據。用監測的手段對滑坡等變形體進行有效的監控,是一項投資少、見效快的方法,目前已逐步被一些政府官員和業主所接受並推崇。他們也意識到用工程手段進行整治後應該用監測數據來驗證,否則是盲目的。但目前仍有相當多的管理和設計部門只注重被動的治理和亡羊補牢,而不注重防患於未然。

3當前地質災害監測的主要方法

以往作為監測工作的對象,主要是對一些重要的構築物和大型建設工程的變形、位移、沉降等進行監測,如水利水電大壩、大型橋梁、重要廠房、大型地下隱蔽工程、礦山邊坡和尾礦壩等。對復雜的地質災害體進行監測,則是近些年才逐漸開始應用的,當前採用的主要監測方法有以下幾種。

3.1地面絕對位移監測

絕對位移監測是最基本的常規監測方法,測量崩滑體測點的三維坐標,從而得出測點的三維變形位移量、位移方位與變形位移速率。主要使用經緯儀、水準儀、紅外測距儀、激光準直儀、全站儀和GPS等,應用大地測量法來測得變形體上某點的三維坐標。

3.2地面相對位移監測

地面相對位移監測是量測崩滑體重點變形部位點與點之間相對位移變化(張開、閉合、下沉、抬升、錯動等)的一種常用的變形監測方法。主要用於對裂縫、崩滑帶、采空區頂底板等部位的監測、沉降觀測等,是位移監測的重要內容之一。目前常用的監測儀器有振弦位移計、電阻式位移計、裂縫計、變位計、收斂計等。

3.3鑽孔深部位移監測

對於滑坡等變形地質體來講,不僅要監測其地表位移,也要監測其深部位移,這樣才能對整體的位移進行判斷監測。方法是先在滑坡等變形體上鑽孔並穿過滑帶以下至穩定段,定向下入專用測斜管,管孔間環狀間隙用水泥砂漿(適於岩體鑽孔)或砂、土石(適於鬆散堆積體鑽孔)回填固結測斜管;下入鑽孔傾斜儀,以孔底為零位移點,向上按一定間隔(一般為0.5m或1m)測量鑽孔內各深度點相對於孔底的位移量。常用的監測儀器有鑽孔傾斜儀、鑽孔多點位移計等。

3.4應力監測

對於滑坡等變形體不僅要監測其位移的變化,還需要監測其內部應力的變化。因為在地質體變形(或稱運動)的過程中必定伴隨著變形體內部應力變化和調整,所以監測應力的變化是十分必要的。常用的儀器有錨桿應力計、錨索應力計、振弦式土壓力計等。

3.5水環境監測

對於崩滑體來講,除了自然地質條件和人為擾動外,水是對滑坡的穩定狀態起直接作用的最主要因素,所以對水環境(含過程降雨及降雨強度、地表水的流量、地下水位、滲流量、滲流壓、孔隙水壓力、地下水溫度等)進行監測十分重要。常用的監測儀器有量水堰、遙測雨量計、測鍾、電測水位計、遙測水位計、滲壓計、滲流計、電測溫度計等。

3.6地震監測

地震監測適用於所有的崩滑監測。地震力是作用於崩滑體的特殊荷載之一,因此對崩滑體的穩定性起著重要作用。當地質災害位於地震高發區時,應經常及時收集附近地震台站資料;必要且條件許可時,可採用地震儀等監測區內及外圍發生的地震強度、發震時間等。分析震中位置、震源深度、地震烈度、評價地震作用對區內的崩滑體穩定性的影響。

3.7 人類相關活動監測

人類活動如掘洞采礦、削坡取土、爆破採石、載入及水利設施的運營等,往往造成人工型地質災害或誘發產生地質災害,在出現上述情況時,應予以監測並停止某項活動。對人類活動監測,應監測對崩滑體有影響的項目,監測其范圍、強度、速度等。

3.8宏觀地質調查監測

採用常規地質調查法,定期對崩滑體出現的宏觀變形痕跡(如裂縫發生及發展、地面沉降、塌陷、坍塌、膨脹、隆起、建築物變形等)和與變形有關的異常現象(如地聲、地下水異常等)進行調查記錄。該法具有直觀性強、適應性強、可信程度高的特點,為崩滑監測的主要手段,也是群測群防的主要內容。適用於所有崩滑體,具有準確的預報功能。

4監測新技術的研究與工程實踐

4.1國外監測新技術的研究與應用

發達國家在岩土工程及地質災害監測領域不但有傳統的監測方法和儀器,近年來已將高新技術應用於地質災害預測、預警工程。美國的PDI公司、Geokon公司、義大利Sisgeo公司、瑞士Leica公司、瑞典Geotech公司、德國Zeiss公司、日本尼康公司等在監測方法的創新和新技術的應用方面都處於領先地位。紅外技術、激光技術、微波技術、光纖技術、格區式光柵技術、機電一體化、自動化技術、衛星通訊技術、計算機及人工智慧等高新技術在監測技術方法和儀器的開發研究中得到了廣泛的應用。可以這樣講,作為岩土工程監測一個分支的地質災害監測及監測儀器,已經不是傳統意義上的大地測量儀器,而是實現了傳統方法和儀器與現代高新技術的完美結合,把監測儀器的技術水平推到了一個嶄新的階段,並正在向更高層次發展。國外具有代表性的產品有 Leica公司的TCR1800全站儀、TCR2003測量機器人、Geomos系統、DNA電子水準儀、GPS,Zeiss公司的DiNi12系列電子水準儀、North America公司的鑽孔多點位移計、Sicon公司的岩土工程監測系列儀器等。

4.2國內監測新技術的研究與應用

國內水電系統和國土資源部都開展了這方面的研究,如水利科學院、中科院有關院所、國土資源部技術方法研究所等。我所伴隨著三峽工程的建設,在國土資源部的大力資助下,也開發了多種岩土工程及地質災害防治監測儀器,如鑽孔傾斜儀系列、應力測量系列、地面位移測量系列等監測儀器、多參數遙測系統等,還承擔了科技部「崩滑地質災害自動化監測系統」項目的研究,為測量儀器國產化做了大量的工作,產品在三峽庫區和國家的重大工程中得到了較好的應用。我所近幾年研究的成果並形成的產品主要有以下8項:

(1)DMY型激光隧道斷面張斂測量系統;

(2)BYT型光纖崩滑體推力監測系統;

(3)DZQX新型多功能鑽孔傾斜儀;

(4)崩塌無線自動化監測預報系統;

(5)PSD型微位移變形測量系統;

(6)MS型錨索(錨桿)測力系統;

(7)DHS型地層含水率儀;

(8)岩心定向與取心技術研究。

4.3工程監測實踐

在研究開發的同時,我所用自己研究的成果積極參與國家重大基本建設工程的監測工作和三峽庫區地質災害防治的工程監測,取得了較好的經濟效益和社會效益。最近幾年承擔的重大監測工程有:

(1)寶成復線清江大斷面雙線長隧道變形量測;

(2)成昆鐵路電氣化改造西昌南馬鞍堡隧道變形量測;

(3)北京地鐵復八線變形量測;

(4)上海地鐵一號線人民廣場站變形量測;

(5)青島地鐵試驗段變形量測;

(6)成(都)—南(充)高速公路高陡邊坡變形及量測;

(7)內(江)—宜(賓)高速公路高邊坡變形量測;

(8)丹(東)—沈(陽)高速公路丹本(溪)段全線隧道驗收工程;

(9)318國道二郎山—康定段 K2794+860~980滑坡的地面位移、深部位移及應力監測;

(10)奉節縣、雲陽縣地質災害監測工程。

5監測技術發展展望

(1)地質災害的發生將更加頻繁,危害程度更大,監測工作將受到更多的重視,監測成果應用將產生更大的社會效益。

(2)在我們的上級主管部門——中國地質調查局的支持下,我們的監測儀器研究及運行系統軟體開發將會得到更多資助,並使我們的監測手段更加完備,登上一個新的台階,具有更強的市場競爭能力。

(3)自動化監測和遙測是地質災害監測的發展方向,但目前實施還有很多困難。

(4)地質災害具有一定區域性,是一項公益性的事業,更需要政府的引導和支持。

6結語

通過幾年的監測工程實踐,目睹了不少由於忽視地質災害的工程安全監測和失效工程而導致生命和財產的損失,也看到不少通過監測成功預報災害而避免災害發生的實例。在實行工程質量終生追究制的今天,對地質災害及相關岩土工程的安全進行長期監測顯得尤為重要和迫切。

監測工程是地質災害防治工程體系的重要組成部分,不能重治輕防,應做到治理、防範、監測並重,有時甚至重於工程治理手段。

在一定時期內對滑坡變形體實施監測工程,可以節省大量的投資。

地質災害防治工程應建立在科學監測的基礎上,以監測指導設計、施工、工程效果評價,以科學的態度面對它,應從過去的憑經驗和粗糙的勘察上升到定量階段,只有這樣,才能對滑坡變形體進行深入的認識和科學評價。

監測工作不是可有可無的,它是工程診斷的需要,是從事地質災害研究和預測必不可少的一項工作。

防範重於救災,監測勝於治理。

參考文獻

[1]殷躍平等.地質工程設計支持系統與鏈子崖錨固設計.北京:地質出版社,1995

[2]黃潤秋主編.高邊坡穩定性的系統工程地質研究.成都:成都科技大學出版社,1991

[3]喬建平主編.滑坡減災理論與實踐.北京:科學出版社,1997

[4]唐邦興主編.山洪泥石流滑坡災害及防治.北京:科學出版社,1994

[5]國家技術監督局,建設部.工程測量規范.北京:中國計劃出版社,2003

[6]國家技術監督局,建設部.工程岩體試驗方法標准.北京:中國計劃出版社,2001

[7]王永年,殷世華主編.岩土工程安全監測手冊.北京:中國水利電力出版社,1999

[8]季偉峰主編.工程地質與地質工程.北京:地質出版社,1999.

C. 對重大地質災害的早期識別研究 有什麼技術和方法

各類地質災害來指的是在自然源或者人為的因素條件下形成的,對於人民的生命財產安全造成了很大的損失,同時,各類地質災害還會對我們的生存環境造成嚴重的破壞。最近幾年,由於大自然的破壞,以至各類地質災害屢屢發生,如滑坡、泥石流、崩塌等,到了夏季,暴雨頻發,對於滑坡、泥石流等災害更容易引發,這種災害會導致水土流失人員傷亡、房屋倒塌、人員傷亡,給人民的生命財產安全造成極大損失。因此,對於滑坡、泥石流等地質災害的的深入研究就成為了一項刻不容緩的而且具有重大社會意義的工作,這樣,會在一定程度上減小這類地質災害對於人類的損失。作為一項新的科研成果,物探技術成為了現代針對滑坡、泥石流等地質災害的一項重大發明,作為一項新的現代化的勘探技術,它具備了准確、省時省力、經濟、全面性的特點。因此,它在各類地質災害的勘探與調查中起到了非常重要的作用。本文針對以滑坡為主的地質災害所形成的原因,來分析物探技術,重點介紹高密度電阻率法和瑞雷波法在各類地質災害中的實際應用

D. 全國地質災害科技規劃的指導思想與目標

10.3.1 指導思想

按照「有所為,有所不為」的方針,地質災害防治技術的發展應力爭在地質災害防治工作的主要領域實現技術跨越,為地質災害的調查、監測預警、治理和應急反應的現代化提供理論、技術和方法支撐。

10.3.2 基本原則

(1)突出國家目標,為地質災害防治管理職能服務

圍繞建設小康社會的發展目標,要解決我國地質災害防治工作中的重大科學技術問題,為國家的地質災害防治管理提供高效服務。

(2)加強學科交叉與融合、技術集成與整合,實現技術跨越發展

充分發揮全社會和各系統科技力量的作用,聯合攻關,加強學科交叉與融合、技術集成與整合,發揮已有優勢和積累,實現技術的跨越發展。

(3)統籌兼顧,突出重點,量力而行

統籌考慮地質災害的調查、監測預警、治理、應急反應和防治管理對地質災害防治技術的要求,在關鍵問題上重點突破,提高科技支撐能力。

(4)國家和地方相結合,推進科技成果的應用和轉化

各級國土資源部門和科研院所要密切配合,協同攻關,並鼓勵將先進的技術與方法理論運用到地質災害防治工作實踐中。

(5)科技項目實施要和基地建設、人才培養相結合

科技項目的完成,要與科技人才培養和基地建設相結合,努力造就一支德才兼備、結構合理的科技隊伍,建設一批具有解決關鍵技術能力的創新基地。

(6)堅持擴大開發、自主開發與引進相結合

按照「以我為主、為我所用」的原則,擴大對外開放,全方位開展國際交流與合作,充分借鑒和吸收先進的科學技術,不斷提高自主創新能力。

10.3.3 目標

(1)總體目標

建立反映我國地質災害發育特點的地質災害形成機理的理論,以3S系統為支撐的地質災害調查、監測預報關鍵技術平台,建立完善的地質災害防治標准體系,全面提升地質災害調查、監測、預警預報、治理與防治決策的技術水平,形成比較完善的地質災害防治技術支撐體系,為有效控制人為地質災害、減輕地質災害造成的生命財產損失、實現人與地質環境的協調共處提供堅強支撐。

(2)階段目標

到2010年,力爭在地質災害防治工作的主要領域實現技術的跨越式發展,在地質災害監測預報的基本理論和關鍵技術方面有所突破,提高地質災害預警預報的准確率和技術水平。初步形成特色顯著,優勢明顯,系統配套,能夠滿足新形勢下地質災害防治工作高效率、高水平、高精度的地質災害防治技術支撐體系,使地質災害防治的總體技術得到全面提升,在一些關鍵技術方面達到或接近發達國家的先進水平,顯著提高地質災害防治研究在國家社會生活與經濟建設中的效率和作用。

到2020年,進一步全面提升地質災害調查、監測、預警預報、治理與防治決策的技術水平,在地質災害防治技術方面整體達到或接近發達國家的先進水平,形成比較完善的地質災害防治技術體系,顯著提高地質災害防治領域高新技術含量;顯著提高突發性地質災害預測預報准確率;進一步提高地質災害防治研究在國家社會生活與經濟建設中的效率和作用。

E. 地質災害調查評價的技術方法

地質災害調查評價的方法有遙感解譯、地面測繪、地球物理、地球化學、山地工程、鑽探、試驗等。這些方法各有特點。

1.主要技術方法

(1)遙感圖像解譯

遙感圖像能直觀地顯示區內地形、地貌、地質和水文的整體輪廓與形態,可以宏觀認識調查區的自然地理、地質環境,指導調查工作的整體部署,減少盲目性,節省人力、物力的投入。

(2)工程地質測繪

工程地質測繪是地質災害調查評價最基本、最經濟的手段。其成果有利於指導物探、鑽探和山地工程及試驗工作的部署,應首先開展。

(3)地球物理勘探

地質災害調查評價中常用的物探方法有電法、彈性波法、放射性法、重力法、磁法、熱測量法、擴散法、綜合測井法等類型。物探方法設備輕便、成本低、速度快、覆蓋面大,與鑽探、山地工程、地面測繪相結合,既可以節約投資,又可取得有效的成果,但要注意物探結果具有多解性,並受應用前提和現場條件的制約。

(4)鑽探

鑽探方法用於獲取深部地質資料,具有成果直觀、准確並能長期保存等優點,可以進行綜合測井、錄像、跨孔探測、長觀和變形監測。不足是受交通運輸、地形和場地等條件的限制,耗資較大。

(5)山地工程

山地工程分為輕型山地工程(試坑、探槽、淺井)和重型山地工程(豎井、平斜硐、石門、平巷等)。山地工程是地質勘查的重要手段,技術人員可直接觀測岩土體內部結構、構造、斷層、軟弱夾層、滑帶、裂縫、變形和地壓等重要地質現象,獲取資料直觀可靠。還可以進行采樣、原位測試,為物探、監測乃至施工創造有利條件。山地工程施工受地層岩性和其他條件限制,為保證施工安全,要認真研究論證防範措施。

(6)試驗

試驗是研究地質體的材料特性,即物理性質、水理性質、力學性質及其賦存環境(如地下水、地應力、地溫等)的重要手段,是地質災害調查評價中復雜地質條件下地質參數選取的重要途徑。

2.選擇方法的原則

方法的選擇應以調查工作的任務要求、階段以及地質災害的特徵為依據,以期使用最基本、簡便易行的方法,以最低的投入,取得有用且好用的資料,實現最好的減災效益。

1)針對性:要根據現場踏勘和前人資料,初步判定地質災害的性質,有針對性地選擇勘探方法,避免盲目工作,做到事半功倍。

2)實用性:力求以最簡單的方法解決最復雜的問題,不刻意追求新奇復雜的技術方法。

3)簡單高效:盡可能採用操作簡便、易於搬運、環境適應性強的設備。

4)經濟合理:在能滿足調查評價任務要求的前提下,盡可能降低工作量。

3.方法的配置

方法的配置要充分考慮調查工作的階段性,方法自身的適用性,方法之間的互補性、互驗性,技術和經費的可行性。

鑽探和山地工程對物(化)探有很強的互補性和互驗性。先用鑽探對地面物化探結果進行驗證,提高其成果的准確性和推廣價值。再進行測井和跨孔探測,拓寬物探的勘測范圍,以取得更好的成效。鑽探要投入到關鍵部位,每個鑽孔都應綜合測井,進行變形監測等,發揮其較多的功能。

試驗用於查明災害體的地質特性和賦存環境,提供岩土體物理力學參數和水文地質參數,要結合其他工作統一部署。試驗常常成為解決復雜地質問題的有效途徑。

實踐表明,如果地質測繪工作細致深入,輕型山地工程配合得當,物化探工作針對性強,就可以大大降低鑽探工程量,少用甚至不用重型山地工程。

F. 地質災害監測方法技術現狀與發展趨勢

【摘要】20世紀末期以來,監測理論和技術方法有長足發展,常規技術方法趨於成熟,設備精度、設備性能已具較高水平,並開發了部分高精度(微米級位移識別率)、自計、遙測、自動傳輸的監測設施。未來,將充分綜合運用光學、電學、信息學、計算機和通信等技術(諸如光纖技術—BOTDR、時域反射技術—TDR、激光掃描技術、核磁共振技術、NUMIS、GPS技術、合成孔徑干涉雷達技術—InSAR及互聯網通訊技術等),進一步開發經濟適用、有效可行的地質災害監測新技術,提高精度、准確性和及時性,最大程度地減小地質災害造成的損失。

【關鍵詞】地質災害監測技術方法新技術優化集成

20世紀80年代以來,我國地質災害時空分布特點呈現新的變化。隨著人類工程活動越來越強,人為地質災害日趨嚴重,規模、數量和分布范圍呈增加趨勢;人口密集、經濟發達地區地質災害造成的損失越來越大。崩塌、滑坡和泥石流等突發性地質災害發生頻度和造成的損失不斷加大,地面沉降、海水入侵等緩慢性地質災害的范圍逐漸增加。據相關統計資料顯示,1995~2002年,地質災害共造成9000多人失蹤或死亡,突發性地質災害共造成直接經濟損失524億元,緩慢性地質災害造成直接經濟損失590億元,間接經濟損失2700億元。地質災害已經成為嚴重製約我國經濟發展的重要因素之一。

為了摸清我國地質災害的分布情況,我國系統地開展了地質災害調查工作,先後出台了《地質災害防治管理辦法》和《地質災害防治條例》,明確指出:防治地質災害,實行「以人為本,防治結合,統籌規劃,突出重點,分期實施,逐步到位」的方針。並於2003年4月啟動了全國性地質氣象預報。對已經查明的地質災害體,特別是對生產建設、人民生命財產安全構成嚴重威脅的地質災害,若能運用適當、有效、經濟可行的監測措施,作出科學的監測預報,則可最大程度地減小災害損失。

滑坡監測在不同條件、不同時期其作用不同,總的來說有以下幾個方面:

(1)通過綜合分析多種監測方法的監測數據,確定地質災害穩定狀態及發展趨勢,及時作出預測,防止或減輕災害損失。

(2)研究導致災害體變形破壞的主導因素、作用機理,為防治工程設計提供依據。

(3)在防治工程施工過程中,監測、分析災害體變形發展趨勢及工程施工的擾動,保障施工安全。

(4)施工結束後,進行工程效果監測。

(5)綜合利用長觀監測資料,分析災害體變形破壞機制和規律,檢驗在防治工程設計中所採用的理論模型及岩土體性質指標值的准確性,對已有的監測預報理論及模型進行驗證改進,改善、提高監測預測預報技術方法。

1地質災害監測技術綜述

地質災害監測的主要任務為監測地質災害時空域演變信息(包括形變、地球物理場、化學場)、誘發因素等,最大程度獲取連續的空間變形數據,應用於地質災害的穩定性評價、預測預報和防治工程效果評估。

地質災害監測是集地質災害形成機理、監測儀器、時空技術和預測預報技術為一體的綜合技術。地質災害的形成機理是開展地質災害監測工作的基礎;監測儀器是開展工作的手段;更為重要的是只有充分利用時空技術,才能有效發揮地質監測的作用;預測預報是開展地質災害監測的最終目的。

崩塌、滑坡、泥石流等突發性地質災害,具有爆發周期短、威脅性及破壞性顯著、成因復雜等特點,因此,當前地質災害的監測技術方法的研究和應用多是圍繞突發性地質災害進行的。1.1監測方法

監測方法按監測參數的類型分為四大類:即變形、物理與化學場、地下水和誘發因素監測(見表1)。

表1主要地質災害監測方法一覽表

1.1.1 變形監測

主要包括以測量位移形變信息為主的監測方法,如地表相對位移監測、地表絕對位移監測(大地測量、GPS測量等)、深部位移監測。該類技術目前較為成熟,精度較高,常作為常規監測技術用於地質災害監測。由於獲得的是災害體位移形變的直觀信息,特別是位移形變信息,往往成為預測預報的主要依據之一。

1.1.2物理與化學場監測

監測災害體物理場、化學場等場變化信息的監測技術方法主要有應力監測、地聲監測、放射性元素(氡氣、汞氣)測量、地球化學方法以及地脈動測量等。目前多用於監測滑坡等地質災害體所含放射性元素(鈾、鐳)衰變產物(如氡氣)濃度、化學元素及其物理場的變化。地質災害體的物理、化學場發生變化,往往同災害體的變形破壞聯系密切,相對於位移變形,具有超前性。

1.1.3地下水監測

地下水監測主要是以監測地質災害地下水活動、富含特徵、水質特徵為主的監測方法。如地下水位(或地下水壓力)監測、孔隙水壓力監測和地下水水質監測等。大部分地質災害的形成、發展均與災害體內部或周圍的地下水活動關系密切,同時在災害生成的過程中,地下水的本身特徵也相應發生變化。

1.1.4誘發因素監測

誘發因素類主要包括以監測地質災害誘發因素為主的監測技術方法,如氣象監測、地下水動態監測、地震監測、人類工程活動等。降水、地下水活動是地質災害的主要誘發因素;降雨量的大小、時空分布特徵是評價區域性地質災害(特別是崩、滑、流三大地質災害的判別)的主要判別指標之一;人類工程活動是現代地質災害的主要誘發因素之一,因此地質災害誘發因素監測是地質災害監測技術的重要組成部分。

1.2監測儀器

1.2.1按從監測儀器同災害體的相對空間關系分為接觸類和非接觸類

(1)接觸類:是指必須安裝於災害體現場或進行現場施測的監測儀器系列。如滑坡地表或深部位移監測、物理和化學場監測等。該類儀器所獲得的信息多為災害體細部信息,信息量豐富。

(2)非接觸類:是指於現場安裝簡易標志或直接於災害體外圍施測的監測儀器系列。該類監測方法多以獲得災害體地表的絕對變形信息為主,易採用網式施測;特別是突發性地質災害的臨災前後,具有安全、快捷等特點。如激光微位移監測、測量機器人、遙感雷達監測等。

1.2.2按監測組織方式分為簡易監測、儀表監測、控制網監測、自動遙測

(1)簡易監測:採用簡易的量測工具(皮尺、鋼尺、卡尺)對災害體地表的裂縫等部位進行監測。

(2)儀表監測:採用機測或電測儀表(安裝、埋設感測器)對滑坡進行地表及深部的位移、應力、地聲、水位、水壓、含水量等信息監測。

(3)控制網監測:在滑坡變形破壞區及周邊穩定地帶,布設大地測量或GPS衛星定位測量控制點網,進行滑坡絕對位移三維監測。

(4)自動遙測:利用有線和無線傳輸技術,對儀表監測所得信息進行遠距離遙控自動採集、傳輸,可實現全天候不間斷監測。

2地質災害監測方法技術現狀

地質災害監測技術是集多門技術學科為一體的綜合技術應用,主要發展於20世紀末期。伴隨著電子技術、計算機技術、信息技術和空間技術發展,國內外地質災害調查與監測方法和相關理論得到長足發展,主要表現在:

(1)常規監測方法技術趨於成熟,設備精度、設備性能都具有很高水平。目前地質災害的位移監測方法均可以進行毫米級監測,高精度位移監測方法可以識別0.1mm的位移變形。

(2)監測方法多樣化、三維立體化。由於採用了多種有效方法結合對比校核以及從空中、地面到災害體深部的立體化監測網路,使得綜合判別能力加強,促進了地質災害評價、預測能力的提高。

(3)其他領域的先進技術逐漸向地質災害監測領域進行滲透。隨著高新技術的發展和應用的深入,衛星遙感、航空遙感等空間技術的精度逐漸提高,一些高精度物探(如電法、核磁共振等技術)的發展,使得地質災害的勘查技術與監測技術趨於融合,通過技術上的處理、提升,該類技術逐漸適用於區域性的地質災害和單體災害的監測工作。

「八五」以來,我國在地質災害監測技術研究方面取得了豐碩的成果,並積累了豐富的經驗,使我國的地質災害監測預警水平得到很大程度的提高;但是還存在一定的局限性,主要表現在:

(1)地質災害監測技術、儀器設施多種多樣,應用重復性高,受適用程度、精度、設施集成化程度、自動化程度和造價等因素的制約,常造成設備資源浪費,效果不明顯。

(2)所取得的研究成果多側重於某一工程或某一應用角度,在地質災害成災機理、誘發因素研究的基礎上,對各種監測技術方法優化集成的研究程度較低。

(3)監測儀器設施的研究開發、數據分析理論同相關地質災害目標參數定性、定量關系的研究程度不足,造成監測數據的解釋、分析出現較大的誤差。

因此,要提高地質災害預警技術水平,必須在地質災害研究同開發監測技術方法相結合的基礎上,進行地質災害監測優化集成方案的研究。

3地質災害監測技術方法發展趨勢

3.1高精度、自動化、實時化的發展趨勢

光學、電學、信息學及計算機技術和通信技術的發展,給地質災害監測儀器的研究開發帶來勃勃生機;能夠監測的信息種類和監測手段將越來越豐富,同時某些監測方法的監測精度、採集信息的直觀性和操作簡便性有所提高;充分利用現代通訊技術提高遠距離監測數據信息傳輸的速度、准確性、安全性和自動化程度;同時提高科技含量,降低成本,為地質災害的經濟型監測打下基礎。

監測預測預報信息的公眾化和政府化。隨著互聯網技術的發展普及,以及國家政府的地質災害管理職能的加強,災害信息將通過互聯網進行實時發布,公眾可通過互聯網了解地質災害信息,學習地質災害的防災減災知識;各級政府職能部門可通過所發布信息,了解災情的發展,及時做出決策。

3.2新技術方法的開發與應用

3.2.1調查與監測技術方法的融合

隨著計算機的高速發展,地球物理勘探方法的數據採集、信號處理和資料處理能力大幅度提高,可以實現高解析度、高采樣技術的應用;地球物理技術將向二維、三維採集系統發展;通過加大測試頻次,實現時間序列的地質災害監測。

3.2.2 智能感測器的發展

集多種功能於一體、低造價的地質災害監測智能感測技術的研究與開發,將逐漸改變傳統的點線式空間布設模式;由於可以採用網式布設模式,且每個單元均可以採集多種信息,最終可以實現近似連續的三維地質災害信息採集。

3.3新技術新方法

3.3.1光纖技術(BOTDR)

光導纖維監測技術又稱布里淵散射光時域光纖監測技術(BOTDR),是國際上20世紀70年代後期才迅速發展起來的一種現代化監測技術,在航空、航天領域中已顯示了其有效性。在土木、交通、地質工程及地質災害防治等領域的應用才剛剛開始,並受到各發達國家研究機構的普遍重視,發展前景十分廣闊。

通過合理的光纖敷設,可以監測整個災害體(特別是滑坡)的應變信息。

3.3.2時間域反射技術(TDR)

時間域反射測試技術(Time Domain Reflectometry)是一種電子測量技術。許多年來,一直被用於各種物體形態特徵的測量和空間定位。早在20世紀30年代,美國的研究人員開始運用時間域反射測試技術檢測通訊電纜的通斷情況。在80年代初期,國外的研究人員將時間域反射測試技術用於監測地下煤層和岩層的變形位移等。90年代中期,美國的研究人員將時間域反射測試技術開始用於滑坡等地質災害變形監測的研究,針對岩石和土體滑坡曾經做過許多的試驗研究,國內研究人員已經開始該方法的研究工作,並已經在三峽庫區投入試驗應用階段,同時開展了與之相關的定量數據分析理論研究。

所埋設電纜即是感測器,又可傳輸測試信號;該方法相對於深部位移鑽孔傾斜儀監測具有安裝簡單、使用安全和經濟實用等特點。

3.3.3激光掃描技術

該技術在歐美等發達國家應用較早,我國近期開始逐漸引進。主要是用於建築工程變形監測以及實景再現,隨著掃描距離的加大,逐漸向地質災害調查和監測方向發展。

該技術通過激光束掃描目標體表面,獲得含有三維空間坐標信息的點雲數據,精度較高。應用於地質災害監測,可以進行災害體測圖工作,其點雲數據可以作為地質災害建模、地質災害監測的基礎數據。

3.3.4核磁共振技術(NUMIS)

核磁共振技術是國際上較為先進的一種用來直接找水的地球物理新方法。它應用核磁感應系統,通過從小到大地改變激發電流脈沖的幅值和持續時間,探測由淺到深的含水層的賦存狀態。我國於近期開始引進和研究,目前已經在三峽庫區的部分滑坡體進行了應用試驗,效果較好。

應用於地質災害監測,可以確定地下是否存在地下水、含水層位置以及每一含水層的含水量和平均孔隙度,進而可以獲知如滑坡面的位置、深度、分布范圍等信息,從而對滑坡體進行穩定性評價,並對滑坡體的治理提出科學依據。

3.3.5合成孔徑干涉雷達技術(InSAR)

運用合成孔徑雷達干涉及其差分技術(InSAR及D-InSAR)進行地面微位移監測,是20世紀90年代逐漸發展起來的新方法。該技術主要用於地形測量(建立數字化高程)、地面形變監測(如地震形變、地面沉降、活動構造、滑坡和冰川運動監測)及火山活動等方面。

同傳統地質災害監測方法相比,具有如下特點:

(1)覆蓋范圍大;

(2)不需要建立監測網;

(3)空間解析度高,可以獲得某一地區連續的地表形變信息;

(4)可以監測或識別出潛在或未知的地面形變信息;

(5)全天候,不受雲層及晝夜影響。

但由於系統本身因素以及地面植被、濕度及大氣條件變化的影響,精度及其適用性還不能滿足高精度地質災害監測。

為了克服該技術在地面形變監測方面的不足,並提高其精度,國內外技術人員先後引入了永久散射點(PS)的技術和GPS定位技術,使InSAR技術在城市及岩石出露較好地區地面形變監測精度大大提高,在一定的條件下精度可達到毫米級。永久散射(PS)技術通過選取一定時期內表現出穩定干涉行為的孤立點,克服了許多妨礙傳統雷達干涉技術的解析度、空間及時間上基線限制等問題。

隨著衛星雷達系統資源的改進和發展,以及相應數據處理軟體的提高,該技術在地質災害監測領域的應用將趨於成熟。

3.4地質災害監測技術的優化集成

3.4.1問題的提出

(1)監測方法的適應性。對於各種監測方法所使用的監測儀器設施,均有各自的應用方向和使用技術要求;針對不同地質災害災種、類型,其使用技術要求(包括測點布設模式、安裝使用技術要求等)不同。

(2)地質災害不同的發展階段。對於崩塌、滑坡等突發性地質災害,不同發展階段所適用的監測方法和儀器設施各異,監測數據採集周期頻度不同。

(3)監測參數與監測部位。實踐證明,一方面,不同的監測參數(地表位移、深部位移、應力、地下水動態、地聲等)在不同類型的災害體監測中具有不同程度的表現優勢;另一方面,同一災害體不同部位的監測參數隨時間變化趨勢特點並不相同,即存在反映災害體關鍵部位特徵的監測點,又存在僅反映局部單元(不具有明顯的代表性,甚至是孤立的)特徵的監測點。因此,監測要素(監測參數、監測部位)的優化選擇,是整個監測設計工作的基礎。

(4)自動化程度。決定於設備的集成度、控制模式、數據標准化程度和信息發布方式。

(5)經濟效益。決定於地質災害的規模、危害程度、監測技術組合、設備選型等因素。

3.4.2設計原則

地質災害監測技術優化集成方案遵循以下原則:

(1)監測技術優化原則:針對某一類型地質災害,確定優勢監測要素,進行監測內容、監測方法優化組合,使監測工作高效、實用。

(2)經濟最優原則:首先,不過於追求高、精、尖的監測技術,而應選擇發展最為成熟、應用程度較高的監測技術;其次,對於危害程度較大的大型地質災害體,可選擇專業化程度較高的監測技術方法,由專業人員進行操作、維護,對於危害程度低,規模小的災害體,可選擇操作簡單、結果直觀的宏觀監測技術,由群測群防級人員進行操作。

3.4.3最終目標

根據不同種類地質災害和不同類型地質災害的物質組成、動力成因類型、變形破壞特徵、外形特徵、發育階段等因素,研究適用於不同類型地質災害的監測要素(監測參數、監測點位的集合)、監測方法、監測點網的時空布置模式、監測技術要求,建立典型地質災害監測的優化集成方案。

G.  地質災害防治工程評價的基本方法

一、地質災害防治工程評價的基本目的與內容

地質災害防治工程有兩種解釋。從廣義上看,地質災害防治既包括:區域地質自然環境治理;直接性地質災害的監測、預測、預報、預防和治理;還包括地質災害救災以及減災宣傳、減災法規等減災管理工作。從這個意義上說,地質災害防治是一項內容十分廣泛的系統工程。與此相區別的是狹義的地質災害防治工程。狹義的防治是針對某一個地質災害體或某一個較小范圍內的某種地質災害——如一個危岩、滑坡、泥石流或一個地區的岩溶塌陷、地面沉降、地裂縫等所實施的以限制地質災害活動和保護受災體為目的的直接性防治措施。這些措施主要包括上面已經介紹的工程措施,以及監測、預測、預報等措施。

廣義的地質災害防治工程不但包括的內容十分廣泛,而且還常常涉及廣泛的地區。為了更有效地減災、防災,促進地區經濟或區域經濟與資源、環境的協調發展,對此進行全面的分析評價,使其充分發揮作用,這無疑是非常必要的。但這種分析評價一般都需要結合地區或區域環境整治和經濟發展進行綜合研究。這種研究屬於區域環境-經濟研究范疇,不是本課題研究任務。這里所指的防治工程評價是對狹義的地質災害防治工程的分析評價,是針對某一具體災害對象防治措施的減災效果和經濟合理性進行分析評價。

地質災害防治工程評價的目的就是實現地質災害防治的最優化原則。如前所述,地質災害防治具有相對性特點。特別是對於我們這樣一個面積遼闊的大國,地質災害分布十分廣泛,不可能、也沒必要對所有的地質災害都進行全面的預防和治理;尤其是在國家和社會財力還非常有限的情況下,只能選擇少部分重點災害進行專門防治。因此,這就需要通過防治工程評價,對比不同災害防治項目的可能效益,在此基礎上規劃安排防治順序,確定優先防治項目,以便使有限的防治資金最充分的發揮作用。

地質災害防治工程評價除了為確定防治項目提供直接依據外,對於已經選定的防治項目要取得充分的防治效果,同樣有許多經濟問題和技術問題需要進一步地分析、評定。對於某一地區的地質災害可能有多種防治方法。因而首先應研究哪種或哪些方法最符合實際。它不但在措施上最為得力,而且經濟效益最佳。這就需要進行技術分析和經濟評價。此外,即使已經選擇了防治措施,但是在工程設計中,按照哪一級設防標准設計工程規模,既能夠有效地防治災害,保護受災體,又不致浪費資金,這也需要進行技術分析和經濟評價。例如,不同情況下泥石流災害的防治措施可以有很大不同。如果泥石流活動非常頻繁,而危害對象僅僅是少數散居在山區的農戶時,就不一定進行專門的工程防治,只需將這些農戶搬遷,安置到安全地區即可;然後結合植樹造林、水土保持進行環境治理,就可以收到既實現減災,又避免花費大量資金的效果。如果泥石流危害鐵路、公路安全,則應要根據實際情況採取不同的防治措施。如:局部改線,避開災害威脅;實施防護工程,保護鐵路、公路安全;治理泥石流,削弱其強度或導流至無交通設施分布地帶。如果泥石流危害重要企業或城鎮安全,就要實行包括生物工程、防護工程、治理工程在內的綜合防治措施。各種工程的設計標准,既要安全有效,又要經濟合理。因此,地質災害防治工程評價不僅是選擇防治項目的直接依據,而且也是項目防治方案優選的重要依據。

綜合上述,地質災害防治工程評價的基本內容和目的是:分析地質災害防治工程的科學性,評估地質災害防治工程的經濟效益,評價地質災害防治工程的可行性和合理性,為地質災害防治項目優選和方案優選提供依據。

二、地質災害防治工程評價方法

(一)地質災害防治工程的技術評價與經濟評價

根據地質災害防治工程評價內容,把它的評價方法相應地劃分為兩類。一類是技術評價,即:分析評價防治工程能否按照設計目標有效地扼制災害活動或者保護受災體;分析防治工程本身的結構、強度等是否符合規范或實際要求。技術評價主要是從自然科學角度綜合分析防治工程的可靠程度,評價它的功能或效果。第二類是經濟評價,即分析防治工程的經濟效益,從經濟學角度評價防治工程的合理性。技術評價和經濟評價雖然都是防治工程評價的不可缺少的方法,但由於不同地質災害技術評價的方法相差較大,而且在已有的勘查和研究工作中,對大部分地質災害防治工程已經形成了比較成熟的理論和方法,所以本課題僅進行防治工程的經濟評價分析。

(二)地質災害防治工程經濟評價核心指標及其特點

地質災害防治工程經濟評價的核心指標是防災經濟效益F(X)。效益是指某種經濟活動所獲得的成效與所付出的代價之比。生產產品的產業活動(如工業、農業)的效益是指產品的價值或利潤與產品成本的比值。房屋等工程建築效益指的是這些建築的價值與建築成本的比值。地質災害防治工程既不是生產性工程,也不是商品性工程。它的價值和經濟效益與一般工程具有不同的特點。主要有下列幾點:

1.間接性特點

在多種地質災害防治工程中,只有少數措施能產生直接效益。如為了治理泥石流災害實施生物工程,植樹造林,在一定時期後可得到一定收益。但這種收益只是一種附帶性的「副產品」。其主要效益是體現在保護了人民生命財產,減少了災害損失。所以,災害經濟學屬於守業經濟學。防災效益是通過「以負換正,減負為正、負負得正」的方式間接地反現出來。

2.潛在性特點

一般產品在投入使用以後,就為消費者所連續使用,其價值不間斷地發揮作用。但地質災害,特別是突發性地質災害,並不是每時每刻都在進行。所以,一般地質災害防治工程往往長時間地處於「待命」狀態,只有災害發生時,它才顯出「英雄本色」,發揮其「養兵千日,用兵一時」的功能。

3.長遠性特點

地質災害防治工程一般具有較長的使用期限,少則幾年,多則幾十年或上百年。除了在工程壽命期內產生效益外,有的地質災害經過一段時間的防治可基本消除。有的雖然沒能完全根治,但通過一定防治後,使地質災害防治地區的環境得到改善,走上了良性循環發展道路,逐步增強了防治地區自身的「免疫」功能,使地質災害不斷緩解,並最終消除。因此,其效益更是長遠無期的。

(三)地質災害防治工程經濟評價的基本要素

地質災害防治工程經濟評價的基本要素包括:災害危害強度(W(q)),即地質災害對受災體的威脅破壞程度;防災度(F(s)),即防治工程對災害的可能防禦程度;設防標准(F(b),即防治工程的設計防災能力;防災功能(F(g)),即防治工程可能實現的消災能力、對受災體的防護能力以及可能產生的其它作用;防災收益(F(y)),即用貨幣形式反映的防災功能;防災成本(F(c)),即亦稱防災投入,指防治工程所需要的材料、勞動等投入,在核算時可用貨幣反映。

(四)地質災害防治工程經濟效益核算方法

1.地質災害防治工程功能函數模型

如前所述,地質災害防治工程效益主要體現在減損作用,少數工程具有社會經濟增殖功能。因此,分別用損失函數(L(s))和增殖函數(I(s))來反映:

地質災害災情評估理論與實踐

(1)式表明,災害損失(L)隨防災度(S)的增大而減小。它在對災害無任何防治能力時,即S趨於0時,理論上災害破壞作用將無限延長,災害損失趨於極大值(無窮大);當防災度趨於100%(或實際應用中出現S>1的高冗餘度,即防治力度超過發災潛力)時,災害損失趨於零。

(2)式表明,防治工程的增殖作用(I)隨防災度(S)的增在而增大。但它並不是無限的,其最大值取決於防治工程所具有的最大增殖可容度。

L(S)和I(S)的代數和構成防治工程的防災功能函數。即:

地質災害災情評估理論與實踐

式中L(S)為負值。

圖8-1和8-2反映了上述各種關系。

圖8-1地質災害防治工程投入與災害損失關系

圖8-2地質災害防治工程投入與效益關系

2.地質災害防治工程經濟效益評價模型

地質災害防治效益採用投入產出法進行計算。

一是純收益法。即以產出與投入的差值反映防治工程的經濟效益:

地質災害災情評估理論與實踐

二是相對收益法。即以投入產出的比值(簡稱產投比)反映防治工程的經濟效益:

地質災害災情評估理論與實踐

式中:F(x)1和F(x)2——防治工程在有效期內獲得的防治效益;

F(y)——防治工程在有效期內獲得的各種收益;

F(c)——按一定防災度和設防標准,規劃設計的防治工程的成本投入。

3.地質災害防治工程收益核算

如前所述,地質災害防治工程收益主要表現為減災收益,即實施防治工程後可能減少的災害損失。採用下列幾種方法進行核算。

(1)期望損失法減災收益等於無防治條件下的災害期望損失與防治條件下的期望損失之差。即:

地質災害災情評估理論與實踐

式中:F(g)s——減災收益;

S(Z)——無防治條件下災害的期望損失;

S(F)——設計防治工程條件下災害的期望損失。

其評價核算方法見本報告第七章。S(F)與S(Z)所不同的是在期望損失評價模型中,災害活動概率(速率)、危害強度、危害范圍等要素值需根據防治工程的設計目標確定。

(2)防災度法根據防治工程設計目標所要達到的防災度計算減災收益。即

地質災害災情評估理論與實踐

式中F(S)為防災度。在這里指的是實施防治工程後使災害經濟損失減少的幅度(%)。

(3)比擬法同已經運行的同類防治工程進行比擬,概略地確定減災收益。即:

地質災害災情評估理論與實踐

式中:k為修正系數;F(y)s´為同類工程的減災收益。

少數防治工程除主要取得減災收益外,還附帶有一定的增殖收益。對此,需根據收益性質進行核算。如農林牧產品收益可根據單位產品市場價核算。

防治工程的總收益為減災收益與增殖收益的總和。

4.地質災害防治工程成本核算

基本途徑是採用影子工程方法全成本核算防治工程的投入。

需要注意的是,防治工程投入是一種動態投入。所以,簡單地根據工程設計方案一次性地核算靜態投入就不能與以期望損失為基礎的減災收益相匹配,因而得不到合理的防治效益。

防治工程的動態投入首先表現在防治工程投入運行後,會隨著使用年限的延長而折舊壞損。因此,要麼降低效能,影響防災度;要麼需要維修,以基本保持其功能。在通常情況下,防治工程要進行經常性維修,因而要將維修費用連同初始成本一並計入工程投入。即防治工程投入等於初始成本加上維修費用。維修費用除了採用影子工程法進行測算外,還可以按照初始成本的一定比例進行核算。其比例數值可根據防治工程的使用年限,大致按折舊率的50%確定。

在核算防治工程投入時,除了需要考慮運行中的維修費用外,還需要考慮防治費用的折現情況。之所以如此,是因為我們在核算防治效益時,可能出現有關的不同要素(期望損失減少值、初始成本、防治費用等)的預測時間年份不同,那麼由於物價因素的影響,這些要素就不是「站在同一水平線上」,因而它們的可比性就將打折扣。基於這種情況,在核算防治工程投入時,需要根據利率變化進行貼現計算。其函數模型為:

地質災害災情評估理論與實踐

式中:PVr——防治工程投入費用的貼現值;

r——年名義利率;

t——時間(a)。

在離散的情況下,上式為:

地質災害災情評估理論與實踐

式中:i為年貼現利率。

(五)地質災害防治工程優化分析

如前所述,為了使有限的防治資金發揮最充分的減災效果,需根據最優化原則選擇防治項目和確定防治方案。所謂最優化原則,主要體現在三個方面,即:具有充分的科學性,符合地質災害防治特點和有關的規范、標准要求;在技術方法、財力、物力以及施工條件等方面切實可行;獲得最佳經濟效益。

防治工程的科學性、可行性主要通過技術分析進行評價。防治工程的經濟效益則是根據以上提供的方法進行分析評價。為了根據防治工程經濟評價結果,做好防治工程優選,對最優化理論和優選的基本方法進一步分析如下。

通常情況下,防治費用和防災度(或減災效果)互為消長關系。即防治投資增加,防治工程規模加大,防災度提高,災害損失下降。基於這種關系,為了有效地保護人民生命財產安全,當然是實施的防治工程越多、越可靠,減災效果越充分。但這顯然是不科學的,對於絕大多數地質災害防治工程來說,不可能片面追求防治效果,而不顧防治投入的多少。在這一矛盾面前最科學的選擇是實現防治效果與防治投入的最佳結合。

前面的圖8-1和圖8-2是根據多數實踐結果繪制的地質災害防治工程投入與災害損失和防治收益的一般變化關系。它表明,隨著防治工程投入的增加,雖然災害損失減少,收益增加,但它們都不是線性關系。當防治投入達到一定規模後,災害損失減少的幅度和防治收益增加的幅度會明顯降低,這意味著在此之前所進行的防治投入獲得的收益(產投差或產投比)明顯,而後的防治投入獲得的收益變小。因此,我們可以在對不同投資力度下防治工程經濟效益分析的基礎上,選擇預期損失或防治效益轉折部位O』的「臨界」投入F(c)』作為最佳投入。依此確定相應的防災度F(s)』及工程方案(圖8-3)。

圖8-3地質災害防治工程優化投入示意圖

當然,圖8-3顯示的是最理想的情況,實踐中的情況可能要復雜得多。有時所謂「臨界值」並不是一個點,而是一個區間,在這種情況下可採用該「臨界段」的平均值或最高值選擇防治方案。有時可能不存在「臨界點」或「臨界段」,在這種情況下只能根據不同設計方案的預期收益,直接分析對比後選擇最優防治方案。

在分析評價同一項目最優防治工程的基礎上,進一步對不同項目的最優方案進行分析對比,本著優中選優的原則,進行項目優選,編制防治規劃,排列防治順序。

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864