工程地質分析
Ⅰ 工程地質案例分析
給我你扣扣,我目前正在做一個這個方面的東西
Ⅱ 工程地質分析的基本方法有哪些
1.定性研究:通過實驗、詳細的實地研究,對地質過程的形成機制進行分析,得出定性評價
2.定量評價:定性分析基礎上,通過定量計算,進行定性與定量評價相結合的地質過程機制分析——定量評價。
Ⅲ 分析影響岩石工程地質性質的因素
分析影響岩石來工程源地質性質的因素?
A,礦物成分.由於岩石是多晶體的組合物,礦物晶體內部質點的間距小,吸引力遠較晶粒間的吸引力強.碎屑沉積岩膠結物的成分對強度的影響是最明顯的.
B,結構的影響.一般情況下,由於晶粒間質點的平均距離要比晶體內部質點的平均距離大得多,彼此吸引的牢固程度低,因此顆粒間的聯接決定岩石的抵抗作用力.
C,水的影響.在岩體中對力學性質產生重要影響的主要是重力水和結合水,主要通過多...
Ⅳ 工程地質條件和水文地質條件怎麼分析
工程地質條件分抄析:
工程襲地質條件是指與工程建設有關的地質條件總和,它包括土和岩石的工程性質、地質構造、地貌、水文地質、地質作用、自然地質現象和天然建築材料等幾個方面。
主要通過以下幾點對不同地區進行具體分析:
1、對工程場地穩定性與適宜性分析、評價。
2、對工程場地環境工程地質條件評價。在評價場地自然條件的同時,還應預測工程與場地的相互影響及可能引發的工程地質問題。
3、為設計提供地質參數。
4、根據場地地質條件,為設計提供工程措施意見。
水文地質條件分析:
水文地質指自然界中地下水的各種變化和運動的現象。水文地質學是研究地下水的科學。它主要是研究地下水的分布和形成規律,地下水的物理性質和化學成分,地下水資源及其合理利用,地下水對工程建設和礦山開採的不利影響及其防治等。
因此根據分析地點具體特徵根據以上要素進行分析。
Ⅳ 誰有工程地質分析原理(第三版)張倬元 電子版 最好是word文檔 其他格式也行
我有 在超星下載的
Ⅵ 地質歷史分析法
地質歷史分析法是根據勘查和其他方法所獲得的資料,運用工程地質學等多學科知識對潛在崩塌體進行穩定性分析的一種方法。它包括變形史分析法、工程地質類比法、岩體穩定的結構分析法(含圖解分析法),以及其他一些分析方法。在分析中應體現相互有機聯系原則、整體性原則、有序性原則和動態原則。
(一)岩體穩定的結構分析法
岩體穩定的結構分析法主要基於岩體結構及其特性,依據岩體中結構體之間相互依存、相互制約的關系,抓住主要結構面並根據結構面之間、結構面與臨空面之間的組合關系,確定可能失穩的結構體的形態、規模與空間分布,同時判定不穩定塊體可能移動的方向和破壞方式。
結構分析法主要採用圖解分析法。圖解分析法主要有邊坡穩定摩擦圓法、玫瑰圖法、赤平極射投影法、節理統計極點圖與等密度圖、平面投影法和實體比例投影法等。
(二)工程地質類比分析法
依據相似性原則將已經發生過的崩滑的地質體特徵、形成條件、驅動力、崩塌類型和形成機理等先驗實例與被勘查對象進行類比,分析其穩定性,其實質是把集成經驗(理論)應用到條件相似的工程中去。
類比的相似性原則,包含下列方面:
(1)崩滑體岩體性質、主控結構面、岩土體結構、斜坡結構和崩滑體介質結構條件等的相似性。
(2)崩滑體賦存條件的相似性。
(3)動力因素的相似性。
(4)發育階段的相似性等。
集成經驗具有地域性和實踐性,並與實踐者的認知水平有關。為提高其水平,可建立崩塌地質災害穩定性分析的專家系統,以供危險性評估使用。
(三)變形史分析法
變形史分析法主要依據崩塌發育規律中的發生周期性和階段性特徵,追溯潛在崩塌體的變形發育史,判定其現今所處階段,進而分析其穩定性。分析內容包括:
(1)崩滑體發育的區域性規律,包括周期性、階段性、時段性、動力因素及誘發因素的統一性。
(2)根據被勘查崩滑體的變形形跡和變形速率(監測資料),分析崩滑體現今所處的發育階段。
(3)調查了解其變形歷史,包括訪問和搜集地方誌和有關的資料。
(四)地質綜合分析
在上述各項分析的基礎上,對被勘查的崩滑體的形體特徵、地質構成、成災條件、成災動力、成災因素、成災機理、變形破壞形式和特徵、失穩條件和機制等進行全面系統地整理、歸納,進而評價崩塌體現階段的穩定性,並預測其發展趨勢、評價其失穩的必要條件、相關因素、失穩的可能性和失穩的規模、方式、方向,預測失穩的時間。
Ⅶ 試從工程地質條件角度分析下圖三個洞室位置的好壞。
如圖所示,對三個洞室位置好壞的評價主要是從地質構造方面進行回分析,地層、岩答性等條件可以適當補充。
1號位於背斜褶皺構造核部,由於褶皺核部是岩層受構造應力最為強烈、最為集中的部位,因此容易遇到工程地質問題,主要是由於岩層破碎產生的岩體穩定問題和核部地下水的問題。、圖中為背斜核部,岩層呈上拱形,雖岩層破碎,然猶如石砌的拱形緒構,能將上覆岩層的荷重傳遞至兩側岩體中去,所以有利於洞頂的穩定。洞頂雖張裂隙發育,然岩塊呈上寬下窄形,不易掉塊。
2號洞室位於斷裂的影響斷層破碎帶,穩定性極差附近。地下掘進會產生塌方甚至冒頂(洞頂大規模突然坍塌破壞)。一般情況下,應避免洞室軸線沿斷層帶布置。如洞室軸線垂直或近於垂直斷裂帶,則所需穿越的不穩定地段較短,但也可以產生塌方或大量地下水湧入。
3號洞室在傾斜岩層中,一般說來是不利的。當洞身通過軟硬相間傾斜岩層時,順傾向一側的圍岩易於變形或滑動,造成很大的偏壓; 逆傾向一側圍岩側壓力小,有利於穩定。因此,在傾斜岩層中最好將洞室選在均一完整堅硬的岩石中。此外,岩層的傾角對圍岩的穩定性也有影響。
選址時應結合其他因素綜合考慮。
Ⅷ 水文地質工程地質條件勘探與分析
由於注漿截流防治礦井水害技術有其特定的應用條件,所以在確定是否採用注漿技術之前必須進行礦井水文地質條件和施工工程地質條件的勘探與分析。勘探與分析研究的主要內容包括水害形成的地質構造因素和人為工程活動因素、水害形成的層位、含水層岩性、突水水源、礦井充水補給通道的性質及其分布范圍、最大突水量、穩定突水量、過水通道內或突水口處的地下水流速、靜水壓力等。只有弄清這些問題,才能制定切實可行的注漿堵水技術與工程方案。
(1)查明礦井所在地區造成礦床充水的充水水源及其賦存條件、控制礦井水害的主要因素及其變化規律,用以進行綜合防治水技術路線的分析比較,以決策總體治水方案。
(2)查明礦井局部地區水文地質結構與礦井充水條件,用以決策防治水工程的具體布設和工程的經濟可行性分析,避免工程宏觀規劃布設不當,影響防治水效果或造成工程浪費。該階段應重點查明礦區和采區主要構造單元的特徵,陷落柱和斷層顯現規律及其斷距、產狀要素,小構造特徵等;查明施工地段岩層的岩石成分,岩石可鑽性等級,岩石的裂隙性特徵、孔隙度或者裂隙張開性與切穿性;查明含水層特徵、厚度和賦存深度,地下水的靜水壓力水頭,含水層的滲透系數等。查明地下水的礦化類型和程度,硬度、酸度指標,對水泥和金屬侵蝕的類型和程度,地下水化學成分隨深度的變化規律等化學特性。
(3)查明工程施工條件,包括查明施工地段的工程地質條件、運輸施工條件、材料供應條件、採掘工程條件等,確定防治水工程要求達到的精度,以便進行施工程序與施工工藝方法的設計。查明礦區和采區的地理位置和行政位置、地表地形、區域水文網、當地的氣候條件;查明區域的經濟狀況,運輸、電站、供水和供熱源,以及當地現有的適於制備止水漿液的建築材料。
Ⅸ 求工程地質分析原理電子版
給我一個郵箱吧,我把課件發到你的郵箱里!
Ⅹ 在工程地質調查中的應用
一、在水利工程中的應用
水利工程有堤壩、堤岸、渠道、輸水洞等。地球物理方法在水利工程中的應用,一方面用於工程場地的選址勘查,查明被選區域的岩溶發育情況、覆蓋層厚度、風化層厚度以及地質構造等情況,對擬建工程場址的穩定性和建築適宜性作出評價;另一方面用於水利工程的質量隱患檢測,查明壩體是否存在有裂縫、空洞、動物巢穴、管涌等工程質量隱患,為水利工程的消險加固提供依據。目前,常用於水利工程隱患檢測的物探方法有地質雷達、自然電位法、高密度電阻率法、人工地震勘探以及聲波測試等方法。
1.探測堤壩蟻巢與洞穴
土體堤壩中因碾壓不實、庫水浸透或動物危害等因素,在壩體中常出現土洞、動物巢穴等危害壩體安全的隱患。在我國南方各省(區)水利工程中白蟻巢穴是一種常見的隱患,白蟻主巢直徑一般在40~60 cm,大者可達數米,主巢周圍分布著幾十個甚至數百個衛星菌圃,其間由四通八達的蟻道溝通,且有的貫穿堤壩的內處坡。因此,深藏於堤壩中的白蟻危害造成的堤壩險情和潰堤率遠高於其他原因,找出堤壩白蟻巢是消除堤壩白蟻隱患的關鍵。地質雷達和高密度電法是對壩體中的土洞、動物巢穴探測的有效方法。圖5-1-1是埋深約3m的白蟻主巢的地質雷達圖像,白蟻巢在圖像上的反射波形態特徵為多重強弱交錯的凸形條紋區,與周圍土壤有明顯的分界。
圖5-1-1 某堤壩白蟻巢穴的地質雷達圖像
2.水壩滲漏的地球物理探測
滲漏是水壩常見的隱患,是造成水壩發生事故的主要原因。水壩滲漏可分為壩基滲漏和壩體及附屬結構滲漏,壩基滲漏較為常見。造成水壩滲漏的原因與水壩基礎處理的好壞、壩體施工質量、壩基下方地質構造等因素有關。
自然電位法探測水壩滲漏點和滲漏通道是一程常用的方法。由於庫水具有天然吸附帶電離子的能力,當水庫發生滲漏時,帶電離子也一起運動,形成電流場,在滲漏位置上自然電位出現負異常,其負異常的大小與滲漏水量有關。圖5-1-2是利用自然電場法確定地下水和地表水補給關系的實例。當地下水補給地表水時,在地面上觀測到自然電位正異常。圖5-1-2(a)為灰岩和花崗岩接觸帶上的上升泉的自電正異常;圖5-1-2(b)為水庫滲漏地點上出現的自然電位負異常。
圖5-1-2 用自然電位法確定地下水與地表水的補給關系
地質雷達方法用於探測水壩滲漏點和滲漏通道也具有較好的效果。滲漏部位土體的含水量變大,與未發生滲漏的土體形成明顯的介電常數上的差異,為採用地質雷達方法探測水壩滲漏位置提供了地球物理條件。黑龍江省某水壩為均質土壩,1998年遭受百年不遇的洪水後,在水壩後坡出現多處面積不等的漏水點。為了查明漏水點在壩體內的分布情況,採用地質雷達在壩頂、壩前坡和後坡進行了探測。圖5-1-3為壩頂測線K0+240—K0+400的地質雷達剖面。圖中強振幅異常推斷為壩體內受到水浸較重的部位,異常埋深為10~12 m。鑽探結果表明地質雷達推斷的異常區域是發生滲漏的嚴重區段。
圖5-1-3 黑龍江省某水壩地質雷達探測剖
3.壩基帷幕灌漿效果檢測
對病險水庫的維護處理一般採用帷幕灌漿等方法,灌漿效果的好壞需要採用物探方法檢查。某電站大壩岩基帷幕灌漿前後進行超聲波探測,圖5-1-4是質量檢查孔在灌漿前、後的超聲波檢測曲線,圖中可見,在檢查孔中上部,灌漿前和灌漿後的波速值差異非常明顯,灌漿前岩體的裂隙率高,波速較低;灌漿後岩體裂隙被水泥漿填充,且粘結牢固,波速明顯升高。在檢查孔的下部,灌漿前和灌漿後波速差異微小,波速較高,這說明岩體本身比較完整,滲透性小。
圖5-1-4 質量檢查孔灌漿前後聲波檢測結果
地質雷達對水壩帷幕灌漿質量檢測也有較好的探測效果,根據地質雷達圖像上灌漿物的影像可計算出有效灌漿深度和水泥漿擴散半徑。根據壩體土體和基岩處的強反射弧形影像,可判別已被灌漿物充填的溶洞的大小、形態和深度以及未被灌漿物充填的溶洞、土洞等隱患。
4.古河道的地球物理勘查
古河道常引起大量滲漏,在水庫建壩時需對壩基下古河道的地質情況進行詳細勘查,了解古河道的分布范圍,埋深以及砂礫石厚度等。探測古河道常用的物探方法是電測深法、自然電位法、地震勘探和地質雷達等方法。
圖5-1-5 用對稱四極剖面法追索古河道的ρs剖面平面圖
圖5-1-6 橫穿古河道的對稱四極剖面ρs曲線
圖5-1-5和圖5-1-6為對稱四極剖面法探測和追索古河道的實例。由圖5-1-5中各對稱四極剖面特徵可以看出,在低阻背景上有一高阻異常帶。該高阻異常帶推斷為古河道的反映,該河道由一條主流和一條支流組成。此外,利用ρs曲線特徵可大致確定出古河道的形態、中心位置和寬度。若ρs曲線具有對稱性,ρs曲線極大值對應於古河床最深的中心位置。若ρs曲線不對稱,可根據曲線兩翼陡緩推斷古河道兩岸坡度的大小(圖5-1-6),其視寬度可由ρs曲線的拐點位置大致確定。通過等ρs斷面圖上的等值線形狀可反映出古河道的斷面形態。由圖5-1-7可見,在371號點附近ρs等值線呈高阻閉合圈。結合當地的水文地質條件,推斷該異常為一淺層古河道引起。經ZK8、ZK10、ZK11孔驗證,證實了古河道的存在,ZK11打到了富含地下水的砂礫石層。
圖5-1-7 雲南某地尋找淺層砂礫石富水地段(古河道)成果圖
圖5-1-8為地震橫波法探測古河道的實例剖面圖。根據鑽探資料推測該區域一帶有一條古河道,河道埋深為20~30 m,為了查明古河道的位置,採用橫波地震勘探。圖中可見,40 ms左右的同相軸為第四系地層內部的反射,同相軸連續性好、起伏小;140~220 ms為古河道及兩岸附近地層的反射,同相軸連續性好、起伏較大,其形態特徵反映了古河道的形態,河道埋深為28 m左右,視寬度約為130 m。
圖5-1-8 橫波t0時間剖面
二、在交通建設和維護中的應用
1.公路質量檢測
公路質量檢測的原始方法是採用鑽探取心法,該方法不僅效率低、代表性差,而且對公路有破壞。為了快速、准確和科學地評價公路質量,必須採用無損檢測方法。目前,常用於公路檢測的物探方法有地質雷達、瞬態面波法、高密度電阻率法和人工地震等方法。在這些物探方法中,由於地質雷達方法具有快速、連續、無損檢測的特點。因此,在公路質量檢測中得到更加廣泛的應用。
圖5-1-9 電磁波在公路剖面中的傳播
高速公路是由土基礎、二灰土、二灰碎石、面層等構成,由於空氣、瀝青面層、二灰碎石、土壤等介質的介電常數不同,電磁波將在其介質發生變化的界面產生反射波。圖5-1-9為電磁波在公路剖面中各界面的傳播、反射途經示意圖。圖5-1-10為電磁波在公路剖面中各界面的掃描示意圖。
圖5-1-10 電磁波在公路剖面中各界面的掃描
長春至四平高速公路採用瀝青路面,路面下為碎石墊層。路面分三次鋪設完成,設計路面厚度為25 cm。在工程竣工前採用地質雷達進行了路面厚度檢測。
工作中使用的地質雷達為SIR-2型,工作天線頻率為900 MHz。圖5-1-11為長春至四平高速公路上某段路面的地質雷達檢測剖面圖,圖中5.8 ns附近的強反射為瀝青面層與碎石墊層界面的反射,根據反射界面的雙程走時和電磁波在瀝青路面中的傳播速度計算出路面厚度。瀝青路面的電磁波速度採用實驗標定並進行統計後得到。檢測結果表明,由於二灰石墊層凸凹不平,導致瀝青路面厚度有較大變化,最薄為26 cm,最厚為43 cm。達到了設計的要求。路面厚度評價按國家公路路面結構層厚度評價標准進行。在經數據處理後的地質雷達剖面中讀取電磁波在面層中的反射波雙程走時,計算出面層厚度並作出厚度評價結果。
地質雷達方法在公路質量檢測中除可進行路面厚度檢測外,還可進行路基隱患(脫空、裂縫等)的檢測以及橋涵的質量檢測。有些學者開展了地質雷達對公路壓實度、強度及含水量的檢測研究,也取得了較好的檢測效果。
圖5-1-11 長春至四平高速公路某段路面的地質雷達檢測剖面
2.鐵路路基病害勘查
鐵路路基病害一般指鐵路路基平台頂部結構不堅實而且滲水,以及原填充物的不均勻性,經長期雨水沖刷和滲透,行車振動等所形成的一定規模的充坑,洞穴或渣石填充物。路基病害比較隱蔽,一旦受到外界因素影響造成塌陷,將直接威脅行車安全,因此,鐵路病害的勘查十分重要。
路基勘查中,由於受到電磁干擾、鐵軌干擾及行車震動干擾的影響,限制了一些地球物理方法的應用。因此,目前常用於對鐵路病害檢測的物探方法是微重力測量。
由於路基的病害地段和完整地段有一定的密度差異,為微重力測量提供了前提。圖5-1-12是法國波爾多至塞特鐵路線上路堤下喀斯特溶洞的微重力異常等值線圖,測量位置位於鐵路線巴爾薩克處,勘查對象是5 m高的路堤和路基部。圖中可見,在該帶中部有一處密度較大的地段(異常達3×10-1g.u.),這是一處過去曾進行過灌漿處理的地段。在過去處理時,由於突然塌陷,未能進行專門研究。在地段兩端出現-2×10-1~-6×10-1g.u.兩處異常,位於邊坡基部並向路基底下延伸。經對異常的解釋和鑽探驗證,證實在路基下3~6 m深處的灰岩中存在喀斯特溶洞。
圖5-1-12 波爾多至塞特鐵路線上路堤下喀斯特溶洞的測定和處理
鐵路路基多是用耕土堆墊壓實而成,如果出現路基病害,必將引起電性差異。路基位於地面以上(或潛水面以上),所以無論是洞穴或渣石充填物都可使勘探體積所涉及范圍內的視電阻率增大,由此對稱四極剖面會出現高阻異常。路基病害越嚴重,規模越大,高阻異常越明顯。例如,圖5-1-13是隴海路某段採用對稱四極剖面法實測曲線,採用AB=7 m,MN=1 m裝置,由圖可見,全線有三種病害形式:①較大洞穴或渣石填充物的嚴重病害段,視電阻率曲線值很高;②病害較重段,視電阻率曲線呈高低交錯;③輕度病害段,視電阻率較高,視電阻率曲線呈高低交錯。病害嚴重段的影響可至路基外側鋼軌下,是亟需處理部位。輕度病害段,短期內不會形成大的病害,可作為今後雨季的防範對象。
根據物探測量和鑽孔所提供的資料,可以確定出需要灌漿地帶,得出最佳的工程計劃。灌漿處理後,除打鑽檢查外,還可以進行微重力測量,以圈出灌漿不足或灌漿過量的地層。圖5-1-14是在一已知灌漿地帶,對灌漿後地層的重力異常變化,與計算機根據模型(用灌漿前的鑽孔資料製作的地質模型)計算出來的理論異常曲線對比圖5-1-14(a),可以看出,該地帶的右半部灌注未超出預計范圍,也未出現重力異常。在模型左半部出現剩餘異常,表明灌漿不足。圖5-1-14(b)是灌漿容量對比圖,圖5-1-14(c)是地質模型(沿Ⅰ號測線的剖面)。
圖5-1-13 路基勘查剖面圖(選段)
圖5-1-14 巴黎—斯特拉斯堡鐵路線上瓦朗吉維爾處
近年來,使用瞬態面波進行鐵路路基承載力的檢測也取得了較好的結果,為路基病害的確定和治理提供了可靠數據。
利用瞬態瑞雷面波法測試線路路基承載力時,由於受到行車影響,在測線布置時只能在枕軌外側或路肩上進行。由於瑞雷面波是一個體波,具有體積勘探的特點,因此可代表路基道心的實際情況。瞬態面波數據採集時使用面波儀和低頻檢波器測量。震源採用18磅大錘和鐵板。道間距隨著勘探深度的增大而相應增大。數據處理主要是求取頻率—速度頻散曲線,對頻散曲線經過反演擬合並結合路基的實際情況進行分層,計算出各層厚度及瑞雷波的層速度。通過頻散曲線上vR數值的大小可以定性地判斷測點處瑞雷波速度隨深度的變化情況和路基的相對強度特徵,vR較高區域反映路基強度較高,vR較低區域反映路基強度較低。
在部分瑞雷波測點上作輕型動力觸探(N10)值,根據鐵道部輕型動力觸探技術規定(TBJ18—87)將N10值換算為乘承載力σ0(σ0=8N10-20),然後將瑞雷面波速度vR與相對應測點的輕型動力觸探(N10)擊數進行數學統計分析,得到vR與N10的相關關系式:
環境地球物理教程
式中A、B為常數。當相關系數r>0.7時,說明vR與N10是相關的,可用vR代替N10來計算承載力σ0的大小,即:
環境地球物理教程
根據此式可用vR定量計算路基的承載力。
圖5-1-15 承載力等值線圖
圖5-1-15為京廣線部分區段K2011+170—K2100+270段路基瑞雷波測試,並按上述換算關系(取A=91.07913,B=2.940517)換算得到的承載力等值線圖。圖中在K2011+230附近路基的承載力偏低,約為80 kPa。而在其兩側的路基的承載力相對偏高,約為180 kPa。此結果與現場實際的情況非常吻合。
3.隧道掌子面前方地質情況預報
在隧道挖掘過程中常因掌子面前地質情況不詳,在不良地質地段經常出現塌方、涌水等現象,嚴重時會造成人身傷亡和設備損壞等重大事故,造成巨大的經濟損失。因此,在隧道掘進過程中及時了解掌子面前方地質情況,特別是斷層、破碎帶等不良地質構造的規模和特徵,這對確保施工安全、合理安排掘進方案、掘進速度和支護措施至關重要。
隧道掌子面前方地質情況預報可分為中長距離預報和短距離預報,中長距離預報採用的物探方法一般是人工地震,短距離預報可採用地質雷達或聲波探測。
吉林省某公路隧道岩石以花崗岩為主,其中穿插有角閃岩及綠泥角閃岩破碎帶,岩石節理裂隙發育。在掘進方向上有兩組斷裂(走向為NNE及NNW)交替出現,與EW向小斷層及破碎帶相切割,形成屋頂形,易產生大塊脫落體。為了施工安全及合理設計掘進方案,採用人工地震和地質雷達相結合進行掌子面前方地質情況預報。人工地震方法的實施是在掌子面不同高程上水平布置幾條地震測線,用石膏在掌子面上等距離粘接檢波器,使用大錘在測線兩側激發和接收地震波。地質雷達方法的實施是在掌子面兩側洞壁及掌子面上水平布置雷達測線,使用100MHz天線等距離點測採集。
圖5-1-16為在樁號K241+138掌子面上人工地震中長距離預報的解釋結果,在K241+138—K241+063段有斷層3處,岩性異常帶一處。推斷位置為K241+115、K241+120、K241+136和K241+068。挖掘證明,有斷層2條(F115、F136),出露位置與推測位置相差1 m左右,走向近EW,斷距0.3 m。樁號K241+068處為破碎帶,寬度約10 m,系由偉晶岩及角閃岩多次侵入造成。
圖5-1-16 樁號K241+138地震中期預報結果示意圖
圖5-1-17 樁號K241+247雷達短期預報結果示意圖
圖5-1-17為K241+247掌子面上地質雷達短距離預報的解釋結果。洞兩壁檢測到斷層3條(F1、F2、F3),走向為NNE和NNW。按幾何關系推測,F1與F3在掌子面前方10 m附近相互交會,F2與F3在掌子面前方約35 m附近相互交會。掌子面上測量到前方斷裂5條,分別為F242、F239、F235、F230、F225,走向近EW,與F1和F3斷層相切割,洞頂極易形成塌落的塊體,對施工安全有嚴重危害。挖掘證明,掌子面上地震與地雷達探測所預報的結果與地質構造出露位置接近。根據預報的結果,施工單位及時調整掘進方案和掘進速度,採取了更合理的安全防範措施。
4.隧道襯砌質量檢測
隧道襯砌後,受諸多因素影響,襯砌混凝土可能出現厚度未達到設計要求或有脫空等質量問題。為及時發現襯砌質量問題,需對隧道襯砌質量進行快速和高解析度的檢測,為隧道工程的科學管理提供依據。在隧道質量檢測中最常用的地球物理方法是地質雷達方法。
地質雷達法進行隧道襯砌質量檢測的主要內容是混凝土密實性、脫空和襯砌厚度。檢測中一般採用500 MHz 或900 MHz高頻天線,檢測厚度可達幾十厘米。測線一般布置在隧道的拱頂、拱腰及邊牆三個部位(圖5-1-18),拱頂為隧道的正頂部附近,拱腰為隧道的起拱線以上1 m左右,邊牆為排水蓋板以上1.5 m左右。測量方式採用剖面法,測點間隔一般為幾厘米~幾十厘米,由測量輪跟蹤測量里程。
圖5-1-18 測線分布圖
隧道襯砌厚度檢測中,相關介質的物理參數如表5-1-1所示。
襯砌厚度評價,首先在地質雷達剖面上確認出混凝土與岩石界面間的反射波同相軸,讀取反射波雙程旅行時間,按公式h=v×計算出混凝土襯砌厚度,速度V可通過明洞地段或鑽孔資料標定。密實度的評價可根據探地雷達剖面反射波振幅、相位和頻率特徵劃分為密實和不密實兩種類型。不密實的混凝土體在雷達剖面上波形雜亂,同相軸錯斷;脫空體在雷達剖面上在混凝土與圍岩交接面處反射波同相軸呈弧形,與相鄰道之間發生錯位,依此特徵可計算出空洞的范圍。由於爆破使圍岩表面凹凸不平,因此,在確定脫空時應對剖面上的異常加以細致的分析和確認。
表5-1-1 隧道襯砌厚度檢測中相關介質的物理參數表
某公路隧道全長約1.6 km,為全面了解襯砌質量,在隧道即將貫通前開展了地質雷達檢測。該隧道襯砌類型有:Sm3、Sm4、Sm5,設計襯砌厚度分別為40 cm、35 cm、30 cm。圖5-1-19為里程號K21+390—K21+430區段邊牆測線的地質雷達剖面。該區段襯砌類型為Sm5。圖中10 ns附近起伏變化的同相軸為圍岩界面反射波同相軸,圖5-1-20為計算出的混凝土襯砌厚度曲線。
圖5-1-19 K21+390K21+430區段邊牆測線的地質雷達剖面
圖5-1-20 K21+390K21+430區段邊牆測線混凝土襯砌厚度解釋曲線