地質災害預警最新
⑴ 地質災害氣象預警區劃
如前所述,在地質災害的控制與影響因素中,降雨和人類工程活動是最為活躍的觸發因素。在人類不合理工程活動地段,黃土的卸荷與風化裂隙、落水洞、陷穴等尤為發育,降水容易沿著這些通道快速滲入地下,引發地質災害,降雨成為觸發地質災害最積極的因素。所以,通過氣象預報,可有效開展滑坡崩塌泥石流等地質災害預警,實現防災減災的目標。
一、臨界降雨量確定
據本次調查資料,2000~2004年發生的13次新滑坡和16次崩塌,其發生頻次均與月平均降水量呈顯著的正相關,滑坡、崩塌發生時間全部落在6~10月份,在9月份最高,7月和8月次之,6月和10月份較低。地質災害的發生頻次與本區的降水特徵有關,9月份常出現淋雨,並伴有大雨,這種降水特徵有最利於浸潤黃土和入滲補給地下水,觸發地質災害發生;7月和8月份集中了全年75%以上的R1h≥10mm強降水和82%以上的R1h≥20mm強降水,這種強降水特徵不如9月份有利於降水入滲,所以,7月和8月份出現的災害頻次不如9月份高;6月和10月份強降水頻率低於7月,8月和9月,但高於其他月份;另外,10月份也常有淋雨,所以在6月和10月份也引發了地質災害。由此可見,無論是淋雨,還是強降雨,都是觸發地質災害的因素。
寶塔區歷史上僅有一個氣象站,不能反映降水特徵的空間展布,為了能夠揭示區域降水特徵,本次與陝西省氣象局合作,對1980年到2005年25年間,陝北黃土高原地區的27個氣象站的日、時降水量進行了分析,統計了各站日降水量中R1h≥10mm或20mm的局地暴雨過程,對其氣候特徵和時空間演變規律進行歸類分析、研究總結。研究結果表明:
(1)在25年中,陝北黃土高原共出現R1h≥10mm的強降水2638時次,R1h≥20mm強降水574時次,年平均R1h≥10mm的強降水有106時次,R1h≥20mm強降水有23時次。
(2)R1h≥10mm發生時次最多的年份是1994年,為173時次;最少的是1980年,僅有36時次。R1h≥20mm強降水發生次數最多的年份是1994年,為56時次;最少的是1982年僅有3時次。可見陝北強降水出現時次的年際差異較大,最多年份與最少年份相差十幾倍之多。
(3)R1h≥10mm強降水旬分布具有多峰值的特點。7月中旬,7月下旬和8月上旬為第一高峰值,在數值比較接近也是全年的最大峰值;8月下旬為全年的次峰值,6月上旬為全年的第三峰值。R1h≥20mm單峰特徵較明顯,8月上旬為其高峰值,8月上旬之前,強降水頻次緩升後,強降水的頻次突然降低、減少。
(4)淋雨主要出現在9月,10月份也有淋雨和大雨發生。
(5)寶塔區暴雨年頻次>0.8(圖7-5),大雨日年頻次為4左右(圖7-6)。
圖7-5 陝北暴雨年頻次分布圖
圖7-6 陝北大雨年頻次分布圖
對比分析本區降水特徵和地質災害發生的關系,可以確定地質災害氣象預警的臨界降雨量。預警的臨界降雨量特徵值分別是:
(1)日降雨量≥50mm(R24h≥50mm);
(2)6小時降雨量≥25mm(R6h≥25mm);
(3)1小時降雨量≥20mm或3小時降雨量≥25mm並且日降雨量≥30mm(R1h≥20mm或R3h≥25mm且R24h≥30mm);
(4)連續多日降雨,且日降雨量≥10mm。
符合以上條件之一就應該進行地質災害預警,作為地質災害氣象誘發日向外發布。
據此臨界降雨量可以進行模擬校驗,校驗結果表明,調查區內地質災害暴雨誘發日為2.5d/a,連陰雨誘發日為2.8d/a,即每年可預報的次數將在2~7次。說明選取上述4項指標是符合實際情況和可以操作的(圖7-7)。
圖7-7 陝北地質災害暴雨誘發日分布圖
二、地質災害氣象預警級別
參考陝西省地質災害氣象預報預警分級劃分,結合調查區實際情況,將預警級別劃分為三級:分別是Ⅰ級預警、Ⅱ級預警和Ⅲ級預警。
Ⅰ級預警是高級預警,地質災害發生概率最大,為地質災害發布警報級;
Ⅱ級預警是中級預警,地質災害發生概率中等,為地質災害發布預報級;
Ⅲ級預警是低級預警,地質災害發生概率最小,為地質災害不發布預報級。
三、地質災害氣象預警區劃
(一)日降雨量≥50mm預警區劃
本降雨量級別在預警氣象中相對降雨強度為最小(圖7-8)。
圖7-8日降雨量≥50mm預警區劃圖
(1)Ⅰ級預警區的范圍最小,僅限於北半部延河流域,分散於這一區域的北部、西部和中部少部分地區(圖中深灰色)。總面積927.71km2,占調查區總面積的26.1%。這些地區位居延河幹流,河谷深切;以及較長支流的上游,溝谷強烈下切地帶,人類工程活動極為強烈,為調查區的地質災害發育區。
(2)Ⅱ級預警區主要分布在調查區北部延河流域(圖中淺灰色),面積1303.96km2,占調查區總面積的36.7%。這一區域大多為延河次級支溝黃土梁、峁地區,主要溝谷多處於中游,人類工程活動較強烈,地質災害發育強度稍低。
(3)Ⅲ級預警區分布於調查區南部汾川河流域(圖中白色),面積1324.33km2,占調查區總面積的37.2%。這里植被茂盛,溝谷寬緩,人類工程活動不強烈,地質災害極不發育。
(二)6小時降雨量≥25mm預警區劃
本降雨量級別在預警氣象中相對降雨強度為中等(圖7-9)。
圖7-9 6小時降雨量≥25mm預警區劃圖
(1)Ⅰ級預警區的范圍較前有所擴大。除北部延河流域中部少量區域外,占據北部延河流域大部分地區(圖中深灰色)。總面積1627.70km2,占調查區總面積的45.8%。為調查區地質災害發育區及部分次發育區。
(2)Ⅱ級預警區的范圍較前有所減少。主要分布在調查區北部延河流域(圖中淺灰色),南部汾川河流域有少量分布。總面積676.38km2,占調查區總面積的19%。這一區域大多為延河次級支溝黃土梁、峁地區,主要溝谷多處於中游,人類工程活動較強烈,地質災害發育強度稍低。
(3)Ⅲ級預警區的范圍較前有所減少,全部分布於調查區南部汾川河流域(圖中白色),面積1251.92km2,占調查區總面積的35.2%。這里植被茂盛,溝谷寬緩,人類工程活動不強烈,地質災害極不發育。
(三)1小時降雨量≥20mm預警區劃
本降雨量級別還包括3小時降雨量≥25mm並且日降雨量≥30mm,在預警氣象中相對降雨強度為最大(圖7-10)。
圖7-10 1小時降雨量≥20mm預警區劃圖
(1)Ⅰ級預警區的范圍為擴展至最大。占據整個北部延河流域(圖中深灰色)。總面積2232.67km2,占調查區總面積的62.8%。為調查區地質災害發育區及全部次發育區。
(2)Ⅱ級預警區的范圍縮減至最少。從調查區北部延河流域全部退出,僅分布在南部汾川河流域主幹流(圖中淺灰色),分布面積194.91km2,占調查區總面積的5.5%。這一區域為汾川河主幹流上中游,溝谷切割較強烈,地質災害發育程度較其他地區稍強。
(3)Ⅲ級預警區的范圍縮減至最小,全部分布於調查區南部汾川河流域(圖中白色),面積1128.42km2,占調查區總面積的31.7%。這里植被茂盛,溝谷寬緩,人類工程活動較少,地質災害極不發育。
⑵ 地質災害氣象預報預警響應
群測群防機構可通過電視、網路、傳真、通訊等形式接收國家、省(自治區、直轄市)、市、縣發布的地質災害氣象預報預警信息。
縣級群測群防機構收到地質災害氣象預報預警信息後,應在2小時內將信息轉發到相關地質災害防治責任單位、隱患點監測責任人以及隱患區巡查責任單位(或責任人)。
(1)當預警級別為3級時,群測群防機構應通知基層群測群防監測人員注意,查看隱患點變化情況。
(2)當預警級別為4級時,群測群防機構應通知基層群測群防監測人員加密監測,注意防範,做好啟動防災應急預案的准備。
(3)當預警級別為5級時,群測群防組織應立即通知基層群測群防監測人員加強巡查,加密監測。一旦發現地質災害臨災前兆,應立即發布緊急撤離信號,組織疏散受威脅的人員。
(4)未在地質災害氣象預報預警區域內,出現持續大雨或暴雨天氣時,群測群防責任單位和監測人員應及時上崗加強監測。當發現臨災特徵時,應立即組織疏散受威脅人員。
(5)鼓勵公民和組織通過電話等各種形式向人民政府、國土資源主管部門提供地質災害災情和險情信息。
(6)縣級群測群防機構在汛期每個月25日前,應將當月地質災害信息反饋到省(自治區、直轄市)、市國土資源主管部門,信息反饋內容詳見附件Ⅰ-5。
⑶ 地質災害區域預警原理
據檢索統計,世界上約有20多個國家或地區不同程度地開展過降雨引發滑坡、泥石流的研究或預警工作。其中,中國香港(Brandetal.,1984)、美國(Keeferetal.,1987)、日本(Fukuzono,1985)、巴西(Neiva,1998)、委內瑞拉(Wieczoreketal.,2001)、波多黎各(Larsen&Simon,1993)和中國大陸等曾經或正在進行面向公眾社會的降雨引發區域性滑坡、泥石流的早期預警與減災服務工作,預警的地質空間精度達到數千米量級,時間精度達到小時量級。這些國家和地區一般都在地質災害多發區或敏感區開展或完成了比較詳細的地質災害調查評價工作,擁有比較長期且比較完整的降雨與滑坡、泥石流關系資料,或在典型地區建立了比較完善的降雨遙控監測網路和先進的數據傳輸系統。
綜合分析國內外研究與應用狀況,基於氣象因素的區域地質災害預警預報理論原理可初步劃分為三大類,即隱式統計預報法、顯式統計預報法和動力預報法。
4.2.1 隱式統計預報法
隱式統計預報法把地質環境因素的作用隱含在降雨參數中,某地區的預警判據中僅僅考慮降雨參數建立模型。隱式統計預報法可稱為第一代預報方法,比較適用於地質環境模式比較單一的小區域。由於這種方法只涉及一個或一類參數,無論預警區域的研究程度深淺均可使用,所以這是國內外廣泛使用的方法,也是最易於推廣的方法。這種方法特別適用於有限空間范圍,且地質環境條件變化不大的地區,如以花崗岩及其風化殘積物分布為主的中國香港地區多年來一直在研究應用和深化這一方法。
這種方法考慮的降雨參數包括年降雨量、季度降雨量、月降雨量、多日降雨量、日降雨量、小時降雨量和10min降雨量等。實際應用時,一般只涉及1~3個參數作為預報判據,如臨界降雨量、降雨強度、有效降雨量或等效降雨量等。
突發性地質災害臨界過程降雨量判據的預警方法抓住了氣象因素誘發地質災害的關鍵方面,但預警精度必然受到所預警地區面積大小、突發性地質事件樣本數量、地質環境復雜程度和地質環境穩定性及區域社會活動狀況的限制,單一臨界降雨量指標作為預警判據的代表性是有限的。
代表性研究成果主要有:
Onodera et al.( 1974) 通過研究日本的大量滑坡,提出累計降雨量超過 150 ~ 200mm,或每小時降雨強度超過 20 ~30mm 作為判據。Nilsen et al.( 1976) 發現美國 Alameda,Califor-nia 在累計降雨量超過 180mm 時,滑坡將頻繁發生。Oberste-lehn( 1976) 認為累計降雨量達到 250mm 左右,美國 San Benito,California 將發生滑坡。Guidicini and Iwasa( 1977) 通過對巴西 9 個地區滑坡記錄和降雨資料的分析,認為降雨量超過年平均降雨量的 8% ~17%,滑坡將滑動; 超過 20%,將發生災難性滑坡。Caine( 1980) 全面總結了全球的可利用數據,給出了不同地區誘發滑坡暴雨事件的降雨強度和持續時間與滑坡的關系式。這一關系式當然不可能適用於全球所有地區( Crozier 在 1997 年證明) ,仍不失為探討誘發滑坡臨界降雨值的里程碑。
Brand et al.( 1984) 在中國香港研究表明,大多數滑坡由局部高強度短歷時降雨誘發,而前期降雨量不是主要因素,除非是小型滑坡。Ng and Shi( 1998) 認為降雨的持續也是一個非常重要的誘發滑坡的因素。中國香港地區預測 24h 內降雨量達到 175mm 或 60min 內市區內雨量超過 70mm,即認為達到滑坡預報閾值,即由政府發出通報。中國香港平均每年約發出 3 次山洪滑坡暴發警報。
Ganuti et al.( 1985) 提出了臨界降雨系數( critical precipitation coefficient,CPC) 的概念,並總結出當 CPC >0.5 時,將有 10a 一遇的滑坡發生; 當 CPC >0.6 時,將有 20a 一遇的滑坡發生。
Glade( 1997) 綜合前人研究成果建立了確定誘發滑坡的降雨臨界值的 3 個模型,並在紐西蘭北島南部的 Wellington 地區進行了驗證。3 個模型要求的基本數據為: 日降雨量、滑坡發生日期和土體潛在日蒸發量( 通過 Thornthwaite method 方法計算得到) 。降雨強度臨界值Glade( 1997) 的模型 1———日降雨模型( daily rainfall model) ,只使用日降雨量參數,簡單地分析誘發滑坡和不誘發滑坡的日降雨量( Glade,1998) ,得出最小臨界值和最大臨界值,即在最小臨界值以下,沒有滑坡發生; 在最大臨界值以上,滑坡一定發生。降雨量等級劃分以20mm 為一個等級; 降雨過程雨量臨界值 Glade( 1997) 的模型 2———前期日降雨量模型( an-tecedent daily rainfall model) ,考慮了前期降雨的影響。他認為決定前期情況有兩個主要因素: 前期降雨的歷時時間和土體含水量減少的速率; 土體含水狀態臨界值 Glade( 1997) 的模型 3———前期土體含水狀態模型( antecedent soil water status model) ,他認為除了前期雨量,土體含水量和潛在的蒸發量對滑坡的影響也很大。
劉傳正在 2003 年 5 月主持全國地質災害氣象預警工作過程中,利用地質災害發生前15d 降雨量建立滑坡、泥石流發生區帶的臨界過程降雨量創建了預警判據模式圖,並結合具體區域( 2003 年28 個區、2004 年以後74 個區) 進行校正的方法。該方法適應3 級預報的要求界定了 α 線和 β 線作為預警等級界限。3 年多來汛期的預警成果發布檢驗與應用證明,該方法在科學依據上是成立的,但限於預警區域過大、基礎數據和地質災害統計樣本數量太少,准確率有待提高,同時也充分說明了開展地質災害數據集成研究的迫切性。
另外,中國科學院成都山地災害與環境研究所等機構在單條泥石流監測與預警建模方面進行了多年持續不懈的研究工作,取得了具有代表性的成果。
4.2.2 顯式統計預報法
顯式統計預報法是一種考慮地質環境變化與降雨參數等多因素疊加建立預警判據模型的方法,它是由地質災害危險性區劃與空間預測轉化過來的(CarraraA.,1983;HaruyamaH.&KawakamiH.,1984;BaezaC.&CorominasJ.,1996;CarraraA.,CardinaliM.&GuzzettiF.,1991;劉傳正,2004;殷坤龍,2005)。
區域地質災害危險性評價和風險區劃研究仍是當前的研究主流,而利用之進行地質災害的實時預警與發布則多處於探索階段。這種方法可以充分反映預警地區地質環境要素的變化,並隨著調查研究精度的提高相應地提高地質災害的空間預警精度。顯式統計預報法可稱為第二代預報方法,是正在探索中的方法,比較適用於地質環境模式比較復雜的大區域。
基於地質環境空間分析的突發性地質災害時空預警理論與方法是根據單元分析結果經過合成實現的,克服了僅僅依據單一臨界雨量指標的限制,但對臨界誘發因素的表達、預警指標的選定與量化分級等尚存在需要進一步研究的諸多問題。
因此,要實現完全科學意義上的區域突發性地質災害預警,必須建立臨界過程降雨量判據與地質環境空間分析耦合模型的理論方法———廣義顯式統計模式地質災害預報方法,預警等級指數(W)是內外動力的聯立方程組。即
中國地質災害區域預警方法與應用
式中:W為預警等級指數;a為地外天體引力作用,包括太陽、月亮的引潮力,太陽黑子、表面耀斑和太陽風等對地球表面的作用,a=f(a1,a2,…,an);b為地球內動力作用,主要表現為斷裂活動、地震和火山爆發等,b=f(b1,b2,…,bn);c為地球表層外動力作用,包括降雨、滲流、沖刷、侵蝕、風化、植物根劈、風暴、溫度、乾燥和凍融作用等,c=f(c1,c2,…,cn);d為人類社會工程經濟活動作用,包括資源、能源開發和工程建設等引起地質環境的變化,d=f(d1,d2,…,dn)。
20世紀70年代,以美國加利福尼亞州舊金山地區聖馬提俄郡的滑坡敏感性圖為代表,利用多參數圖的加權(或不加權)疊加得到區域滑坡災害預測圖。
20世紀80年代,CarraraA.(1983)將多元統計分析預測方法引用到區域滑坡空間預測中,並在世界各國得到迅速發展與推廣。如HaruyamaH.&KawakamiH.(1984)利用數學統計理論對日本活火山地區降雨引起的滑坡災害進行了危險度評價。BaezaC.&CorominasJ.(1996)利用統計判別分析模型進行了淺層滑坡敏感性評估,結果斜坡破壞的正確預測率達到96.4%,有力地說明了統計預測的適用性。CarraraA.,CardinaliM.&GuzzettiF.等(1991)將統計模型與GIS結合,應用於義大利中部某小型匯水盆地的滑坡危險性評估,實現從數據獲取到分析、管理的自動化,結果證明統計分析與GIS的綜合使用是一種快速、可行、費用低的區域滑坡危險性評價與制圖方法。
20世紀90年代中後期以來,隨著計算機技術和信息科學的高速發展,RS、GIS和GPS等「3S」技術聯合應用使快速處理海量的地質環境數據成為可能,出現了地質災害空間預測模型方法應用研究逐步從地質災害危險評價與預警應用相結合的新態勢。
劉傳正等(2004)創建並發表了用於區域地質災害評價和預警的「發育度」、「潛勢度」、「危險度」和「危害度」時空遞進分析理論與方法,簡稱「四度」遞進分析法(AMFP),並在三峽庫區(54175km2)和四川雅安地質災害預警試驗區(1067km2)進行了應用,結果是可信的。
李長江等(2004)將GIS和ANN(人工神經網路)相互融合,考慮不同的地質、地貌和水文地質背景,建立了給定降雨量的浙江省區域群發性滑坡災害概率預報(警)系統(LAPS)。
宋光齊等(2004)根據地貌、岩性和地質構造幾率分布,基於GIS建立了給定降雨量的四川省地質災害預報系統。
殷坤龍等(2005)以浙江省為例探索了基於WebGIS的突發性地質災害預警預報問題。
由於我國政府在全國范圍內推行區域地質災害預警預報機制,目前我國的預警探索工作走在世界前列。
4.2.3 動力預報法
動力預報法是一種考慮地質體在降雨過程中地-氣耦合作用下研究對象自身動力變化過程而建立預警判據方程的方法,實質上是一種解析方法。動力預報方法的預報結果是確定性的,可稱為第三代預報方法,目前只適用於單體試驗區或特別重要的局部區域。該方法主要依據降雨前、降雨中和降雨後降水入滲在斜坡體內的轉化機制,具體描述整個過程斜坡體內地下水動力作用變化與斜坡體狀態及其穩定性的對應關系。通過鑽孔監測地下水位動態、孔隙水壓力和斜坡應力-位移等,揭示降雨前、降雨過程中和降雨後斜坡體內地下水的實時動態響應變化規律、整個坡體物理性狀變化及其變形破壞過程的關系。在充分考慮含水量、基質吸力、孔隙水壓力、滲透水壓力、飽水帶形成和滑坡—泥石流轉化因素條件下,選用數學物理方程研究解析斜坡體內地下水動力場變化規律與斜坡穩定性的關系,確定多參數的預警閾值,從而實現地質災害的實時動力預報。
目前,這種方法局限於試驗場地或單個斜坡的研究探索階段,必須依賴具有實時監測、實時傳輸和實時數據處理功能的立體監測網(地-氣耦合)作為支撐才能實現實時預報。由於理論、技術和經費等方面的高要求,這種方法比較適用於重要的小區域或單體的研究性監測預警。
據研究,美國舊金山海灣地區的6h降雨量達到4in(101.6mm)時,就可能引發大面積泥石流。為了監測降雨期間地下水壓力的變化,研究人員設置了若干個孔隙水壓力計以觀測斜坡中地下水壓力變化。舊金山海灣地區實時區域滑坡預警系統包括降雨與滑坡發生的經驗和分析關系式,實時雨量監測數據,國家氣象服務中心降雨預報以及滑坡易發區略圖。
在我國,劉傳正等(2004)在四川雅安區域地質災害監測預警試驗區進行了大氣降水與斜坡岩土層含水量變化的分層響應監測,發現不同降雨過程和降雨強度下,斜坡岩土體的含水量相應發生明顯變化,可以研究降雨在斜坡岩土體內的滲流過程直至出現滑坡、泥石流的成因機理。
2003年8月23~25日是一個引發多處地質災害並造成人員傷亡的典型降雨過程,可以作為分析實例。以8月19日15時的含水量為背景值,則8月23,24和25日降雨過程分別對應第96,120和144h的含水量,4個層位的記錄曲線明確反映了隨累計降雨量增加斜坡岩土體含水量急劇增加,第一、二層位達到過飽和狀態,且含水量急劇增加出現於第121h,即24日15時之後,滯後於降雨時間約20h。各層含水量峰值出現於第151h,即接近滑坡呈區域性暴發時間(26日零時,對應第153h)。該分析未考慮沿裂隙的地下水滲流作用(圖4.1)。
圖4.1 四川雅安桑樹坡監測試驗點第1~4層含水量隨時間變化曲線
分析對比隱式統計預報法、顯式統計預報法和動力預報法3類方法,我們認為,未來的方向是探索地質災害隱式統計、顯式統計與動力預警3種模型的聯合應用方法,以適應不同層級的地質災害預警需求。研究內容包括臨界雨量統計模型、地質環境因素疊加統計模型和地質體實時變化(水動力、應力、應變、熱力場和地磁場等)的數學物理模型等多參數、多模型的耦合。3種模型的聯合應用不僅適應特別重要的區域或小流域,也為單體地質災害的動力預警與應急響應提供決策依據。
⑷ 地質災害調查與預警
一、部署重點
開展我國西南山區、黃土高原、湘鄂桂山區等主要地質災害高易發區地質災害詳細調查,建立典型地質災害監測預警區;完善長江三角洲、華北平原和汾渭盆地地面沉降監測網,開展珠江三角洲、東北平原等地區地面沉降調查,開展京滬、大同—西安等高速鐵路沿線地面沉降與地裂縫詳細調查。
二、部署建議
(一)全國地質災害調查監測綜合評價
1.工作現狀
完成了全國1:50萬以地質災害為主的環境地質調查與綜合研究,完成了700個縣(市)的縣市地質災害調查成果集成,正在開展1640個縣(市)的縣市地質災害調查成果集成。2005年起,開展1:5萬地質災害詳細調查資料庫建設及成果初步梳理工作。開展地質災害氣象預警技術方法研究,逐步提高我國區域地質災害預警預報技術水平。
但隨著詳細調查與監測預警示範的大規模鋪開,需要進一步進行數據的整理、分析與綜合集成,並在研究基礎上編制滿足國家層面需求的系列圖系。
2.工作目標
總體目標:整合地質災害詳細調查成果,分析地質災害發育分布規律,劃定地質災害易發區,搭建綜合研究技術平台和信息化平台,建立全國地質災害資料庫。整合監測預警示範區成果,研究監測預警網路建設模式,形成全國地質災害監測預警信息平台。完善地質災害調查與監測技術規程與技術要求,綜合研究並編制滿足國家需要的地質災害系列圖系。
「十二五」期間:建立地質災害調查與地質災害監測預警成果集成體系。總結地質災害調查成果,開展區域地質災害易發區綜合評價和易發程度區劃。總結地質災害監測預警示範區建設成果,搭建地質災害監測預警信息平台。
「十三五」期間:完善地質災害調查與地質災害監測預警成果集成體系。進一步總結地質災害調查成果,形成全國和省級地質災害易發區綜合評價和易發程度區劃。系統總結地質災害調查與地質災害監測成果,形成全國地質災害早期預警區劃。
3.工作任務
完成全國1:5萬地質災害調查與典型預警示範區建設成果的匯總、集成與綜合研究。搭建1:5萬地質災害調查綜合研究技術平台和信息化平台,建立全國地質災害資料庫。搭建全國地質災害監測預警信息平台,完善早期預警產品發布體系。總結修訂《崩塌、滑坡、泥石流1:50000調查規范》,完成全國地質災害早期預警區劃,編制全國及分省地質災害與地質災害早期預警綜合圖系。
「十二五」期間:對西北黃土高原區、西南山區、湘鄂桂山區、東南沿海地區地質災害高易發區1:5萬地質災害調查成果進行集成,建立1:5萬地質災害調查信息化成果技術要求;完成11個地質災害監測預警示範區成果綜合研究,搭建全國地質災害監測預警信息平台,初步建立全國地質災害早期預警區劃。
「十三五」期間:完成西北黃土高原區、西南山區、湘鄂桂山區、東南沿海地區地質災害高、中易發區1:5萬地質災害調查成果集成,完善1:5萬地質災害調查信息化成果技術要求。完成全國30個地質災害監測預警示範區成果綜合研究,形成建立全國地質災害早期預警區劃。編制完成全國及分省地質災害與地質災害早期預警綜合圖系。
(二)西北黃土高原區1:5萬地質災害調查
1.工作現狀
完成了以省(區、市)為單元的西北省區1:50萬以地質災害為主的環境地質調查、263個縣的1:10萬山區丘陵縣地質災害調查。2005年起,在46個縣近10萬平方千米范圍內開展了1:5萬地質災害調查。
通過開展1:5萬地質災害調查,基本摸清了調查區地質災害分布和發育規律,有力地支持了完善地質災害防治規劃和各項減災防災工作。根據縣市地質災害調查成果,在西北黃土高原區及秦巴山區中,仍有處於地質災害高、中易發區的191個縣近54萬平方千米需要盡快開展1:5萬地質災害調查工作。
2.工作目標
以遙感解譯、地面調查、測繪和工程勘查為主要手段,以縣(區)級行政區劃為基本單元,開展西北黃土高原區及秦巴山區20萬平方千米(191個縣)的1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,圈定地質災害易發區和危險區,建立地質災害信息預警系統,建立健全群專結合的監測網路,為減災防災提供基礎地質依據。
「十二五」期間:開展西北地質災害高易發區1:5萬地質災害調查,基本查清區內地質災害分布發育規律,逐步建立地質災害風險控制管理工作體系。
「十三五」期間:繼續開展地質災害高、中易發區1:5萬地質災害調查,查清區內地質災害分布發育規律,形成西北地區地質災害易發區區劃和重點區域地質災害風險管理區劃,顯著提高我國地質災害防治水平。
3.工作任務
開展西北地區地質災害中、高易發區1:5萬地質災害調查;完善地質災害易發性和危險性區劃;健全完善地質災害群測群防體系,建立地質災害空間資料庫。
在已經圈定的地質災害易發區內,以縣為單位採用點、線、面結合,重點和一般調查結合的方式開展1:5萬地質災害調查工作。2015年前優先開展地質災害高易發區及經濟損失較大地區調查,基本覆蓋人員傷亡及財產損失主要地區。2020年前,逐步推進,最終完成西北地區高、中易發區調查。在調查基礎上,完善地質災害易發性和危險性區劃,健全完善地質災害群測群防體系,探索建立地質災害風險評價與風險控制管理工作體系。
「十二五」期間:開展西北黃土高原區地質災害高易發區1:5萬地質災害調查。
「十三五」期間:繼續開展西北黃土高原區地質災害高、中易發區1:5萬地質災害調查。
(三)西南山區1:5萬地質災害調查
1.工作現狀
完成了以省(區、市)為單元的西南山區1:50萬以地質災害為主的環境地質調查、423個縣的1:10萬山區丘陵縣地質災害調查。2005年起,在29個縣(近10萬平方千米)開展了1:5萬地質災害調查。
通過開展1:5萬地質災害調查,基本摸清了調查區地質災害分布和發育規律,有力支持並完善了地質災害防治規劃和各項減災防災工作。根據縣市地質災害調查成果,在西南山區,仍有處於地質災害高、中易發區的190個縣近75萬平方千米需要盡快開展地質災害詳細調查工作。
2.工作目標
總體目標:以遙感解譯、地面調查、測繪和工程勘查為主要手段,以縣(區)級行政區劃為基本單元,開展西南山區、藏東地區75萬平方千米,1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,圈定地質災害易發區和危險區,建立地質災害信息預警系統,建立健全群專結合的監測網路,為減災防災提供基礎地質依據。
「十二五」期間:開展西南川滇山區、藏東地區等地質災害高易發區1:5萬地質災害調查,基本查清區內地質災害分布發育規律,逐步建立地質災害風險控制管理工作體系。
「十三五」期間:繼續開展西南川滇山區、藏東地區地質災害高、中易發區1:5萬地質災害調查,查清區內地質災害分布發育規律,形成全國地質災害易發區區劃和重點區域地質災害風險管理區劃。顯著提高我國地質災害防治水平。
3.工作任務
開展西南川滇山區、藏東地區滑坡、崩塌、泥石流等突發性地質災害中、高易發區1:5萬地質災害調查;健全完善覆蓋地質災害中、高易發區的群測群防網路,完善地質災害易發性和危險性區劃。建立地質災害空間資料庫。
在已經圈定的地質災害易發區內,以縣為單位採用點、線、面結合,重點和一般調查結合的方式開展1:5萬地質災害調查工作。2015年前優先開展地質災害高易發區及經濟損失較大地區調查,基本覆蓋人員傷亡及財產損失主要地區。2020年前,逐步推進,最終完成西南山區高、中易發區調查。在調查基礎上,建立完善群測群防體系,完善地質災害易發性和危險性區劃,探索建立區域風險評價與風險控制管理工作體系。
「十二五」期間:開展西南山區高易發區1:5萬地質災害調查工作。
「十三五」期間:繼續開展西南山區高、中易發區1:5萬地質災害調查工作。
(四)湘鄂桂山區地質災害詳細調查
1.工作現狀
完成了以省(區、市)為單元的1:50萬以地質災害為主的環境地質調查、287個縣的1:10萬山區丘陵縣地質災害調查。2005年起,在14個縣近4萬平方千米范圍內開展了1:5萬地質災害調查。
通過開展1:5萬地質災害調查,基本摸清了調查區地質災害分布和發育規律,有力地支持了完善地質災害防治規劃和各項減災防災工作。根據縣市地質災害調查成果,在湘鄂桂山區,仍有處於地質災害高、中易發區的82個縣近20萬平方千米需要盡快開展1:5萬地質災害詳細調查工作。
2.工作目標
總體目標:以遙感解譯、地面調查、測繪和工程勘查為主要手段,以縣(區)級行政區劃為基本單元,開展西南山區、藏東地區1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,圈定地質災害易發區和危險區,建立地質災害信息預警系統,建立健全群專結合的監測網路,為減災防災提供基礎地質依據。
「十二五」期間:完成湘鄂桂山地丘陵區20個縣(市)1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,為制定防災規劃和減災提供技術支撐。
「十三五」期間:全面完成湘鄂桂山地丘陵區40個縣(市)1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,為制定防災規劃和減災提供技術支撐。
3.工作任務
開展湘鄂黔山地區滑坡、崩塌、泥石流等突發性地質災害中、高易發區1:5萬地質災害調查;健全完善覆蓋地質災害中、高易發區的群測群防網路,完善地質災害易發性和危險性區劃。建立地質災害空間資料庫。
在已經圈定的地質災害易發區內,以縣為單位採用點、線、面結合,重點和一般調查結合的方式開展地質災害1:5萬調查工作。2015年前優先開展地質災害高易發區及經濟損失較大地區調查,基本覆蓋人員傷亡及財產損失主要地區。2020年前,逐步推進,最終完成湘鄂黔山地區高、中易發區調查。在調查基礎上,建立完善群測群防體系,完善地質災害易發性和危險性區劃,探索建立區域風險評價與風險控制管理工作體系。
「十二五」期間:開展高易發區1:5萬地質災害調查。
「十三五」期間:繼續開展高、中易發區1:5萬地質災害調查。
(五)東南沿海山區1:5萬地質災害調查
調查區主要包括浙江、福建、安徽、江西四省常年遭受台風襲擊的地質災害高風險區及中低山丘陵區,總面積約12萬平方千米。該區域人口密度高、經濟發達,地質條件復雜,台風和降雨頻繁,地質災害影響嚴重。
1.工作現狀
完成了以省(區、市)為單元的1:50萬以地質災害為主的環境地質調查,以縣(市)為單元的1:10萬丘陵山區地質災害調查約271個縣(市),浙江省開展了小流域1:1萬地質災害調查。初步查明了崩塌、滑坡、泥石流等突發性地質災害分布情況、發育特徵、發育強度及其形成條件和發生規律,對地質災害發生的環境地質條件和發展趨勢進行了區劃及預測評價,調查成果及時為重點縣(市)及區域地質災害防治提供了技術支撐。
雖然浙江開展小流域1:1萬地質災害調查調查,尚未系統開展1:5萬地質災害調查,缺少區域1:5萬地質災害調查資料,目前地質災害防治依靠的是以往1:10萬縣市地質調查資料,地質災害防災工作能力和水平亟待提升。
2.工作目標
總體目標:全面完成地質災害高、中易發區1:5萬地質災害調查工作,查明崩塌、滑坡、泥石流等突發性地質災害分布情況、發育特徵、發育強度及其形成條件和發生規律,對地質災害發生的環境地質條件和發展趨勢進行了區劃及預測評價,調查成果及時為重點縣(市)及區域地質災害防治提供了技術支撐。
「十二五」期間:完成地質災害高易發區1:5萬地質災害調查工作,選擇25處重大地質災害高易發區開展風險管理。
「十三五」期間:完成地質災害中易發區1:5萬地質災害調查工作,選擇15處重大地質災害中易發區開展風險管理。
3.工作任務
以保護人民生命財產和生存環境、保障重大建設工程、重要礦山、國家級或省級旅遊景區建設為目標,開展1:5萬地質災害調查,基本查明地質災害發育及危害現狀、形成條件和形成機理,進行地質災害危險性評價和風險評估;開展區域地質災害監測預警網路建設,建立典型區地質災害監測預警示範;開展重大地質災害調查與風險管理選區及評估;建立區域地質災害數據共享平台。
(六)汶川地震地質災害調查評價
1.工作現狀
開展了工作區在內的青藏高原東南緣的地殼變形、斷裂運動、地震活動研究、活動斷裂和古地震研究、區內區域地殼穩定性研究及一系列的深部地球物理探測研究。從1991年到2006年已在青藏高原東部及鄰區開展了十多年地殼形變監測。震後完成了地震災區地質災害應急調查、詳細調查及對重大災害體的勘察。
但震後地質環境、地應力場及位移場均發生了較大變化,需盡快完成調查。震後地震災區地質災害應急調查、詳細調查及對重大災害體的勘察資料亟待整理。災後恢復重建迫切需要區域穩定性評價及地質災害防治區劃。與地震及地震地質災害相關的關鍵科學問題亟待解決。
2.工作目標
總體目標:以汶川地震為契機,全面開展龍門山地區地震與地質災害詳細調查工作,結合綜合地球物理勘查,摸清龍門山斷裂帶主要特徵;系統總結工作區現代構造運動的地質災害效應規律及地質災害鏈形成機理;揭示龍門山及鄰近構造帶未來地震活動趨勢;了解龍門山及鄰近構造帶的地震工程地質條件;開展區域地殼穩定性和重要場地工程地質穩定性評價;為龍門山地震重災區恢復重建及鄰區重要工程規劃提供地質依據;建設地震地質災害信息系統,為地震災區防災減災和重建規劃服務。
「十二五」期間:完成龍門山地區地震地質災害調查,確定汶川地震發震斷裂和同震斷裂的地表變形特徵,確定活動斷裂深部結構,初步完成青藏高原東緣地殼形變和斜坡動力響應綜合監測及汶川地震災區地脈動測試,建立極震區滑坡形成機理模式及汶川地震區工程岩體穩定性評價與地質災害填圖技術方法,完成地質災害相應成果建設,為汶川地震災後重建提供相關地震地質災害資料和必要的技術支撐。
「十三五」期間:深入研究地震地質災害鏈的形成機理和演化過程,開展區域地殼穩定性評價,總結提升各種地震地質災害調查、監測和評價的技術水平,並促進相關技術方法的推廣應用。
3.工作任務
在廣泛收集利用前期已有相關地質研究資料的基礎上,利用遙感解譯與野外地面調查、深部探測相結合,線路地質調查與重點地段大比例尺填圖調查相結合,新構造運動特徵定性分析與斷裂活動時域及強度定量測試分析相結合,內動力與外動力地質作用調查相結合,物理模擬模擬與數值模擬相結合,對工作區活動斷裂特別是發震斷裂及其災害效應進行定量—半定量評價;基於青藏高原東緣地殼形變和斜坡動力響應綜合監測,以及對地震動力與地質災害相關性的多方位綜合調查和研究(模擬試驗、常規和非常規岩土工程特性試驗等),分析龍門山及鄰近構造帶未來新構造運動趨勢及其災害效應,開展汶川地震地質災害關鍵科學問題的深入研究,力圖在典型地震地質災害的成災機理和評價技術方面有所突破。
「十二五」期間:開展汶川地震災區以滑坡、崩塌、泥石流災害為主要內容的1:5萬地質災害調查與測繪;進行龍門山及鄰近構造帶地震工程地質調查評價;開展龍門山及鄰近構造帶活動斷裂調查;開展區域地殼穩定性綜合評價;在龍門山及其鄰近地區開展綜合地球物理探測,取得地震活動帶較詳細的岩石圈結構模型;在青藏高原東緣開展系統的高精度GPS測量與監測,重點開展對龍門山斷裂帶、鮮水河—安寧河—小江斷裂帶及其附近區域的監測。
開展川西地區地震地質及區域構造穩定性研究,研究更加符合斜坡地震動響應客觀實際的地震動穩定性評價方法;通過大型振動台試驗,揭示不同地震波下邊坡的動力響應規律;通過開展汶川地震災區地脈動測試及研究分析,提升對地震及餘震有關的地質災害問題更深層次的研究;在先期地震災區地質災害隱患巡排查工作的基礎上,建立地震滑坡穩定性評價及失穩概率的定量評價模型,對地震滑坡危險程度進行分級,並對其危險性進行分區,形成地震滑坡災害編圖的一套技術方法體系。
「十三五」期間:地震災區地質災害調查和研究成果進行綜合分析研究。
(七)西部復雜山體地質災害成災模式與風險評價
1.工作現狀
西部地區復雜山體區已開展過不同程度的調查工作。其中包括基礎性的1:20萬區域地質圖和1:20萬水文地質圖,及部分區域完成了1:5萬地質填圖。專業性的包括以省(區、市)為單元的1:50萬以地質災害為主的環境地質調查、1:10萬山區丘陵縣地質災害調查。2005年起,部分地區開展了1:5萬地質災害調查。
但由於西部大型山體滑坡成因復雜,只依靠地表普查很難認清成災模式,更難以掌握災害的多米諾效應。如武隆雞尾山滑坡,前期工作已將滑坡區圈定為危險區,但調查成果並沒能對滑坡破壞機理與成災模式作出正確的判斷。武隆雞尾山滑坡、宣漢天台鄉滑坡、馮店垮梁子滑坡多起災難性滑坡災害的發生,表明在西部山區復雜斜坡地帶,存在隱蔽性極高、突發性強、成因機理復雜、災害隱患極大的特殊類型滑坡。這些滑坡成災機理、致災模式亟待研究。
2.工作目標
總體目標:以西部復雜山體為研究對象,依託已有調查成果,全面開展西部復雜山體成災機理研究。開展地質災害成災模式調查、成災條件與機理研究、致災模式與機理研究、重大災害防治對策研究。初步摸清西部地區地質災害成因機制,建立西部復雜山體災害識辨方法、完善災害評價體系、提出區劃防治建議,為主動防災服務。
「十二五」期間:完成烏江流域、清江流域、三峽庫區等西南山區復雜山體滑坡和黃土地區灌溉型滑坡、秦巴山區淺表層滑坡的形成機理和成災模式研究;完成西部復雜山體特大地震滑坡的致災范圍預測研究;完成復雜山體滑坡的快速加固技術及復雜山體滑坡的遙感早期識別技術研究;建立融合重大地質災害識別、穩定性判定、致災模式判別、監測防治措施的防災體系。
「十三五」期間:深入研究復雜山體地質災害鏈的形成機理和演化過程,完善融合重大地質災害識別、穩定性判定、致災模式判別、監測防治措施的防災體系,總結提升各種地質災害調查、評價、監測和防治的技術,並促進相關技術方法的推廣應用。
3.工作任務
「十二五」期間:在重大地質災害易發的烏江流域、清江流域、三峽庫區、西部山區、秦巴山區和黃土地區選擇有代表性的滑坡,通過調查、勘察及試驗,深入研究這些地區滑坡形成原因、運動機理及致災模式,完善災害發育特徵認識,構建主動防災體系。
通過對西部復雜山體地震滑坡三維物理模擬、多種三維數值模擬、變形破壞過程分析以及滑坡動力學分析等分析手段,對滑坡的影響范圍進行深入探討。開展微型組合抗滑樁、土工合成擋牆、快速注漿、預制格構等地質災害快速加固技術的研究,並開展快速加固技術應用示範及加固效果監測分析,開展遙感早期識別技術研究等關鍵問題研究,提升主動防災能力。
「十三五」期間:開展西部復雜山體地質災害成災模式與風險評價綜合研究。
(八)典型地質災害監測預警與示範推廣
1.工作現狀
完成了長江三峽庫區滑坡等地質災害GPS控制監測網建設。初步建立四川雅安、重慶巫山、雲南哀牢山等8個代表不同突發性地質災害類型的監測預警示範區。解決了地質災害實時監測、實時傳輸、預警產品快速發布等多項關鍵技術。2003年開始,開展了全國和省級尺度的汛期地質災害氣象預警,取得了良好的效果。研製了三維激光微位移監測系統、滑坡微震自動連續觀測系統、滑坡監測多媒體網路遠程監控技術、FBG滑坡監測解調設備、地質災害光導監測儀等多項技術與設備。研製了適用於地質災害群測群防的系列儀器,已推廣20萬套,並在「5·12」抗震救災工作中發揮了重要作用。
健全監測預警網路,形成覆蓋我國主要災害類型的國家級地質災害監測工程示範區,進一步開發實用監測預警設備是下一步工作的重點。
2.工作目標
建立30個國家級地質災害監測工程示範區,對地質災害高風險區的重點區域實施專業監控,不斷提高預測預警水平,推動區域地質災害監測工作,為全國地質災害綜合預警提供依據。研製系列監測預警儀器和防治技術設備,不斷完善突發性地質災害監測數據採集、傳輸與分析管理技術,為突發性地質災害監測和減災防災提供技術支持。
「十二五」期間:完成11個典型地質災害監測預警示範區建設,建立區內有效的地質災害預警系統。
「十三五」期間:全面完成地質災害高易發區30個典型區域國家級專業監測工程示範區建設。
3.工作任務
以地質構造背景、氣候條件和地質災害發育規律為基礎,選擇典型地質災害區域建設地質災害監測預警示範區,研究探索不同地質災害區地質災害監測預警技術工作方法,為減災防災提供技術支持。根據1:5萬地質災害調查成果,優先考慮有代表性、工作基礎較好、示範作用明顯的區域開展工作。協助地方開展全國山地丘陵區縣(市)地質災害群測群防早期預警能力建設。
在地質災害高易發區30個典型區域建立國家級專業監測工程示範區,完善監測內容、建立監測網路。開展全國山地丘陵區縣(市)地質災害群測群防早期預警能力建設,為已經確認的5萬余處群測群防地質災害隱患點,安裝自動監測報警儀器。
開展簡易監測儀器研發與示範、實時監測新技術研究與示範、監測技術平台建設。
「十二五」期間:在突發性地質災害高易發區,根據不同地質災害類型,選擇建設完善燕山山地滑坡泥石流監測預警區、遼東南中低山泥石流區等11個典型區域地質災害監測預警區。
建設區域地質災害群測群防網路,對2萬處隱患點進行簡易儀器自動觀測。
「十三五」期間:繼續加強突發性地質災害高易發區專業監測示範工程建設,完成長白山崩塌滑坡、天山谷地降雨—融雪型滑坡泥石流等19個區域突發性地質災害監測預警區建設。
建設區域地質災害群測群防網路,對1萬處隱患點進行簡易儀器自動觀測。
(九)全國地面沉降調查與監測
1.工作現狀
初步完成長江三角洲地區、華北平原、汾渭盆地等重點地區地面沉降和地裂縫調查10萬平方千米,基本查明該地區發生的地質背景和地面沉降分布規律,基本建立以基岩標、分層標和GPS、水準測量為主的區域地面沉降立體監測網路,在上海、江蘇和北京地面監測站,實現了監測數據自動採集、傳輸,初步建成地面沉降地理信息系統,為制定科學的地面沉降防治措施打下了良好的基礎。
存在問題主要包括:地面沉降發展的趨勢加劇,防治任務艱巨;地面沉降調查工作程度不平衡;監測網路需要進一步完善,監測技術有待進一步提升;重大工程面臨地面沉降的威脅。
2.工作目標
建成平面以GPS監測和水準測量為主,垂向以分層標、基岩標及地下水監測為主,以及空間遙感觀測技術(In SAR)監測為主的地面沉降立體綜合監測體系,實現對地面沉降的有效監控。
「十二五」期間:完成我國所有地面沉降區、城市及重要交通干線地面沉降調查。在主要地面沉降區建成平面以GPS監測和水準測量為主,垂向以分層標、基岩標及地下水監測為主,以及空間遙感觀測技術(In SAR)監測為主的地面沉降立體綜合監測體系,基本實現對主要沉降區地面沉降的有效監控。
「十三五」期間:在所有地面沉降區建成平面以GPS監測和水準測量為主,垂向以分層標、基岩標及地下水監測為主,以及空間遙感觀測技術(In SAR)監測為主的地面沉降綜合監測體系,實現對所有地面沉降區地面沉降的有效監控。完成所有地面沉降區地面沉降風險管理與區劃,為制定科學的地面沉降防治措施打下堅實的基礎。
3.工作任務
利用In SAR等現代化監測技術,完善長江三角洲、華北平原、汾渭盆地地面沉降監測網,並繼續進行監測;開展珠江三角洲、東北平原等地面沉降工作空白區地面沉降調查,建立地面沉降監測網路;和鐵道部、交通部等部門密切合作開展重大工程區地面沉降調查與監測;結合區域地質環境背景和區域經濟發展布局,開展地面沉降災害風險評估,制定分區地面沉降控制目標和管理措施。
「十二五」期間:開展安徽阜陽、松嫩平原、珠江三角洲、江漢—洞庭湖平原等一般地面沉降區1:10萬的地面沉降調查5000平方千米;繼續對長三角、華北平原、汾渭盆地等主要沉降區進行地面沉降監測。
長江三角洲地區:開展江浙兩省沿海平原等以往工作較薄弱地區包括淮安、揚州、泰州、南通、紹興、台州地區的1:25萬地面沉降災害調查,重點城市1:5萬地面沉降災害調查。
華北平原:對前期工作薄弱的地區開展1:5萬地面沉降調查工作;基本覆蓋以開采地下水為主要水源的平原地區。
汾渭盆地:開展汾渭盆地陝西咸陽、渭南和榆次、臨汾及運城等重點城市的地面沉降地裂縫災害調查。
繼續對長三角、華北平原、汾渭盆地等主要沉降區進行地面沉降監測與風險管理。
「十三五」期間:重要地面沉降區監測。
長江三角洲地區:完善地面沉降監測網路,每年定期開展In SAR地面沉降監測。
華北平原:完善地面沉降監測網路,每年定期開展In SAR地面沉降監測。
汾渭盆地:完善地面沉降地裂縫監測網路,每年定期開展山西地面沉降監測。每年定期開展In SAR地面沉降監測。
一般沉降區地面沉降監測。即安徽阜陽、松嫩平原、珠江三角洲、江漢—洞庭湖平原等一般地面沉降區地面沉降In SAR監測。
重大工程地面沉降調查與監測。主要開展涉及華北平原、汾渭盆地和長三角地區三個地面沉降防治規劃區的主要高速鐵路建設項目的地面沉降災害防治工作,包括:全線位於汾渭盆地的大同—西安高速鐵路、跨華北平原和長三角地區的京滬高速鐵路。
⑸ 地質災害預警系統研發
3.1.1 總體思路
3.1.1.1 基本認識
中國地域廣大,地質環境類型復雜多樣,斜坡岩土體含水狀態與滑坡泥石流事件發生的對應關系是復雜的,滑坡泥石流事件與降雨過程的關系具有離散性。因此,盡可能細化預警區域的劃分,對每個預警區的斜坡坡角、坡積層工程地質特徵、植被類型和人類活動方式進行系統研究,得出特定環境地質條件(地層岩性、地質結構、地貌形態、地表植被和人類工程經濟活動等)下引發地質災害的大氣降雨量臨界值,作為地質災害區域預警判據是可行的。
3.1.1.2 預警對象與預警重點區
降雨引發的區域突發性群發型地質災害:崩塌、滑坡、泥石流等。
預警重點區是:
1)威脅山區的鄉鎮、居民點,且無力搬遷的地區;
2)威脅重要工程如橋梁、水壩和電站等地區;
3)威脅線狀工程如公路、鐵路、輸油(氣)管線和輸電線路以及水上交通線等地區;
4)重要經濟區(發達經濟區、工礦區和農業區等);
5)重要自然保護區、自然景觀和人文景觀地區;
6)區域生態地質環境脆弱,且又必須開發的地區。
3.1.1.3 預警類型
突發性地質災害氣象預警可分為時間預警和空間預警兩種類型。
空間預警是比較明確地劃定在一定條件下(如根據長期氣象預報),一定時間段內地質災害將要發生的地域或地點,主要適用於群發型;
時間預警是在空間預警的基礎上,針對某一具體地域或地點(單體),給出地質災害在某一時段內或某一時刻將要發生的可能性大小,主要適用於單體如大型滑坡,並有群測群防網路或專業監測網路相配合。
空間預警是減輕區域性、全局性地質災害的有效手段。空間預警是基於地質災害的主要控制因素(如地層岩性、地質結構、地貌形態、地層突變等)和引發因素(如降雨、地震、冰雪消融、人為活動)開展工作,控制因素是基本條件,引發因素在不同地區或同一地區的不同地段常常表現出極大差異。
3.1.1.4 預警等級
根據《國土資源部和中國氣象局關於聯合開展地質災害氣象預報預警工作協議》,地質災害氣象預報預警分為5個等級:
1級,可能性很小;
2級,可能性較小;
3級,可能性較大;
4級,可能性大;
5級,可能性很大;
國家層次發布地質災害預警按以下考慮:
1~2級不發布預報,用綠色和藍色表示;
3級發布預報,用黃色表示;
4級發布預警,用橙色表示;
5級發布警報,用紅色表示。
3.1.1.5 預警時段與地域
預報預警時段是當日20時至次日20時。
預報預警地域是中華人民共和國領土范圍,暫不包括香港特別行政區、澳門特別行政區和台灣省。
3.1.1.6 技術路線
1)把全國劃分為若干預警區域。
2)確定預警判據。對每個預警區的歷史滑坡、泥石流事件和降雨過程的相關性進行統計分析,分別建立每個預警區的地質災害事件與臨界過程降雨量的統計關系圖,確定滑坡泥石流事件在一定區域暴發的不同降雨過程臨界值(低值、高值),作為預警判據。
3)判定發生地質災害的可能性。接收到國家氣象中心發來的前期實際降雨量和次日預報降雨量數據後,對每個預警區疊加分析,根據判據圖初步判定發生地質災害的可能性。
4)判定預報預警等級。對判定發生地質災害可能性較大或以上等級的地區,結合該預警區降雨量、地質環境、生態環境和人類活動方式、強度等指標進行綜合判斷,從而對次日的降雨過程引發地質災害的空間分布進行預報或警報。
5)製作地質災害預警產品。
6)發送預警產品。將預警產品報請有關領導簽發後,發送國家氣象中心。
7)發布預警產品。國家氣象中心收到預警產品後,以國土資源部和中國氣象局的名義在中央電視台播出。同時,地質災害預警結果在中國地質環境網站上進行發布。
8)發布預警後,預警人員跟蹤校驗預警效果,總結提高預警准確率。
3.1.2 科學依據
根據1990~2002年對突發性地質災害的分類統計,發現持續降雨引發者占總發生量的65%,其中,局地暴雨引發者約占總發生量的43%,占持續降雨引發者總量的66%。也就是說,約2/3的突發性地質災害是由於大氣降雨直接引發的或是與氣象因素相關的,地質災害氣象預警工作是有科學依據的。
3.1.2.1 氣象因素引發地質災害的特點
1)區域性:一般在數百至數千平方公里內出現;單條泥石流的流域面積:≤0.6km2者11.9%;0.6~10km2者61.6%;10~50km2者22.4%。
2)群發性:崩塌、滑坡、泥石流等在某一區域多災種呈群體出現。
3)同時性:巨大災難在數十分鍾—數小時內先後或同時出現。
4)暴發性:滑坡、特別是泥石流的發生具有突然暴發性,宏觀上完好的坡體突然滑塌或「奔流」;當地人稱為「渦旋炮」或「山扒皮」。如陝西省紫陽縣同一地點傷亡人員最多的聯合鄉魚泉村7組(瞬間造成37人遇難)是5個「渦旋炮」同時擊中的結果。
5)後續性:大型滑坡一般出現在降雨過程後期,甚至降雨結束後數天。
6)成災大:造成重大人員傷亡和各種財產損失。
3.1.2.2 氣象因素引發地質災害的成因
1)區域性持續降雨或暴雨使鬆散堆積層達到過飽和狀態。
2)成災地區地形陡峻,坡形變化復雜,坡度25°~70°。
3)地質上具備二元結構,上為鬆散堆積層,下為堅硬基岩,容易在二者的接觸處形成強大滲流帶。
4)鬆散堆積層厚度1~10m,一般1~4m。
5)一般植被覆蓋率較高,在強烈暴雨持續作用下起到滯水作用。
6)居民防災意識薄弱,房屋結構簡易,抗災強度低。房屋大多建在溪溝出山口地段,屬於泥石流的流通路徑。調查發現,雖然滑坡、泥石流災害具有暴發性,但多數地點仍有數小時至數分鍾的躲避時間,因防災基本知識缺乏,以致有的村民在搶運財物過程中喪生。
7)對大型滑坡滯後於降雨過程的機理缺乏科學認識。
3.1.2.3 來自統計學的認識
地質災害具有自然和社會的雙重屬性。理論研究與科學實踐均證明,地質災害具有可區劃性、可監測預警性。
1)分析發現,滑坡的發生在過程降雨量和降雨強度兩項參數中,存在著一個臨界值,當一次降雨的過程降雨量或降雨強度達到或超過此臨界值時,泥石流和滑坡等地質災害即成群出現。
2)不同地區具體一條溝谷的泥石流始發雨量區間為10~300mm,差異之大反映了地質條件、氣候條件等的差異。
3)在降雨過程的中後期或局地單點暴雨達到臨界值時出現突發性群發型泥石流、滑坡等地質災害,滑坡以小型者居多。
4)大型滑坡常在降雨過程後期或雨後數天內出現。
3.1.2.4 區域地質災害的時空分布
據20世紀90年代的調查,我國泥石流的時空分布頻率具有以下特點:
(1)泥石流頻率與地貌
3500m以上的高山佔9%;1000~3500m的中山佔56%;小於1000m的低山佔15%;黃土高原區佔11%。
(2)泥石流頻率與工程地質岩組
變質岩區佔43%;碎屑岩區佔32%;黃土區佔11%;岩漿岩區佔9%;碳酸鹽岩區佔7%。
(3)泥石流發生頻率與年平均降雨量(mm/a)
<400區域佔10%;400~600區域佔16%;600~800區域佔18%;800~1000區域佔24%;1000~1400區域佔22%;>1400區域佔10%
(4)泥石流暴發時間(月份)分布頻率
5月:9%;6月:18%;7月:34%;8月:24%;9月:10%
上述統計說明,泥石流主要分布在中低山地區;多出現在易於風化破碎的岩土分布區;年均降雨量過高或過低都不會暴發泥石流;發生時間主要出現在每年的6~8月。
3.1.3 中國地質災害氣象預警區劃
基於我國地質災害類型分布、全國氣候區劃和滑坡泥石流與區域降雨關系的各類研究文獻,編制中國地質災害氣象預警區劃圖。
3.1.3.1 資料依據
基於氣象因素的《中國地質災害氣象預警區劃圖(1∶500萬)》的編制主要依據以下資料:
1)中國泥石流及其災害危險區劃圖(1∶600萬),
中國科學院成都山地災害與環境研究所,1991
2)中國滑坡災害分布圖(1∶600萬),
中國科學院成都山地災害與環境研究所,1991
3)中國地質災害類型圖(1∶500萬),
地質礦產部成都水文地質工程地質中心,1991
4)中國泥石流災害圖(1∶600萬),
地質礦產部成都水文地質工程地質中心,1992
5)中國滑坡崩塌類型及分布圖(1∶600萬),
地質礦產部環境地質研究所,1992
6)中國特殊類土及危害圖(1∶600萬),
中國地質科學院水文地質工程地質研究所,1992
7)中國地形圖(立體,1∶600萬),地圖科學研究所,1999
8)中華人民共和國氣候圖集,氣象出版社,2002
9)區域降雨資料與滑坡、泥石流關系的各類文獻
3.1.3.2 預警區劃分原則
根據研究需要,在此提出斜坡劃分原理:
1)滑坡和泥石流是在斜坡地區發生的;
2)區域分水嶺的兩坡氣象降雨條件和生態環境是不同的;
3)我國的最大斜坡是帕米爾高原—東海大陸架的多級多層次斜坡;
4)區域斜坡可分為三類:一類是分水嶺到海濱,如後界燕山—魯兒虎山,左界遼河,右界永定河/海河和前界渤海圈閉的區域;二類如大別山—淮河—黃河圈閉的區域;三類如四川盆地周緣區域。
一級區以全國性分水嶺或雪線為界,考慮長時間周期、大空間尺度的氣候區劃和地質地貌環境條件;
二級區主要以重大水系、區域分水嶺、區域氣候、歷史滑坡泥石流事件分布密度、地質環境條件、斜坡表層岩土性質和年均降雨量分布。
3.1.3.3 預警區域劃分
本研究立足全國范圍,暫時提出兩級區劃,共劃分7個一級預警區,28個二級預警區,可以滿足初步工作要求(圖3.1)。
(1)預警區的地質災害特徵
A東北山地平原區
A1三江地區
圖3.1 中國地質災害氣象預警區劃圖(28個區)(台灣省專題資料暫缺)
佳木斯/牡丹江地區,氣象因素引發地質災害微弱。
A2東北平原
樺甸/敦化地區以及大興安嶺東麓,氣象因素引發地質災害較弱。
B大華北地區
B1遼南地區
遼東半島地區(千山),氣象因素引發地質災害較嚴重。
B2京承地區
北京北部和河北承德地區,氣象因素引發地質災害嚴重。
B3晉冀地區
太行山東麓地區,氣象因素引發地質災害較嚴重。
B4山東丘陵
泰山和膠東地區,氣象因素引發地質災害在小范圍較嚴重。
B5豫西地區
靈寶/許昌之間和伏牛山北麓地區,氣象因素引發地質災害較嚴重—輕微。
B6皖蘇地區
大別山北麓和張八嶺地區,氣象因素引發地質災害較嚴重—輕微。
B7江浙地區
臨安/嵊州地區,氣象因素引發地質災害在小范圍較嚴重。
C中南山地丘陵區
C1閩浙地區
武夷山/九連山以東地區,氣象因素引發小規模地質災害嚴重。
C2江西地區
九嶺山和贛南地區,氣象因素引發小規模地質災害嚴重。
C3豫鄂地區
南陽、神農架、大洪山和大別山南麓地區,氣象因素引發地質災害較嚴重。
C4湖南地區
湘西和湘南(雪峰山)地區,氣象因素引發地質災害嚴重。
C5桂粵地區
桂西和兩廣北部地區,氣象因素引發小規模地質災害嚴重。
D西南中高山區
D1陝南地區
秦嶺南麓和大巴山北麓地區,氣象因素引發地質災害嚴重。
D2四川盆地
成都平原外的其他地區,氣象因素引發地質災害嚴重。
D3黔渝地區
黔北和重慶地區,氣象因素引發地質災害嚴重。
D4滇南地區
滇南和黔南部分地區,氣象因素引發地質災害嚴重。
D5川滇地區
川西、滇西和滇中地區,氣象因素(含高山融水)引發地質災害極嚴重。
E黃土高原區
E1呂梁地區
大同—太原—臨汾一線地區,氣象因素引發地質災害較嚴重—輕微。
E2陝北地區
陝北黃土高原地區,氣象因素引發地質災害嚴重。
E3隴西地區
隴西和海東地區,氣象因素引發地質災害極嚴重。
F北方乾旱沙漠區
F1內蒙古東部地區
氣象因素引發地質災害輕微。
F2阿拉善地區
祁連山北麓、玉門/武威地區,氣象因素(高山融水)引發地質災害較嚴重。
F3南疆地區
天山南麓、阿爾金山北麓氣象因素(高山融水)引發地質災害較嚴重。
F4北疆地區
天山北麓氣象因素(暴雨和高山融水)引發地質災害嚴重。
G青藏高原區
G1藏北地區
氣象因素引發地質災害輕微。
G2藏南地區
雅魯藏布江及支流流域氣象因素(暴雨和高山融水)引發地質災害較嚴重;藏東南
暴雨引發地質災害嚴重。
(2)一級區域界線標志
A/F大興安嶺—七老圖山
漠河—鳳水山(1398)—古利牙山(1394)—太平嶺(1712)—興安嶺(1397)—巴代艾來(1540)—罕山(1936)—黃崗梁(2029)—七老圖山
A/B雲霧山—長白山
小五台山(2882)—赤城—雲霧山(2047)—七老圖山—阜新—鐵嶺—莫日紅山(1013)—白頭山
B/E太行山—中條山
小五台山(2882)—恆山(2017)—北台頂(3058)—陽曲山(2059)—歷山(2322)—華山(2160)
E/F毛毛山—靖邊—東勝—小五台
海晏—仙密大山(4354)—毛毛山(4070)—景泰—定邊—靖邊—榆林—東勝—豐鎮—小五台山(2882)
EB/DC秦嶺—伏牛山—大別山—括蒼山
海晏—龍羊峽—同仁—鳥鼠山(2609)—武山南—鳳縣—太白山(3767)—首陽山(2720)—秦嶺—華山(2160)—全寶山(2094)—老君山(2192)—太白頂(1140)—雞公山(744)—霍山(1774)—安慶—九華山(1342)—黃山(1873)—桐廬—括蒼山(1382)—北雁盪山(1057)
F/G阿爾金山—祁連山
公格爾山(7649)—慕士塔格山(7509)—賽圖拉—慕士山(6638)—烏孜塔格(6250)—九個達坂山(6303)—阿卡騰能山(4642)—阿爾金山(5798)—大雪山(5483)—祁連山(5547)—冷龍嶺(4849)—毛毛山(4070)
C/D老君山—梵凈山—岑王老山
老君山(2192)—武當山(1612)—大神農架(3053)—建始—來鳳(>1000)—酉陽—梵凈山(2494)—佛頂山(1835)—雷公山(2179)—岑王老山(2062)—富寧
D/G九寨溝—察隅
武山—九寨溝—雪寶頂(5588)—馬爾康—爐霍—新龍—巴塘—察隅
(3)二級區域界線
A1/A2小興安嶺—張廣才嶺—白頭山
呼瑪—大黑頂山(1047)—平頂山(1429)—大青山(944)—大禿頂子山(1690)—大石頭(1194)—甑峰山(1677)—白頭山
B1/B2下遼河
B2/B3永定河—海河
B3/B4黃河
B4/B5黃河故道
B5/B6淮河—黃河故道
B6/B7長江
C1/C2武夷山—九連山
黃山(1873)—玉京峰(1817)—黃崗山(2158)—白石峰(1858)—木馬山(1328)—九連山(1248)—龍門
C2/C34霍山—幕阜山—羅霄山脈
霍山(1774)—九江—九宮山(1543)—幕阜山(1596)—連雲山(1600)—武功山(1918)—井岡山—八面山(2042)—石坑埪(1902)
C3/C4長江
C124/C5南嶺山脈
雷公山(2179)—貓兒山(2142)—韭菜嶺(2009)—石坑埪(1902)—雪山嶂(1379)—龍門—飛雲頂(1282)—蓮花山(1336)—神泉港
D1/D23米倉山—大巴山
九頂山(4984)—廣元—米倉山—大巴山—大神農架(3053)
D2/D3長江—重慶—華鎣山—萬源北
D123/D5夾金山—大涼山
雪寶頂(5588)—九頂山(4984)—二郎山(3437)—貢嘎山(7556)—鏵頭尖(4791)—大涼山(3962)—長江—五蓮峰(2561)—陸家大營(2854)
D3/D4苗嶺山脈
陸家大營(2854)—黃果樹瀑布—惠水—雷公山(2179)
D4/D5烏蒙山—哀牢山—高黎貢山
陸家大營(2854)—黎山(2678)—馬龍—玉溪—哀牢山(3166)—貓頭山(3306)—高黎貢山—(3374)—尖高山(3302)
E1/E2呂梁山脈
岱海—管涔山—荷葉坪(2784)—黑茶山(2203)—關帝山(2831)—禹門口
E2/E3屈吳山—六盤山脈
景泰—屈吳山(2858)—六盤山(2928)—太白(2819)
F1/F2
古爾班烏蘭井—呼和巴什格(2364)—賀蘭山(3556)—香山
F2/F3
馬鬃山(2583)—大雪山(5483)
F3/F4天山山脈
托木爾峰(7443)—比依克山(7443)—天格爾峰(4562)—博格達峰(5445)—巴里坤山—托木爾提(4886)
G1/G2岡底斯山—念青唐古拉山脈
扎西崗—岡仁波齊峰(6656)—冷布岡日(7095)—念青唐古拉峰(7111)—嘉黎—洛隆—邦達—巴塘。
3.1.4 地質災害氣象預警判據研究
3.1.4.1 判據確定原則與資料依據
根據有限研究積累和歷史經驗,滑坡、泥石流的發生不但與當日激發降雨量有關,而且與前期過程降雨量關系密切,本項研究選定1d,2d,4d,7d,10d和15d過程降雨量等6個數據進行統計分析,期望對一個地區氣象因素引發滑坡、泥石流地質災害的原因與臨界雨量判據的確定具有全面認識。
本次研究的資料依據主要有兩方面:
1)中國地質環境監測院建立的全國地質災害調查資料庫中氣象因素引發的歷史滑坡泥石流災害數據(999個);
2)國家氣象中心根據中國地質環境監測院提供的滑坡、泥石流數據,整理提供了731個相關站點15d內歷史降雨量數據。
3.1.4.2 預警區的臨界降雨量判據研究
(1)不同降雨過程代表數據的選定
中國氣象局系統對日降雨量(Q)的預報是按當日20時到次日20時計算,而滑坡、泥石流事件可能發生在此24h的任一時段。
若災害事件在接近24時發生,則基本可對應1d(即當日)過程降雨量;若災害事件在次日0時以後的夜間發生,則對應前一日(2d)過程降雨量更符合實際。因此,本項研究選定的數據代表時段(日:24h)是:
1d過程降雨量:0≤Q1≤1
2d過程降雨量:1≤Q2≤2
4d過程降雨量:3≤Q4≤4
7d過程降雨量:6≤Q7≤7
10d過程降雨量:9≤Q10≤10
15d過程降雨量:14≤Q15≤15
(2)臨界過程降雨量預警判據圖的建立
根據滑坡泥石流與降雨關系的研究,製作滑坡泥石流與不同時段臨界降雨量關系散點圖,發現散點集中成帶分布,其上界可用β線表示,下界可用α線表示。因此,利用1d,2d,4d,7d,10d和15d等過程降雨量,可以建立地質災害預警判據模式圖(圖3.2)。
圖中橫軸是時間(1~15d),縱軸是相應的過程降雨量(mm)。我們規定,α線和β線為兩條滑坡、泥石流發生的臨界降雨量線,α線以下的A區為不預報區(1,2級,可能性小、較小),α~β線之間的B區為地質災害預報區(3,4級,可能性較大、大),β線以上的C區為地質災害警報區(5級,可能性很大)。
(3)預警區臨界降雨判據圖研究
在28個氣象預警區中,18個預警區可以形成完整的滑坡、泥石流發生的臨界降雨預警判據圖(上限值β線、下限值α線);10個預警區因缺乏資料尚不能形成判據圖,其中,A1,B5,F1和G24個區完全缺數據;B4,B6,E1,E2,F3和F46個區數據不全(只能形成α線或β線,甚至散點)。這10個區主要為滑坡、泥石流不發育區或人口稀疏地區,暫時對全國的預警工作效果影響不大。
圖3.2 預報判據模板圖
代表性數據及曲線舉例
A2東北平原
中國地質災害區域預警方法與應用
*3個樣本。
A2氣象預警區判據圖
B1遼南地區
中國地質災害區域預警方法與應用
*9個樣本。
B1氣象預警區判據圖
C1閩浙地區
中國地質災害區域預警方法與應用
*50個樣本。
C1氣象預警區判據圖
D1陝南地區
中國地質災害區域預警方法與應用
*45個樣本。
D1氣象預警區判據圖
D5川滇地區
中國地質災害區域預警方法與應用
*60個樣本。
D5氣象預警區判據圖
E3隴西地區
中國地質災害區域預警方法與應用
*50個樣本。
E3氣象預警區判據圖
F2阿拉善地區
中國地質災害區域預警方法與應用
*8個樣本。
F2氣象預警區判據圖
G1藏北地區
中國地質災害區域預警方法與應用
*15個樣本。
G1氣象預警區判據圖
3.1.4.3 預警判據校正
為了提高預警精度,依據以下資料對預警區判據圖進行了校正:
1)中國大陸滑坡、泥石流與降雨關系的各類科技文獻;
2)歷年中國地質災害公報;
3)部分省(區、市)的地質災害年報;
4)全國縣(市)地質災害調查區劃成果資料(主要是福建省);
5)重點地區地質災害專項研究報告等。
檢索發現有13個預警區具有部分滑坡、泥石流與臨界過程降雨量研究資料,有15個預警區暫未收集到或完全缺乏研究資料。
13個具備部分研究資料的預警區分別整理成圖、表,可供確定相應預警區預警級別時參考,或與預警判據圖配合使用。
以C1區為例,見下表(圖3.3):
圖3.3 C1區地質災害點分布與臨界降雨量統計關系
3.1.5 預警尺度精度評價
3.1.5.1 預警尺度
(1)空間預警尺度
圖面表示3000km2(基於1∶500萬~1∶600萬地質災害預警區劃圖)。
(2)時間預警尺度
地災預警與氣象預警時間尺度同步。
3.1.5.2 預警精度評價
1)取決於氣象預報精度。目前全國性的氣象預報精度尚不高,特別是對引發泥石流影響明顯的局地單點暴雨的預報有待加強。
2)雨量站點代表性精度。地質災害氣象預警判據圖依賴於氣象站點經(緯)度和地質災害發生點的經(緯)度(距離)的接近程度。
本次資料地質災害災情點的經(緯)度與相鄰氣象站點的經(緯)度之差在0.3°~1.0°之內,也即相差40~50km,反映在平面上即存在約2000km2的誤差。
3)地質環境-氣象因素耦合機制的研究精度。地形坡度、植被、岩土類型、含水狀態、地表入滲和產流等的研究尚很薄弱。
4)人類活動方式、強度與斜坡變形破壞模式尚缺乏科學界定。
3.1.6 地質災害預警產品製作與發布
3.1.6.1 預警產品製作、簽批與發布
1)國家氣象中心提供全國每次降雨過程的天氣預報資料,每天16:00通過適當方式(E-mail)發送前期實際降雨量和次日預報降雨量數據;
2)中國地質環境監測院接到降雨量數據後,根據此數據和預警判據圖對各預警區發生地質災害的等級進行逐個分析和判定;
3)專家會商、分析判定預報預警結果,根據會商後的結果,做出空間預警,在預警圖上劃出預報或警報區,此稱預警產品;
4)領導審定、簽批預警產品;
5)經簽批的預警產品於當天16:30通過適當方式(E-mail)發回國家氣象中心;
6)國家氣象中心接收預警產品,並和天氣預報產品統一製作,配音;
7)中央電視台在當天晚上19:30新聞聯播後播出地質災害氣象預報或警報及等級;
8)預報或警報地區的有關省級地質環境監測總站應在預警發出24h至48h內,向中國地質環境監測院反饋預警效果校驗結果;
9)中國地質環境監測院分析研究預警效果校驗結果,改進預警判據,逐步提高預警精度。
3.1.6.2 預警產品發布形式
(1)中央電視台發布播出
預警產品署名:國土資源部
中國氣象局
模擬預報詞:
今天晚上到明天白天,××地區發生地質災害的可能性較大,請注意防範。
(2)中國地質環境信息網站發布
主要供專業人士和政府管理部門參考,跟蹤研究預警效果,討論研究預警方法與對策。
設計製作了地質災害氣象預警預報專用「符號」(圖3.4)。
圖3.4 地質災害氣象預報預警專用「符號」
從2005年開始,在中央電視台發布地質災害氣象預警預報信息圖片時,同時配發崩塌、滑坡和泥石流動畫,增強了地質災害預警信息的視覺沖擊力,也提高了地質災害氣象預報預警的社會影響力。
3.1.7 地質災害預警軟體系統
3.1.7.1 基於C語言的預警預報軟體
2004~2006年,模型採用第一代臨界雨量判據法,基於C語言的預警預報軟體。具備自動生成降雨等值線、雨量站點上自動計算預報等級、查看雨量站點雨量等功能(圖3.5)。缺點是無法自動成區、不具備GIS圖層操作功能。
圖3.5 基於C語言的第1套預警軟體Predmap抓圖
3.1.7.2 基於ArcGIS開發了第2套預警預報軟體
2007年,基於ArcGIS開發了第2套預警預報軟體,模型仍採用第一代臨界雨量判據法(圖3.6)。主要改進在於將軟體系統升級為基於GIS開發,且實現預警區的自動圈閉。缺點是ArcGIS軟體龐大,軟體操作、升級等方面不便。
圖3.6 基於ArcGIS的第2套預警軟體抓圖
⑹ 中國地質災害分區預警模型
根據5.4節中中南山地丘陵區試運算過程中的總結修正的思路,在全國7個預警大區范圍內分別完成地質災害潛勢度計算、地質災害預警指數計算,從而實現國家級地質災害氣象預警預報。
5.6.1 分區潛勢度計算
5.6.1.1 權重計算結果
考慮到因子圖層准備情況和時間關系,本次計算中選取了25個因子圖層,在7個大區分別開展計算。各區內因子圖層的權重計算結果見表5.10。從權重計算結果來看具有如下特點:
(1)總體上符合經驗認識
從敏感因子排序來看,中南山地丘陵區(C區),最敏感的因子是地形起伏(權重為0.17);西南部地區(D區),最敏感因子為地震動參數(權重為0.18);黃土地區(E區),最敏感因子為岩土體類型(權重0.09),等等。而鐵路、塔廟宇等因素的敏感度則非常低,甚至很多區的權重為0。
(2)因子權重差偏小
主要是由於選取因子較多(25個),且各因子之間有一定重復,因此造成每個因子的權重相對較小,權重差偏小。25個因子的平均因子權重應為1/25,即0.04,因此當某個因子權重超過0.04時,可以認為該因子為地質災害的敏感因子。
(3)精確程度還有待進一步提高
目前的計算,是在整理現有的地質背景環境資料和歷史災害點資料基礎上,圖層資料的比例尺還相對有限,特別是歷史災害點資料主要是建立在縣市調查數據基礎上的,已調查縣災害點密集,而未調查的縣數據缺失,造成統計分析結果的精確程度有限。
表5.10 分區計算各因子權重結果表
目前的計算,主要旨在探索計算思路,計算結果的精確程度會隨著原始資料的不斷充實而不斷提高。
5.6.1.2 潛勢度計算結果校驗
將各區潛勢度的計算結果,與歷史災害點的分布情況進行對比分析,校驗潛勢度是否能夠體現地質環境的優劣程度。
圖5.20~圖5.26反映地質災害潛勢度值大的區域歷史災害點分布多,地質災害潛勢度值小的區域歷史災害點分布少,即地質災害潛勢度值的大小能夠反映歷史地質災害點的多少,能夠反映地質背景環境條件的優劣。
圖5.20 A區地質災害潛勢度與災害分布對比
圖5.21 B區地質災害潛勢度與災害分布對比
5.6.2 分區預警模型
在全國7個預警大區中,C區(中南)、D區(西南)、B區(華北)災害樣本較多,雨量站點相對稠密,採用統計分析方法,建立了顯式統計的線性回歸模型。
圖5.22 C區地質災害潛勢度與災害分布對比
圖5.23 D區地質災害潛勢度與災害分布對比
圖5.24 E區地質災害潛勢度與災害分布對比
圖5.25 F區地質災害潛勢度與災害分布對比
圖5.26 G區地質災害潛勢度與災害分布對比
A區(東北)、E區(西北黃土)、F區(西北新疆)、G區(青藏高原)由於災害點樣本太少和雨量站點稀疏,匹配到災害點上的雨量誤差較大。不具備統計分析的樣本條件,採用的是潛勢度-雨量經驗方法,即不同潛勢度分段范圍內,根據經驗給定臨界降雨判據。
5.6.2.1 線性回歸模型
將歷史災害點的發生個數作為輸出量,潛勢度值、當日雨量、前期累計雨量作為輸入雨量,進行線性回歸分析,根據統計結果可見,地質災害的發生與地質環境基礎因素(G)、降雨激發因素(Rd,Rp)存在一定程度的線性關系。
根據T值進行預警等級劃分的原則如下:
回歸分析中,輸出量為歷史地質災害點的發生個數;得到預警模型後,T值(預警指數)為地質災害發生可能性大小的量化參數,是地質環境條件與降雨條件綜合作用的量度。根據我國各大區歷史地質災害發生情況以及幾年來地質災害氣象預警預報工作經驗總結,主要通過試運算進行地質災害預警等級劃分。統計分析時將地質災害的嚴重程度按區分為3個級別,並以此3個級別作為預警模型中預警等級劃分的重要參考。同時,具體操作中也考慮了如下4個方面:
1)各大區內,挑選近年來地質災害群發的典型區域,進行預警模型試運算,並將其結果與地質災害點實際發生情況對比分析,從而修正預警等級劃分標准。
2)在典型區域內,分別採用第二代預警系統和第一代預警系統開展預警預報試運算,通過結果對比修正預警等級劃分標准。
3)預警模型中各變數的實際意義與取值范圍。G(潛勢度)為地質環境條件的量化參數;Rd和Rp為降雨條件的量化參數。取值范圍各區有所不同。
4)考慮到地質災害氣象預警預報對於地質災害防治工作的具體作用,在預警預報區域面積的大小方面也有所考慮,此項考慮主要為定性考慮。預警區域面積過大,可能會導致地質災害防治工作中無從參考,預警區域面積過小,可能會導致地質災害多發區域的漏報。
在B,C,D3個區的回歸分析過程和結果如下。
(1)B區
復相關系數:R=0.19;
判定系數:R2=0.16;
得到回歸模型方程為
中國地質災害區域預警方法與應用
根據括弧內的t統計量的值可知:G,Rd,Rp均對地質災害的發生情況有顯著影響。根據F統計量的值F=5.60,可知:回歸方程是顯著的。
通過試運算,根據T值進行分段,確定預警等級。3級(T<10);4級(10≤T<20);5級(T≥20)。
(2)C區
復相關系數:R=0.50;
判定系數:R2=0.48;
得到回歸模型方程為
中國地質災害區域預警方法與應用
根據括弧內的t統計量的值可知:G,Rd,Rp均對地質災害的發生情況有顯著影響。根據F統計量的值F=21.40,可知:回歸方程是顯著的。
通過試運算,根據T值進行分段,確定預警等級。3級(T<10);4級(10≤T<60);5級(T≥60)。
(3)D區
復相關系數:R=0.48;
判定系數:R2=0.45;
得到回歸模型方程為
中國地質災害區域預警方法與應用
根據括弧內的t統計量的值可知:G,Rd,Rp均對地質災害的發生情況有顯著影響。根據F統計量的值F=14.40,可知:回歸方程是顯著的。
通過試運算,根據T值進行分段,確定預警等級。3級(T<18);4級(18≤T<50);5級(T≥50)。
5.6.2.2 潛勢度-臨界雨量經驗方法
(1)A區
根據潛勢度G值,將A區分為3類:
中國地質災害區域預警方法與應用
(2)E區
根據潛勢度G值,將E區分為3類:
中國地質災害區域預警方法與應用
(3)F區
根據潛勢度G值,將F區分為3類:
中國地質災害區域預警方法與應用
(4)G區
根據潛勢度G值,將G區分為3類:
中國地質災害區域預警方法與應用
⑺ 我國地質災害監測預警工作現狀
7.1.1 地質災害防治與監測的法規建設
伴隨我國國民經濟建設的發展,各種類型的人類工程活動不斷加劇,崩塌、滑坡、泥石流及其他多種地質災害不斷發生。為防治地質災害的發生、發展,滿足地方社會經濟發展的需要,包括了對地質災害監測工作進行管理在內的地方性地質災害防治法規,自1995年開始出現。至1999年,已有18個省(區、市)頒布了21項法規條例,至2004年即已有29個省(區、市)頒布了40餘項法規、條列(附錄2)。
在全國各地地方性地質災害防治法規的基礎上,2001年5月國土資源部發布了《「十五」國土資源生態建設和環境保護規劃》;2001年5月國務院辦公廳轉發了《關於加強地質災害防治總體規劃》;001年10月國土資源部完成了《三峽庫區地質災害防治總體規劃》,並於2002年1月由國務院批復,2002年2月下發湖北省和重慶市國土資源部門落實。作為地質災害防治方面的全國性法規,2003年11月國務院頒布了《地質災害防治條例》(附錄2)。在上述全國性法規、規劃的指導下,目前「全國地質環境管理辦法」等一系列的規程、規范正在編制之中。這些法規、條例的出台,有力地推進了全國地質災害監測預警體系的建設和地質環境管理、保護工作。
7.1.2 監測網路與機構建設
(1)專業監測機構建設現狀與存在的問題
截至2002年9月,全國地質災害監測機構及隊伍狀況如表7.1所示。由該表可知,我國現有:國家級地質環境監測中心1個,省級地質環境監測總站(院、中心)31個,地(市)級地質環境監測站220個,其中直屬分站138個,代管分站131個,縣級地質環境監測站49個(重慶40個,四川7個,福建2個)。上述機構中,中國地質環境監測院在職職工126人(包括三峽中心),省地級地質環境監測隊伍在職人數3349人。合計全國地質環境監測專業隊伍在職人數3349人。這樣一支隊伍初步形成了地質災害勘查、監測和預報預警的科研體系,為地質災害的防治、地質環境的保護和依法行政提供了組織保障。
表7.1 全國地質災害監測機構及隊伍狀況
值得指出的是,目前地質災害監測預警管理體制還不夠健全。雖然省(區、市)級和地(市)級兩級國土資源主管部門承擔起了地質災害監測預警職能,但多數地(市)級國土局沒有專門的科室,縣級以下機構很不健全,體制還沒有理順。與此同時,在水利、鐵路、公路和城建等部門也還沒有設立地質災害監測預警預報指揮系統。國土資源部門原有各級地質環境監測站是在政事不分、事企不分的歷史條件下建立的,部分省(區)的公益性監測工作仍由企業性質的地勘單位承擔,與政府行政管理脫節,難以滿足政府和社會的需要。
(2)地質災害監測網路建設現狀與存在的問題
1)突發性地質災害監測。全國突發性地質災害監測狀況參見表7.2。截至2003年,全國完成地質災害調查與區劃的縣(市)達到545個,面積200萬km2,共調查出災害隱患點7萬余處,建立了群測群防點4萬多處;湖南、廣西、四川、寧夏、青海、新疆開展專業監測與巡測的災害點120餘處。
三峽庫區20個市(區、縣)已成立17個地質環境監測站,建立了秭歸-巴東段(50km)地質災害GPS監測網並投入監測運行。該網包括國家級控制網(A級)、基準網(B級)、滑坡監測(C級)三級GPS監測網,對12個單體滑坡進行監測,共建有59個GPS監測點。
黑龍江省七台河市地面塌陷監測網控制面積10km2,設地面塌陷監測點58個,為礦山地質災害監測起到了示範作用。
2)緩變性地質災害監測。緩變性地質災害監測網在長江三角洲地區除上海市建立了覆蓋全市的較為完善的、由基岩標、分層標、GPS觀測點、地面水準點和地下水監測孔等構成的地面沉降監測網路外,江蘇的蘇錫常地區2002年也在個別地區建立了分層標,其他地區尚屬空白。環渤海地區只有天津市在城區建立了7組分層標,而且多建於1985年以前。北京市的3組基岩標和分層標正在建設之中。西安設立了部分地裂縫監測點,寧波初步建成了地面沉降監測網。目前開始實施地面沉降和地裂縫監測的主要地區為華北平原和長江三角洲和部分大中城市。全國地面沉降監測現狀參見表7.2的有關內容。
3)區域性群測群防體系尚未建成。群眾對地質災害缺乏預防知識,基層主管部門缺少專業技術人員,群專結合的地質災害監測體系和群測群防的監測網路不健全,全國大部分縣(市)還沒有建立。目前僅是開展過地質災害調查與區劃的539個縣(市)建立了群測群防監測網路。地質災害監測尚未引起全社會足夠的重視,資金保證程度差,缺乏完善的救災防災系統。因此,加大宣傳和管理力度,加強立法工作,強化地質環境管理,編制地質災害防治工作規劃綱要,指導各縣(市)編制本地區的地質災害防治規劃,積極有效地開展地質災害防治工作,對防災減災是非常必要的。
4)監測工作經費嚴重不足。地方各級政府尚未建立地質災害專項資金渠道,僅靠國家補助的部分地質災害防治專項資金開展工作。每年的監測經費不足以維持正常的監測工作,監測工作日益萎縮,設備陳舊老化、設施破損嚴重,影響監測成果質量,難以滿足准確快速實時監測的要求。
表7.2 全國地質災害監測狀況
7.1.3 監測預警信息系統建設
利用中國地質環境監測院提供的資料庫軟體,省級地質環境監測總站(院、中心)基本實現了991年以後地下水監測數據和地質災害調查數據的入庫管理,部分省(區)還建立了圖形庫、文檔庫、監測點檔案庫和信息管理系統等。四川省開展了地質災害預報信息隨同天氣預報播出的試點工作。全國地質環境監測信息管理現狀如表7.3所示。
表7.3 全國地質環境信息管理現狀
在網路建設方面,只有少數省(區、市)實現了與Internet的專線連接(河北、青海、海南等)和內部區域網建設,多數省區通過撥號上網向中國地質環境監測院傳輸數據。目前,地質環境監測數據的分析和開發利用還很不夠,地質環境監測數據基本上沒有向社會和公眾開放。這些情況表明,在地質災害防治方面,信息傳輸與處理沒有跟上時代步伐。
⑻ 美國和日本等國地質災害預警服務
目前,實現地質災害預警的國家和地區,一般具備如下條件:
1)模型方法方面:對降雨和地質災害的發生進行深入研究,獲得了地質災害預警的理論模型方法。
2)降雨監測和降雨預報方面:一是降雨預報數據,能夠實現區域未來一段時間內的降雨預報;二是實時降雨監測數據,該數據一般可以通過兩種方式獲得:
a)雨量計,通過在區域上埋設一定數量的雨量計,實時精確掌握點上的降雨情況,從而實現區域上實時降雨的獲得。通過安裝自動遙測雨量監測儀(截至1995年,在舊金山灣地區安裝了60台),當雨量每增加1mm時,通過電波自動傳送數據到任何可接收到信號的地方(要求有接收器、計算機、數據接收分析顯示的軟體)。
b)降雨雷達,通過多普勒雷達(通過降雨雲層上反射的雷達波)數據來進行降雨實時監測,該方法的難題在於,雷達回波值與地面上的降雨自動遙測值之間的關系確定上。原因有二:一是冰的反射能力遠遠大於水滴,因此溫度成為一個關鍵的因素,且雲中水滴的大小與溫度、高度都相關,同時,除了水滴外,粉塵、昆蟲、鳥等都能反射雷達的能量,都有回波;二是地面發散,即接近地面的雷達回波存在問題,特別是受到地形的影響。因此,將雷達回波值轉換到降雨強度難度較大,且不同地區轉換關系又不一樣。
3)預警系統:根據降雨引發災害的理論模型方法,實時進行分析預警。
4)預警信息發布平台:一般通過廣播電台或電視台,向公眾發布預警信息。
存在不足:理論模型方法需要更多的校驗;缺乏有關斜坡岩土體方面的實時監測。
1.4.1 美國
美國是最早開展區域泥石流災害預警的國家之一。
1.4.1.1 舊金山海灣地區
1985年,美國地質調查局(USGS)和美國氣象服務中心(NWS)聯合在舊金山海灣地區正式建立了泥石流預警系統。該系統於1986年2月12~21日在舊金山海灣地區的一次特大暴雨災害中用於滑坡預報,並得到檢驗。由於技術復雜、機構變動和人員變動等方面原因,該預警系統在1995年被迫停止運行。
基於1982年1月3~5日在美國舊金山海灣地區發生的一次特大暴雨所引起的滑坡災害數據,這次特大暴雨持續了34h,降雨量616mm,引發了大量的滑坡,造成25人死亡和超過6600萬美元的經濟損失。Mark&Newman通過對1982年1月的降雨情況分析得出,當前期雨量超過300~400mm,暴雨量超過250mm,即超過年平均降雨量的30%時,滑坡將大規模發生。該系統的基本原理是考慮了臨界降雨強度和持續時間,並且考慮地質條件、降雨的空間分布,以及地形條件。美國地質調查局和美國氣象服務中心在整個舊金山海灣地區共設計了45個自動降雨記錄點,當降雨每增加1mm時,降雨觀測點就通過自動方式將數據傳送到美國地質調查局的接收中心和計算機系統。同時,為了監測降雨期間地下水壓力的變化,工作人員還設置了若干個孔隙水壓力計以觀測斜坡中地下水壓力變化。當降雨量和降雨強度將要超過臨界值時,提前進行滑坡災害的預報,以減少滑坡災害的損失和可能的人員傷亡。
舊金山海灣地區實時區域滑坡預警系統包括降雨與滑坡發生的經驗和分析關系式,實時雨量監測數據,國家氣象服務中心降雨預報以及滑坡易發區略圖。
1986年2月12~21日的滑坡災害預警首先由美國地質調查局決定,通過當地電台、電視台以及美國氣象服務中心的特別預報的方式來進行的。這次滑坡災害的預警分為兩個階段:第一階段是2月14日的6h災害危險期;第二階段是17~19日之間的60h的災害危險期。由於地質條件的復雜性和地形條件的變化,這兩次預報主要是針對整個舊金山海灣地區,而不是某一個特定的滑坡災害地點。根據滑坡災害發生後的調查,10處滑坡災害點有目擊者能提供精確的時間,其中有8處滑坡所發生的時間與預警的時間段是完全一致的(圖1.17)。
圖1.17 累計降雨量、滑坡預警時間(水平線段)、滑坡發生時間空心三角為滑坡;實心三角為泥石流
進一步研究要點:
a) 降雨—滑坡關系需精練,要考慮長期中等強度的降雨影響,使降雨與滑坡發生之間有更准確的模型,同時要針對滑坡的臨界值,而不僅僅是泥石流;
b) 土體含水量和孔隙水壓力的測量方法要更精確、有效;
c) 預警系統需要模式化和自動化,以便在暴雨期能夠更快、更有效地得到數據;
d) 與滑坡有關的地形、水文和地質條件等內容,需進一步考慮,以使今後的預警更准確、有效。
作為第一個預警系統,從 4 個方面保證運行:
a) 降雨方面: 國家氣象服務中心降雨預報( 未來 6h 預報) ,降雨實時連續監測( 多於 40個實時雨量計) ;
b) 預警方法方面: Canon and Ellen( 1985) 的臨界降雨判據;
c) 預警運行上: 美國地質調查局根據降雨預報和實時降雨監測,實時預警系統進行分析;
d) 美國地質調查局和氣象服務中心共同確定預警,並向社會發布。
1.4.1.2 俄勒岡州
1997 年,美國的 Oregon 政府建立了泥石流預警系統。該系統,由林業部的氣象學家、地調系統( DOGAMI) 的地質學家、交通部( ODOT) 的工程師一起創建的。預警信息和建議通過 NOAA 天氣節目和 Law Enforcement Data System 進行廣播發布。DOGAMI 負責向媒體和相關地區提供關於泥石流的追加信息; ODOT 負責在更風險時段向機動車輛提供預警,包括在高泥石流風險路段安裝預警信號。
1.4.1.3 夏威夷州
1992 年建立了類似的 I-D 的預警模型,並進行了數次實時預報( Wilson 等,1992) 。
1.4.1.4 弗基尼亞州
2000 年建立了類似的 I-D 的預警模型,並進行了數次實時預報( Wieczoic 等,2000) 。
1.4.1.5 波多黎各島
1993 年,加勒比海的波多黎各島建立了與舊金山海灣類似的 I-D 的預警模型,並進行了數次實時預報( Larsen & Simon,1993) 。
1.4.2 日本福井縣
Onodera et al.( 1974) 通過研究發現,在日本,累計降雨量超過 150 ~ 200mm,或每小時降雨強度超過 20 ~30mm 時,大量滑坡將發生滑動。
日本在泥石流預警系統研製和開發方面處於國際領先地位。以發展具體一條或相鄰溝的小規模地區的泥石流預報系統為主,通過上游泥石流形成區降雨資料的統計分析,確定臨界雨量值和臨界雨量報警線,通過上游雨量實時數據採集、演算和比較判別,自動發出報警信號。
山田剛二等( 1977) 通過滑坡的位移和地下水壓力的監測,認為滑坡位移速率以及地下水壓力不僅與當天降雨量有關,而且還與以前的降雨量有關,所以用有效雨量來表示雨量,有效雨量可以從下式求得:
中國地質災害區域預警方法與應用
式中:Rc為有效雨量;R0為當天降雨量;Rn為日前降雨量;α為系數;n為經過的天數。通過對山陰干線小田—天儀之間403km,400km附近的滑坡研究發現,日有效降雨量、位移速率、地下水壓力隨時間而變化的曲線,位移速率v,Rc與地下水壓力(p)之間關系分別是二次曲線和直線:
中國地質災害區域預警方法與應用
目前,日本在福井縣開展了地質災害預警預報工作。以點代面,根據區域地形、地貌和環境地質特徵以及災害可能發生的危險程度,在全縣范圍內布設了 66 個預警預報監測點,實現了定點、定時和災害程度的預警預報。同時通過該系統還可以了解過去某一時間的雨量情況和發布情況等內容。
1.4.3 巴 西
Guidicini and Iwasa( 1977) 通過對巴西 9 個地區滑坡記錄和降雨資料的分析,認為降雨量超過年平均降雨量的 8% ~17%,滑坡將滑動; 超過 20%,將發生災難性滑坡。
1996 年,里約熱內盧( Rio de Janeiro) 州建立了預警系統( Geo-Rio) 。由地質力學所設計並安裝了 30 台自動雨量計,向中心計算機( Geo-Rio) 發送數據。中心計算機接收數據,並發布預警。2001 年滑坡災害中,對里約熱內盧的部分地區發布了預警,但在向北 60 km 處的 Petropolis 損失慘重。由於火災,Geo-Rio 系統於 2002 年 11 月被迫停止。
⑼ 國土資源部中國氣象局關於進一步推進地質災害氣象預警預報工作的通知
國土資發〔2011〕135 號
各省、自治區、直轄市及計劃單列市國土資源主管部門,氣象局,中國地質環境監測院、國家氣象中心、中國氣象局公共氣象服務中心:
為深入貫徹落實 《國務院關於加強地質災害防治工作的決定》 (國發 〔2011〕20 號)、《國務院辦公廳關於加強氣象災害監測預警及信息發布工作的意見》(國辦發 〔2011〕33 號)和 《國土資源部與中國氣象局關於深化地質災害氣象預警預報工作合作的框架協議》有關精神,進一步推進全國地質災害氣象預警預報工作,現就有關事項通知如下:
一、共同推進地質災害氣象預警預報體系建設
地方各級國土資源、氣象部門要根據地質災害實際情況,圍繞地質災害防治氣象服務需求,採用多種方式,爭取多方支持,依託現有資源,共同推動在地質災害易發區建立綜合的地質災害氣象觀測站網,加快對易發區及周邊地區氣象觀測站的升級改造,加強對已建氣象設施的維護和保障,使氣象觀測設施處於良好運行狀態,以滿足地質災害易發區市 (地、州)、縣 (區、市)的地質災害氣象預警預報工作順利開展的需要。
二、健全完善地質災害氣象預報預警信息共享平台和應急聯動工作機制
地方各級國土資源、氣象部門加快建設地質災害監測預警信息和氣象預報預警信息的共享平台,建立會商機制,共同發布地質災害氣象預報預警信息。要建立應對惡劣天氣特別是突發強降雨等極端氣象條件的應急聯動工作機制。國土資源部門應根據地質災害氣象預警信息,加強應急值守,一旦發生 4 級以上地質災害氣象預警的災害性天氣,要及時啟動相關應急預案,切實做好應對防範工作。氣象部門應加強 4 級以上地質災害氣象預警災害性天氣的監測、預報、預警和服務保障工作,根據國土資源部門提供的地質災害發生情況,組織開展加密觀測和針對性的預報服務會商,及時提供氣象服務信息,並提出相關防範意見和措施建議。要依託現有通信專線,進一步加強雙方信息數據共享,重點加強地質災害易發區監測、災害數據的充分共享。要進一步加強應急聯動能力建設,完善雙方信息互通制度,拓展災害應急聯動方式渠道,豐富應急聯動技術手段。雙方要明確各自的責任部門、聯絡人員及聯系方式,做到責任到人。
三、大力推進地質災害氣象業務標准體系建設
要加強科研和聯合攻關,大力推進地質災害防治氣象業務標准體系建設,不斷提高地質災害氣象監測預警預報精細化水平。地方各級國土資源、氣象部門要聯合制定地質災害易發區氣象觀測站建設安裝、運行維護、檢測校準、通訊協議、信息交換共享、預報服務產品製作、信息發布等方面的規范和標准,充分利用各自的資源和技術優勢,形成合力,共同加快相關標准和規范的編制工作,促進地質災害氣象業務的規范化發展。聯合加強對各級地質災害氣象預警預報業務人員的培訓,提高業務水平和能力。要針對地質災害突發性強等特點,聯合研發 6 小時間隔的地質災害氣象預警預報產品,逐步開展地質災害短時臨近預警預報業務。要積極推動基層地質災害氣象預警預報工作的深入開展,推進福建省泉州市、雲南省玉溪市和三峽庫區地質災害監測預警示範區建設,深入開展精細化地質災害氣象預警預報試驗研究,探索積累經驗並在全國推廣應用。
四、全面提高地質災害氣象預警信息發布能力
地方各級國土資源、氣象部門要積極爭取地方政府和有關部門的大力支持,不斷加強易災地區特別是偏遠山區、學校、農村等地區的地質災害氣象預警及氣象災害信息發布傳播設施建設,努力拓寬預報預警信息覆蓋范圍。要加強與廣電、電信、城建等部門的聯系與合作,通過建立協同高效的聯合響應機制,利用電視和電台、手機簡訊、城區顯著位置電子廣告牌等設施及時發布地質災害氣象預報預警信息,保證預報預警信息渠道暢通、播發及時。
五、積極探索建立多樣化的地質災害防治合作模式
地方各級國土資源、氣象部門要根據各地特點和需求,積極探索建立符合本地實際的地質災害氣象業務發展長效合作機制,建立多方參與、權責明晰的地質災害氣象監測系統建設、運營維護與服務提供模式。對於面向公眾的災害性天氣預報預警、實況監測信息等服務,屬氣象部門公益服務范疇的,由各級氣象部門無償提供。對於相關部門和單位提出的個性化地質災害氣象服務需求,由氣象部門按照有關規定通過協議方式予以提供。
國土資源部 中國氣象局
二〇一一年九月八日
⑽ 從( )的6月1日起,中央電視台天氣預報節目中正式發布全國地質災害氣象預報預警
從2003年6月1日起,中央電視台天氣預報節目中正式發布全國地質災害氣象預報預警信息.