工程地質特徵
⑴ 工程地質特徵
工程地質特徵對注漿材料的選擇和注漿量的確定尤其重要,因此,在注漿施工前回,必須搞清楚所注地層答是砂層、粘土層、淤泥層,還是砂卵石層、斷層破碎帶。對於砂層,要進行篩分試驗,確認砂層是粗砂、中砂,還是細砂、粉細砂。對地層空隙率、裂隙度要通過試驗,或者採取工程類比法進行確定。
⑵ 堆積體工程地質特徵
下咱日堆積體是壩址區體積最大的一個堆積體,由於緊靠壩址上游左岸,堆積體下游部分為電站進水口,研究下咱日堆積體的空間工程地質結構以及對其穩定性問題做出合理的分析判定,對於電站在施工及運營期間的安全性具有重要的意義。該堆積體分布高程從河邊至高程 1920 m,面積約 1. 5 km2,估計方量約 9800 × 104m3。
下咱日堆積體分布於金沙江左岸上、下壩之間,根據堆積體的空間分布 ( 分布高程)及對工程的影響程度,大致以下咱日溝為界將堆積體分為Ⅰ、Ⅱ兩個區 ( 圖 6. 1. 1) 。Ⅰ區分布於上壩址左岸,下咱日溝西南側,靠河邊地形平緩且薄,地形較陡且厚度較大地段比正常蓄水位高約百餘米,對樞紐建築物影響較小; Ⅱ區分布於下咱日溝北側,緊鄰樞紐建築物,其分布位置及高程不僅影響樞紐建築物的布置,且水庫蓄水後堆積體的穩定對大壩的安全具直接影響,因此,勘察的重點、研究的重點皆在堆積體Ⅱ區,本次研究工作的重點亦為Ⅱ ( 以下所述內容均針對Ⅱ區) 。
圖 6. 1. 1 下咱日堆積體工程地質平面圖
6. 1. 1 堆積體空間分布特徵
6. 1. 1. 1 下咱日堆積體分布區地形特徵
根據堆積體分布區 1∶2000 地形等高線圖,為了能夠更直觀地分析堆積體的空間形態特徵,我們建立了下咱日堆積體三維地形等高線雲圖 ( 圖 6. 1. 2) 及坡度分布雲圖 ( 圖6. 1. 3) 。從中可以清晰看出整個堆積體大約分布有兩個較緩的台地,即: 高程 1540 ~1560 m 及高程 1610 m 以上,其地形坡比約為 10% ~ 32% 。其中高程 1560 ~ 1610 m 附近形成一陡坎,其地形坡比大約 95%。該陡坎上部為膠結較好的硬殼層,下部為具有較好層理狀結構並且具有一般膠結的礫石層,由於兩者強度上的差異在有些部位發育有 「洞穴」( 圖 6. 1. 4) ,甚至在局部還伴有局部小范圍的坍塌現象。
為了研究下咱日堆積體的分布區的地表水文地質特徵及空間流域分布,在研究過程中對其地表形態進行分析,建立了堆積體分布區的空間流域分布圖 ( 圖 6. 1. 5) 。從圖中可以看出,堆積體分布區主要地表徑流排泄通道為下咱日溝,該溝在分析區內其流域面積約為 8. 85 ×105m2。其餘由於常年的沖刷在堆積體表部 ( 尤其是下部台地) 處形成幾條較大的沖溝,也成為堆積體分布區內的小范圍的流域排泄通道 ( 圖 6. 1. 5)
圖 6. 1. 2 下咱日堆積體空間等高線分布
圖 6. 1. 3 下咱日堆積體空間坡度分布
圖 6. 1. 4 下咱日堆積體陡坎處分布的 「洞穴」
圖 6. 1. 5 下咱日堆積體空間流域分布
圖 6. 1. 6 顯示了水庫蓄水到正常設計水位高程 ( 1618 m) 時的堆積體的淹沒情況,下部紅色區域為水庫淹沒區,上部黃色區域為非淹沒區。從圖中可以看出,水庫蓄水後堆積體的陡坎及以下部分將處於水下。
圖 6. 1. 6 下咱日堆積體水庫淹沒分析
6. 1. 1. 2 堆積體三維空間結構及規模
為了探明堆積體的規模、成因及分布規律,中水顧問集團昆明勘察設計研究院針對堆積體共布置勘探鑽孔 19 個、勘探平洞 6 個、豎井 2 個,同時開展部分物探工作。各勘探點及勘探剖面布置見圖 6. 1. 1。根據現場鑽孔資料,堆積體最大厚度可達 118 m。
為進一步研究下咱日堆積體的三維空間結構形態特徵及其分布規模,以便為電站後期的設計及施工階段提供可靠的依據,我們根據現場地面調查、地形圖 ( 1∶2000) 、地質圖 ( 1∶2000) 、已有的上述鑽探及物探等資料建立了其相應的三維空間結構模型( 圖 6. 1. 7、圖 6. 1. 8) 。
從圖中可以看出下咱日堆積體總體上像一個裝滿東西的 「勺子」,其中部厚度較大,基覆面 ( 基岩與堆積體接觸界面,以下同) 中部下凹,呈 「勺」狀或 「鍋底」狀。從縱向上看,堆積體的底界面在三維空間總體上呈現為傾向河谷,傾角也由 35°左右逐漸變為水平,甚至前緣靠江邊部位出現反翹現象 ( 如Ⅲ、Ⅳ號剖面) ( 圖 6. 1. 8) 。橫向上,沿河谷方向,堆積體底界面總體上為傾向下游並在上、下游兩端逐漸翹起,且具有堆積體的厚度上游相對較薄、下游相對較厚的趨勢。
此外,從鑽孔勘查資料表明在基覆面的某些部位仍然保存有磨圓度很好,岩性成分相當復雜、含有不少本地區沒有的花崗岩類的卵礫石 ( 圖 6. 1. 9) ,且大都已經呈現完全膠結或半膠結成岩狀態,顯然是金沙江自上游數百公里外搬運而來。因此,在堆積體形成之前的一段時間內該部位應為古金沙江的古河槽 ( 圖 6. 1. 10) 。
圖 6. 1. 7 下咱日堆積體三維空間結構
6. 1. 2 堆積體工程地質結構
根據現場工程地質調研及鑽孔、平硐 209 等勘探資料,對下咱日堆積體主剖面 ( Ⅲ-Ⅲ剖面) 進行工程地質結構分區 ( 圖 6. 1. 11) ,並建立了其相應的三維工程地質結構分區( 圖 6. 1. 12) 。從上往下依次為:
6. 1. 2. 1 膠結、半膠結的砂、卵礫石層
該層位於堆積體的前部,其主要成分為具有層理狀的膠結、半膠結的砂、卵礫石層,組成物質成分較雜,以灰岩、玄武岩居多,部分為花崗岩、砂岩等卵、礫石。具 PD209及 PD221 揭露該層部為一層厚度較薄的膠結硬殼層,局部分布有崩坡積層、河流相沉積的卵礫石層及較大的滾石物質 ( 滾石最大可視粒徑可達 10 m) 。
圖 6. 1. 8 下咱日堆積體三維形態特徵
為進一步認識該層粒度分布特徵,分別在 PD209 內分別選取了四個試樣點進行了相應的粒度篩分試驗 ( 圖6. 1. 13) ,由於現場條件限制粒度篩分試樣大小為20 cm ×20 cm ×20 cm,且粒徑范圍為大於 1 cm 的顆粒。從頻率分布柱狀圖上可以看出在粒度分析范圍內絕大部分粒度小於 1 cm,粒徑 <1 cm 的顆粒最大可達 60%以上,平均含量約為 47. 2%。
通過鑽孔及平洞揭露,該層內部夾有粉細砂層。但通過地表調查及勘探成果分析,該層內部的粉細砂層在空間上的分布呈透鏡狀 ( 圖 6. 1. 14) ,分布不連續,其延展長度一般小於 5 m,且較為緻密並呈半膠結狀態,不具有成層性。從總體上不構成連續性的軟弱界面,不會影響堆積體的穩定性。
6. 1. 2. 2 土石混合體層
該層為冰磧成因的土石混合體層,具泥質膠結或呈架空結構特徵,其含石量大於40% ,現場平硐揭示,最大粒徑可達 3 m 左右,組成物質絕大部分為灰岩、玄武岩。
圖 6. 1. 9 鑽孔揭露堆積體底界 ( 基覆面) 分布的卵礫石層
圖 6. 1. 10 下咱日堆積體分布區古河槽及今河槽基岩面等高線 ( m) 圖
根據平洞 209 揭露,該層土石混合體在內部細觀結構上從坡體外部到內部大致可以劃分為兩個亞層 ( 圖 6. 1. 15) : 具有泥質膠結的土石混合體層及具有架空結構的堆石體層。其內部塊石粒徑較大,具有一定的磨圓度。其中具泥質膠結的土石混合體層,塊石構成的骨架內部空隙被粘土及粉土充填,填充成分較為緻密,透水性較弱; 具有架空結構的堆石體內部大塊體構成的骨架內部有粒徑較小的塊體填充,且塊體內部排列緊密,呈高度壓密狀態,深部可見局部有少量泥質充填成分。但從整體上這兩個亞層沒有明顯的界線,基本上呈逐漸過渡趨勢。
為了明確下咱日堆積體內部分布的這兩類岩土介質的粒度組成,為其抗剪強度研究提供依據,我們採用數字圖像處理技術對 PD209 所揭露的這類岩土體進行了大面積粒度分析試驗。
根據現場斷面特徵,選取土石閾值為2 cm,即: 粒徑 <2 cm 的顆粒將被視為 「土體」成分。因此對圖像所顯示的粒徑大於 2 cm 的顆粒進行統計,圖 6. 1. 16 顯示了兩組圖像顆粒提取過程。
圖6.1.11 下咱日堆積體地質結構剖面圖
圖 6. 1. 12 下咱日堆積體三維工程地質結構分區
圖 6. 1. 13 砂卵礫石層粒度分析成果
圖 6. 1. 14 下咱日堆積體內部呈透鏡狀分布的粉細砂層
圖 6. 1. 15 PD209 揭露的下咱日堆積體內部土石混和體層
圖 6. 1. 16 基於數字圖像處理技術對 PD209 內揭露冰水堆積層( 土石混合體) 進行粒度分析
根據上述方法,我們共對7組圖像進行了相應的粒度分析,累計分析總面積約26m2,圖6.1.17。從圖中可知該土石混合體的含石量(粒徑大於2cm的顆粒)分布范圍為30%~70%之間,平均含石量約52%,根據水利部行業標准《土工試驗規程》(SL237-1999)中的土的分類標准,該層岩土體應屬於混合巨粒土—巨礫混合土范疇。從圖6.1.16圖像處理圖上還可以看出該層土石混合體粒度分布及其不均勻。
圖6.1.17 各粒度分析試驗成果圖
6.1.2.3 基岩
二疊繫上統玄武質噴發岩(P2d),其岩性主要為灰、灰黑及紫灰色的玄武岩、杏仁狀玄武岩及火山角礫熔岩等,該層從上到下又可分為全風化、強風化、弱風化及新鮮基岩。根據鑽孔揭露顯示,除堆積體上部及Ⅲ號剖面揭露為全風化或強風化接觸外,絕堆積體下伏基岩大部分為弱風化玄武岩體。基岩接觸面處,根據鑽孔揭露堆積體物質基本處於超固結或膠結、半膠結狀態(圖6.1.18),接觸較為緊密,不可能成為堆積體失穩的軟弱界面。
⑶ 工程地質條件的因素分類
工程地質條件是指工程建築物所在地區與工程建築有關的地質環境各項因素的綜合。
工程地質條件的因素分類:
(1) 地層的岩性:是最基本的工程地質因素,包括它們的成因、時代、岩性相關書籍、產狀、成岩作用特點、變質程度、風化特徵、軟弱夾層和接觸帶以及物理力學性質等。
(2) 地質構造:也是工程地質工作研究的基本對象,包括褶皺、斷層、節理構造的分布和特徵、地質構造,特別是形成時代新、規模大的優勢斷裂,對地震等災害具有控製作用,因而對建築物的安全穩定、沉降變形等具有重要意義。
(3) 水文地質條件:是重要的工程地質因素,包括地下水的成因、埋藏、分布、動態和化學成分等。
(4) 地表地質作用:是現代地表地質作用的反映,與建築區地形、氣候、岩性、構造、地下水和地表水作用密切相關,主要包括滑坡、崩塌、岩溶、泥石流、風沙移動、河流沖刷與沉積等,對評價建築物的穩定性和預測工程地質條件的變化意義重大。
(5) 地形地貌:地形是指地表高低起伏狀況、山坡陡緩程度與溝谷寬窄及形態特徵等;地貌則說明地形形成的原因、過程和時代。平原區、丘陵區和山嶽地區的地形起伏、土層厚薄和基岩出露情況、地下水埋藏特徵和地表地質作用現象都具有不同的特徵,這些因素都直接影響到建築場地和路線的選擇。
(6)地下水:包括地下水位,地下水類型,地下水補給類型,地下水位隨季節的變化情況。
(7)建築材料:結合當地具體情況,選擇適當的材料作為建築材料,因地制宜,合理利用,降低成本。
需要說明的是:工程地質條件是客觀存在的地質因素,只有其中的穩定因素或工程建設產生的不穩定因素對工程建設運行構成或可能構成有害影響時才成為工程地質問題
⑷ 鑽井工程地質特徵主要包括哪些方面
地層岩性、水文地質、鑽孔柱狀圖、工程地質剖面圖、物理力學特性、剪切波速測試等
⑸ 工程地質條件包括哪些因素
(1) 地層的岩性:是最基本的工程地質因素,包括它們的成因、時代、岩性 相關書籍
、產狀版、權成岩作用特點、變質程度、風化特徵、軟弱夾層和接觸帶以及物理力學性質等.(2) 地質構造:也是工程地質工作研究的基本對象,包括褶皺、斷層、節理構造的分布和特徵、地質構造,特別是形成時代新、規模大的優勢斷裂,對地震等災害具有控製作用,因而對建築物的安全穩定、沉降變形等具有重要意義.(3) 水文地質條件:是重要的工程地質因素,包括地下水的成因、埋藏、分布、動態和化學成分等.(4) 地表地質作用:是現代地表地質作用的反映,與建築區地形、氣候、岩性、構造、地下水和地表水作用密切相關,主要包括滑坡、崩塌、岩溶、泥石流、風沙移動、河流沖刷與沉積等,對評價建築物的穩定性和預測工程地質條件的變化意義重大.(5) 地形地貌:地形是指地表高低起伏狀況、山坡陡緩程度與溝谷寬窄及形態特徵等;地貌則說明地形形成的原因、過程和時代.平原區、丘陵區和山嶽地區的地形起伏、土層厚薄和基岩出露情況、地下水埋藏特徵和地表地質作用現象都具有不同的特徵,這些因素都直接影響到建築場地和路線的選擇.
⑹ 一、什麼是工程地質條件,包括哪些方面
工程地質條件是指對工程建築有影響的各種地質因素的總稱。主要包括地形地貌、地層岩性、地質構造、地震、水文地質、天然建築材料以及岩溶、滑坡、崩坍、砂土液化、地基變形等不良物理地質現象。
工程地質條件即工程活動的地質環境,可理解為工程建築物所在地區地質環境各項因素的綜合。一般認為它包括岩土(岩石和土)的類型及其工程性質、地質構造、地形地貌、水文地質條件、地表地質作用和天然建築材料等。
岩土的類型及其工程性質
這是最基本的工程地質因素,包括它們的成因、時代、岩性、產狀、成岩作用特點、變質程度、風化特徵、軟弱夾層和接觸帶以及物理力學性質等。
地質構造
地質構造是工程地質工作研究的基本對象,包括褶皺、斷層、節理構造的分布和特徵。地質構造,特別是形成時代新、規模大的優勢斷裂,對地震等災害具有控製作用,因而對建築物的安全穩定、沉降變形等具有重要意義。
水文地質條件
這是重要的工程地質因素,地下水是降低岩、土體穩定性的重要因素,又在某些情況下對建築物的某些部位(如基礎)發生侵蝕作用,影響建築物的安全。它包括地下水的成因、埋藏、分布、動態和水質等。
地表地質作用
是現代地表地質作用的反映,與建築區地形、氣候、岩性、構造、地下水和地表水作用密切相關,主要包括滑坡、崩塌、岩溶、泥石流、風沙移動、河流沖刷與沉積等等,對評價建築物的穩定性和預測工程地質條件的變化意義重大。
地形地貌
地形是指地表高低起伏狀況、山坡陡緩程度與溝谷寬窄及形態特徵等,地貌則說明地形形成的原因、過程和時代。平原區、丘陵區和山嶽地區的地形起伏、土層厚薄和基岩出露情況、地下水埋藏特徵和地表地質作用現象都具有不同的特徵,這些因素都直接影響到建築場地和線路的選擇。
天然建築材料
工程中常用的天然建築材料主要有:粘性土料、砂性土、砂卵礫石料、碎石、塊石石料等,在大型土木及水利工程中,天然建築材料的量、質及開采運輸條件等,直接關繫到場址選擇、工程造價、工期長短等,因此,它也是工程地質條件評價的重要內容,有時甚至可以成為選擇工程建築物類型的決定性因素。
(6)工程地質特徵擴展閱讀:
這些主要工程地質條件又分為場地地質和地基兩個方面。在不同勘察階段,對這兩個方面的側重應有所不同,但不能偏廢,如在選址和初步勘察階段,勘察工作側重在場地地質,同時也對地基進行一定的研究。在詳勘階段則多側重地基問題,但也要對場地地質作必要的調查研究工作。
自然條件是因地而異的,建築物類型和性質也各不相同,因而在不同的情況下作為重點研究對象的工程地質條件也是因地因工程而異,如在山區建築,與場地穩定性有密切關系的地質現象(地層褶皺、斷裂、滑坡、岩溶等)往往是重要的地質條件;
對地下建築來說,地質構造對建築物的穩定性有很大影響,而岩石產狀、斷層、節理和破碎帶的性質與分布等是重要的地質條件。
工程地質條件的好壞是對建築地區,場址選擇,建築總平面布置,以及主要建築物地基基礎工程的設計與施工都有密切關系和影響,必須在工程建築設計前將該地區的工程地質條件預先查明。
⑺ 工程地質知識:地貌有哪幾種具體的特徵是什麼
按地貌形態分類,分為山地、高原、盆地、丘陵和平原。
1. 山地
一般指海拔在500米以上,起伏較大的地貌。特點是起伏大,坡度陡,溝谷深,多呈脈狀分布。山地是一個眾多山所在的地域,有別於單一的山或山脈,山地與丘陵的差別是山地的高度差異比丘陵要大,高原的總高度有時比山地大,有時相比較小,但高原上的高度差異較小,這是山地和高原的區分,但一般高原上也可能會有山地,比如青藏高原。山地地形形成的氣候是山地氣候,山地對人們的生活會帶來一定影響。比如交通分布,人口分布,經濟發展等會產生不利影響。
2. 高原
高原通常是指海拔高度在1000米以上,面積廣大,地形開闊,周邊以明顯的陡坡為界,比較完整的大面積隆起地區。高原素有"大地的舞台"之稱,它是在長期連續的大面積的地殼抬升運動中形成的。有的高原表面寬廣平坦,地勢起伏不大;有的高原則是山巒起伏,地勢變化很大。世界最高的高原是中國的青藏高原,面積最大的高原為南極冰雪高原。 高原最本質的特徵是︰地勢相對高差低而海拔相當高。高原分布甚廣,連同所包圍的盆地一起,大約共佔地球陸地面積的45%。
3. 盆地
主要特徵是四周高,中部低,因盆狀得名。是世界五大基本陸地地形之一,在全球分布廣泛。世界許多大城市也建立在盆地中,如首爾、台北等。地球上最大盆地剛果盆地。面積約相當加拿大1/3。盆地邊緣有著豐富的礦產資源。中國有五個十分有名的盆地,分別為四川、塔里木、吐魯番、准噶爾、柴達木等盆地,面積都在10萬平方千米以上。因盆地對氣流有阻擋作用,很多盆地比較乾旱,不適宜人類種植,如柴達木盆地。有些盆地因海拔相對較低或者有氣流進口,氣候也比較濕潤。
4. 丘陵
是指地球表面形態起伏和緩,絕對高度在500米以內 ,相對高度不超過200米,由各種岩類組成的坡面組合體 。坡度一般較緩,切割破碎,無一定方向。中國自北至南主要有遼西丘陵,江淮丘陵和江南丘陵等。黃土高原上有黃土丘陵。長江中下遊河段以南有江南丘陵。遼東,膠東兩半島上的丘陵分布也很廣。
5. 平原
平原是地勢低平坦盪、面積遼闊廣大的陸地。根據平原的高度,把海拔0-200米的稱為低平原,如廣西鬱江-潯江河谷平原;海拔低於海平面的內陸低地,則稱為窪地,如新疆吐魯番盆地中央的平原;海拔200-500米(或600米)的平原稱為高平原,如內蒙古嫩江西岸平原。民族地區第二級階梯和第一級階梯上的平原,雖然海拔在1000-3000米,習慣上仍稱為平原,而不叫高原,其中寧夏平原、河套平原是黃河沖積而成的,是著名的「塞上糧倉」。集中分布在中國第三級階梯上的平原,是中國重要的農耕區和人口密集、經濟發達的地區。分布在民族地區第三級階梯上的平原主要集中在內蒙古東部和廣西境內,雖然這里的平原有的面積較小,起伏較大,但它仍然是民族地區的重要農耕區。
⑻ 工程地質學的特點是什麼有哪些具體的學習要求
工程地質學是研究與人類工程建築等活動有關的地質問題的學科。地質學的一個分支。工程地質學的研究目的在於查明建設地區或建築場地的工程地質條件,分析、預測和評價可能存在和發生的工程地質問題及其對建築物和地質環境的影響和危害,提出防治不良地質現象的措施,為保證工程建設的合理規劃以及建築物的正確設計、順利施工和正常使用,提供可靠的地質科學依據。研究方法包括地質學方法、實驗和測試方法、計算方法和模擬方法。地質學方法,即自然歷史分析法,是運用地質學理論查明工程地質條件和地質現象的空間分布,分析研究其產生過程和發展趨勢,進行定性的判斷,它是工程地質研究的基本方法,也是其他研究方法的基礎。實驗和測試方法,包括為測定岩、土體特性參數的實驗、對地應力的量級和方向的測試以及對地質作用隨時間延續而發展的監測。計算方法,包括應用統計數學方法對測試數據進行統計分析,利用理論或經驗公式對已測得的有關數據,進行計算,以定量地評價工程地質問題。模擬方法,可分為物理模擬(也稱工程地質力學模擬)和數值模擬,它們是在通過地質研究深入認識地質原型,查明各種邊界條件,以及通過實驗研究獲得有關參數的基礎上,結合建築物的實際作用,正確地抽象出工程地質模型,利用相似材料或各種數學方法,再現和預測地質作用的發生和發展過程。電子計算機在工程地質學領域中的應用,不僅使過去難以完成的復雜計算成為可能,而且能夠對數據資料自動存儲、檢索和處理,甚至能夠將專家們的智慧存儲在計算機中,以備咨詢和處理疑難問題,即所謂的工程地質專家系統(見數學地質)。
⑼ 什麼叫工程地質條件包括哪些內容
工程地質條件是對工程建築有影響的各種地質因素的總稱。
主要包括地形地內貌、地層岩性、地質構造、地震容、水文地質、天然建築材料以及岩溶、滑坡、崩坍、砂土液化、地基變形等不良物理地質現象。
工程建設前需對建築物場地的工程地質條件進行調查研究,包括:該場地以往建築經驗,已發生過的工程事故的原因、防治措施和後果,建築物沉降、變形及地基地震效應等;分析和解決主要工程地質問題; 選擇工程地質條件優良的地點; 提出保證建築物的穩定性和正常使用的地基處理措施等。
拓展資料
自然條件是因地而異的,建築物類型和性質也各不相同,因而在不同的情況下作為重點研究對象的工程地質條件也是因地因工程而異,如在山區建築,與場地穩定性有密切關系的地質現象(地層褶皺、斷裂、滑坡、岩溶等)往往是重要的地質條件。
對地下建築來說,地質構造對建築物的穩定性有很大影響,而岩石產狀、斷層、節理和破碎帶的性質與分布等是重要的地質條件。
已有的工程地質條件在工程建築和運行期間會產生一些新的變化和發展,構成威脅影響工程建築安全的地質問題稱為工程地質問題。
由於工程地質條件復雜多變,不同類型的工程對工程地質條件的要求又不盡相同,所以工程地質問題是多種多樣的。