工程地質法
① 常用的工程地質勘察方法有哪些它分幾個階段
工程地質勘察是為查明影響工程建築物的地質因素而進行的地質調查研究工作。內所需勘察的容地質因素包括地質結構或地質構造:地貌、水文地質條件、土和岩石的物理力學性質,自然(物理)地質現象和天然建築材料等。這些通常稱為工程地質條件。查明工程地質條件後,需根據設計建築物的結構和運行特點,預測工程建築物與地質環境相互作用(即工程地質作用)的方式、特點和規模,並作出正確的評價,為確定保證建築物穩定與正常使用的防護措施提供依據。 一般包括兩大部分:文字和圖表。文字部分有工程概況,勘察目的、任務,勘察方法及完成工作量,依據的規范標准,工程地質、水文條件,岩土特徵及參數,場地地震效應等,最後對地基作出一個綜合的評價,提承載力等。圖表部分包括平面圖,剖面圖,鑽孔柱狀圖,土工試驗成果表,物理力學指標統計表,分層土工試驗報告表等。
② 工程地質勘察的方法
工程地質勘察方法或手段,包括工程地質測繪、工程地質勘探、實驗室或現場試驗、長期觀測(或監測)等。
工程地質測繪
在一定范圍內調查研究與工程建設活動有關的各種工程地質條件,測製成一定比例尺的工程地質圖,分析可能產生的工程地質作用及其對設計建築物的影響,並為勘探、試驗、觀測等工作的布置提供依據。它是工程地質勘察的一項基礎性工作。測繪范圍和比例尺的選擇,既取決於建築區地質條件的復雜程度和已有研究程度,也取決於建築物的類型、規模和設計階段。規劃選點階段,區域性工程地質測繪用小比例尺(1:10萬,1:5萬);設計階段,水庫區測繪大多用中比例尺(1:2.5萬,1:1萬),壩址、廠址則用大比例尺(1:5000,1:2000,1:1000,1:500)。工程地質測繪所需調研的內容有地層岩性、地質構造、地貌及第四紀地質、水文地質條件、天然建築材料、自然(物理)地質現象及工程地質現象。對所有地質條件的研究,都必須以論證或預測工程活動與地質條件的相互作用或相互制約為目的,緊密結合該項工程活動的特點。當露頭不好或這些條件在深部分布不明時,需配合以試坑、探槽、鑽孔、平洞、豎井等勘探工作進行必要的揭露。
工程地質測繪通常是以一定比例尺的地形圖為底圖,以儀器測量方法來測制。採用衛星像片、航空像片和陸地攝影像片,通過室內判讀調繪成草圖,到現場有目的地復查,與進一步的照片判讀反復驗證,可以測制出更精確的工程地質圖。並可提高測繪的精度和效率,減少地面調查的工作量。
工程地質勘探
包括工程地球物理勘探、鑽探和坑探工程等內容。
①工程地球物理勘探。簡稱工程物探,其目的是利用專門儀器,測定各類岩、土體或地質體的密度、導電性、彈性、磁性、放射性等物理性質的差別,通過分析解釋判斷地面下的工程地質條件。它是在測繪工作的基礎上探測地下工程地質條件的一種間接勘探方法。按工作條件分為地面物探和井下物探(測井);按被探測的物理性質可分為電法、地震、聲波、重力、磁法、放射性等方法。工程地質勘察中最常用的地面物探為電法中的視電阻率法,地震勘探中的淺層折射法,聲波勘探等;測井則多採用綜合測井。
物探的優點在於能經濟而迅速地探測較大范圍,且通過不同方向的多個剖面獲得的資料是三維的。以這些資料為基礎,在控制點和異常點上布置勘探、試驗工作,既可減少盲目性,又可提高精度。測井則可增補鑽探工作所得資料並提高其質量。開展多種方法綜合物探,根據綜合成果進行對比分析,可以顯著提高地質解釋的質量,擴大物探解決問題的范圍,縮短工程地質勘探周期並降低其成本。由於物探需要間接解釋,所以只有地質體之間的物理狀態(如破碎程度、含水率、喀斯特化程度)或某種物理性質有顯著差異,才能取得良好效果。
②鑽探和坑探。採用鑽探機械鑽進或礦山掘進法,直接揭露建築物布置范圍和影響深度內的工程地質條件,為工程設計提供准確的工程地質剖面的勘察方法。其任務是:查明建築物影響范圍內的地質構造,了解岩層的完整性或破壞情況,為建築物探尋良好的持力層(承受建築物附加荷載的主要部分的岩土層)和查明對建築物穩定性有不利影響的岩體結構或結構面(如軟弱夾層、斷層與裂隙);揭露地下水並觀測其動態;採取試驗用的岩土試樣;為現場測試或長期觀測提供鑽孔或坑道。
鑽探比坑探工效高,受地面水、地下水及探測深度的影響較小,故廣為採用。但不易取得軟弱夾層岩心和河床卵礫石層樣品,鑽孔也不能用來進行大型現場試驗。因此,有時需採用大孔徑鑽探技術,或在鑽孔中運用鑽孔攝影,孔內電視或採用綜合物探測井以彌補其不足。但在關鍵部位還需採用便於直接觀察和測試目的層的平洞、斜井、豎井等坑探工程。
鑽探和坑探的工作成本高,故應在工程地質測繪和物探工作的基礎上,根據不同工程地質勘探階段需要查明的問題,合理設計洞、坑、孔的數量、位置、深度、方向和結構,以盡可能少的工作量取得盡可能多的地質資料,並保證必要的精度。
原位測試和實驗室試驗
獲得工程地質設計和施工參數,定量評價工程地質條件和工程地質問題的手段,是工程地質勘察的組成部分。室內試驗包括:岩、土體樣品的物理性質、水理性質和力學性質參數的測定。現場原位測試包括:觸探試驗、承壓板載荷試驗、原位直剪試驗以及地應力量測等(見岩土試驗、工程地質力學模擬)。
設計建築物規模較小,或大型建築物的早期設計階段,且易於取得岩、土體試樣的情況下,往往採用實驗室試驗。但室內試驗試樣小,缺乏代表性,且難以保持天然結構。所以,為重要建築物的初步設計至施工圖設計提供上述各種參數,必須在現場對有代表性的天然結構的大型試樣或對含水層進行測試。要獲取液態軟粘土、疏鬆含水細砂、強裂隙化岩體之類的、不能得到原狀結構試樣的岩土體的物理力學參數,必須進行現場原位測試。
現場檢測與監測
用專門的觀測儀器對建築區工程地質條件各要素或對工程建築活動有重要影響的自然(物理)地質作用和某些重要的工程地質作用隨時間的發展變化,進行長時期的重復測量的工作。觀測的主要內容有:岩、土體位移范圍、速度、方向;岩、土體內地下水位變化;岩體內破壞面上的壓力;爆破引起的質點速度;峰值質點加速度;人工加固系統的載荷變化等。此項工作主要是在論證建築物的施工設計的詳細勘察階段進行,工程地質作用的觀測則往往在施工和建築物使用期間進行。長期觀測取得的資料經整理分析,可直接用於工程地質評價,檢驗工程地質預測的准確性,對不良地質作用及時採取防治措施,確保工程安全。
③ 工程地質學的研究方法
工程地質學的研究方法包括:地質(自然歷史)分析法、力學分析法、工程類比法與實驗法
④ 工程地質穩定性評價方法——以麗江-香格里拉段為例
一、概述
隨著滇藏鐵路工程的分段實施,麗江-香格里拉段的規劃設計已納入日程。但是,由於該段地形地貌和地質條件非常復雜,雖然經過多輪論證,線路仍難最後確定。按照初期規劃(圖13-1),滇藏鐵路麗江-香格里拉段共有3個走向方案可以比選:①麗江-長松坪-虎跳峽上峽口-香格里拉方案(西線方案);②麗江-大具-白水台-小中甸-香格里拉方案(組合方案);③麗江-大具-白水台-天生橋-香格里拉方案(東線方案)。初步分析認為,西線方案工程地質條件相對較好,可以作為推薦方案,該方案需要新建鐵路隧道34座,總長87130 m,占該段線路總長的54.4%,最長的隧道是位於麗江西北的玉峰寺隧道,全長10970 m;需要新建鐵路大橋39座(10253 m),涵洞182座(4547 m),橋涵占線路總長的9.2%。復雜的工程地質條件使得該方案仍存在許多問題,且工程建設難度大。
為了更好地指導該段鐵路選線,我們在區域地殼穩定性評價的基礎上,將基於GIS技術的層次分析法引入到麗江-香格里拉段鐵路規劃區的工程地質穩定性評價(工程地質條件評價)。在評價過程中,綜合考慮地形坡度、工程地質岩組、斜坡結構、地質災害發育現狀、地殼穩定性、微地貌類型(地形與鐵路設計高程高差)、人類工程活動、降水量、距離溝谷距離等因素,充分利用GIS技術處理海量數據信息的優勢,採用層次分析法模型,進行麗江-香格里拉段鐵路規劃區的工程地質穩定性評價。基於評價結果,可以很好的指導該段線路比選和優化。
二、基於GIS的層次分析法原理
層次分析法(Analytical Hierarchy Process,簡稱AHP)是美國數學家SattyT.L.在20世紀70年代提出的一種將定性分析和定量分析相結合的系統分析方法。它適用於多准則、多目標的復雜問題的決策分析,可以將決策者對復雜系統的決策思維過程實行數量化,為選出最優決策提供依據(圖13-2)。經過多年的應用實踐,不少研究者開始將GIS技術與AHP方法相結合,大大提高了傳統的AHP方法在地學研究中的應用效果(Harris et al.,2000;劉振軍,2001;彭省臨等,2005)。基於GIS的層次分析法充分利用GIS技術的空間分類和空間分析功能,在評價指標數據採集、處理和自動成圖方面具有明顯的優勢,不僅可以對工程地質穩定性的相關影響因素進行更細致的逐次分析,而且在計算過程中不受計算單元數量的限制,因而評價結果更直觀、更便於應用。
圖13-1 滇藏鐵路麗江-香格里拉段線路方案示意圖
圖13-2 基於GIS的層次分析法技術路線圖
基於GIS層次分析法的工程地質穩定性分區評價過程大致可分為以下步驟:
(1)確定研究區、研究對象及研究目標,並進行數據分析,確定進行工程地質穩定性分區所需要的數據,包括數據來源、數據質量指標等。
(2)將收集的各種資料進行數據處理,包括在MapGIS 6.7軟體平台上進行數字化、格式轉換、投影轉換、分層及屬性編碼等,建立研究區、研究對象的空間資料庫。
(3)根據研究目標的特徵,分析影響目標的因素,建立目標的層次指標模型和層次結構,構造判斷矩陣,由專家對影響因素進行綜合評分,並進行層次單排序、求解權向量和一致性檢驗,從而獲得各指標因素值,並運用GIS空間分析功能提取分析因子。
(4)採用ArcGIS 9.2軟體平台,對評價區域進行柵格化,每一個柵格作為模型評價的一個運算單元,並將資料庫中的數據按照規則進行柵格化處理。再採用圖形疊加的模型評價方式,將參與評價的各個因素權值分配到不同的柵格上。將各個因素進行圖形疊加,對屬性值進行代數運算,再將疊加後的柵格數據化,生成新的圖形,並形成最終評價結果。
(5)工程地質穩定性分區評價的數學模型:
滇藏鐵路沿線地殼穩定性及重大工程地質問題
式中:B——工程地質穩定性指數,aj——權重,Nj——指數。
(6)通過分析計算獲得的工程地質穩定性指數值的分布范圍,結合野外實際調查結果驗證,對不同區域的鐵路工程建設適宜性進行綜合分區評價。
⑤ 工程地質有哪些常用的研究方法
工程地質研究的主內容有:確定岩土組分、組織結構(微觀結構)、物理、化學與力學性質(特別是強度及應變)及其對建築工程穩定性的影響,進行岩土工程地質分類,提出改良岩土的建築性能的方法;研究由於人類工程活動的影響而破壞的自然環境的平衡,以及自然發生的崩塌、滑坡、泥石流及地震等物理地質作用對工程建築的危害及其預測、評價和防治措施;研究解決各類工程建築中的地基穩定性,如邊坡、路基、壩基、橋墩、硐室,以及黃土的濕陷、岩石的裂隙的破壞等,制定一套科學的勘察程序、方法和手段,直接為各類工程的設計、施工提供地質依據;研究建築場區地下水運動規律及其對工程建築的影響,制定必要的利用和防護方案;研究區域工程地質條件的特徵,預報人類工程活動對其影響而產生的變化,作出區域穩定性評價,進行工程地質分區和編圖。隨著大規模工程建設的發展,其研究領域日益擴大。除了岩土學和工程動力地質學、專門工程地質學和區域工程地質學外,一些新的分支學科正在逐漸形成,如礦山工程地質學、海洋工程地質學、城市工程地質及環境工程地質學、工程地震學。
1工程地質與岩土工程的區別工程地質是研究與工程建設有關地質問題的科學(張咸恭等著《中國工程地質學》)。工程地質學的應用性很強,各種工程的規劃、設計、施工和運行都要做工程地質研究,才能使工程與地質相互協調,既保證工程的安全可靠、經濟合理、正常運行,又保證地質環境不因工程建設而惡化,造成對工程本身或地質環境的危害。工程地質學研究的內容有:土體工程地質研究、岩體工程地質研究、工程動力地質作用與地質災害的研究、工程地質勘察理論與技術方法的研究、區域工程地質研究、環境工程地質研究等。岩土工程是土木工程中涉及岩石和土的利用、處理或改良的科學技術(國家標准《岩土工程基本術語標准》)。岩土工程的理論基礎主要是工程地質學、岩石力學和土力學;研究內容涉及岩土體作為工程的承載體、作為工程荷載、作為工程材料、作為傳導介質或環境介質等諸多方面;包括岩土工程的勘察、設計、施工、檢測和監測等等。由此可見,工程地質是地質學的一個分支,其本質是一門應用科學;岩土工程是土木工程的一個分支,其本質是一種工程技術。從事工程地質工作的是地質專家(地質師),側重於地質現象、地質成因和演化、地質規律、地質與工程相互作用的研究;從事岩土工程的是工程師,關心的是如何根據工程目標和地質條件,建造滿足使用要求和安全要求的工程或工程的一部分,解決工程建設中的岩土技術問題。2工程地質與岩土工程的關系雖然工程地質與岩土工程分屬地質學和土木工程,但關系非常密切,這是不言而喻的。有人說:工程地質是岩土工程的基礎,岩土工程是工程地質的延伸,是有一定道理的。工程地質學的產生源於土木工程的需要,作為土木工程分支的岩土工程,是以傳統的力學理論為基礎發展起來的。但單純的力學計算不能解決實際問題,從一開始就和工程地質結下了不解之緣。與結構工程比較,結構工程面臨的是混凝土、鋼材等人工製造的材料,材質相對均勻,材料和結構都是工程師自己選定或設計的,可控的。計算條件十分明確,因而建立在材料力學、結構力學基礎上的計算是可信的。而岩土材料,無論性能或結構,都是自然形成,都是經過了漫長的地質歷史時期,在多種復雜地質作用下的產物,對其材質和結構,工程師不能任意選用和控制,只能通過勘察查明,而實際上又不可能完全查清。岩土工程師不敢相信單純的計算結果,單純的計算是不可靠的,原因就在於工程地質條件的不確知性和岩土參數的不確定性,不同程度地存在計算條件的模糊性和信息的不完全性。因而雖然土力學、岩石力學、計算技術取得了長足進步,並在岩土工程設計中發揮了重要作用,但由於計算假定、計算模式、計算方法、計算參數等與實際之間存在很多不一致,計算結果總是與工程實際有相當大的差別,需要進行綜合判斷。
⑥ 工程地質勘察的方法
大體的有地質抄方法、物探方法。詳細的襲有很多分類。 在各類建築的勘察工作方面,工程地質的研究內容主要是如何按照勘察階段完成應有的勘察任務,圓滿回答設計和施工方面提出的問題,滿足各種地質資料和計算參數的需要。研究各項勘察方法的配合關系,分清主次。工作量的安排標准:如勘探網點布置原則、 間距、 深度, 取樣數量, 試驗項目, 監測網點布置。 物探快捷而經濟, 如何充分發揮其在探查和測試方面的作用,應注意研究。如何應用新的技術方法提高勘察的可靠性也是要很好加以研究的內容。如工程地質模型和模擬試驗,計算機的應用,以及資料庫、專家系統的建立, 應用各種新的理論與方法 (如模糊數學、 分數維、 灰色理論) 等等, 以提高定量評價的水平。
在工程地質學中專門從事勘察研究的分支學科為「專門工程地質學」或「工程地質勘察學」。此外,結合不同類型工程建築的還有:「鐵路工程地質學」、「水利水電工程地質學」 、 「礦山工程地質學」 等。
⑦ 工程地質勘察方法有哪些
工程地質勘察方法:測繪、勘探、岩土測試、長期觀測
測繪:將建築影內響范圍內的地質現象反映容在地形圖上。是一種在地面進行的勘察方法。
勘探:是一種查明地下地質情況的勘察方法。可分為:(1)物探(地球物理勘探):根據導電率、磁性、密度以及彈性波在地下不同地層、介質(水、空洞、岩等)中傳播速度的不同來劃分岩性、地下水位、溶洞分布等等。指導鑽探。(2)鑽探:與坑(槽)探配合使用3)觸探:即是一種勘探手段,又是一種原位測試方法。
原位測試:載荷試驗、靜力觸探試驗、標准貫入試驗、十字板剪切試驗、旁壓試驗、現場直接剪切試驗。
長期觀測。
⑧ 工程地質學的研究方法
包括地來質學方法、實驗和自測試方法、計算方法和模擬方法。地質學方法,即自然歷史分析法,是運用地質學理論查明工程地質條件和地質現象的空間分布,分析研究其產生過程和發展趨勢,進行定性的判斷,它是工程地質研究的基本方法,也是其他研究方法的基礎。實驗和測試方法,包括為測定岩、土體特性參數的實驗、對地應力的量級和方向的測試以及對地質作用隨時間延續而發展的監測。計算方法,包括應用統計數學方法對測試數據進行統計分析,利用理論或經驗公式對已測得的有關數據,進行計算,以定量地評價工程地質問題。
模擬方法,可分為物理模擬(也稱工程地質力學模擬)和數值模擬,它們是在通過地質研究深入認識地質原型,查明各種邊界條件,以及通過實驗研究獲得有關參數的基礎上,結合建築物的實際作用,正確地抽象出工程地質模型,利用相似材料或各種數學方法,再現和預測地質作用的發生和發展過程。電子計算機在工程地質學領域中的應用,不僅使過去難以完成的復雜計算成為可能,而且能夠對數據資料自動存儲、檢索和處理,甚至能夠將專家們的智慧存儲在計算機中,以備咨詢和處理疑難問題,即所謂的工程地質專家系統(見數學地質)。
⑨ 工程地質分析的基本方法有哪些
1.定性研究:通過實驗、詳細的實地研究,對地質過程的形成機制進行分析,得出定性評價
2.定量評價:定性分析基礎上,通過定量計算,進行定性與定量評價相結合的地質過程機制分析——定量評價。