工程地質原位試驗
1. 如何做工程地質勘察報告
摘要:岩土工程勘察報告是建築地基基礎設計和施工的重要依據。在保證外業和實驗資料准確可靠的基礎上,文字報告和有關圖表應按合理的程序編制。要重視現場編錄、原位測試和實驗資料檢查校核,使之相互吻合,相互印證。地基岩土分層是一個重要環節,要根據岩土地質時代、土的成因類型、岩土性質、狀態、岩石風化程度和物理力學特徵合理劃分。岩土的工程力學性質是根據原位測試和實驗資料的數理統計值綜合判定。報告要充分搜集利用相關的工程地質資料,做到內容齊全,論據充足,重點突出,正確評價建築場地條件、地基岩土條件和特殊問題,為工程設計和施工提供合理適用的建議。
關鍵詞:岩土工程勘察 報告 圖表 編製程序 岩土分層
岩土工程勘察報告是工程地質勘察的最終成果,是建築地基基礎設計和施工的重要依據。報告是否正確反映工程地質條件和岩土工程特點,關繫到工程設計和建築施工能否安全可靠、措施得當、經濟合理。當然,不同的工程項目,不同的勘察階段,報告反映的內容和側重有所不同;有關規范、規程對報告的編寫也有相應的要求。下面著重談一談有關工業與民用建築的岩土工程勘察報告編寫工作,且側重於詳細勘察階段。
1報告的編製程序
一項勘察任務在完成現場放點、測量、鑽探、取樣、原位測試、現場地質編錄和實驗室測試等前期工作的基礎上,即轉入資料整理工作,並著手編寫勘察報告。岩土工程勘察報告編寫工作應遵循一定的程序,才能前後照應,順當進行。不然的話,常會出現現場編錄與實驗資料的矛盾、圖表間的矛盾、文圖間的矛盾,改動起來費時費力,影響效率,影響質量。
通常的編製程序是:
(1)外業和實驗資料的匯集、檢查和統計。此項工作應於外業結束後即進行。首先應檢查各項資料是否齊全,特別是實驗資料是否出全,同時可編制測量成果表、勘察工作量統計表和勘探點(鑽孔)平面位置圖。
(2)對照原位測試和土工試驗資料,校正現場地質編錄。這是一項很重要的工作,但往往被忽視,從而出現野外定名與實驗資料相矛盾,鑒定砂土的狀態與原位測試和實驗資料相矛盾。例如:野外定名為粘土的,實驗出來的塑性指數卻<17;野外定名為細砂的,實驗資料為中砂,其0.25~0.5mm顆粒含量百分比達50%以上;野外定為可塑狀態粘性土的,實驗出來的液性指數卻<0;野外定為稍密狀態的砂性土,標准貫入擊數卻<10擊;野外定為淤泥或淤泥質土的,實驗出的孔隙比卻<1;野外定為硬塑粘性土的,標貫擊數卻<18擊……產生諸如此類的矛盾,或由於野外分層深度和定名不準確,或試驗資料不準確,應找出原因,並修改校正,使野外對岩土的定名及狀態鑒定與實驗資料和原位測試數據相吻合。
(3)編繪鑽孔工程地質綜合柱狀圖。
(4)劃分岩土地質層,編制分層統計表,進行數理統計。地基岩土的分層恰當與否,直接關繫到評價的正確性和准確性。因此,此項工作必須按地質年代、成因類型、岩性、狀態、風化程度、物理力學特徵來綜合考慮,正確地劃分每一個單元的岩土層。然後編制分層統計表,包括各岩土層的分布狀態和埋藏條件統計表,以及原位測試和實驗測試的物理力學統計表等。最後,進行分層試驗資料的數理統計,查算分層承載力。
(5)編繪工程地質剖面圖和其它專門圖件。
(6)編寫文字報告。按以上順序進行工作可減少重復,提高效率;避免差錯,保證質量。在較大的勘察場地或地質地貌條件比較復雜的場地,應分區進行勘察評價。
2報告論述的主要內容
報告應敘述工程項目、地點、類型、規模、荷載、擬採用的基礎形式;工程勘察的發包單位、承包單位;勘察任務和技術要求;勘察場地的位置、形狀、大小;鑽孔的布置者和布置原則,孔位和孔口標高的測量方法以及引測點;施工機具、儀器設備和鑽探,取樣及原位測試方法;勘察的起止時間;完成的工作量和質量評述;勘察工作所依據的主要規范、規程;其它需要說明的問題。報告應附勘探點(鑽孔)平面位置圖、勘探點測量成果表和勘察工作量表。倘若勘察工作量少,可只附圖而省去表。一個完整的岩土工程勘察報告,由下面幾部分組成。
2.1地質地貌概況
地質地貌決定了一個建築工地的場地條件和地基岩土條件,應從以下三個方面加以論述:(1)地質結構。主要闡述的內容是:地層(岩石)、岩性、厚度;構造形跡,勘察場地所在的構造部位;岩層中節理、裂隙發育情況和風化、破碎程度。由於勘察場地大多地處平原,應劃分第四系的成因類型,論述其分布埋藏條件、土層性質和厚度變化。(2)地貌。包括勘察場地的地貌部位、主要形態、次一級地貌單元劃分。如果場地小且地貌簡單,應著重論述地形的平整程度、相對高差。(3)不良地質現象。包括勘察場地及其周圍有無滑坡、崩塌、塌陷、潛蝕、沖溝、地裂縫等不良地質現象。如在碳酸鹽岩類分布區,則要敘述岩溶的發育及其分布、埋藏情況。如果勘察場地較大,地
2. 岩土工程勘探與原位測試實物工作收費附加調整系數疊加嗎
地質勘探收費標准如下:
1,工程勘察收費=工程勘察收費基準價 ×(1±浮動幅度值) 。
2,工程勘察收費基準價=工程勘察實物工作收費+工程勘察技術工作收費 。
3,工程勘察實物工作收費=工程勘察實物工作收費基價×實物工作量×附加調整系數 4 工程勘察技術工作收費=工程勘察實物工作收費×技術工作收費比例。
工程勘察收費是指勘察人根據發包人的委託,收集已有資料、現場踏勘、制訂勘察綱要,進行測繪、勘探、取樣、試驗、測試、檢測、監測等勘察作業,以及編制工程勘察文件和岩土工程設計文件等收取的費用。
3. 原位測試的一般規定
第1條 軟土地區工程地質勘察應增加原位測試工作量,其布置應與鑽探、室內試驗的配合和對比,以提高勘察質量。原位測試成果的使用應考慮地區性和經驗性。
第2條 原位測試一般包括靜力觸探試驗、十字板剪切試驗,標准貫入試驗、旁壓試驗、載荷試驗及波速試驗等。選用原位測試方法應以土層情況、設計參數的要求以及建築物等級等因素確定。
第3條 採用靜力觸探方法評價土的強度和變形指標時,應結合本地區經驗取值。應用靜力觸探曲線分層時,應綜合考慮土的類別,成因和地下水條件等因素。
第4條 十字板剪切試驗適用於測定軟土的抗剪強度。對重荷載的大型建築,應測定其殘余強度並計算其靈敏度。
第5條 標准貫入試驗可用於評價土的均勻性和定性地劃分不同性質的土層,以及軟土中夾砂層的密實度和承載力。
第6條 旁壓試驗宜採用自鑽式旁壓儀。依據儀器設備和土質條件,選擇適當的鑽頭、轉速、進速、泥漿壓力和流量、刃口的距離等以確定最佳自鑽方式。
第7條 用載荷試驗確定地基承載力時,承壓板面積不宜小於5000 。承載力基本值的選用,應根據壓力和沉降、沉降與時間關系曲線的特徵,結合地區經驗取值。
第8條 場地土的動力參數可採用彈性波速單孔法測試,測點間距宜採用1~1.5M。當地層復雜時,宜採用跨孔法。跨孔法的兩測孔間距宜採用4~5M。並應測量孔斜。
4. 建築地質勘察報告
摘要:岩土工程勘察報告是建築地基基礎設計和施工的重要依據。在保證外業和實驗資料准確可靠的基礎上,文字報告和有關圖表應按合理的程序編制。要重視現場編錄、原位測試和實驗資料檢查校核,使之相互吻合,相互印證。地基岩土分層是一個重要環節,要根據岩土地質時代、土的成因類型、岩土性質、狀態、岩石風化程度和物理力學特徵合理劃分。岩土的工程力學性質是根據原位測試和實驗資料的數理統計值綜合判定。報告要充分搜集利用相關的工程地質資料,做到內容齊全,論據充足,重點突出,正確評價建築場地條件、地基岩土條件和特殊問題,為工程設計和施工提供合理適用的建議。
關鍵詞:岩土工程勘察 報告 圖表 編製程序 岩土分層
岩土工程勘察報告是工程地質勘察的最終成果,是建築地基基礎設計和施工的重要依據。報告是否正確反映工程地質條件和岩土工程特點,關繫到工程設計和建築施工能否安全可靠、措施得當、經濟合理。當然,不同的工程項目,不同的勘察階段,報告反映的內容和側重有所不同;有關規范、規程對報告的編寫也有相應的要求。下面著重談一談有關工業與民用建築的岩土工程勘察報告編寫工作,且側重於詳細勘察階段。
1 報告的編製程序
一項勘察任務在完成現場放點、測量、鑽探、取樣、原位測試、現場地質編錄和實驗室測試等前期工作的基礎上,即轉入資料整理工作,並著手編寫勘察報告。岩土工程勘察報告編寫工作應遵循一定的程序,才能前後照應,順當進行。不然的話,常會出現現場編錄與實驗資料的矛盾、圖表間的矛盾、文圖間的矛盾,改動起來費時費力,影響效率,影響質量。
通常的編製程序是:
(1)外業和實驗資料的匯集、檢查和統計。此項工作應於外業結束後即進行。首先應檢查各項資料是否齊全,特別是實驗資料是否出全,同時可編制測量成果表、勘察工作量統計表和勘探點(鑽孔)平面位置圖。
(2)對照原位測試和土工試驗資料,校正現場地質編錄。這是一項很重要的工作,但往往被忽視,從而出現野外定名與實驗資料相矛盾,鑒定砂土的狀態與原位測試和實驗資料相矛盾。例如:野外定名為粘土的,實驗出來的塑性指數卻<17;野外定名為細砂的,實驗資料為中砂,其0.25~0.5mm顆粒含量百分比達50%以上;野外定為可塑狀態粘性土的,實驗出來的液性指數卻<0;野外定為稍密狀態的砂性土,標准貫入擊數卻<10擊;野外定為淤泥或淤泥質土的,實驗出的孔隙比卻<1;野外定為硬塑粘性土的,標貫擊數卻<18擊……產生諸如此類的矛盾,或由於野外分層深度和定名不準確,或試驗資料不準確,應找出原因,並修改校正,使野外對岩土的定名及狀態鑒定與實驗資料和原位測試數據相吻合。
(3)編繪鑽孔工程地質綜合柱狀圖。
(4)劃分岩土地質層,編制分層統計表,進行數理統計。地基岩土的分層恰當與否,直接關繫到評價的正確性和准確性。因此,此項工作必須按地質年代、成因類型、岩性、狀態、風化程度、物理力學特徵來綜合考慮,正確地劃分每一個單元的岩土層。然後編制分層統計表,包括各岩土層的分布狀態和埋藏條件統計表,以及原位測試和實驗測試的物理力學統計表等。最後,進行分層試驗資料的數理統計,查算分層承載力。
(5)編繪工程地質剖面圖和其它專門圖件。
(6)編寫文字報告。按以上順序進行工作可減少重復,提高效率;避免差錯,保證質量。在較大的勘察場地或地質地貌條件比較復雜的場地,應分區進行勘察評價。
2 報告論述的主要內容
報告應敘述工程項目、地點、類型、規模、荷載、擬採用的基礎形式;工程勘察的發包單位、承包單位;勘察任務和技術要求;勘察場地的位置、形狀、大小;鑽孔的布置者和布置原則,孔位和孔口標高的測量方法以及引測點;施工機具、儀器設備和鑽探,取樣及原位測試方法;勘察的起止時間;完成的工作量和質量評述;勘察工作所依據的主要規范、規程;其它需要說明的問題。報告應附勘探點(鑽孔)平面位置圖、勘探點測量成果表和勘察工作量表。倘若勘察工作量少,可只附圖而省去表。一個完整的岩土工程勘察報告,由下面幾部分組成。
2.1 地質地貌概況
地質地貌決定了一個建築工地的場地條件和地基岩土條件,應從以下三個方面加以論述:(1)地質結構。主要闡述的內容是:地層(岩石)、岩性、厚度;構造形跡,勘察場地所在的構造部位;岩層中節理、裂隙發育情況和風化、破碎程度。由於勘察場地大多地處平原,應劃分第四系的成因類型,論述其分布埋藏條件、土層性質和厚度變化。(2)地貌。包括勘察場地的地貌部位、主要形態、次一級地貌單元劃分。如果場地小且地貌簡單,應著重論述地形的平整程度、相對高差。(3)不良地質現象。包括勘察場地及其周圍有無滑坡、崩塌、塌陷、潛蝕、沖溝、地裂縫等不良地質現象。如在碳酸鹽岩類分布區,則要敘述岩溶的發育及其分布、埋藏情況。如果勘察場地較大,地
5. 什麼是工程地質原位測試
現場原位測試是指在工程地質勘察現場,在不擾動或基本不擾動地層的情況下對地層進行測試,以獲得所測地層的物理力學性質指標及劃分地層的一種勘察技術。
比如:靜力觸探、動力觸探、旁壓試驗、十字板剪切試驗、靜力載荷試驗、標准貫入試驗、現場剪切試驗。
6. 高層建築工程地質勘察要點有哪些
高層建築工程地質勘察要點為:
1、勘探孔布置見附圖,勘探單位可根據現場情況適當調整,但應滿足:控制性孔占勘察孔總數約1/3,取土樣試樣和進行原位測試的勘察孔在平面上均勻分布,其數量占勘探孔總數為1/3~1/2。
2、鑽孔深度:因沒有提供初勘報告,一般勘察孔的深度,由勘察單位根據當地土層情況按《岩土工程勘察規范GB50021-2001》和《高層建築岩石工程勘察規程JGJ 72—2004》定,控制孔深度宜到滿足沉降計算要求。如預定的孔深未見良好持力層時,鑽孔應加深,直至進入良好持力層。查明基岩面起伏狀況,鑽孔進入持力層深度不小於5m。
3、應判定各土層的成因時代,對場地的工程地質條件作出評價;提供場地土類別及場地地震效應評價。
4、查明各土層的類別、厚度、坡度、土性參數。並對地基土的穩定性和承載能力作出評價。提供各土層的一般物理力學指標、抗剪(固結快剪、快剪)強度指標等設計要素。提供樁基設計所需的岩土參數,要求提供樁側極限摩阻力標准值、樁端極限阻力標准值並推薦指標,建議樁的類型、長度及施工方法,提供樁的垂直極限承載力設計推薦值。
5、提供地基土的變形參數,建議基礎的合理形式並估算相應的沉降值。
6、提供基坑開挖所需岩土技術參數。
7、鑽孔取樣間距一般為1.0m,當土層變化大時,應加取土樣或連續取樣。
8、查明淺層地質的小螺孔間距及孔深根據當地土層情況,由勘察單位自定,若遇地質不良(軟土及液化砂土、溶洞等)或場地土層復雜(岩層起伏)時應適當增加布孔數量或孔深。
7. 什麼是工程地質原位測試
原位測試是指在工程地質勘察現場,在不擾動或基本不擾動地層的情況下對地版層進行測試權,以獲得所測地層的物理力學性質指標及劃分地層的一種勘察技術。
比如:靜力觸探、動力觸探、旁壓試驗、十字板剪切試驗、靜力載荷試驗、標准貫入試驗、現場剪切試驗。
8. 土體原位測試對碎石樁加固填土地基質量的檢測
(一)碎石樁質量檢測結果
某工程位於溝谷之中,現已用土填平,並經過初步碾壓,並對填土地基進行了碎石樁加固。建設和設計方要求對碎石樁加固填土地基的質量進行檢測,並對檢測提出以下要求:
(1)本次碎石樁加固地基的質量檢測點分為A、B兩類。A類點按正六邊形布置,計5處(A1—A5);B類點按菱形布置,有7處(B1—B7);其具體位置見附圖(略)。
(2)地基質量檢測要求達到以下幾點:
①根據設計要求,提出碎石樁加固地基承載力和變形模量值,加固後的地基承載力不應小於180kPa,壓縮模量大於10MPa;
②提供碎石樁密實度資料;
③給出由樁和樁間土測試數據求解復合地基承載力和變形模量的計算過程。
檢測方法是:
檢測復合地基質量,可根據工程規模、土類、樁型等選用不同方法。鑒於此項工程為一低層建築,樁間土中混有大小不等的碎石,故選用了動力觸探和旁壓測試兩種方法。雖也可採用載荷測試和靜力觸探測試,但前者成本高,後者遇碎石會損壞儀器,故放棄。為了驗證旁壓試驗的准確性,曾與在同一測試地點的檢驗本填土質量的載荷測試成果進行了對比,如表8—1所示。
表8—1PMT與PLT試驗成果對比
由表8—1知,E0=2.36Em,說明旁壓測試檢測樁間土的方法可靠。
用重型動力觸探檢測碎石樁承載力、變形模量和密實度及樁間土質量,並和旁壓測試成果對比,互相驗證,可確保檢測質量有較高的可靠性。
(二)復合地基質量檢測結果
1.地層情況
該工程包括化工廠食堂及小餐廳。地基土主要由粘性土和少量砂土以及混有一些碎石的填土組成。原始地表高程為99.5—100.0m左右,位於階地面區,現填土壓實後的地面高程為104.5m左右,填土厚度則為4.5—5.0m左右。填土齡期已有一年半時間,經過碾壓,比較密實。但存在碾壓不均,各處強度差別較大的情況,不宜作為天然地基,必須進行地基處理。
填土經過碎石樁擠密後,樁間土的強度有不同程度的提高,地基強度的均一性也得到了加強。如表8—2所示。但隨深度增加,提高幅度減小,可能和樁長不足有關。
表8—2碎石樁加固地基前後,填土強度變化比較表
根據旁壓試驗鑽孔取土直接觀察描述,可得到准確的地層剖面。自地表至地下8m深度范圍內可將地基土分為以下四層(擠密碎石樁加固地基工程地質剖面圖略):
①粘土層:分布深度為0—2.7m左右。此層可細分為三層:0—0.36m為雜填土層,褐黃色粘土夾磚、石碎塊,其最大直徑為20cm;0.36—0.92m為粘土層,褐色,均一,硬塑;0.92—2.7m為粘土層,鐵錳質薄膜浸染,均一,硬塑至堅硬。
第①層土表層(0—1.0m)承載力較低,下部較高。
②砂層:灰白色,細砂夾磚塊、石塊或少量粘性土,分布深度一般為2.7—3.5m,個別地點達4.0m。處於密實狀態,承載力高,旁壓成孔時人力鑽進困難,重型(2)動力觸探錘擊數N63.5平均值為10左右。
③粉質粘土層:褐黃色,分布深度一般為3.5—5.0m,處於硬塑狀態,土層均一,承載力較高。
④粘土層:以深褐色(栗色)為特徵,為晚更新世老粘土,廣泛分布在5.0m深度以下,處於硬塑至堅硬狀態,承載力高,且隨深度增加,承載力有隨之增高的趨勢。
2.樁間土質量
(1)樁間土層試驗指標統計:設計碎石樁按正三角形布設,間距為1.5m,樁徑為0.6m,樁長為8.0m。樁間土出露面積占復合地基總面積的80%,樁間土的強度對復合地基的強度大小起著決定性的作用。
表8—3食堂及小餐廳地基樁間土旁壓測試成果統計表
鑒於上述原因,對樁間土進行了全面的,自上而下的旁壓和動力觸探試驗。試驗孔位置一般定在正三角形的中心,求得了大量的第一手的可靠的試驗數據。對其進行統計、分析、取值,為獲取計算復合地基承載力等關鍵參數是必不可少的。參數選得准確,可靠,才會使計算結果符合實際,也是提高檢測工作質量的前提。
試驗指標統計原則:①按土層不同分別統計;②按不同測試方法分別統計;③按軟弱區與正常區分別統計;④按一定的數理統計方法選取計算參數值。
(2)計算指標的選取:通過對表8—3、表8—4、表8—5試驗成果初步統計,求得各土層試驗指標的算術平均值。根據均值的大小,可將食堂及小餐廳樁間土劃分為正常區和軟弱區。軟弱區為B6,B7檢測點及其附近,以及A1檢測點上部地基土,其它檢測點均屬正常區。然後,進行分區統計。
按上述方法得到的各指標均值,可作為地基土參數基準值,再經過一定修正,可得到參數標准值。
土體原位測試機理、方法及其工程應用
式中:fk——岩土參數標准值;
rs——統計修正系數;
fm——岩土參數平均值。
土體原位測試機理、方法及其工程應用
式中,n為統計頻數。
或
因rs服從t分布函數,可得置信區間α=0.05時的β值,而變異系數δ取值如下:對於旁壓模量Em,取δ=0.30;對於旁壓極限荷載PL和土層承載力fk,取δ=0.40。
根據上述方法和原則,所得地基樁間土層參數標准值如表8—6所示。
上表是根據旁壓試驗數據,經數理統計分析後得出的,准確性好。動力觸探檢測樁間土的錘擊數可作為參考。
3.碎石樁質量
用重型(2)動力觸探檢測樁的總數占檢測區總樁數的2.4%,符合地基驗收規范≥2%的規定。檢測深度一般達到樁的長度,有的已超過實際樁長。檢測孔最深達10.2m。
經檢測,碎石樁直徑為50—55cm左右,碎石為灰岩碎塊,多呈板狀或塊狀。碎石塊最大直徑(以長軸計)為12cm,約占碎石含量的15%;碎石塊直徑一般為3—5cm,約占碎石含量的75%,其他粒徑石塊含量約佔10%,碎石中不含泥土。在成樁過程中,重1.2t的落錘以3—4m的落距分層(每層約30cm厚)將樁管中的碎石擊實,每層擊數6次左右。落錘端部為圓錐形,可將碎石樁中心的岩塊擊成粉末狀,粉末強度比岩塊強度低。
在本次檢測中,發現有一部分樁(主要集中在B6和B7檢測點及其附近)的樁長及密度均未達到設計要求,最短一根樁只有2.8m,最長樁也只有4.4m,且測樁擊數N63.5自上而下變化不大,只有3—10擊左右,明顯低於正常區樁的錘擊數和密實度,加上此區樁間土強度也很低(78kPa),樁的承載力為200kPa,孔隙比e=0.5。所以將此區定為軟弱區,必須補打碎石樁,樁長8m,補打在三角形中心,對原有樁也應重新加長、擊實,並派人監督施工,以確保地基強度一致,減少地基不均勻沉降至允許程度,以保證小餐廳的安全與正常使用。
表8—4食堂及小餐廳地基樁間土動力觸探試驗成果統計表
註:1.錘擊數
2.因觸探桿長度較短(一般小於10m),對N63.5均未進行桿長修正。
表8—5試驗區成果統計表
註:靜力載荷試驗求地基承載力方法,以直線端點所對應的壓力值為准。
表8—6食堂及小餐廳樁間土層強度參數標准值
其他檢測點的碎石樁樁長一般為6m左右,樁的密實度由上而下遞增,如以基礎埋深1.5m為界,則碎石樁在1.5m深度以下的樁的承載力fp,k≥400kPa,密實,孔隙比e≤0.35。
(三)復合地基強度指標計算
根據《建築地基處理技術規范》所推薦的求復合地基強度指標的計算公式,並應用前面提供的計算參數和設計參數,即可求得復合地基強度指標。
1.復合地基承載力fsp,k(8-1)
土體原位測試機理、方法及其工程應用
式中:fzp,k——復合地基承載力標准值;
fs,k——樁間土承載力標准值;
fp,k——碎石樁單位截面積承載力標准值;
m——面積置換率。
土體原位測試機理、方法及其工程應用
式中:d——樁的直徑,0.55m;
dc——等效影響圓直徑,按等邊三角形布置時,dc=1.05s;
s——樁的間距,1.5m。
計算結果如表8—7所示。
表8—7復合地基承載力標准值表
註:同一層中,線上指標為軟弱區的,線下指標為正常區的。
2.復合地基變形模量Espo
根據《建築地基處理技術規范》所推薦的求復合地基壓縮模量的公式:
Esp=[1+m(n-1)]Es和理論公式
土體原位測試機理、方法及其工程應用
式中:Esp——復合地基壓縮模量;
Espo——復合地基變形模量;
n——樁土應力比,在此取2;
E0——土的變形模量;
Eso——樁間土變形模量;
μ——土的泊松比,其值由土類及其稠度狀態決定。
其他符號意義同前。
求得復合地基各變形模量值如表8—8所示。
表8—8復合地基變形模量標准值表
(本實例圖件略)
(四)結論和建議
經過現場測試及室內資料整理和計算,可以得到如下結論:
(1)經碎石樁加固後的復合地基承載力和變形模量標准值如表8—9所示。
表8—9食堂、小餐廳復合地基承載力和變形模量標准值表
(2)碎石樁體的密實度分正常區和軟弱區(B6、B7檢測點及其周圍地區),正常區內的碎石樁密度頂部(地表下1.5m深度范圍內)較差,下部密實,考慮到基礎埋深1.5m,所以正常區碎石樁的密度(1.5m深度以下)的孔隙比指標e小於和等於0.35,其承載力為400kPa。軟弱區的樁密實度上、下都不密實,e=0.5樁長≤4.4m。
(3)化工廠廠前區食堂及小餐廳復合地基強度不均一,可分為軟弱區和正常區。正常區范圍大,包括A2、A3、A4、A5、B1、B2、B3、B4、B5檢測點及其鄰近地區,經碎石樁加固後的地基強度已滿足設計要求,可進行基坑開挖和建築施工。
軟弱區范圍較小,包括B6、B7檢測點及其鄰近地區,樁長及密度,樁間土強度都遠低於設計要求,必須重新加固處理。建議將軟弱區中的原樁加長到8m,並擊實,還需在每個正三角形中心再補打一根碎石樁,以提高樁間土強度,樁長仍為8m,並擊實。A1檢測點及其鄰近地區也應再處理,以提高樁間土及復合地基強度。
(4)軟弱區重新處理後,建議再作檢測,以驗證補打碎石樁後,復合地基強度是否達到設計要求,確保建築物安全和正常使用。
9. 標准貫入試驗
一、試驗設備及操作技術要點
1.試驗設備
標准貫入試驗的設備包括:標准貫入器、觸探桿、穿心錘與錘墊四部分,見圖4-4所示。目前,國際上常用的設備規格已經統一,見表4-8。
表4-8 標准貫入試驗設備規格
圖4-4 標准貫入試驗設備(單位:mm)
1—貫入器靴;2—由兩半圓形管合成的貫入器身;3—出水孔;4—貫入器頭;5—觸探桿;6—錘墊;7—穿心錘
2.試驗的操作技術要點
(1)為保證標准貫入試驗孔的質量,要求採用回轉鑽進,以盡可能減少對孔底土的擾動。當鑽進至試驗標高以上15cm處,停止鑽進。
還應注意的是:①仔細清除孔底殘土到試驗標高;②在地下水位以下鑽進時,或遇承壓含水砂層時,孔內水位應始終高於地下水位,應保持孔底土處於平衡狀態,以減少對土的振動擾動;③當下套管時,要防止套管超過試驗標高,否則會使N值偏大;④緩慢下放鑽具,避免孔底土的擾動;⑤為防止涌砂或塌孔,應採用泥漿護壁。
(2)為保證錘擊時鑽桿不發生側向晃動,鑽桿應定期檢查,使鑽桿彎曲度小於0.1%,接頭應牢固。
(3)穿心錘落距為76cm,應採用自動脫鉤的自由落錘法進行錘擊,並減小導向桿與錘之間的摩阻力,避免錘擊時的偏心和側向晃動,以保持錘擊能量恆定。
(4)試驗時,先將整個桿件系統連同靜置於鑽桿上端的錘擊系統,一起下到孔底。首先將貫入器以每分鍾15~30擊的速度打入土層中15cm,以後開始記錄打入30cm的錘擊數,即為實測錘擊數N。當N>50擊,而貫入度未達30cm時,可記錄50擊的實際貫入深度,終止試驗。按實際50擊時的貫入度ΔS(cm),按式(4-15)計算貫入30cm的錘擊數。
土體原位測試與工程勘察
(5)提出貫入器,取出貫入器中的土樣進行鑒別、描述、記錄,保存土樣備用。
(6)最後繪出擊數N和貫入深度(H)的關系曲線(圖4-3)。
二、成果的校正
試驗的影響因素是很復雜的。其中有些因素可通過標准化的辦法使其統一以減少對試驗成果的影響,如設備、落錘方法、試驗方法等影響因素屬於此類;但另一些因素如桿長,地下水位、上覆壓力等,則是無法人為控制的。
1.桿長的影響
觸探桿長度對測試結果的影響,國內外存在不同的看法。有兩種代表性的分析理論,即:古典的牛頓碰撞理論及彈性桿件中波動理論。
按牛頓碰撞理論,隨桿長增長,桿件系統受錘擊碰撞後用於貫入土中的有效能量逐漸變小;而按彈性波動理論,隨桿長的增長,有效能量卻是逐漸增大,超過一定桿長後,有效能量趨於定值。
國內對此因素有兩種不同的處理意見:
《建築地基基礎設計規范》(GBJ 7-89)規定桿長>3m時錘擊數按下式進行桿長修正:
N=αN′ (4-16)
式中:N為標貫試驗經桿長修正後的錘擊數;N′為實測的標貫擊數;α為長度修正系數,查表4-9。
表4-9 探桿長度校正系數α表
該表中α值,實際上是以牛頓碰撞理論為基礎計得的。
如用彈性桿件波動理論,當桿長 l≥14m,α=1.0;當桿長小於14m,由於輸入鑽桿的錘擊能量隨著桿長變短而變小,使擊數值偏大,α偏小,故不做桿長修正。
《地下鐵道、輕軌交通岩土工程勘察規范》(GB 50307-1999)及《岩土工程勘察規范》(GB50021-2001)規定不進行桿長修正。
2.地下水位影響的校正
Terzaghi和Peck提出,當實測N′>15的飽和粉細砂,建議用下式校正:
土體原位測試與工程勘察
交通部《港口工程地質勘察技術規范》規定,當用N值確定砂土的相對密度Dr及內摩擦角φ值時,對地下水位以下的中、粗砂層的N值,宜按下式校正:
N=N′+5 (4-18)
3.上覆壓力影響的校正
長期以來國內不考慮上覆壓力的影響。
三、標准貫入試驗成果的應用
根據標准貫入試驗的錘擊數,可對砂土、粉土、粘性土的物理狀態,土的強度、變形參數、地基承載力、單樁承載力,砂土和粉土的液化,成樁的可能性等作出評價。
1.評定土的強度指標
評定砂土的內摩擦角φ及粘性土的不排水抗剪強度Cu有多種方法:
(1)Terzaghi和Peck提出粘性土不排水抗剪強度Cu為:
Cu=(6~6.5)N (4-19)
(2)Gibbs和Holtz統計的砂土經驗關系式為:
土體原位測試與工程勘察
式中:σv0為上覆壓力(t/m2)。
(3)Behpoor結合60項工程,對伊朗的亞粘土及粉質粘土(N<25擊),得:
qu=15N(kPa) (4-21)
(4)南京水利科學研究院於1950~1960年期間,在我國東南沿海諸省的101項工程中積累了大量的試驗資料,統計出標貫擊數與無側限抗壓強度qu的關系式有:
對粘土地基,有792個標貫試驗,Ip>17,粘粒含量0%~87%,得:
qu=14N+3(kPa) (4-22)
對壤土地基,共有596個標貫試驗,Ip=7~17,粘粒含量為0%~54%,得:
qu=15.3N(kPa) (4-23)
2.評定砂土的相對密度和密實程度
直接按N值判定砂土的密實程度,見表4-10。
表4-10 直接按N值判定砂土的緊密程度
3.評定粘性土的稠度狀態
用N與粘性土的稠度狀態建立相關關系,國內外均有研究。Terzaghi和Peck(1946)提出的標貫擊數與稠度狀態關系,見表4-11。武漢冶金勘察公司曾用149組資料得到標貫擊數與稠度狀態統計的經驗關系,基本上與Terzaghi及Peck(1948)的結果相近。據表4-12就可以得到土對應於N值的稠度狀態。
表4-11 粘性土N與稠度狀態關系(Terzaghi和Peck)
表4-12 N與液性指數IL的關系
4.評定地基土的承載力
國外在以標貫試驗確定粘性土地基的承載力時,一般是由N值推求抗剪強度或無側限抗壓強度qu,再按理論公式計算承載力。
在國內,著重開展標貫試驗與載荷試驗對比研究,並提出經驗關系。
《建築地基基礎設計規范》(GBJ7-89),對砂性土承載力標准值,列於表4-13,對粘性土承載力標准值,列於表4-14。
表4-13 N值與砂性土承載力標准值fk的關系
表4-14 N值與粘性土承載力標准值fk的關系
國內很多單位也提出不少地區性的經驗公式,使用時要注意地區性、土類的差異。
5.評定土的變形參數
用標貫試驗估算土的變形參數時有兩種途徑:一種是與平板載荷試驗對比,得出變形模量E0;另一種是與室內壓縮試驗對比,得出壓縮模量Es值。一些經驗關系式見表4-15所列。
表4-15 N值與E0或Es的經驗關系式
6.預估單樁承載力及選擇樁尖持力層
(1)求單樁承載力 用標貫擊數直接估算樁端和樁周極限承載力,國外已有些經驗可供借鑒。施默特曼(J H Schmertmann,1969)提出按表4-16估算打入樁單樁承載力。應用范圍:N=5~60。N<5時,用N=0計;N>60時,用N=60計。
表4-16 利用N值估算樁端極限阻力qbu和樁周極限阻力qsu
註:qc為靜力觸探的貫入阻力;摩阻比即靜力觸探側壁阻力和錐尖阻力之比。
日本《建築鋼管樁基礎設計規范》規定:在持力層為砂土時,樁端極限阻力為:
土體原位測試與工程勘察
式中:N1為樁尖以下2d范圍內的N平均值;N2為樁尖以下10d范圍內的N平均值;d為樁身直徑。
樁周總極限摩阻力為:
土體原位測試與工程勘察
式中:Ns為樁周為砂土部分N的平均值;Nc為樁周為粘性土部分N的平均值;As,Ac分別為樁在砂土層和粘性土層部分的側面積。
北京地質勘察處研究所,曾收集31組試樁與標准貫入試驗求單樁承載力的對比資料,提出以下公式求鑽孔灌注樁極限承載力q:
土體原位測試與工程勘察
式中:q為灌注樁極限承載力(t);lc、ls分別為樁身在粘性土部分與砂土部分的長度(m);
當孔底虛土厚度H>0.5m時,則採用下式:
土體原位測試與工程勘察
(2)選擇樁尖持力層 利用標准貫入試驗選擇樁尖持力層,從而確定樁的長度是一個比較簡便和有效的方法,特別是地層變化較大的情況更具突出的優點。
根據國內、外的工程實踐,對於打入式預制樁,常選N=30~50擊作為持力層。對廣州地區的殘積層N=30就可滿足樁長15~20m對持力層的要求。但應用時應結合地區經驗來考慮,如上海,一般在60m以下才出現N≥30擊的地層;多用半支承半摩擦樁,即可把樁尖持力層選在地下35m及50m上下的N=15~20擊的中密粉細砂及粘土層上。實踐證明,這也是合理可靠的。
7.液化判別
20世紀60年代,Seed等人在對美國阿拉斯加地震及日本新瀉地震的研究中,提出以標准貫入試驗的N值為主要指標的「剪應力比-標准貫入法」是很有影響的。
在中國邢台、海城、唐山地震後,結合現場調查並進行理論分析研究,參考Seed等人的成果,提出了以標貫擊數N值為主要參數,同時考慮地震烈度、有效覆蓋壓力和地下水位等主要因素的砂土和輕亞粘土的可能液化判別式。該公式納入國家標准《建築抗震設計規范》。
現行國家標准《建築抗震設計規范》(GB50011-2001)中規定:當飽和土標貫錘擊數(未經桿長修正)小於液化判別標准貫入擊數的臨界值時,應判為液化土。
液化判別標准貫入擊數臨界值可按下式計算:
土體原位測試與工程勘察
土體原位測試與工程勘察
式中:Ncr為液化判別標准貫入錘擊數臨界值;N0為液化判別標准貫入錘擊數基準值(表4-17);ds為飽和土標准貫入點所處深度(m);dw為地面到地下水位的深度(m);pc為粘粒含量(%),當小於3或為砂土時,應採用3。
表4-17 標准貫入錘擊數基準值
註:括弧內數值用於設計基本地震加速度為0.15 g和0.30 g的地區。
參考文獻
中華人民共和國國家標准《建築地基基礎設計規范》GBJ 7-89,北京:中國建築工業出版社
中華人民共和國國家標准《建築抗震設計規范》GB 50011-2001,北京:中國建築工業出版社
中華人民共和國國家標准《岩土工程勘察規范》GB 50021-2001,北京:中國建築工業出版社
林宗元主編.2003.《簡明岩土工程勘察設計手冊》,北京:中國建築工業出版社
孟高頭.1997.《土體原位測試機理、方法及其工程應用》[M].北京:地質出版社
南京水利科學研究院土工所.2003.土工試驗技術手冊,北京:人民交通出版社
唐賢強,謝瑛,謝樹彬等.1993.《地基工程原位測試技術》,北京:中國鐵道出版社
王鍾琦,孫廣忠,劉雙光等.1986.《岩土工程測試技術》,北京:中國建築工業出版社
張喜發,劉超臣,欒作田,張文殊.1984.《工程地質原位測試》[M].地質出版社