當前位置:首頁 » 地質工程 » 工程地質填土

工程地質填土

發布時間: 2021-03-14 03:24:22

1. 勘察外業土應該怎麼描述

一、雜填土:

雜色,鬆散,大孔隙,上部為砼地坪,含較多的碎石。

二、淤泥質粉質粘土:

灰色~灰黑色,流塑,部分夾有機質;無搖振反應,稍有光滑,干強度低,韌性低,有腐味

三、粘土:

灰黃色,可塑,無搖振反應、光滑,干強度高,韌性高,局部分布。

四、粘土:

灰黃~褐黃色,硬塑,含少量的鐵,錳質結核,可塑,無搖振反應,光滑,干強度高,韌性高。

五、粉質粘土:

青灰色,軟~可塑狀,為後期沉積,搖振反應無,稍有光滑,干強度中等,韌性中等。

六、粉質粘土:

灰黃~褐黃色,硬塑,含青灰色粘土團塊無搖振反應,稍有光滑,干強度中等,韌性中等。

七、粉質粘土:

灰黃~褐黃色,可塑,無搖振反應,稍有光滑,干強度中等,韌性中等。

八、粉質粘土:

灰黃色,可塑,稍有光滑,干強度中等,韌性中等。局部含團塊狀密實粉土。

九、粉質粘土:

灰黃~褐黃色,鈣質結核,硬塑,無搖振反應,稍有光滑,干強度中等,韌性中等。

十、粉質粘土:

灰黃~灰色,軟~可塑,粉粒含量高,無搖振反應,稍有光滑,干強中等,韌性中等。

十一、粉質粘土:

上部淺灰色,中下部褐黃色,硬塑,含少量鐵錳質結核,無搖振反應,切面光滑,干強度高,韌性高。

十二、粉質粘土夾粉土:

灰黃~青灰色,可塑,含少量雲母片,無搖振反應,稍有光滑,干強度中等,韌性中等。

十三、粉砂:

黃色,含雲母片,中密。主要由石英等礦物組成,飽和狀態。

十四、粉砂:

上部灰黃色,底部淺灰色,含雲母片,飽和狀態,密實。

十五、粉質粘土夾粉土:

灰黃色,軟~可塑,無搖振反應,稍有光滑,干強度中等,韌性中等。局部夾薄層粉土。

十六、粉土:

灰黃,含雲母片,很濕,稍密。搖振反應中等,無光澤反應,干強度低,韌性低。

十七、粉砂:

灰黃,含雲母片,飽和,密實,主要成分由長石、石英、雲母等組成,磨園度好、分、選性好。

十八、粉土:

淺灰色,含雲母片,搖振反應中等,無澤反應,干強度低,韌性低。

十九、粘土夾粉砂:

灰黃色,褐黃色,可塑,含少量鈣質結核核徑為3cm。夾薄層壯中密粉砂,具水平層理,無搖振反應,切面稍光滑,干強度高,韌性高。

二十、粘土:

灰黃,褐黃色,含少量鐵,錳質結核,無搖振反應,切面光滑,干強度高,韌性高。

二十一、粉質粘土:

褐黃色,硬塑,含白色高齡土條帶用鈣質結核,(核徑為0.3~2cm),無搖振反應,切面光滑,干強度高,韌性高。

二十二、粉質粘土夾粉土:

淺灰色,可塑,粉粒含量高,無搖振反應,稍有光滑,干強度中等,韌性中等。局部夾30cm厚薄層粉土,濕,中密~密實。

二十三、碎石土:

淺黃色,灰黃色,中密~密實,碎石含量50%~70%稜角形,次稜角形,一般直徑20~40mm最大粒徑120mm 成份以灰岩為主,少量為砂岩,由老黃土、新黃土,中粗砂,礫石充填。

二十四、 中風化灰岩:

灰~深灰色,隱晶質結構中厚層狀構造,岩石結構緻密堅硬,裂隙發育大部分閉合,由方解石充填,岩芯多呈短柱狀,長柱,少量呈碎石塊狀,碎粒狀,土狀,長度20~40cm局部溶蝕現像嚴重,岩芯表面呈峰窩狀,溶徑5~20mm,最大50mm.

二十五、全風化粘土岩:

褐灰色,黃褐色,棕紅色。結構構造完全破壞岩芯呈土狀,含風化碎屑,碎塊,手捏易碎,遇水易分解。

二十六、強風化粘土岩:

褐灰色,黃褐色。棕紅色,結構構造大部分破壞,岩芯呈碎塊狀,節理裂隙較發育。

二十七、頁岩:

灰黃色,薄層狀,手捏易散,遇水易崩解。

(1)工程地質填土擴展閱讀

雜填土工程性質:

一、性質不均厚度變化大。

1、由於雜填土的堆積條件、堆積時間,特別是物質來源和組成成分的復雜和差異,造成雜填土的性質很不均勻,分布范圍及厚度的變化均缺乏規律性,帶有極大的人為隨意性,往往在很小范圍內,就有很大的變化。

2、當雜填土的堆積時間愈長,物質組成愈均勻、顆粒愈粗,有機物含量愈少,則作為天然地基的可能性愈大。

二、變形大並有濕陷性。

1、就其變形特性而言,雜填土往往是一種欠壓密土,一般具有較高的壓縮性。對部分新的雜填土,除正常荷載作用下的沉降外,還存在自重壓力下沉降及濕陷變形的特點;對生活垃圾土還存在因進一步分解腐殖質而引起的變形。

2、在乾旱和半乾旱地區,干或稍濕的雜填土,往往具有浸水濕陷性。堆積時間短、結構疏鬆,這是雜填土浸水濕陷和變形大的主要原因。

三、壓縮性大強度低。

1、雜填土的物質成分異常復雜,不同物質成分,直接影晌土的工程性質。當建築垃圾土的組成物以磚塊為主時,則優於以瓦片為主的土。

2、建築垃圾土和工業廢料土,在一般情況下優於生活垃圾土。因生活垃圾土物質成分雜亂,含大量有機質和未分解的植物質,具有很大的壓縮性和很低的強度。即使堆積時間較長,仍較松軟。

2. 常見的不良地基土有哪些其工程地質問題是什麼

變形控制原則比按強度控制原則更為重要。
軟土地基主要受力層中的傾斜基岩或其他傾斜堅硬地層,是軟土地基的一大隱患。其可能導致不均勻沉降,以及蠕變滑移而產生剪切破壞,因此對這類地基不但要考慮變形,而且耍考慮穩定性。若主要受力層中存在砂層,砂層將起排水通道作用,有利於地基承載力的提高。
水文地質條件對軟土地基影響較大,如抽降地下水形成降水漏斗將導致附近建築物產生沉降或不均勻沉降;基坑迅速抽水會使基坑周圍水力坡度增大而產生較大的附加應力,致使坑壁坍塌;承壓水頭改變將引起地面的明顯沉降等。這些在岩土工程評價中應引起重視。此外,沼氣逸出對地基穩定和變形也有影響,通常應查明沼氣帶的埋藏深度、含氣量和壓力的大小,以此評價對地基的影響程度。建築施工的加荷速率的適當控制,或改善土的排水固結條件可提高軟土地基的承載力及穩定性。即隨著荷載的施加地基土強度逐漸增大,承載力得以提高;反之,若荷載過大,加荷速率過快,將出現局部塑性變形,甚至產生整體剪切破壞。
8.3.3軟土地基工程應注童事項
在軟土地區修建橋梁或其他建築物,首先應對地質、水文狀況進行詳盡的勘察,查明欲建場地軟土的地質及工程特性,掌握全面的、翔實的第一手資料,這是正確設置橋跨或其他結構物,選擇適當結構類型的首要條件,也是設計和施工能緊密結合實際情況,採取有針對性工程措施的關鍵環節。
軟土地基的強度、變形和穩定是工程中必須全面充分注意的問題,是造成橋梁或其他建築物產生過大或差異沉降、位移、傾斜、開裂和失穩等嚴重損壞事故的主要原因。國內外從實踐中對軟土地基上的基礎工程設計技術、施工方法、地基加固等方面已積累了不少成功經驗和科研成果,只要對這些成果借鑒和使用得當,則軟土地基上的橋梁或其他建築物的安全是能得到保證的。以下著重介紹有關軟土地區橋梁基礎工程應注意的事項,其他建築物也可參考。
1.合理布設橋涵
在軟土地區,橋梁位置既要與線路走向協調,又要特別注意橋梁建築物對工程地質的要求,如果地基土層深,厚軟黏土,特別是流動性的淤泥、泥炭和高靈敏度的軟土,不僅設計技術條件復雜,而且將給施工、養護、運營帶來許多困難,應力求避免。另選擇軟土較薄、均勻、靈敏度較低的地段應更為有利。對於小橋涵,可優先考慮地表硬殼層較厚,下卧層為一般均勻軟土處,以爭取採用明挖剛性擴大基礎,降低造價,方便施工。
在確定橋梁總長、橋台位置時,除應考慮泄洪、通航要求外,究竟應將橋台覆於何處,不能拘泥於在一般地質狀況下的習慣做法,應考慮合理的利用地形,地質條件,適當的延長橋長,使橋台置於地基土質較好或軟土較薄處,用橋梁代替高路堤,減少橋台和填土高度,會有利於橋台、路堤的穩定,在造價、佔地、運營條件和養護費用等通盤考慮後,往往在技術上、經濟上都是合理的。
軟土地基上橋梁宜採用輕型結構,盡量減輕上部結構及墩台自重。由於地基易產生較大不均勻不變,一般以採用靜定結構或整體性較好的結構為宜,如橋跨結構可採用鋼筋混凝土箱形梁,橋台採用十字形、U形橋台,橋墩採用空心薄殼結構等。橋洞宜用鋼筋混凝土管涵、整體基礎鋼筋混凝土蓋板涵、箱涵以保障橋身剛度和整體性。
設計時所用到的軟土的有關物理力學性質參數,應盡可能通過現場原位試驗取得。並應注意,我國沿海、內陸等地的軟土由於沉積年代,環境的差異,成因的不同,他們的成層條件,粒度組成,礦物成分有所不同。有時其物理力學性質指標雖相近,但工程性質並不相近,故不應相互借用。
2.軟土地基橋梁基礎設計應注意事項
為保證地基穩定並控制沉降在容許范圍內,作為設計者應從減輕荷載和提高地基承載力兩方面著手。對於上部結構設計來說,控制建築物的長高比,採用輕型材料,充分利用硬殼土層作持力層,加強基礎的剛度和強度等都是有利地基穩定,減少沉降和不均勻沉降的有益措施。對於基礎設計來說,首先要確定天然地基的承載能力和由於施加荷栽可能產生的最大沉降量、沉降差,並據以確定地基是否需要加固。如軟土地基上的路堤就有「填築臨界高度」的規定,即指天然地基上用快速施工方法修築一般斷面路堤所能填築的最大高度。並非凡是軟土地基,就一定加固處理。
軟土地區的橋梁基礎,常用的是剛性擴大基礎和樁基礎,也有用沉井基礎的,在軟土地基上設置上述類型基礎時,應注意以下幾個問題:
(1)剛性擴大淺基礎。在較穩定、均勻、有一定強度的軟土上修建結構簡單、對地基沉降要求不嚴的短跨徑橋梁,常爭取採用天然地基(或配合砂礫墊層)上的剛性擴大淺基礎。但常產生諸如:因軟土的局部塑性變形而使墩台發生不均勻沉降,由於台後填土的影響使橋台前後端沉降不均而發生後仰,有時還同時使橋台向前滑移等工程事故,因此,在設計時應注意對基礎受力不同的邊緣(如橋台的前趾、後踵)沉降的檢算及其抗傾覆、滑動檢算。
防治措施:可採用人工地基,如有針對性的布設砂礫墊層,對地基進行載入預壓以減少地基的沉降和調整沉降差,或

3. 地質勘探中人工填土是怎麼描述的

回填主要成分,包含物,含量。以及工程性質。
如:以黏性土回填而成,含約10%左右磚渣,碎石等建築垃圾,力學性質不均,工程性質差。
如果是鐵路描述那你就按照管理人員要求進行補充。

4. 工程地質情況:1雜填土,厚1M;2均質粘性土厚3M重度17.7KN/M3;地基承載力特徵值240KN.M,地下水深5M,

基礎頂面標高與持力層特徵值無關;與地下水無關;與土的重度無關。版
基礎埋置深度(權基礎底面標高)才與持力層特徵值、土的重度、基礎頂面的荷載、下卧層特徵值、常年凍土深度等有關。
請問①基礎底面有多寬?②粘性土厚3M以下有沒有軟弱層?③樓主需要的fa≧多少才能滿足基礎底面以上的荷載需要?

5. 工程地質學的主要內容(作者:石證明)

不是幾字能說清的,你自己去查吧 ,推薦《專門工程地質學》

6. 工程地質土層描述中q4al,q4ml是什麼意思

詳見《工程地質手冊》(第五版)附錄I 第四紀地層的成因類型符號。

7. 勘察報告中雜填土地質成因

雜填土的地質成因肯定是人為堆積撒。看看岩土工程勘察規范6.5章節吧,對你肯定有幫助!

8. 常見的工程地質問題和對工程危害程度的評述

一、常見的工程地質問題

深圳地區常見的工程地質問題有軟土地基不均勻沉降,岩溶地面塌陷,砂頁岩互層軟弱地層的崩塌、滑坡和對工程樁的影響,中生代晚期花崗岩中北西向斷裂對工程樁的影響,北東向斷裂對工程的影響。

二、對工程危害程度的評述

(一)軟土地基不均勻沉降對工程的影響

深圳灣沿岸、珠江口東岸的沙井-媽灣、鹽田港區、壩光西岸等地廣泛分布著淺海相或海-陸交互相淤泥、淤泥質黏性土、泥炭、泥炭質土等,一般厚度為5~10m,部分為10~16m,最厚達22 m,加上填海造地時填土為5~10m,總厚度為15~25m。軟土的特點是含水量高,壓縮性高、強度低、透水性差,具有流變性和不均勻性,其工程特性遠不能滿足建築物的變形和承載力及地面使用要求,必須進行加固處理。深圳地區近十多年來進行了皇崗口岸、福田保稅區、深港西部通道口岸、後海填海區、濱海大道及其北部填海區、前海灣填海區、銅鼓航道填海區、深圳國際機場、鹽田港填海區、壩光化工基地等大面積的填海造地,已經或將要填海總面積60km2以上,必須對厚5~22m的淤泥或淤泥質土進行加固處理,否則將會出現地基沉降或不均勻沉降,總變形量達軟土總厚度的20%~30%。目前填海造陸普遍採用的方法是先拋石擠淤或爆破擠淤形成海堤或隔堤,然後抽排海水,晾曬淤泥、鋪砂墊層、插塑料排水板,堆載預壓或強夯加固等方法處理。

工程實例一福田保稅區的賽意法(超大)廠區軟土地基不均勻沉降對工程的影響

該廠位於福田保稅區西部,地貌單元為海積平原,軟土厚度10~15m。在進行保稅區大面積軟基處理時,未對該廠區的軟基進行插塑料排水板,堆載預壓或強夯加固處理,直接進行樁基礎和上部建築物施工,建築物竣工後出現室內外地面不均勻沉降,造成室內隔牆嚴重變形開裂、設備傾斜下陷、室外道路嚴重下沉,管線變形斷裂,無法按期交付使用。經國內外岩土專家論證分析,認為是因樁間軟土未進行加固處理引起地面不均勻沉降。

工程實例二益田中學軟土地基不均勻沉降對工程的影響

益田中學位於益田村東側,地貌單元為海積平原、軟土厚度5~10m。設計建築地面採用攪拌樁處理,設計樁長均為14m,上部建築基礎採用樁基礎,以殘積土中下部或強風化岩為持力層。建築物竣工後,在使用的初期,禮堂、部分教室及連廊地面出現不均勻下沉、傾斜、開裂,無法按期提供使用。經檢測,部分攪拌樁未穿過淤泥層,樁底殘留淤泥1~3m,因淤泥的沉降變形引發部分地面下沉。

(二)岩溶及岩溶地面塌陷對工程的影響

深圳市龍崗區的橫崗、龍崗、坪地、坪山、坑梓、葵涌等地面覆蓋層下,廣泛分布有石炭系下統石磴子組灰岩、白雲質灰岩、大理岩,多為厚層狀、質純。分布面積100km2以上。可分為覆蓋型和埋藏型兩種,覆蓋型岩溶分布於橫崗-龍崗-坪地河谷平原,碧嶺-坪山-坑梓河谷平原和葵涌盆地中,覆蓋層厚度一般10~25m,部分5~10m,覆蓋層上部為第四系沖洪積粉質黏土,厚度8~20m,下部為含卵石礫砂,厚度1.0~5.0m。埋藏型岩溶分布於上述河谷平原的兩側及葵涌盆地周邊,埋藏於石炭系下統測水組砂頁岩的下部,多呈假整合接觸,即石磴子組海相灰岩形成後,地殼上升,灰岩露出地表,接受風化剝蝕,地表水的沖刷溶蝕,形成溶溝、溶槽、石芽、石筍和石柱等岩溶地貌,並在溝槽中堆積了坡積物。地殼又緩慢下降形成淺海,接受淺海相砂泥質沉積,形成測水組砂岩、頁岩、炭質頁岩、泥岩等互層。埋藏深度一般大於30 m。據大量工程場地岩土工程勘察資料,鑽孔見溶洞率為40%~80%,溶洞高度一般為0.5~3.0m,個別大於20m,可分為3~5層,上部溶洞大多為開口型,多被沖洪積或坡洪積含碎石粉質黏土全充填,分析可能屬溶溝或溶槽堆積。下部溶洞較小,多為閉合型,半充填,深部溶洞為無充填。沿斷裂帶溶洞更為發育,溶洞和溶蝕裂隙中含豐富的岩溶裂隙水,且一般連通性好,與地表水聯系密切。據志聯佳、龍躍大夏場地群孔抽水試驗,水位降深1.58~11.90m時,單井涌水量173.15~4968.00m3/d,滲透系數28.3~83.1m/d。

強岩溶發育區因地下岩溶和土層內土洞的不斷發育和抽取地下水,引發地面塌陷。從1990年起該區發生多起地面塌陷災害。例如:1990年冬在坑梓鎮深汕公路兩側約10km范圍陸續發生10餘處大小不一的突發性地面塌坑;人民大道塌陷約10m2,深5m,造成一輛正在行駛的汽車掉入坑內;田心村在建的四層民居的中心柱下突然塌陷,陷坑面積30 m 2,深度4 m。1992年3月4日晚,龍崗鎮巫屋村商業一條街剛封頂不到一個月的一棟三層樓的一角牆基突然塌陷,陷坑直徑3 m,1994年6月龍崗鎮盛平村一棟施工到三層的宿舍樓,突然倒塌,造成數十人傷亡。

上述強岩溶發育區為建設用地適宜性差區,被判定為不適宜建高層、超高層建築區,如要興建高層建築則地基處理難度大,處理費用相當高。

工程實例一 龍崗中心城志聯佳大廈岩溶塌陷對工程的影響

志聯佳大廈原設計地上27層,地下2層,採用挖孔樁基礎,先挖兩層地下室基坑,再進行挖孔樁施工,基坑挖至沖洪積含卵石礫砂層時涌水量並不大,可用明溝及集水井和常用水泵排除。當各挖孔樁至灰岩頂板時則涌水,水頭高約4m,一般涌水量5~20m3/h,最大50m3/h,整個基坑總涌水量大於3000 m 3/d,基坑很快被水淹,深約4 m。後採用封閉式降水井方案,在基坑周邊布置18口大口徑降水井,19個觀測井,先進行試驗性抽水試驗,最大水位降深7.5m,觀測井水位降低1.58~4.96m,平均3.72m,涌水量4968.0m3/d,降落漏斗半徑約40m。然後選5口降水井,採用大排量水泵同時抽水,21個觀測井,水位降低5.9~11.9m,平均8.28m,觀測井水位降低1.71~7.58m,平均5.95m,總涌水量10841m3/d,平均單井涌水量2168.26m3/d,降落漏斗半徑50m。數天後,基坑底及降水井周圍出現5處地面塌陷,塌陷面積0.84~14.8m2,體積0.72~36.0m3。為了將地下水位降下去,滿足挖孔樁施工要求,持續降水近一個月,每天排水量保持在11000m 3/d左右,後來引發場地南部800m處的西瓜鋪村中道路突然塌陷,直徑約15m,深度大於3m,四周30~40m范圍內的房屋出現不同程度裂縫和傾斜。在村民集體向龍崗區政府強烈要求下,區建設局下令志聯佳大廈停止降水。就此宣告志聯佳大廈人工挖孔樁失敗,直接經濟損失400多萬元人民幣,間接經濟損失難於估量,延誤工期1年多。此後龍崗區政府一直未批准過在龍崗中心區(強岩溶發育區)超過20層的建築物。

工程實例二 深圳市東部供水地下干線橫崗西坑段地面塌陷對工程的影響

深圳市東部供水網格干線工程用於統籌解決深圳市的缺水問題,是深圳市城市供水系統的重要組成部分。取水點設在東江的惠州市東部水口鎮,經惠陽縣的馬安、永湖、秋長、至龍崗區坑梓,引入松子坑水庫。干線起點在松子坑水庫11號壩下部,終點為南山區的西麗水庫和寶安區的鐵崗水庫。輸水建築以隧洞為主,全線採用重力流輸水方式。一號隧洞從碧嶺谷地南緣湯坑村附近進洞,在深圳水庫沙灣大望橋北側出洞,全長17958m。隧洞斷面凈寬4.2m,凈高5.3m。隧洞穿越橫崗鎮西坑村北側,該段地面標高82.0m,設計隧洞底板標高40.2m,埋深42.0m。隧洞頂部地層自上而下為第四系全新統沖洪積砂卵石層,厚度1.3~11.2m;上更新統沖洪積含礫粉質黏土,厚度2.9~23.8m;石炭系下統測水組絹雲母片岩、泥質粉砂岩風化殘積土;石炭系下統石磴子組大理岩化灰岩或大理岩,西坑段隧洞位於灰岩部位。一號隧洞由東向西掘進至西坑村東北部F38斷裂破碎帶時(2000年5月3日)洞內突然涌水,涌水量約200 m 3/h。因大量地下水被排出地表,引起西坑老屋村水井水位大幅下降或乾枯,大面積地面下沉開裂,民居牆壁傾斜開裂,一處民居突然倒塌,地面塌陷、陷坑直徑大於4m,深度不詳,總變形面積約7.3×104m2,地面普遍下沉2~5cm。塌陷出現在晚上,「轟」的一聲巨響,振動新老屋村幾平方公里范圍,當地居民以為是發生地震。村、鎮領導立即將老屋村村民緊急疏散,撤離到高處空曠地帶,涌水事件震動了省、市政府各部門及大、小報媒體。市領導責令市水務局邀請在深圳的地質專家,研討涌水原因和處理方法。並請深圳市勘察研究院對西坑盆地隧道段和老屋村受影響范圍進行詳勘,布置鑽孔46個,群孔抽水試驗2組,隧道段鑽孔結合跨孔CT進行探測。請深圳市地質建設工程公司進行地表地質測繪和地面物探。總勘察費用80多萬元人民幣,隧洞停止施工長達半年以上,後採用徑向全斷面小導管超前注漿加固的堵水方法,逐段掘進,獲得成功。直接經濟損失近千萬元人民幣,延誤工期近一年。

(三)軟弱地層的崩塌、滑坡對工程的影響

深圳市龍崗區的橫崗、平湖、龍崗、坪地、坪山、坑梓及葵涌鎮等廣泛分布的石炭系下統測水組泥質粉砂岩、石英砂岩、泥岩、頁岩、炭質頁岩互層。地貌單元一般為低丘陵或殘丘谷地。當道路建設和開發建設用地的削坡坡度大於30°時則極容易出現崩塌或滑坡,多為順層(順層面或裂隙面)崩塌或滑坡,支護治理很困難,工程費用高,且難於根治,在台風暴雨季節極易復發。

工程實例 深圳市龍崗區坑梓街道北通道市政工程的主道和匝道路塹邊坡,分東西兩側邊坡,坡長180m,坡高12~42m,分3~5級,每級高約8m,坡角45°~60°。除坡頂有薄層坡殘積土層外,均為強-中風化泥質粉砂岩、泥岩、頁岩、炭質頁岩互層。在道路建設中已採用漿砌石格構梁+植草進行支護。在交付使用前又出現多處崩塌及滑坡(圖2-2-17至圖2-2-20)。崩塌及滑坡長15~24m,高10~15m,厚2~3m,總體積300~500m3,多為順層或順裂隙面滑動或崩塌。

圖2-2-17 北通道匝道區東側邊坡崩塌

圖2-2-18 北通道匝道區西側邊坡崩塌

圖2-2-19 北通道匝道區東側邊坡順節理面崩塌

圖2-2-20 北通道主道路塹北段沿炭質岩崩塌

(四)石炭系下統測水組砂頁岩對工程樁的影響

深圳市龍崗區大面積分布石炭系下統測水組石英砂岩、泥質粉砂岩、泥岩、頁岩和炭質頁岩互層。因各種岩性的礦物成分不同,其風化程度相差懸殊。石英砂岩難於風化,一般呈中風化狀態,泥質粉砂岩呈強風化狀態;泥岩、頁岩、炭質頁岩容易風化,多呈泥狀、土狀軟弱夾層,相互組成軟硬互層。軟岩風化深度大,深達百米,硬夾層難於風化,呈中等風化夾層。有的場地地表就見到中風化石英砂岩,但鑽穿後數米,甚至上百米見不到中風化地層,造成一棟建築物的樁長相差很大,甚至找不到穩定的中風化地層。

工程實例 深圳市龍崗區歐景花園三期10、11號樓石炭系下統測水組砂頁岩對工程樁的影響

歐景花園三期10、11號樓位於龍崗區中心城,龍崗區人民醫院與婦幼保健院之間,建築物高度為地上17~28層,地下3層的商住樓。場地原始地貌為殘丘坡地。地層岩性:①第四系殘積粉質黏土,層厚3.05~36.00m,由炭質粉砂岩、頁岩風化殘積而成,普遍夾強—中風化石英砂岩;②石炭系下統測水組炭質粉砂岩、頁岩全風化帶,厚度4.00~15.70m,夾較多強—中風化石英砂岩薄層;③強風化炭質粉砂岩、頁岩,厚度3.20~36.00m,夾中風化石英砂岩;④中風化炭質粉砂岩,厚度2.30~20.10m,層頂埋深0.00~39.00m;⑤微風化炭質粉砂岩,揭露厚度1.74~13.30m,頂板埋深3.20~40.80m;⑥石炭系下統石磴子組灰岩,層頂埋深14.00~55.00m。場地處於構造小背斜的軸部,背斜軸為北東向。場地屬埋藏型岩溶區,其軸部埋藏淺,場地東西兩側(兩翼)埋藏深,由軸部向兩翼逐漸加深,深達55.00m以下。兩翼岩層傾角約75°,且地層撓曲現象明顯。灰岩中岩溶發育,其中有13個鑽孔見溶洞,洞高0.60~5.40m,大部分為無充填溶洞。

該工程採用沖孔樁基礎,以微風化灰岩或微風化炭質粉砂岩作持力層,施工前進行了施工勘察,基本上採用一樁一孔,復雜部位為一樁2~3個超前鑽孔。發現同一根樁各超前孔見微風化灰岩頂板埋深一般相差1~3m,多者相差5.0~7.2m;見微風化炭質粉砂岩頂板埋深相差12.6~13.4m。說明同一根樁的微風化灰岩或微風化炭質粉砂岩頂板埋深相差懸殊,起伏變化很大,極難將樁端嵌入穩定完整的微風化基岩中。各樁在終樁時均檢驗岩樣後才下鋼筋和澆灌混凝土。達到規范規定的齡期後才進行鑽心法抽心檢測,檢查結果發現樁身混凝土質量完好,但有40多根樁的樁底持力層沒有達到設計持力層(微風化灰岩或微風化炭質粉砂岩)要求,甚至部分樁底基岩仍為強風化或全風化炭質粉砂岩。後採用補樁處理,基本上是一根不合格樁補二根樁,增加基礎費用200多萬元人民幣。綜上所述,證實在石炭系下統測水組砂頁岩分布區不適宜採用端承樁和以微風化砂岩夾層為持力層,宜採用摩擦樁或摩擦端承樁,應盡量採用天然地基基礎或復合地基,以避開下伏灰岩強岩溶發育帶對基礎的影響。

(五)中生代晚期花崗岩中的北西向斷裂對工程樁的影響

中生代晚期花崗岩中的北西向斷裂一般規模較小,且多被第四系掩蓋,地表很難見到露頭,但對山間溪谷有較明顯的控製作用。斷裂走向多為北西30°~50°,大部分傾向北東,個別傾向南西,傾角60°~75°。該組斷裂形成於晚中生世以後和喜馬拉雅期,幾乎切截了北東向和東西向斷裂,水平斷距一般50~200m,多屬張扭性斷裂,構造岩為壓碎岩、碎裂岩、角礫岩夾薄層糜棱岩,視厚度10~35m,為富水斷裂。構造岩風化強烈,上部為土狀,中部為砂礫狀,下部為碎石狀。斷裂破碎帶部位中、微風化岩埋深比斷裂兩側正常基岩埋深大10~35m,對高層建築工程樁持力層選取造成很大困難,且施工難度大,造價高。

工程實例一 深圳市國通大廈(原名無線大廈)北西向斷裂對工程樁的影響

國通大廈位於深圳市福田區濱河大道與新洲二路交匯處的西南側。設計建築為四足鼎立的單體塔樓,主塔樓43層(其中地下3層),正方形、邊長45m×45m,框架結構,基礎砌置深度10m,單位荷重7500kN,屬一級建築物,對差異沉降敏感;副樓9層,矩形,框架結構,基礎砌置深度5m,單位荷重180kN。場地地貌為殘丘坡地,地面標高7.10~10.10m,下伏基岩為中生代晚期粗粒花崗岩。據詳勘資料,主樓微風化花崗岩頂板埋深大部分地段為32.5~46.9m,標高-22.17~-38.3m。主樓的西南角見北西向斷裂破碎帶,斷裂傾向南西,傾角約65°,構造岩為壓碎岩,角礫岩夾薄層糜棱岩,厚度11.0~17.3m,鉛直厚度24.3~38.2m,構造岩中可見綠泥石化和擠壓現象,構造岩自上而下可分為土狀、礫狀和塊狀。主樓基礎設計為人工挖孔樁,90%樁端以微風化岩作持力層,有效樁長23.0~36.5m,西南角位於斷裂破碎帶之上,完整基岩埋深81.0m,地下室底板以下埋深為71.0m,無法採用人工挖孔樁。經勘察、設計單位論證,借鑒已建成高層建築在構造岩中的成樁處理經驗,將西南角的樁端置於礫狀構造岩之上,樁長40.0~45.0m,礫狀構造岩的樁端承載力標准值取3700kPa。主樓西南角可節約樁長25~30 m,節約基礎投資數百萬元人民幣。建築物早已建成,安全使用近10年,主樓四角沉降量12.0~15.0mm,相差3.0mm,核心筒沉降量13.8~19.7mm,相差5.9mm,絕對沉降量及沉降差均滿足規范要求。

工程實例二 深圳市福田區賽格群星廣場北西向斷裂對工程樁的影響

賽格群星廣場位於深圳市華強北商業街北部,華強北路與紅荔路交匯處的東南側,建築物由一棟40層寫字樓及兩棟32層商住樓組成,裙樓4層,局部8層,設3層地下室,基礎埋深14.5m,建築結構採用框剪-核心筒結構。建築結構荷載大且差異大,單柱單樁荷載10000~152500 kN。場地地貌為殘丘坡地,地面標高13.1~14.5m,下伏基岩為中生代晚期粗粒花崗岩、微風化基岩頂板埋深一般為27.5~38.8m,標高-14.0~-34.8m。寫字樓西側受北西向斷裂影響,微風化基岩頂板埋深50.8~60.5m,標高-36.9~-46.6m,微風化基岩面與一般地段微風化基岩面相差22.9~11.8m,構造岩厚度10.0~14.2m。設計採用人工挖孔樁基礎,一般樁端以微風化岩作持力層,寫字樓西側樁端以礫狀構造岩帶作持力層,取樁端承載力標准值3500kPa,經設計計算可滿足單樁承載力及布樁要求,縮短了樁長,節約了基礎投資400萬元人民幣。建築物已建成使用7年,沉降量20~32mm,建築物東西端沉降差6mm,絕對沉降量及沉降量差均滿足規范要求。

9. 怎麼判斷一個工程是否有回填土呀

每個工程或多或少都會有回填土
地下部分施工完後需要回填;施工前,整平場專地可能需要回填屬土等等
我想。你想問的是怎樣去判斷一個土層是否回填土,一般回填土比較鬆散,含水率高,密實度小,顆粒部均勻,但是有些回填土,經過幾年的壓實。上述特徵不明顯,需要看看當地的地質歷史。
最簡單又最正規的方法就是請勘察院來看看

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864