山東省地基工程地質分類
① 工程地質包括哪些內容(土力學地基基礎第四版)
工程地質研究的主內容有:確定岩土組分、組織結構(微觀結構)、物理、化學與力學性質(特別是強度及應變)及其對建築工程穩定性的影響,進行岩土工程地質分類,提出改良岩土的建築性能的方法;研究由於人類工程活動的影響而破壞的自然環境的平衡,以及自然發生的崩塌、滑坡、泥石流及地震等物理地質作用對工程建築的危害及其預測、評價和防治措施;研究解決各類工程建築中的地基穩定性,如邊坡、路基、壩基、橋墩、硐室,以及黃土的濕陷、岩石的裂隙的破壞等,制定一套科學的勘察程序、方法和手段,直接為各類工程的設計、施工提供地質依據;研究建築場區地下水運動規律及其對工程建築的影響,制定必要的利用和防護方案;研究區域工程地質條件的特徵,預報人類工程活動對其影響而產生的變化,作出區域穩定性評價,進行工程地質分區和編圖。隨著大規模工程建設的發展,其研究領域日益擴大。除了岩土學和工程動力地質學、專門工程地質學和區域工程地質學外,一些新的分支學科正在逐漸形成,如礦山工程地質學、海洋工程地質學、城市工程地質及環境工程地質學、工程地震學。
1工程地質與岩土工程的區別
工程地質是研究與工程建設有關地質問題的科學(張咸恭等著《中國工程地質學》)。工程地質學的應用性很強,各種工程的規劃、設計、施工和運行都要做工程地質研究,才能使工程與地質相互協調,既保證工程的安全可靠、經濟合理、正常運行,又保證地質環境不因工程建設而惡化,造成對工程本身或地質環境的危害。工程地質學研究的內容有:土體工程地質研究、岩體工程地質研究、工程動力地質作用與地質災害的研究、工程地質勘察理論與技術方法的研究、區域工程地質研究、環境工程地質研究等。
岩土工程是土木工程中涉及岩石和土的利用、處理或改良的科學技術(國家標准《岩土工程基本術語標准》)。岩土工程的理論基礎主要是工程地質學、岩石力學和土力學;研究內容涉及岩土體作為工程的承載體、作為工程荷載、作為工程材料、作為傳導介質或環境介質等諸多方面;包括岩土工程的勘察、設計、施工、檢測和監測等等。
由此可見,工程地質是地質學的一個分支,其本質是一門應用科學;岩土工程是土木工程的一個分支,其本質是一種工程技術。從事工程地質工作的是地質專家(地質師),側重於地質現象、地質成因和演化、地質規律、地質與工程相互作用的研究;從事岩土工程的是工程師,關心的是如何根據工程目標和地質條件,建造滿足使用要求和安全要求的工程或工程的一部分,解決工程建設中的岩土技術問題。
2工程地質與岩土工程的關系
雖然工程地質與岩土工程分屬地質學和土木工程,但關系非常密切,這是不言而喻的。有人說:工程地質是岩土工程的基礎,岩土工程是工程地質的延伸,是有一定道理的。
工程地質學的產生源於土木工程的需要,作為土木工程分支的岩土工程,是以傳統的力學理論為基礎發展起來的。但單純的力學計算不能解決實際問題,從一開始就和工程地質結下了不解之緣。與結構工程比較,結構工程面臨的是混凝土、鋼材等人工製造的材料,材質相對均勻,材料和結構都是工程師自己選定或設計的,可控的。計算條件十分明確,因而建立在材料力學、結構力學基礎上的計算是可信的。而岩土材料,無論性能或結構,都是自然形成,都是經過了漫長的地質歷史時期,在多種復雜地質作用下的產物,對其材質和結構,工程師不能任意選用和控制,只能通過勘察查明,而實際上又不可能完全查清。岩土工程師不敢相信單純的計算結果,單純的計算是不可靠的,原因就在於工程地質條件的不確知性和岩土參數的不確定性,不同程度地存在計算條件的模糊性和信息的不完全性。因而雖然土力學、岩石力學、計算技術取得了長足進步,並在岩土工程設計中發揮了重要作用,但由於計算假定、計算模式、計算方法、計算參數等與實際之間存在很多不一致,計算結果總是與工程實際有相當大的差別,需要進行綜合判斷。
② 岩土體工程地質類型分區
平原區廣泛分布以沖洪積成因為主的第四系堆積物,低山丘陵區出露多種類型的岩組,沂沭斷裂帶西側的鄌郚-葛溝斷裂、沂水-湯頭斷裂縱貫南北,總體看工程地質條件較復雜(圖1-8-3)。
圖1-8-3 昌樂縣岩土體工程地質類型分區略圖
(一)岩體工程地質類型
1.堅硬的塊狀侵入岩岩組
分布於營邱—河頭一帶,為古元古代呂梁期侵入岩,岩性以弱片麻狀中粒含角閃二長花崗岩、弱片麻狀中粒含黑雲二長花崗岩,岩石堅硬,力學強度高,工程地質性質良好,山區風化帶厚度<3m,丘陵及準平原區20~30m,fc=130~170MPa,fr=90~130MPa(fc為岩石極限干抗壓強度,fr為岩石飽和極限抗壓強度)。
2.堅硬的塊狀-似層狀噴出岩岩組
主要分布在南郝—崔家埠—五圖一線以南、鄌郚-葛溝斷裂以西地區,為新近紀臨朐群牛山組、堯山組火山噴出岩,岩性為玄武岩。岩石堅硬,柱狀節理發育,工程地質性質良好。風化帶厚20~30m,fc=140~160MPa。
3.堅硬的塊狀變質岩岩組
主要分布在鄌郚—阿陀一帶,為新太古代泰山岩群山草峪組黑雲變粒岩,岩石堅硬,風化帶厚度30~40m,fc=180~200MPa。
4.堅硬較堅硬的中厚-厚層狀灰岩岩組
僅分布於朱劉街道、五圖街道一帶,主要為寒武紀長清群硃砂洞組、饅頭組、九龍群張夏組、崮山組和炒米店組白雲質灰岩、泥灰岩、泥質條帶灰岩和生物碎屑灰岩等,局部夾細砂岩。灰岩堅硬,力學強度高,泥灰岩強度低。白雲質灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。
5.較堅硬的中厚—厚層碎屑岩岩組
主要分布在鄌郚-葛溝斷裂帶與沂水-湯頭斷裂帶,以及五圖煤礦一帶,岩性為白堊紀淄博群三台組砂岩、礫岩,萊陽群城山後組角礫岩、砂礫岩、砂岩,青山群八畝地組凝灰岩、集塊角礫岩、粉砂岩,大盛群馬郎溝組粉砂岩、細砂岩,田家樓組泥質粉砂岩、細砂岩、黏土岩,古近紀五圖群朱壁店組礫岩、砂礫岩、礫岩,李家崖組黏土岩、砂岩、黏土岩、油頁岩等。風化帶厚度<40m,砂岩和礫岩fc=30~80MPa,fr=20~50MPa。
6.較堅硬的薄層狀頁岩夾灰岩岩組
局限分布在阿陀東北部,岩性為中寒武系、下寒武系及元古宇土門群頁岩、博層灰岩、泥灰岩。頁岩夾泥灰岩fc=30~40MPa,fr=10~15MPa。
(二)土體工程地質類型
1.北部沖洪積上層黏性土多層或雙層結構
分布於北部山前平原地區,以上層黏性土多層結構為主,上層黏性土厚<5m或5~10m,僅局部>10m,黏性土岩性以粉質黏土、黏土為主,中等壓縮性。砂性土為粉細砂、中細砂,其次粗砂、礫石,砂層顆粒自北至南變粗,工程地質性質良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk為地基承載力標准值)。
2.山前及河谷平原沖洪積上層黏性土雙層、多層結構及黏性土單層結構
分布於山前坡麓、山間河谷地區,上部黏性土為粉質黏土、粉土、黏土,厚度5m左右,中等壓縮性。下部砂性土為中粗砂、細砂、砂礫石,緊密狀態,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。
3.山麓地區坡洪積及殘坡積黏性土單層結構或上層黏性土雙層結構
分布於南部低山丘陵坡麓地帶,以黏性土單層結構或上層為黏性土雙層結構為主。黏性土厚<5m或5~10m,以黃褐色至棕紅色粉質黏土及黏土為主,含鐵錳質及鈣質結核,可塑—硬塑,中等壓縮性,部分地區分布濕陷性黃土。下部夾透鏡體狀碎石土及泥鈣質膠結礫岩,緊密狀態,工程地質性質良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。
總之,昌樂縣工程地質主要問題是沂沭斷裂帶的活動性,其次是地面沉陷、岩溶塌陷、局部黃土濕陷等問題。
③ 岩土體的工程地質分類和鑒定
一、岩體
(一)岩體(岩石)的基本概念岩體(岩石)是工程地質學科的重要研究領域。岩石和岩體的內涵是有區別的兩個概念,又是密不可分的工程實體。在《建築岩土工程勘察基本術語標准》(JG J84-92)中給出的岩石定義是:天然產出的具有一定結構構造的單一或多種礦物的集合體。岩石的結構是指岩石組成物質的結晶程度、大小、形態及其相互關系等特徵的總稱。岩石的構造是指岩石組成物質在空間的排列、分布及充填形式等特徵的總稱。所謂岩體,就是地殼表部圈層,經建造和改造而形成的具有一定岩石組分和結構的地質體。當它作為工程建設的對象時,可稱為工程岩體。岩石是岩體內涵的一部分。
岩體(岩石)的工程分類,可以分為基本分類和工程個項分類。基本分類主要是針對岩石而言,根據其地質成因、礦物成分、結構構造和風化程度,用岩石學名稱加風化程度進行分類,如強風化粗粒黑雲母花崗岩、微風化泥質粉砂岩等。岩石的基本分類,在本書第一篇基礎地質中有系統論述。工程個項分類,是針對岩體(岩石)的工程特點,根據岩石物理力學性質和影響岩體穩定性的各種地質條件,將岩體(岩石)個項分成若干類別,以細劃其工程特徵,為岩石工程建設的勘察、設計、施工、監測提供不可缺少的科學依據,使工程師建立起對岩體(岩石)的明確的工程概念。岩石按堅硬程度分類和按風化程度分類即為工程個項分類。
在岩體(岩石)的各項物理力學性質中,岩石的硬度是岩體最典型的工程特性。岩體的構造發育狀況體現了岩體是地質體的基本屬性,岩體的不連續性及不完整性是這一屬性的集中反映。岩石的硬度和岩體的構造發育狀況是各類岩體工程的共性要點,對各種類型的工程岩體,穩定性都是最重要的,是控制性的。
岩石的風化,不同程度地改變了母岩的基本特徵,一方面使岩體中裂隙增加,完整性進一步被破壞;另一方面使岩石礦物及膠結物發生質的變化,使岩石疏軟以至鬆散,物理力學性質變壞。
(二)岩石按堅硬程度分類
岩石按堅硬程度分類的定量指標是新鮮岩石的單軸飽和(極限)抗壓強度。其具體作法是將加工製成一定規格的進行飽和處理的試樣,放置在試驗機壓板中心,以每秒0.5~1.0M Pa的速度加荷施壓,直至岩樣破壞,記錄破壞荷載,用下列公式計算岩石單軸飽和抗壓強度:
深圳地質
式中:R為岩石單軸飽和抗壓強度,單位為MPa;p為試樣破壞荷載,單位為N;A為試樣截面積,單位為mm2。
對岩石試樣的幾何尺寸,國家標准《工程岩體試驗方法標准》(GB/T50266-99)有明確的規定,試樣應符合下列要求:①圓柱體直徑宜為48~54mm;②含大顆粒的岩石,試樣的直徑應大於岩石的最大顆粒尺寸的10倍;③試樣高度與直徑之比宜為2.0~2.5。
在此標准發布之前,岩石抗壓強度試驗的試樣尺寸要求如下:極限抗壓強度大於75M Pa時,試樣尺寸為50mm×50mm×50mm立方體;抗壓強度為25~75MPa時,試樣尺寸為70mm×70mm×70mm立方體;抗壓強度小於25MPa時,試樣尺寸為100mm×100mm×100mm立方體。
(G B/T 50266-99)的規定顯然是為了方便取樣,以金剛石鑽頭鑽探,取出的岩心進行簡單的加工,即可成為抗壓試樣。岩樣的尺寸效應對岩石抗壓強度是略有影響的。
岩石按堅硬程度分類,各行業的有關規定,雖然各自表述方式有所區別,但其標準是基本一致的(表2-2-1)。
表2-2-1 岩石堅硬程度分類
除了以單軸飽和抗壓強度這一定量指標確定岩石堅硬程度外,尚可按岩性鑒定進行定性劃分。國標:建築地基基礎設計規范(GB50007-2002)按表2-2-2進行岩石堅硬程度的定性劃分。其他規范的劃分標准大同小異。
表2-2-2 岩石堅硬程度的定性劃分
岩石堅硬程度的劃分,無論是定量的單軸飽和抗壓強度,還是加入了風化程度內容的定性標准,都是用於確定小塊岩石的堅硬程度的。岩石的單軸飽和抗壓強度是計算岩基承載力的重要指標。
(三)岩石按風化程度分類
關於岩石風化程度的劃分及其特徵,國家規范和各行業的有關規范中均有規定,其分類標准基本一致,表述略有差異。表2-2-3至表2-2-10是部分規范給出的分類標准。
表2-2-3《工程岩體分級標准》(GB50218-94)岩石風化程度劃分表
表2-2-4《岩土工程勘察規范》(GB50021-2001)岩石按風化程度分類表
續表
表2-2-5《公路橋涵地基與基礎設計規范》(JTJ024-85)岩石風化程度劃分表
表2-2-6《水利水電工程地質勘察規范》(GB50287-99)岩體風化帶劃分表
《港口工程地質勘察規范》(JTJ240-97)、《港口工程地基規范》(JTJ250-98)岩體風化程度的劃分按硬質、軟質岩體來劃分,硬質岩石岩體風化程度按表2-2-7劃分。軟質岩石岩體風化程度按表2-2-8劃分。
表2-2-7 硬質岩石岩體風化程度劃分表
表2-2-8 軟質岩石岩體風化程度劃分表
表2-2-9《地下鐵道、輕軌交通岩土工程勘察規范》(GB5037-1999)岩石風化程度分類表
續表
表2-2-10 廣東省《建築地基基礎設計規范》(DBJ15-31-2003)岩石風化程度劃分表
國家標准《建築地基基礎設計規范》(GB5007-2002)對岩石的風化只有第4.1.3條作如下敘述:岩石的風化程度可分為未風化、微風化、中風化、強風化和全風化。未列表給出風化特徵,但在岩石堅硬程度的定性劃分中(表A.0.1)把不同風化程度的岩石歸類到了岩石堅硬程度的類別中。
深圳市標准:《地基基礎勘察設計規范》(報批稿)關於岩石風化程度的劃分標准,基本採用了《地下鐵道、輕軌交通岩土工程勘察規范》GB(50307-1999)的表述形成和內容(表2-2-9),文字略有調整。
縱觀各類規范對岩石風化程度的劃分,可以看出:
1)除個別規范未列出未風化一類外,岩石風化程度的劃分均為未風化、微風化、中等(弱)風化、強風化和全風化。特徵描述簡繁不一,中等風化與弱風化相對應的風化程度略有差別。
2)風化程度的特徵描述,主要是岩石的結構構造變化、節理裂隙發育程度、礦物變化、顏色變化、錘擊反映、可挖(鑽)性等方面來定性劃定。部分規范用波速和波速比及風化系數來定量劃定是對岩石風化程度確定的有力支撐。
3)從新鮮母岩到殘積土的風化過程是連續的,有些規范把殘積土的特徵描述放在岩石風化程度劃分表中,有一定的道理。國際標准:ISO/TC182/SC,亦將風化程度分為五級,並列入了殘積土。從工程角度考慮,殘積土對母岩而言已經發生了全面質的變化,物理力學性質和對它的理論研究已屬松軟土,表中對殘積土特徵的表述對區別殘積土與全風化岩是有現實意義的。
4)國家標准:《工程岩體分級標准》中「岩石風化程度的劃分」(表2-2-3)看似簡單,規范「條文說明」解釋了這一現象,表2-2-3關於岩石風化程度的劃分和特徵的描述,僅是針對小塊岩石,為表2-2-2服務的,它並不代表工程地質中對岩體風化程度的定義和劃分。表2-2-2是把岩體完整程度從整個地質特徵中分離出去之後,專門為描述岩石堅硬程度作的規定,主要考慮岩石結構構造被破壞,礦物蝕變和顏色變化程度,而把裂隙及其發育情況等歸入岩體完整程度這另一個基本質量分級因素中去。
5)上述列表中可以看出,某些規范把硬質岩石和軟質岩石的風化程度劃分區別開來,而《工程岩體分級標准》中「岩石堅硬程度的定性劃分」表(2.2-2)將風化後的硬質岩劃入軟質岩中。這里有兩個概念不可混淆:一是從工程角度看,硬質岩石風化後其工程性質與軟質岩相近,可等同於軟質岩;二是新鮮岩石中是存在軟質岩的,如深圳的泥質砂岩、泥岩、頁岩等。
6)相鄰等級的風化程度其界線是漸變的、模糊的,有時不一定能劃出5個完整的等級,如碳酸鹽類岩石。在實際工作中要按規范的標准,綜合各類信息,結合當地經驗來判斷岩石的風化等級。
(四)岩體的結構類型
在物理學、化學及其地質學等學科中對「結構」這一術語的概念是明確的,但有各自的含義,如原子結構、分子結構、晶體結構、礦物結構、岩石結構、區域地質結構、地殼結構等等,岩體作為工程地質學的一個主要研究對象,提出「岩體結構」術語的意義是十分明確的。
岩體結構有兩個含義,可以稱之為岩體結構的兩個要素:結構面和結構體。結構面是指層理、節理、裂隙、斷裂、不整合接觸面等等。結構體是岩體被結構面切割而形成的單元岩塊和岩體。結構體的形狀是受結構面的組合所控制的。
事實上,所有與岩石有關的工程,除建築材料外,都是與有較大幾何尺寸的岩體打交道,岩石經過建造成岩(岩漿岩的浸入,火山岩的噴出,沉積岩的層狀成沉積,變質岩的混合與動力變質)及後期的改造(褶皺、斷裂、風化等),使得岩體的完整性遭到了巨大的破壞,成為了存在大量不同性質結構面的現存岩體。為了給工程界一個明朗的技術路線,不妨以建造性結構面和改造性結構面(軟弱結構面)為基礎,從各自側面首先對岩體結構基本類型進行研究,其次將兩方面的成果加以綜合,即可得出關於岩體結構基本類型的完整概念(圖2-2-1)。
(1)以建造性結構面為主的岩體結構基本類型的劃分(表2-2-11)
表2-2-11 建造性結構面的岩體結構分類
(2)以改造性結構面(軟弱結構面)為主的岩體結構類型的劃分(表2-2-12)
表2-2-12 改造結構面為主的岩體結構分類
圖2-2-1 岩體結構示意圖
(3)由建造性結構面和改造性結構面形成的三維岩體
三維岩體表現出了復雜多變的岩體結構特徵,將其綜合歸納,形成了較系統的岩體結構類型(表2-2-13)。
表2-2-13 岩體結構類型及其特徵
表中表述的岩體結構類型及其特徵基本上涵蓋了深圳地區岩體的全部結構類型。
(4)岩體完整程度的劃分
地質岩體在建造和改造的過程中,岩體被風化、被結構面切割,使其完整性受到了不同程度的破壞。岩體完整程度是決定岩體基本質量諸多因素中的一個重要因素。影響岩體完整性的因素很多,從結構面的幾何特徵來看,有結構面的密度,組數、產狀和延展程度,以及各組結構面相互切割關系;從結構面形狀特徵來看,有結構面的張開度、粗糙度、起伏度、充填情況、水的賦存等。從工程岩體的穩定性著眼,應抓住影響穩定性的主要方面,使評判劃分易於進行。在國標:《工程岩體分級標准》(GB50218-94)中,規定了用結構面發育程度、主要結構的結合程度和主要結構面類型作為劃分岩體完整程度的依據,以「完整」到「極破碎」的形象詞彙來體現岩體被風化、被切割的劇烈變化完整程度(表2-2-14)。
表2-2-14 岩體完整程度的定性分類表
在1994版的《岩土工程勘察規范》中,未見此表。很明顯,此表在《工程岩體分級標准》中出現後,在2001版修訂後的《岩土工程勘察規范》中得到了確認和使用。
(五)岩體基本質量分級
自然界中不同結構類型的岩體,有著各異的工程性質,岩石的硬度、完整程度是決定岩體基本質量的主要因素。在工程實踐中,系統地認識不同質量的工程岩體,針對其特徵性採取不同的設計思路和施工方法是科學進行岩體工程建設的關鍵。
1994年,國家標准《工程岩體分級標准》(50218-94)給出了岩體基本質量分級的標准(表2-2-15)。在此之前發布的國家標准《岩土工程勘察規范》(GB50021-94),該表是作為洞室圍岩質量分級標準的。在2001年修訂的《岩土工程勘察規范》(GB50021-2001)中,岩體基本質量分級以表2-2-15的形式來分類,岩體基本質量等級按表2-2-16分類。
表2-2-15 岩體基本質量分級
表2-2-16 岩體基本質量等級分類
(六)岩體圍岩分類
地鐵、公路、水電、鐵路以及礦山工程等行業,均有地下洞室和隧道(巷道)開挖,工程勘察均需對工程所處的圍岩進行分類。不同的規范對圍岩的分類方法略有不同。
1.隧道圍岩
《地下鐵道、輕軌交通岩土工程勘察規范》(GB50307-1999)和《公路工程地質勘察規范》(JTJ064-98)規定,隧道圍岩分類按表2-2-17劃分。
表2-2-17 隧道圍岩分類
續表
2.圍岩工程地質
《水利水電工程地質勘察規范》(GB50287-99)規定,在地下洞室勘察時,應進行圍岩工程地質分類。分類應符合表2-2-18規定。
表2-2-18 圍岩工程地質分類
上表中的圍岩總評分T為岩石強度、岩體完整程度、結構面狀態、地下水和主要結構面產狀5項因素之和。各項因素的評分辦法在該規范中均有明確規定。圍岩強度應力比亦有專門的公式計算。
3.鐵路隧道圍岩
《鐵路工程地質勘察規范》(TB10012-2001)規定,隧道工程地質調繪時,應根據地質調繪、勘探、測試成果資料,綜合分析岩性、構造、地下水及環境條件,按表2-2-19分段確定隧道圍岩分級。
表2-2-19 鐵路隧道圍岩的基本分級
續表
該規范還規定,鐵路隧道圍岩分級應根據圍岩基本分級,受地下水,高地應力及環境條件等影響的分級修正,綜合分析後確定。關於岩體完整程度的劃分,地下水影響的修正,高地應力影響的修正及環境條件的影響,規范中都有明確的規定。
4.井巷工程圍岩
礦山工程中的井巷工程,其功能和結構更為多樣,所以井巷工程對圍岩的分類更加詳盡,各種定性和定量指標明顯多於其他標准。《岩土工程勘察技術規范》(YS5202-2004、J300-2004)規定,井巷工程評定圍岩質量等級按表2-2-20劃分圍岩類別。
表2-2-20 井巷工程圍岩分類
續表
續表
5.工程岩體
國家規范:《錨桿噴射混凝土支護技術規范》(GB50086-2001)從工程岩體支護設計和施工的需要出發,給出圍岩分級表,與表2-2-20相比,僅少了Ⅵ、Ⅶ兩類,主要工程地質特徵少了岩石質量指標RQD和岩體及土體堅固性系數兩欄,其他完全相同。
(七)岩質邊坡的岩體分類
《建築邊坡工程技術規范》(GB50330-2002)對岩質邊坡的岩體分類方法,見表2-2-21
表2-2-21 岩質邊坡的岩體分類(GB50330-2002)
續表
表2-2-22 岩體完整程度劃分
(八)深圳地區岩體分類、鑒定中存在的問題和改進意見
1)深圳地區的建築工程除大量的房屋建築外,公路(道路)橋梁、水利、地鐵、鐵路等均有大量的投資建設,各行業對岩體質量等級的劃分在執行不同規范的分類標准。在當前情況下,這一狀況將繼續下去。但是,對某一岩體的不同分類標准,僅僅是某一行業的習慣性作法。宏觀上看不同分類標準的具體內容並無原則性的區別。無論採用哪種標准都不應該影響岩體評價的正確性。
2)岩體工程特性的評價中,岩體的結構分類應該受到足夠的重視。尤其是高大邊坡、地質災害評估等岩體結構對岩體穩定起主導作用的工程項目。只有採取多種科學勘察手段和縝密地進行分析,岩體的結構特徵才能弄清楚。
3)岩石風化程度的判斷,現場工作除很具經驗的野外觀察和標准貫入試驗外,應多採用岩體波速測試方法,使之成為常用方法之一。准確的波速測試結果,可能比標貫試驗所得結果更能准確地判斷岩石的風化程度。
4)岩石的風化程度是隨埋藏深度的增加而減弱的,風化岩石的強度則是隨埋藏深度的增加而增加的。為了充分發揮地基承載力,深圳市地基基礎勘察設計規范(送審稿)將厚層花崗岩強風化帶分為上、中、下3個亞帶,其劃分方法見表2-2-23。
表2-2-23 厚層花崗岩強風化帶細分
需要指出的是,花崗岩的風化規律一般是上部風化嚴重,隨深度增加而減弱,但也有個別情況,有時隨深度增加風化程度並無明顯變化,故在劃分風化亞帶時,應視強風化帶的厚度和風化程度改變的深淺,也可以劃分一個亞帶或兩個亞帶,不可強求一律劃分為3個亞帶。
龍崗區的碳酸鹽類岩石——灰岩、白雲岩、大理岩等基本上不存在全風化和強風化層。由於構造的影響或是其他某種原因(如表面溶蝕劇烈),可能岩石的裂隙比較發育,塊度比較小。
二、土體
(一)土體的含義及其工程地質分類
土是泛指還沒有固結硬化成岩石的疏鬆沉積物。土是堅硬岩石經過破壞、搬運和沉積等一系列作用和變化後形成的。土多分布在地殼的最上部。工程地質學把土看作與構成地殼的其他岩石一樣,均是自然歷史的產物。土的形成時間、地點、環境以及形成的方式不同,其工程地質特性也不同。因此在研究土的工程性質時,強調對其成因類型和地質歷史方面的研究具有特殊重要意義。
土的工程地質分類有以下特點:①分類涵蓋自然界絕大多數土體;②同類或同組的土具備相同或相似的外觀和結構特徵,工程性質相近,力學的理論分析和計算基本一致;③獲取土的物理力學指標的試驗方法基本相同;④工程技術人員,從土的類別可以初步了解土的工程性質。
土的工程地質分類是以鬆散粒狀(粗粒土)體系和鬆散分散(細粒土)體系的自然土為對象,以服務於人類工程建築活動為目的的分類。分類的任務是將自然土按其在人類工程建築活動作用下表現出的共性劃分為類或組。
合理的工程地質分類,具有以下實際用途:①根據土的分類,確定土的名稱,它是工程地質各種有關圖件中劃分土類的依據;②根據各類土的工程性質,對土的質量和建築性能提出初步評價;③根據土的類型確定進一步研究的內容、試驗項目和數量、研究的方法和方向;④結合反映土體結構特徵的指標和建築經驗,初步評價地基土體的承載能力和斜坡穩定性,為基礎和邊坡的設計與施工提供依據。
土的工程地質分類有普通的和專門的兩類。普通分類的劃分對象包括人類工程活動可能涉及的自然界中的絕大多數土體,適用於各類工程,分類依據是土的主要工程地質特徵,如碎石土、砂土、黏性土等。專門分類是為滿足某類工程的需要,或者根據土的某一或某幾種性質而制定的分類,這種分類一般比較詳細,比如砂土的密實度分類,黏性土按壓縮性指標分類等等。應當指出的是,普通分類與專門分類是相輔相成的,前者是後者的基礎,後者是前者的補充和深化。
(二)國外土的工程分類概況
近幾十年來,國外在土的工程地質分類研究方面有很大進展,工業和科學技術發達的主要國家,都分別先後制定了各自全國統一的分類標准(表2-2-24)。其中英國、日本、德國的分類均以美國分類為藍本,結合各自國情適當調整、修改而制定的。
表2-2-24 一些國家的土質分類簡況
上述各國的土質分類,都採用了統一分類體系和方法,不僅使各自國內對土質分類有了共同遵循的依據,而且體現了國際統一化的趨勢,以促進國際交流與合作。
下列美國的統一分類法(表2-2-25)作為樣本,以了解國外分類的標准和方法。
表2-2-25 美國的土的統一分類法
續表
(三)國內土的工程分類
1.統一分類法
1990年,國家標准《土的分類標准》(GBJ 145-90)發布,並於1991年8月起執行。在此之前或之後,水利水電、公路交通等行業土的分類標准與GBJ 145-90標准沒有明顯區別。(GBJ 145-90)土的分類如表2-2-26和表2-2-27所示。
表2-2-26 粒組的劃分
表2-2-27 土質分類表
2.建築分類法
國標《建築地基設計規范》(GB50007-2002)土的分類方法(簡稱:建築分類法)如表2-2-28。這是從早期《工業與民用建築地基基礎設計規范》(TJ7-74)(試行)到《建築地基基礎設計規范》(GBJ7-89)一直延續下來的土的分類標准。在TJ7-74規范之前,我國一直沿用前蘇聯規范(HИTY127-55)。建築分類法在房屋建築地基基礎工程或類似的工程中廣泛運用,這在不少行業規范中得以反映,此分類方法也為廣大工程技術人員所熟知。目前深圳除公路、鐵路行業外,大多採用此分類標准,並納入到深圳市的地方標准之中。
表2-2-28 土的分類
(四)土的狀態分類
土的狀態分類屬專門分類。對於某種行業或某類工程,土的狀態標準是有所區別的,現以《岩土工程勘察規范》(50021-2001)中規定的最常用的分類標准,對碎石土、砂土、粉土的密實度和對粉土的濕度及黏性土的狀態進行分類,見表2-2-29至表2-2-34。
表2-2-29 碎石土密實度按M63.5分類
表2-2-30 碎石土密實度按N120分類
表2-2-31 砂土密實度分類
表2-2-32 粉土密實度分類
表2-2-33 粉土濕度分類
表2-2-34 黏性土狀態分類
(五)土的現場鑒別方法
1.碎石土密實度現場鑒別方法(表2-2-35)
表2-2-35 碎石土密實度現場鑒別
2.砂土分類現場鑒別方法(表2-2-36)
表2-2-36 砂土分類現場鑒別
3.砂土密實度現場鑒別方法(表2-2-37)
表2-2-37 砂土密實度現場鑒別
4.砂土濕度的現場鑒別方法(表2-2-38)
表2-2-38 砂土濕度現場鑒別
5.粉土密實度現場鑒別方法(表2-2-39)
表2-2-39 粉土密實度現場鑒別
6.粉土濕度現場鑒別方法(表2-2-40)
表2-2-40 粉土濕度現場鑒別
7.黏性土狀態現場鑒別方法(表2-2-41)
表2-2-41 黏性土狀態現場鑒別
8.有機質土和淤泥質土的分類
土按有機質分類和鑒定方法,《岩土工程勘察規范》(GB50021—2001)的分類方法見表2-2-42。深圳市沿海近岸地區存在大量淤泥或淤泥質土,在上更新統(Q3)的雜色黏土中,有一層泥炭質土,局部有泥炭層發育。
表2-2-42 土按照有機質分類
(六)土的定名和描述
1.統一分類法定名
1)巨粒土和含巨粒的土、粗粒土按粒組、級配、所含細粒的塑性高低可劃分為16種土類;細粒土按塑性圖、所含粗粒類別以及有機質多寡劃分16種土類。
2)土的名稱由一個或一組代號組成:一個代號即表示土的名稱,由兩個基本代號構成時,第一個代號表示土的主成分,第二個代號表示副成分(土的級配或土的液限);由3個基本代號構成時,第一個代號表示土的主成分,第二個代號表示液限;第三個代號表示土中微含的成分。
《土的分類標准》(G B J145-90),對特殊土的判別,列出了黃土,膨脹土和紅黏土。對花崗岩殘積土並沒有特別加以說明。根據深圳有關單位的經驗,花崗岩殘積土中的礫質黏性土相當於G B J145-90中的含細粒土礫,代號GF;砂質黏性土相當於細粒土質礫,代號GC-GM;黏性土相當於高液限粉土一低液限粉土,代號M H-M L。對淤泥和淤泥質土,G B J145-90分的不細,從工程需要出發,淤泥和淤泥質土的分類宜按建築行業標准。
2.建築行業定名
建築行業定名依照下列幾個標准:
1)土名前冠以土類的成因和年代。
2)碎石土和砂土按顆粒級配定名。
3)粉土以顆粒級配及塑性指數定名。
4)黏性土以塑性指數定名。
5)對混合土按主要土類定名並冠以主要含有物,如含碎石黏土,含黏土角礫等。
6)對同一土層中有不同土類呈韻律沉積時,當薄層與厚層的厚度比大於三分之一時,宜定為「互層」;厚度比為十分之一至三分之一時,宜定為「夾層」;厚度比小於十分之一的土層且多次出現時,宜定為「夾薄層」。當土層厚度大於0.5m時,宜單獨分層。
3.土的描述內容
(1)當按統一分類法(GBJ145-90)定名時,應按下列內容描述
1)粗粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;土顆粒形狀(圓、次圓、稜角或次稜角);土顆粒的礦物成分;土顏色和有機質;所含細粒土成分(黏土或粉土);土的代號和名稱。
2)細粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;潮濕時土的顏色及有機質;土的濕度(干、濕、很濕或飽和);土的狀態(流動、軟塑、可塑或硬塑);土的塑性(高、中或低);土的代號和名稱。
(2)當按建築分類法(GB50007-2002)定名時,應按下列內容描述
1)碎石土:名稱、顆粒級配、顆粒排列、渾圓度、母岩成分、風化程度、充填物的性質和充填程度、膠結性、密實度及其他特徵。
2)砂土:名稱、顏色成分、顆粒級配、包含物成分及其含量、黏粒含量、膠結性、濕度、密實度及其他特徵。
3)粉土:名稱、顏色、包含物成分及其含量、濕度、密實度、搖振反應及其他特徵。
4)黏性土:名稱、顏色、結構特徵、包含物成分及其含量、搖振反應、光澤反應、干強度、韌性、異味及其他特徵。
5)特殊性土:除應描述上述相應土類的內容外,尚應描述其特徵成分和特殊性質,如對淤泥尚需描述臭味、有機質含量;對填土尚需描述物質成分、堆積年代、密實度和均勻程度等。
6)互層(夾層)土:對具有互層、夾層、夾薄層特徵的土,尚應描述各層的厚度及層理特徵。
④ 地基分為哪幾種類型
(一) 按所用材料分類
房屋建築基礎按所用材料可分為磚基礎、毛石基礎、灰土基礎、混凝土基礎及鋼筋混凝土基礎。
1.磚基礎是用磚和水泥砂漿砌築而成的基礎。
2.毛石基礎是用開採的無規則的塊石和水泥砂漿砌築而成的基礎。
3.灰土基礎是由石灰與粘土按一定比例拌合,加水夯實而成的基礎。
4.混凝土基礎是由混凝土拌制後灌築而成的基礎。
5.鋼筋混凝土基礎是在混凝土中加入抗拉強度很高的鋼筋,使這種基礎具有較高的抗彎抗拉能力。
(二)按外形分類
基礎按外形可分為:
1.條形基礎。這種基礎多為牆基礎,沿牆體長方向是連續的。
2.獨立基礎。這種基礎主要為獨立柱下的基礎。現澆鋼筋混凝土獨立柱基有平台式、坡面式。預制柱下為鋼筋混凝土杯形基礎。
3.筏形基礎。筏形基礎形象於水中漂流的木筏。井格式基礎下又用鋼筋混凝土板連成一片,大大地增加了建築物基礎與地基的接觸面積,換句話說,單位面積地基土層承受的荷裁減少了,適合於軟弱地基和上部荷載比較大的建築物。
4.箱形基礎。箱形基礎是由鋼筋混凝土的頂板、底板和縱橫承重隔板組成的整體式基礎。箱形基礎不僅同筏形基礎一樣有較大的基底面積,適用於軟弱地基和上部荷載比較大的建築物。而且由於基礎自身呈箱形,具有很大的整體強度和剛度。當地基不均勻下沉時,建築物不會引起較大的變形裂縫。該基礎施工難度大,造價高。多用於高層建築,另外可兼作地下室。
5.樁基礎。工程實踐中,當建築物上部結構荷載很大,地基軟弱土層較厚,對沉降量限制要求較嚴的建築物或對圍護結構等幾乎不允許出現裂縫的建築物,往往採用樁基礎。樁基礎可以節省基礎材料,減少土方工程量,改善勞動條件,縮短工期。
(1) 樁基礎由承台和樁群兩部分組成。承台設於樁頂,把各單樁聯成整體,並把上部結構的荷載均勻地傳遞給各根樁,再由樁傳給地基。 考試大為你加油
(2)樁按傳力方式不同,分為摩擦樁和端承樁。
(3)混凝土或鋼筋混凝土樁按製作方法不同可分為預制樁和灌注樁兩類
⑤ 地基土分為幾大類 各類土劃分的依據是什麼
建築地基岩土可分為岩石、碎石土、砂土、粉土、黏性土和人工填土等六大類。
各類岩土劃分的依據可參閱《岩土工程勘察規范》GB50021--2001(2009年版)第3.2條岩石的分類和鑒定;第3.3條 土的分類和鑒定,以及《建築地基基礎設計規范》GB50007--2011第4.1條 岩土的分類。
⑥ 工程地質學的分類
工程地質學還要研究工程地質條件的區域分布特徵和規律,預測其在自然條件下和工程建專設活動中的屬變化,和可能發生的地質作用,評價其對工程建設的適宜性。由於各類工程建築物的結構和作用,及其所在空間范圍內的環境不同,因而可能發生和必須研究的地質作用和工程地質問題往往各有側重。據此,工程地質學又常分為水利水電工程地質學、道路工程地質學、采礦工程地質學、海港和海洋工程地質學、城市工程地質學等。
⑦ 工程地質條件的因素分類
工程地質條件是指工程建築物所在地區與工程建築有關的地質環境各項因素的綜合。
工程地質條件的因素分類:
(1) 地層的岩性:是最基本的工程地質因素,包括它們的成因、時代、岩性相關書籍、產狀、成岩作用特點、變質程度、風化特徵、軟弱夾層和接觸帶以及物理力學性質等。
(2) 地質構造:也是工程地質工作研究的基本對象,包括褶皺、斷層、節理構造的分布和特徵、地質構造,特別是形成時代新、規模大的優勢斷裂,對地震等災害具有控製作用,因而對建築物的安全穩定、沉降變形等具有重要意義。
(3) 水文地質條件:是重要的工程地質因素,包括地下水的成因、埋藏、分布、動態和化學成分等。
(4) 地表地質作用:是現代地表地質作用的反映,與建築區地形、氣候、岩性、構造、地下水和地表水作用密切相關,主要包括滑坡、崩塌、岩溶、泥石流、風沙移動、河流沖刷與沉積等,對評價建築物的穩定性和預測工程地質條件的變化意義重大。
(5) 地形地貌:地形是指地表高低起伏狀況、山坡陡緩程度與溝谷寬窄及形態特徵等;地貌則說明地形形成的原因、過程和時代。平原區、丘陵區和山嶽地區的地形起伏、土層厚薄和基岩出露情況、地下水埋藏特徵和地表地質作用現象都具有不同的特徵,這些因素都直接影響到建築場地和路線的選擇。
(6)地下水:包括地下水位,地下水類型,地下水補給類型,地下水位隨季節的變化情況。
(7)建築材料:結合當地具體情況,選擇適當的材料作為建築材料,因地制宜,合理利用,降低成本。
需要說明的是:工程地質條件是客觀存在的地質因素,只有其中的穩定因素或工程建設產生的不穩定因素對工程建設運行構成或可能構成有害影響時才成為工程地質問題
⑧ 地基土分為哪幾種類型
地基土(岩)分類的任務是根據分類用途和土(岩)的各種性質的差異將其劃分為一定的類別。專
土(岩)的合屬理分類具有重大的實際意義,例如,根據分類名稱可以大致判斷土(岩)的工程特性、評價土(岩)作為建築材料的適宜性以及結合其他指標來確定地基的承載力等。根據土的工程地質性質,土可分為一般土和特殊土兩大類。
一般土可劃分為碎石類土、砂類土、粉土、黏性土等,對於一般土,在野外要直接區分出無黏性土和黏性土;特殊土可劃分為黃土、紅黏土、膨脹土、軟土、鹽漬土、多年凍土、填土等。建築地基基礎設計規范規定,作為建築地基的岩土,可分為岩石、碎石土、砂土、粉土、黏性土和人工填土。
⑨ 區域環境工程地質評價
4.3.1區域穩定性分析
黃河三角洲是在基底構造甚為破碎、濟陽凹陷的一個次級負向構造單元上發育形成的。由於區內東北部位於北西向的燕山——渤海地震帶及北東向的沂沫斷裂地震帶的交匯部位,因而與新構造運動有關的構造地震異常活躍。據山東省地震局1985年10月布設的東營—墾利、陳家莊—河口的現代形變及牛庄—新刁口的兩次a徑跡測量結果,埕子口斷裂、孤北斷裂、陳南斷裂、勝北斷裂和東營斷裂的現代活動都有顯示,說明區內的區域穩定性較差。區內新生代以來的斷裂活動表現為具有繼承性脈動活動的特點。尤其是5號樁,樁西至海港一帶位於上述兩條活動斷裂地震帶的交匯復合部位,新生代以來斷陷幅度最大,歷史上曾發生過3次7~7.5級地震,區域穩定性差。根據以上的地震預測,影響烈度一般都在Ⅶ度以上,5號樁一帶為Ⅷ度。根據我國建築規范規定,一切建築物都應設防加固,以保安全。
區內飽和砂土、飽和粉土具有液化的宏觀條件。在歷史地震發生時,曾有噴水冒砂、地面裂縫等現象發生。其液化程度受以下因素影響:土的顆粒特徵、密度、滲透性、結構、壓密狀態、上覆土層、地下水位埋深、排水條件、應力歷史、地震強度和地震持續時間等。
由於黃河三角洲地質體物質組成主要是粉砂,且孔隙度較高,加之形成期堆積速率快,造成地質體中含水量高。隨著時間推移,在上覆沉積物擠壓下,孔隙中水逐漸被擠壓,造成地質體壓縮,導致地面下沉。根據1988年在黃河海港地區實測,該地區壓實下沉速率可達6cm/a,因此由於地面下沉所引起的海面相對上升則更加劇了海岸侵蝕。
另外,近幾十年來的人為活動加劇了本區地面沉降的發展,如:建築地基承載力不足引起的土體壓縮,地下水、石油、鹵水的開采所引起的含水層、儲油層壓縮等。
由此可見,黃河三角洲地區環境工程地質問題頗多,本節將對直接影響東營市經濟發展和規劃的地表下25m土體工程地質類型及其物理力學性質、工程地質性質的區域性變化等進行深入研究。
4.3.2土體的工程地質分類及工程地質特徵
區內小清河以北為黃河三角洲平原,小清河以南多為山前沖洪積平原,基岩埋深在數百米以下,表層均為第四系鬆散沉積物,鑒於一般工業與民用建築物地基持力層一般均在15m以上,一般中高層建築物持力層一般在25m以上的特點,下面僅以0~25m的土體為對象,進行分析和研究(圖4-6)。
圖4-6地表土體類型示意圖
1.土體的岩性與結構特徵
(1)土體岩性分類
區內0~25m深度內的地層多為第四系全新統地層,其沉積環境受黃河和海洋交互或共同影響,形成了以細顆粒為主的地層。所表現出的岩性以粉土最為廣泛,其次為粉質粘土、粉砂、粘土,局部有細砂,其主要岩性特徵見表4-6。
表4-6黃河三角洲0~25m地層岩性分類及主要特徵表
(2)土體結構特點
區內土體結構無單層結構,多為多層結構,(多層結構是指一定深度內由3層或3層以上的地層構成),這也是區內的沉積環境所決定的,該區瀕臨渤海,是河流的最下游段,河道游盪較頻繁,古地貌特點反復變化,攜帶泥、砂的水動力特點也隨之變化,因此,區內一般無巨厚的單層岩性沉積。
2.土體工程地質特徵
(1)山前沖洪積平原區土體工程地質特徵該區地面下25m的沉積物為第四系全新統沖積、洪積(
(2)古黃河三角洲區土體工程地質特徵該區地面下25m的沉積物為第四系全新統沖積、海積、湖沼相沉積(
(3)現代黃河三角洲平原區土體工程地質特徵
該區地面下25m的沉積物為第四系全新統沖積海積物(
3.地表下0~25m土體物理力學指標的變化規律
(1)古黃河三角洲區的物理力學性質總體上好於現代黃河三角洲,這正是由於現代黃河三角洲的成陸時間晚於古黃河三角洲,其自重固結的程度差於前者。
(2)無論是古黃河三角洲區還是現代黃河三角洲區各類岩性土層的物理力學指標顯示出一個較明顯的規律,即從地表向下隨深度的增加土層的物理力學指標以較好—較差—好發生變化。一般較差的深度段在5~10m和10~15m。這一變化規律也與區內的沉積環境相吻合,力學指標較差的深度段為1855年黃河改道以前沉積的沖湖積、沖海積相為主的地層。
4.3.3天然地基承載力、飽和砂土液化及軟土與鹽漬土
1.天然地基承載力
黃河三角洲地區基土承載力在不同位置、不同層位均有較大變化,從小於80kPa到大於300kPa。天然地基承載力指自地表算起的第一層或第二層基土(當第一層厚度小於3m,且第二層基土承載力高於第一層時,取第二層承載力數據)的承載力。區內天然地基承載力可分為4個等級(表4-7),其分布與變化規律與地貌單元有較密切的相關關系(圖4-7)。
(1)承載力低區(fk<80kPa)的分布
① 呈條帶狀分布於現代黃河三角洲工程地質區內。如利津縣虎灘鄉西南—河口區義和鎮南部、河口東南孤河水庫—渤海農場總場北以及現代黃河入海口北側等地,以上各地帶多為1855年以後成陸,且位於濱海低地或窪地內,排水條件差,自重固結程度低。
表4-7天然地基承載力分區特徵表
② 呈小片狀分布於古黃河三角洲平原區。如東營區勝利鄉南部,利津縣王莊鄉南部等。
(2)承載力較低區(80≤fk<100kPa)的分布
① 沿海岸線分布,寬度不一。
② 沿黃河泛流主流帶邊緣、前緣和窪地展布。如利津縣大趙鄉—虎灘—羅鎮—河口區一帶、集賢鄉—渤海農場總場、孤北水庫北部、利津前劉鄉—東營區西城,以及東營區龍居鄉—西范鄉一帶。
(3)承載力中等區(100≤fk<120kPa)的分布
① 分布於決口扇的頂部及緩平坡地區。如利津縣南宋—北宋—明集,東營區龍居鄉—油郭鄉—六戶鎮—廣饒縣丁庄鄉以及勝坨鄉—高蓋鄉等地。
② 分布於現代黃河三角洲頂點附近。如寧海鄉—汀河鄉、寧海鄉—傅窩鄉一帶。
③ 分布於現代黃河三角洲北部、東部。如河口區新戶—刁口鄉、孤東水庫—五號樁、墾利縣建林鄉—孤東水庫、建林—西宋鄉。
(4)承載力較高區(fk>120kPa)的分布
① 分布於古黃河三角洲的南部。如牛庄—陳官—小清河一帶。
② 分布於小清河以南的山前沖洪積平原區。
③ 零星分布於近代黃河三角洲平原區的地勢較高處。
2.飽和砂土液化
砂土液化是指處於地下水位以下鬆散的飽和砂土,受到震動時有變得更緊密的趨勢。但飽和砂土的孔隙全部為水充填,因此,這種趨於緊密的作用將導致孔隙水壓力驟然上升,而在地震過程的短暫時間內,驟然上升的孔隙水壓力來不及消散,這就使原來由砂粒通過其接觸點所傳遞的壓力(有效壓力)減少,當有效壓力完全消失時,砂層會完全喪失抗剪強度和承載能力,變得像液體一樣的狀態,即通常所說有砂土液化現象。
區內的飽和砂土、飽和粉土具有液化的宏觀條件,在歷史地震發生時,曾有噴水冒砂、地面裂縫等現象發生。其液化程度受以下因素影響:土的顆粒特徵、密度、滲透性、結構、壓密狀態、上覆土層、地下水位埋深、排水條件、應力歷史、地震強度和地震持續時間等。
液化判別就是根據土的物理力學性質及其他工程地質條件,對土層在地震過程中發生液化的可能性的判別。國家標准《建築基礎抗震設計規范》(GBJ11-89)中規定了飽和砂土、飽和粉土的液化判別方法,在對區內飽和砂土、飽和粉土的液化判別時,即依照了前述規范提供的方法,在液化勢宏觀判定的基礎上,採用了原位測試資料——標准貫入試驗進行了液化臨界值和液化指數的計算。根據液化指數對地基液化等級的劃分見表4-8。區內液化砂土的分布規律見圖4-8。
(1)嚴重液化區
① 分布於現代黃河三角洲頂點,向北向東呈扇形展布的黃河泛流主流帶的中上游部位,主要在陳庄鎮—六合鄉、虎灘鄉—義和鎮一帶。
圖4-7天然地基承載力分區示意圖
表4-8地基液化等級表
② 零星分布於廢棄河道帶和決口扇,如下述地帶:東營區永安鄉—廣北水庫一線,呈條帶狀分布,為廢棄河道帶;利津縣店子鄉—前劉鄉,呈片狀分布,為決口扇的中部;東營區史口鄉附近、東營區六戶鎮西側、河口區新戶鄉東北等地。
該區內的飽和粉土、飽和粉砂顆粒均勻,粘粒含量低,沉積厚度較大,形成年代新,固結程度差,因此是最易發生液化的地區。
(2)中等液化區
① 分布於較大的決口扇及決口扇前緣坡地地帶,利津縣城東—明集鄉—大趙鄉、東營區勝利鄉—董集鄉—油郭鄉一帶。
② 分布於黃河泛流主流帶或其邊緣地帶。寧海鄉—墾利縣城;陳庄鎮—傅窩鄉;渤海農場總場東—建林鄉—新安鄉;義和水庫南—河口區。
③ 在濱海低地帶內有零星片狀分布,五號樁及以東地區;刁口碼頭東北—孤北水庫北部;新戶鄉以西及以北的近海地帶。該區一般位於嚴重液化區的外圍及決口扇頂部位或零星分布於小規模的黃河主流帶,飽和粉土、粉砂的粘粒含量較低,固結程度較差,因此是較易發生液化的地區。
(3)輕微液化區
① 分布於古黃河三角洲泛濫平原及決口扇邊緣,如下述地帶:利津縣南宋鄉—北宋鄉;東營區龍居鄉—廣饒縣陳官鄉—丁庄鄉。
② 分布於現代黃河三角洲的非黃河泛流主流帶區,如下述地帶:利津縣王莊鄉—墾利縣勝坨鄉;利津縣集賢鄉—墾利縣城東部;河口區太平鄉—義和水庫。
該區粉土、粉砂的沉積厚度較小,粘粒含量較高,因此液化程度較輕。
(4)非液化區
① 分布於工作區小清河以南的山前沖洪積平原,該區地下水位埋藏深,水位以下的飽和粉土,粉砂密實程度較好,因此不易液化。
② 分布於沿海地帶的濱海低地,該區除河口相沉積外,地層粘粒含量較高或以粘性土為主,因此不易液化。
3.軟土與鹽漬土
(1)軟土
軟土一般是指天然含水量高、壓縮性大、承載力低的一種軟塑到流塑狀態的粘性土。如淤泥、淤泥質土以及其他高壓縮性飽和粘性土、粉土等。黃河三角洲地區地處渤海之濱,具有軟土的沉積環境,鑽探資料亦證明,區內呈片狀分布著軟土。
① 軟土的劃分標准
本次劃分軟土時採用如下方法:當滿足下列條件之一時,並且厚度大於0.50m,將其確定為軟土:承載力標准值fk<80kPa;標貫錘擊數N63.5≤2;靜力觸探錐頭阻力qc<0.5MPa;流塑狀態。
② 軟土的空間分布
軟土主要分布於區內的東北部濱海地帶、河口—刁口碼頭一帶。利津縣羅鎮—黃河故道西、墾利縣下鎮鄉東部,另外在利津縣明集鄉—廣南水庫一線呈不連續片狀、碟狀分布。
③ 軟土的成因及主要物理力學性質
區內的軟土具有兩種成因:①爛泥灣相沉積:在歷次河口的兩側,沉積的以細粒成分為主的土層,一直處於飽和狀態,排水固結過程進展緩慢,所以土的力學性質很差。顏色以灰褐色為主,流塑態,土質細膩,岩性以粉質粘土為主,夾粉土和粘土薄層。②濱海湖沼相沉積:顏色以灰—灰黑色為主,有機質含量較高,具腥臭味,為淤泥或淤泥質土。
圖4-8地基砂土液化分區示意圖
表4-9軟土的主要物理力學指標統計表
從表4-9中可以看出:區內軟土具有含水量高、孔隙比大、壓縮性高、承載力低的特點,在荷載作用下變形較大,對建築物極為不利。因此,在工程建設規劃時,應盡量避開有軟土分布的地區。在無法避開軟土的建築物,應對區內的軟土有足夠的重視,採取一定的處理措施,對於一般工業民用建築可採取粉噴樁法進行處理,對於高層重型建築物應採取深基礎,如沉管灌注樁等,以避開軟土的不利影響(圖4-9)。
(2)鹽漬土
當土中的易溶鹽含量大於0.5%,且具有吸濕、松脹等特性的土稱為鹽漬土。區內的鹽漬土為濱海鹽漬土,按含鹽性質則大部分屬氯鹽漬土,局部為硫酸鹽漬土,鹽漬土按含鹽量可分為弱鹽漬土(0.5%~1%),中鹽漬土(1%~5%)、強鹽漬土(5%~8%)和超鹽漬土(>8%),區內的鹽漬土主要為弱鹽漬土,局部地段有中鹽漬土(見圖4-10)。
4.3.4工程地基適宜性評價
工程建築地基適宜性受多種因素的影響,為達到評價結果清晰簡潔、合理反映出區內建築適宜性等級的目的,選用了專家聚類法(亦稱總分法)進行評價。評價過程為:首先擬定評價因子,對各評價因子量化、分級並給定各級別的標准分,其次用傅勒三角形法確定各評價因子的權重,然後計算各勘測點單項因子分值和總分值,再按各點的總分值進行分區。最終的評價結果見表4-10、4-11、4-12、4-13。
圖4-9軟土分布示意圖
圖4-10鹽鹼土分布示意圖
表4-10一般工業與民用建築地基適宜性評價方案(評價深度10m)
① 沉降因子
② DⅠ——山前沖洪積平原;DⅡ——古黃河三角洲平原;DⅢ——現代黃河三角洲平原。
表4-11一般工業與民用建築地基適宜性評價分區說明表
表4-12高層重型建築物地基適宜性評價方案(評價深度25~30m)
表4-13高層重型建築物地基適宜性評價分區說明表
一般建築、高層建築物地基適應性評價分區見圖4-11、4-12。
圖4-11一般建築物地基適宜性評價分區示意圖
圖4-12高層建築物地基適宜性評價分區示意圖
⑩ 地基土(岩土)的分類與工程性質
(一)地基與基礎概念
1.地基
工程上把受建築物影響,從而引起其發生物理力學性質、內應力變化的那部分岩體或土體(即承擔建築物傳來荷載的岩土體)稱為地基。它是基礎底面下,承受由基礎傳來荷載的那一部分岩土層。
建築物的地基,按其構成的介質不同,分為岩石地基和土層地基。
當地基由兩層以上的岩土體組成時,通常將直接與基礎接觸的岩土層稱為持力層;持力層下部的土層則稱為下卧層。如果把天然岩土層作為建築物地基,則此時的地基稱為天然地基;如果需要經過人工加固處理後才能作為建築物地基,則這時的地基稱為人工地基。在實際工作中,為節約資金,應盡量利用天然地基。
2.基礎
基礎是指與地層直接接觸的建築物向地基傳遞荷載的下部結構。它是建築物的下部結構;起著把建築物上部結構的荷載分布開來並傳遞到地基中去的作用。
(1)基礎的形式劃分
建築物的基礎有多種形式,按埋置深度不同分為淺基礎(埋深≤5m,如:單獨基礎、條形基礎、片筏基礎等)和深基礎(埋深>5m,如:樁基礎、墩基礎、沉井基礎、地下連續牆等)。
(2)地基、基礎設計要求
建築物的上部結構與基礎、地基三部分雖然功能各異,卻構成了一個既相互制約又共同工作的整體。因此,為了保證建築物的正常使用,地基、基礎設計都需要滿足兩個基本條件:
1)強度條件。即要求作用於地基上的荷載不超過地基承載能力,以保證地基在防止整體失穩方面有足夠的安全儲備。
2)變形條件。即控制基礎沉降,使之不超過容許值。因此,在建築物設計、施工之前、必須進行場地的勘探工作,是做好地基基礎設計與施工的先決條件。
(二)土的組成與分類
在地質勘探工作中,鑽探施工的主要對象是岩土。因此,了解岩土的物理力學性質,對確定鑽進、取心、鑽孔沖洗方法及其護壁措施,正確選用施工機械設備與工藝技術參數,提高鑽孔質量、效率,降低鑽探成本具有特別重要的意義。
1.土的組成
土是由固相(礦物、岩石碎屑)、液相(水)與氣體組成的三相地質集合體。其中:固相是土粒,礦物成分主要有原生礦物,次生礦物和有機質;液相主要是水或水溶液;氣相是指存在於孔隙中的氣體,由於氣體無色且量少,故一般不易看到。土中氣體可分為自由氣體和封閉氣體。
2.土分類
根據其堆積年代、地質成因、顆粒級配或塑性指數等可作如下分類:
1)按堆積年代分為老堆積土、一般堆積土、新近堆積土。
2)據地質成因分為殘積土、坡積土、洪積土、淤積土、冰積土和風積土。
3)按有機質含量為無機土、有機質土、泥炭質土和泥炭。
4)按顆粒級配或塑性指數分為碎石土、砂土、粉土和黏性土。碎石土和砂土的劃分應符合如表1-2和表1-3所示的規定。
表1-2 碎石分類
表1-3 砂土分類
(三)土的物理、力學性質
1.土的物理性質
土的物理性質是表明物理狀態的一些性質;它反映的是土的輕重、干濕和松密。土的基本物理指標、符號、單位、物理意義和計算公式如表1-4所示。
2.土的力學性質
土在外力作用下所表現的性質,稱土的力學性質。它主要包括土在穩定荷載(靜荷載)作用下的土的滲透性和壓縮性以及抗剪性,黏性土的動力壓實性以及流變性。這里只介紹土的滲透性、壓縮性和抗剪性。
(1)土的滲透性
土的滲透性在水力坡度(水壓差)的作用下,水穿過土體的能力。水在土中的滲流有時會使土體發生變形或破壞,這種現象稱滲透變形,它包括流土和管涌兩大基本類型。
表1-4 土的基本物理指標
(2)土的壓縮性
土的壓縮性土體在壓力作用下,孔隙比會因孔隙中氣體或水排除而減少,從而導致土體積的縮小,這種性質稱土的壓縮性,衡量土的壓縮性的指標較多。
(3)土的抗剪強度
單位面積土體在受平行於土體剪切面的作用下,土體產生變形破壞的極限應力稱土的抗剪強度,單位為Pa或MPa。
土的抗剪強度可分為:無黏性土的抗剪強度、非飽和黏性土的抗剪強度、飽和黏性土的抗剪強度。
由於土的以上性質主要在地基計算時應用 ,在鑽孔(井)施工時一般不關注土的性質,故不作詳細介紹。