當前位置:首頁 » 地質工程 » 工程地質土的結構

工程地質土的結構

發布時間: 2021-03-06 00:11:32

❶  工程地質力學的建立與進展

60年代中國學者在大量工程地質實踐的基礎上,認識到構造的重要性,從而提出了「岩體結構」的觀點。同時,法國的岩體力學學家Muller L等也認識到岩體結構的重要性。70年代谷德振等提出「岩體工程地質力學」的新概念。它以地質歷史的發展過程——建造與構造,並運用地質力學觀點,研究了岩體的工程地質特性及力學的成因問題。它包括了岩體結構的解析和表徵,岩體結構的力學特性和效應,工程岩體變形破壞機制的分析,工程岩體穩定性的預測和評價等一系列問題。現已初步建立了工程地質力學的理論體系與研究方法。俄羅斯學者最近認為應考慮土體結構。這樣工程地質力學就應將岩體和土體的工程地質力學都包括在內。

80年代岩體工程地質力學進一步發展,提出了岩體結構力學新概念。它主要研究地質模型的力學效應,即把地質模型轉化為力學模型,在此基礎上進一步將力學模型與岩體變形破壞機制有關要素,轉為定量的數學語言表達,進行岩體穩定性的力學分析,作為工程設計的依據。

對於土和土體的工程地質研究,最初是把土作為連續介質,但由於土的特殊物質組成和結構連接,其應力-應變關系為非線性隨時間變化的流變狀態,因此不僅從宏觀力學上用模型方法,而其從土的微觀結構,通過各種結構類型加以量化,建立土的微觀力學模型,這在國內外都取得了相當大的進展。

中國對軟土、黃土等特殊性土以及軟岩、泥化夾層的流變特性和模型研究,解決不少實際工程中土體變形、地基穩定分析等問題。土的微觀結構研究由於測試技術的發展,在80年代進展較快。取得的重要成果有:制樣技術上由風干法發展為凍干法,探討了土的結構對其蠕變及強度的影響,對粘性土及一些特殊性土的微觀結構和工程地質性質關系,以及對微結構的計算機圖像處理技術等。近年來工程地質學家認為土體結構既然對其工程性質有重要制約作用,就應把建立土的結構性本構(計算)模型作為核心問題,提出發展「土體微結構力學」作為土體工程地質研究的新領域。

工程地質力學的發展要求地質研究與工程高度結合,發展工程結構和地質結構的依存關系和相互作用理論。近年來王思敬等採用系統科學原理,提出了工程地質力學綜合集成理論和方法(The Engineering Geomechanics Meta-Synthesis,簡稱EGMS),以期使工程地質力學的定量評價和預測提高到新的水平。

❷ 何謂工程地質條件包括那些方面

工程地質條件包括:地形地貌、地層岩性、地質構造、地下水條件、地球物理條件、物理地質環境和天然建築材料7項。工程地質學裡面第一頁就有提到。
再看看別人怎麼說的。

❸ 工程地質分區

研究區小清河以北為黃河三角洲平原,小清河以南多為山前沖洪積平原(圖2-6),基岩埋深在數百米以下,表層均為第四系鬆散沉積物,鑒於一般工業與民用建築物地基持力層一般均在15m以上,一般中高層建築物持力層一般在25m以上的特點,下面僅以0~25m的土體為對象,進行分析和研究。

1.土體的岩性與結構特徵

(1)土體岩性分類

區內0~25m深度內的地層多為第四系全新統地層,其沉積環境受黃河和海洋交互或共同影響,形成了以細顆粒為主的地層。所表現出的岩性以粉土最為廣泛,其次為粉質粘土、粉砂、粘土,局部有細砂,其主要岩性特徵見表2-9。

圖2-6 黃河三角洲工程地質分區圖

Fig.2-6 Map of Engineering geology zoning in the Yellow River Delta

(2)土體結構特點

區內土體結構無單層結構,多為多層結構(多層結構是指一定深度內由3層或3層以上的地層構成),這也是區內的沉積環境所決定的,該區已瀕渤海,是河流的最下游段,河道游盪較頻繁,古地貌特點反復變化,攜帶泥、砂的水動力特點也隨之變化,因此,區內一般無巨厚的單層岩性沉積。

表2-9 黃河三角洲0~25m 地層岩性分類及主要特徵表Tab.2-9 Lithology of strata down to 25m depth in the Yellow River Delta

2.土體工程地質特徵

(1)山前沖積洪平原區土體工程地質特徵

該區地面下25m的沉積物為第四系全新統沖積、洪積(

)物,岩性以土黃—灰黃色粉質粘土、粉土為主,古河道帶有粉砂、細砂分布,湖沼相沉積的灰黑色淤泥、淤泥質土比較少見。土層物理力學性質較好,承載力較高。

(2)古黃河三角洲區土體工程地質特徵

該區地面下25m的沉積物為第四系全新統沖積、海積、湖沼相沉積(

),上部多以土黃色—褐黃色粉土、粉質粘土為主,古河道帶有粉砂分布;中部多有灰黑色淤泥質粉質粘土分布;局部有粉砂分布,下部以土黃色粉土、粉砂為主。土層的物理力學性質在水平和垂向上均有較大的變化,局部有小片的軟土和高鹽漬土分布。

(3)現代黃河三角洲平原區土體工程地質特徵

該區地面下25m的沉積物為第四系全新統沖積海積物(

),上部多為土黃—灰黃色粉土、粉質粘土;中部為灰黑色粉質粘土或淤泥質土,具腥味;下部多為淺灰色粉砂,土層的物理力學性質在水平和垂向上均有較大的變化,軟土分布面積較大,鹽漬土呈片狀分布,為弱—中等鹽漬土。

3.地表下0~25m土體物理力學指標的變化規律

1)古黃河三角洲區的物理力學性質總體上好於現代黃河三角洲,這是由於現代黃河三角洲的成陸時間晚於古黃河三角洲,其自重固結的程度弱於前者。

2)無論是古黃河三角洲區還是現代黃河三角洲區,各類岩性土層的物理力學指標顯示出一個較明顯的規律,即從地表向下,隨深度的增加土層的物理力學指標以較好—較差—好的規律發生變化。一般較差的深度段在5~10m和10~15m。這一變化規律也與區內的沉積環境相吻合,力學指標較差的深度段為1855年黃河改道以前沉積的以沖湖積-沖海積相為主的地層。

❹ 在施工中對土是如何分類的

‍‍

土體分為未經搬運的殘積土體和經過搬運的沉積土體。分類按照成因,先根據組成土體的固體材料是否經過搬運、沉積過程,將土體分為未經搬運的殘積土體和經過搬運的沉積土體。後者又可按搬運動力的種類和運動特徵或沉積環境進一步劃分(見表)。由於成因對土體的成分和結構具有重要的控製作用,因而這種分類能夠反映土體工程地質性質在大范圍空間中的分布規律。土體不是一般土層的組合體,而是與工程建築的穩定、變形有關的土層的組合體。 土體是由厚薄不等,性質各異的若干土層,以特定的上、下次序組合在一起的。 凡第四紀鬆散物質沉積成土後,未經受成壤作用的鬆散物質經受壓密固結作用,逐漸形成具有一定強度和穩定性的土體,這就是工程地質學中所說的土體,是人類活動和工程建設研究的對象。而經受生物化學及物理化學的成壤作用所形成的土體,則稱為土壤。影響土體工程性質的因素影響土體工程性質的因素,與影響土樣性質的因素不盡相同。土樣的性質主要受其成分、結構和含水量的影響,影響土體工程性質的因素更多、更復雜。由於同一土層內的物質組成、物理化學狀態基本一致,因此,由單一土層構成的土體,其工程性質主要受控於土體材料的成分和土體結構特徵。但是,對於層理發育、由土層組合體構成的土體來說,工程性質取決於各土層性質的綜合效應,即取決於土層組合體的總體工程性質,而且常具有非均質性和明顯的各向異性。不論由單一土層或土層組合體構成的土體,它們的工程性質均隨著埋深增大而變化。同一土層的力學性質,隨著埋深的增大,存在著逐漸變好的趨勢。土體是一個含有水和空氣的多組分體系。

當土體中存在地下水時,地下水位以下土體中的水和孔隙水壓力可以降低土體的抗剪強度,地下水位以上土體的抗剪強度常因含水量變化而變化。水通過土體流動的難易程度稱為土體的滲透性。單一土層土體的滲透性,取決它的孔隙性和裂隙性。多層土體的滲透性取決於各土層滲透性的綜合效應。

‍‍

❺ 什麼叫工程地質條件包括哪些內容

工程地質條件是對工程建築有影響的各種地質因素的總稱。

主要包括地形地內貌、地層岩性、地質構造、地震容、水文地質、天然建築材料以及岩溶、滑坡、崩坍、砂土液化、地基變形等不良物理地質現象。

工程建設前需對建築物場地的工程地質條件進行調查研究,包括:該場地以往建築經驗,已發生過的工程事故的原因、防治措施和後果,建築物沉降、變形及地基地震效應等;分析和解決主要工程地質問題; 選擇工程地質條件優良的地點; 提出保證建築物的穩定性和正常使用的地基處理措施等。

拓展資料

自然條件是因地而異的,建築物類型和性質也各不相同,因而在不同的情況下作為重點研究對象的工程地質條件也是因地因工程而異,如在山區建築,與場地穩定性有密切關系的地質現象(地層褶皺、斷裂、滑坡、岩溶等)往往是重要的地質條件。

對地下建築來說,地質構造對建築物的穩定性有很大影響,而岩石產狀、斷層、節理和破碎帶的性質與分布等是重要的地質條件。

已有的工程地質條件在工程建築和運行期間會產生一些新的變化和發展,構成威脅影響工程建築安全的地質問題稱為工程地質問題。

由於工程地質條件復雜多變,不同類型的工程對工程地質條件的要求又不盡相同,所以工程地質問題是多種多樣的。

❻ 地層及岩土體結構與地質災害

一、易滑地層

調查區內分布三疊系、侏羅系、新近系和第四系。其中,第四紀黃土和新近紀泥岩是區內的易滑地層。

三疊系、侏羅系埋藏於第四系之下,僅在較大河谷出露,出露高度一般不大,未調查到基岩滑坡現象。在延河、汾川河兩側,尤其是公路、鐵路邊坡地段,可見基岩崩塌現象。

新近紀泥岩在區內分布不連續,呈不整合斷續覆蓋於之前老地層之上,其上多被第四紀黃土覆蓋。僅在甘谷驛和青化砭東北部,南泥灣和油坊台西南部,以及棗園西部等地谷坡底部零星出露。盡管新近紀泥岩屬於易滑地層,但由於其分布范圍及小,在坡面上所處位置過低,所以,區內新近紀泥岩引起的滑坡並不多。

第四紀黃土分布最為廣泛,幾乎遍布全區。黃土結構疏鬆,強度低,遇水軟化,節理裂隙發育等特性決定了黃土是區內最主要的易滑地層。本次調查的全部滑坡和絕大多數崩塌均發生在黃土層中。

二、岩土體結構

區內斜坡岩土體結構主要包括四種類型:黃土+近於水平古土壤層型、黃土+傾斜古土壤層型、黃土+古土壤+基岩型、黃土+古土壤+新近紀泥岩型。斜坡岩土體結構決定了斜坡變形破壞的方式和軟弱結構面的位置,對滑動面的位置具有明顯的控製作用。

(一)黃土+近於水平古土壤層型

斜坡自坡腳至坡頂皆由第四紀黃土地層構成,屬於黃土斜坡,主體為中更新世黃土(Qp2),主要分布於延河一級支流中上游、二級三級以及更小的支流兩岸。該型斜坡穩定性從黃土本身來講,主要與黃土的地質-工程地質性質密切相關。在岩性方面,黃土質地鬆散,工程地質特性差,抗拉強度低,極易在臨空面附近形成卸荷裂隙,有利於滑坡體與母體分離。黃土遇水時強度急劇降低,有利於形成滑動面,可沿谷底坡腳剪出。在地層結構上,發育近水平的古土壤層。此類坡體岩土體結構屬於較穩定的類型,滑坡發生的可能性相對較低。

(二)黃土+傾斜古土壤層型

仍屬於黃土斜坡,從坡腳到坡頂皆由第四紀黃土構成,主體為中更新世黃土(Qp2),主要分布於延河一級支流中上游、二級三級以及更小的支流兩岸。此類斜坡的穩定性除與黃土較差的工程地質性質密切相關外,還與黃土中發育的傾斜古土壤有關。古土壤較黃土而言,粘土含量高,結構更為緻密,成為黃土層中的相對隔水層,在黃土與古土壤接觸帶易形成含水量相對較高的軟弱結構面,從而控制滑坡的形成。

(三)黃土-基岩接觸面型

上部黃土與下部基岩共同組成的斜坡類型。此類斜坡發育於延河幹流以及一二級支流中下游,這一地區河谷寬闊,是人類活動的主要地區。下伏基岩是大多滑坡發生的積極因素:一是岩土在工程地質性質上具顯著差別,基岩力學強度大,抗滑能力強,穩定性高,多成為滑坡剪出口的下伏穩定地層;二是基岩的隔水性能相對較好,地下水容易在基岩面上相對富集,易飽水,造成基岩之上黃土力學強度下降,轉變為滑帶。據調查,沿基岩面剪出的滑坡比例占總數的78%。

(四)黃土-紅粘土接觸面型

上部黃土和下部新近紀泥岩所組成的斜坡類型。紅粘土黏粒含量大,是良好的隔水層,同時遇水強度降低,在全區零星出露。但其所在之處,常引起滑坡的發生。與「黃土+傾斜古土壤層型」斜坡對滑坡控製作用類似,新近紀泥岩的存在不利於斜坡的穩定。

無論何種岩土體結構類型的直立坡或陡坡均以崩塌破壞方式為主(圖4-18)。

圖4-18 燕溝台崩塌地質剖面圖

1—晚更新世黃土;2—中侏羅世泥岩;3—中侏羅世砂岩

❼ 工程地質包括哪些內容(土力學地基基礎第四版)

工程地質研究的主內容有:確定岩土組分、組織結構(微觀結構)、物理、化學與力學性質(特別是強度及應變)及其對建築工程穩定性的影響,進行岩土工程地質分類,提出改良岩土的建築性能的方法;研究由於人類工程活動的影響而破壞的自然環境的平衡,以及自然發生的崩塌、滑坡、泥石流及地震等物理地質作用對工程建築的危害及其預測、評價和防治措施;研究解決各類工程建築中的地基穩定性,如邊坡、路基、壩基、橋墩、硐室,以及黃土的濕陷、岩石的裂隙的破壞等,制定一套科學的勘察程序、方法和手段,直接為各類工程的設計、施工提供地質依據;研究建築場區地下水運動規律及其對工程建築的影響,制定必要的利用和防護方案;研究區域工程地質條件的特徵,預報人類工程活動對其影響而產生的變化,作出區域穩定性評價,進行工程地質分區和編圖。隨著大規模工程建設的發展,其研究領域日益擴大。除了岩土學和工程動力地質學、專門工程地質學和區域工程地質學外,一些新的分支學科正在逐漸形成,如礦山工程地質學、海洋工程地質學、城市工程地質及環境工程地質學、工程地震學。

1工程地質與岩土工程的區別
工程地質是研究與工程建設有關地質問題的科學(張咸恭等著《中國工程地質學》)。工程地質學的應用性很強,各種工程的規劃、設計、施工和運行都要做工程地質研究,才能使工程與地質相互協調,既保證工程的安全可靠、經濟合理、正常運行,又保證地質環境不因工程建設而惡化,造成對工程本身或地質環境的危害。工程地質學研究的內容有:土體工程地質研究、岩體工程地質研究、工程動力地質作用與地質災害的研究、工程地質勘察理論與技術方法的研究、區域工程地質研究、環境工程地質研究等。
岩土工程是土木工程中涉及岩石和土的利用、處理或改良的科學技術(國家標准《岩土工程基本術語標准》)。岩土工程的理論基礎主要是工程地質學、岩石力學和土力學;研究內容涉及岩土體作為工程的承載體、作為工程荷載、作為工程材料、作為傳導介質或環境介質等諸多方面;包括岩土工程的勘察、設計、施工、檢測和監測等等。
由此可見,工程地質是地質學的一個分支,其本質是一門應用科學;岩土工程是土木工程的一個分支,其本質是一種工程技術。從事工程地質工作的是地質專家(地質師),側重於地質現象、地質成因和演化、地質規律、地質與工程相互作用的研究;從事岩土工程的是工程師,關心的是如何根據工程目標和地質條件,建造滿足使用要求和安全要求的工程或工程的一部分,解決工程建設中的岩土技術問題。

2工程地質與岩土工程的關系
雖然工程地質與岩土工程分屬地質學和土木工程,但關系非常密切,這是不言而喻的。有人說:工程地質是岩土工程的基礎,岩土工程是工程地質的延伸,是有一定道理的。
工程地質學的產生源於土木工程的需要,作為土木工程分支的岩土工程,是以傳統的力學理論為基礎發展起來的。但單純的力學計算不能解決實際問題,從一開始就和工程地質結下了不解之緣。與結構工程比較,結構工程面臨的是混凝土、鋼材等人工製造的材料,材質相對均勻,材料和結構都是工程師自己選定或設計的,可控的。計算條件十分明確,因而建立在材料力學、結構力學基礎上的計算是可信的。而岩土材料,無論性能或結構,都是自然形成,都是經過了漫長的地質歷史時期,在多種復雜地質作用下的產物,對其材質和結構,工程師不能任意選用和控制,只能通過勘察查明,而實際上又不可能完全查清。岩土工程師不敢相信單純的計算結果,單純的計算是不可靠的,原因就在於工程地質條件的不確知性和岩土參數的不確定性,不同程度地存在計算條件的模糊性和信息的不完全性。因而雖然土力學、岩石力學、計算技術取得了長足進步,並在岩土工程設計中發揮了重要作用,但由於計算假定、計算模式、計算方法、計算參數等與實際之間存在很多不一致,計算結果總是與工程實際有相當大的差別,需要進行綜合判斷。

❽ 岩土體的工程地質分類和鑒定

一、岩體

(一)岩體(岩石)的基本概念岩體(岩石)是工程地質學科的重要研究領域。岩石和岩體的內涵是有區別的兩個概念,又是密不可分的工程實體。在《建築岩土工程勘察基本術語標准》(JG J84-92)中給出的岩石定義是:天然產出的具有一定結構構造的單一或多種礦物的集合體。岩石的結構是指岩石組成物質的結晶程度、大小、形態及其相互關系等特徵的總稱。岩石的構造是指岩石組成物質在空間的排列、分布及充填形式等特徵的總稱。所謂岩體,就是地殼表部圈層,經建造和改造而形成的具有一定岩石組分和結構的地質體。當它作為工程建設的對象時,可稱為工程岩體。岩石是岩體內涵的一部分。

岩體(岩石)的工程分類,可以分為基本分類和工程個項分類。基本分類主要是針對岩石而言,根據其地質成因、礦物成分、結構構造和風化程度,用岩石學名稱加風化程度進行分類,如強風化粗粒黑雲母花崗岩、微風化泥質粉砂岩等。岩石的基本分類,在本書第一篇基礎地質中有系統論述。工程個項分類,是針對岩體(岩石)的工程特點,根據岩石物理力學性質和影響岩體穩定性的各種地質條件,將岩體(岩石)個項分成若干類別,以細劃其工程特徵,為岩石工程建設的勘察、設計、施工、監測提供不可缺少的科學依據,使工程師建立起對岩體(岩石)的明確的工程概念。岩石按堅硬程度分類和按風化程度分類即為工程個項分類。

在岩體(岩石)的各項物理力學性質中,岩石的硬度是岩體最典型的工程特性。岩體的構造發育狀況體現了岩體是地質體的基本屬性,岩體的不連續性及不完整性是這一屬性的集中反映。岩石的硬度和岩體的構造發育狀況是各類岩體工程的共性要點,對各種類型的工程岩體,穩定性都是最重要的,是控制性的。

岩石的風化,不同程度地改變了母岩的基本特徵,一方面使岩體中裂隙增加,完整性進一步被破壞;另一方面使岩石礦物及膠結物發生質的變化,使岩石疏軟以至鬆散,物理力學性質變壞。

(二)岩石按堅硬程度分類

岩石按堅硬程度分類的定量指標是新鮮岩石的單軸飽和(極限)抗壓強度。其具體作法是將加工製成一定規格的進行飽和處理的試樣,放置在試驗機壓板中心,以每秒0.5~1.0M Pa的速度加荷施壓,直至岩樣破壞,記錄破壞荷載,用下列公式計算岩石單軸飽和抗壓強度:

深圳地質

式中:R為岩石單軸飽和抗壓強度,單位為MPa;p為試樣破壞荷載,單位為N;A為試樣截面積,單位為mm2

對岩石試樣的幾何尺寸,國家標准《工程岩體試驗方法標准》(GB/T50266-99)有明確的規定,試樣應符合下列要求:①圓柱體直徑宜為48~54mm;②含大顆粒的岩石,試樣的直徑應大於岩石的最大顆粒尺寸的10倍;③試樣高度與直徑之比宜為2.0~2.5。

在此標准發布之前,岩石抗壓強度試驗的試樣尺寸要求如下:極限抗壓強度大於75M Pa時,試樣尺寸為50mm×50mm×50mm立方體;抗壓強度為25~75MPa時,試樣尺寸為70mm×70mm×70mm立方體;抗壓強度小於25MPa時,試樣尺寸為100mm×100mm×100mm立方體。

(G B/T 50266-99)的規定顯然是為了方便取樣,以金剛石鑽頭鑽探,取出的岩心進行簡單的加工,即可成為抗壓試樣。岩樣的尺寸效應對岩石抗壓強度是略有影響的。

岩石按堅硬程度分類,各行業的有關規定,雖然各自表述方式有所區別,但其標準是基本一致的(表2-2-1)。

表2-2-1 岩石堅硬程度分類

除了以單軸飽和抗壓強度這一定量指標確定岩石堅硬程度外,尚可按岩性鑒定進行定性劃分。國標:建築地基基礎設計規范(GB50007-2002)按表2-2-2進行岩石堅硬程度的定性劃分。其他規范的劃分標准大同小異。

表2-2-2 岩石堅硬程度的定性劃分

岩石堅硬程度的劃分,無論是定量的單軸飽和抗壓強度,還是加入了風化程度內容的定性標准,都是用於確定小塊岩石的堅硬程度的。岩石的單軸飽和抗壓強度是計算岩基承載力的重要指標。

(三)岩石按風化程度分類

關於岩石風化程度的劃分及其特徵,國家規范和各行業的有關規范中均有規定,其分類標准基本一致,表述略有差異。表2-2-3至表2-2-10是部分規范給出的分類標准。

表2-2-3《工程岩體分級標准》(GB50218-94)岩石風化程度劃分表

表2-2-4《岩土工程勘察規范》(GB50021-2001)岩石按風化程度分類表

續表

表2-2-5《公路橋涵地基與基礎設計規范》(JTJ024-85)岩石風化程度劃分表

表2-2-6《水利水電工程地質勘察規范》(GB50287-99)岩體風化帶劃分表

《港口工程地質勘察規范》(JTJ240-97)、《港口工程地基規范》(JTJ250-98)岩體風化程度的劃分按硬質、軟質岩體來劃分,硬質岩石岩體風化程度按表2-2-7劃分。軟質岩石岩體風化程度按表2-2-8劃分。

表2-2-7 硬質岩石岩體風化程度劃分表

表2-2-8 軟質岩石岩體風化程度劃分表

表2-2-9《地下鐵道、輕軌交通岩土工程勘察規范》(GB5037-1999)岩石風化程度分類表

續表

表2-2-10 廣東省《建築地基基礎設計規范》(DBJ15-31-2003)岩石風化程度劃分表

國家標准《建築地基基礎設計規范》(GB5007-2002)對岩石的風化只有第4.1.3條作如下敘述:岩石的風化程度可分為未風化、微風化、中風化、強風化和全風化。未列表給出風化特徵,但在岩石堅硬程度的定性劃分中(表A.0.1)把不同風化程度的岩石歸類到了岩石堅硬程度的類別中。

深圳市標准:《地基基礎勘察設計規范》(報批稿)關於岩石風化程度的劃分標准,基本採用了《地下鐵道、輕軌交通岩土工程勘察規范》GB(50307-1999)的表述形成和內容(表2-2-9),文字略有調整。

縱觀各類規范對岩石風化程度的劃分,可以看出:

1)除個別規范未列出未風化一類外,岩石風化程度的劃分均為未風化、微風化、中等(弱)風化、強風化和全風化。特徵描述簡繁不一,中等風化與弱風化相對應的風化程度略有差別。

2)風化程度的特徵描述,主要是岩石的結構構造變化、節理裂隙發育程度、礦物變化、顏色變化、錘擊反映、可挖(鑽)性等方面來定性劃定。部分規范用波速和波速比及風化系數來定量劃定是對岩石風化程度確定的有力支撐。

3)從新鮮母岩到殘積土的風化過程是連續的,有些規范把殘積土的特徵描述放在岩石風化程度劃分表中,有一定的道理。國際標准:ISO/TC182/SC,亦將風化程度分為五級,並列入了殘積土。從工程角度考慮,殘積土對母岩而言已經發生了全面質的變化,物理力學性質和對它的理論研究已屬松軟土,表中對殘積土特徵的表述對區別殘積土與全風化岩是有現實意義的。

4)國家標准:《工程岩體分級標准》中「岩石風化程度的劃分」(表2-2-3)看似簡單,規范「條文說明」解釋了這一現象,表2-2-3關於岩石風化程度的劃分和特徵的描述,僅是針對小塊岩石,為表2-2-2服務的,它並不代表工程地質中對岩體風化程度的定義和劃分。表2-2-2是把岩體完整程度從整個地質特徵中分離出去之後,專門為描述岩石堅硬程度作的規定,主要考慮岩石結構構造被破壞,礦物蝕變和顏色變化程度,而把裂隙及其發育情況等歸入岩體完整程度這另一個基本質量分級因素中去。

5)上述列表中可以看出,某些規范把硬質岩石和軟質岩石的風化程度劃分區別開來,而《工程岩體分級標准》中「岩石堅硬程度的定性劃分」表(2.2-2)將風化後的硬質岩劃入軟質岩中。這里有兩個概念不可混淆:一是從工程角度看,硬質岩石風化後其工程性質與軟質岩相近,可等同於軟質岩;二是新鮮岩石中是存在軟質岩的,如深圳的泥質砂岩、泥岩、頁岩等。

6)相鄰等級的風化程度其界線是漸變的、模糊的,有時不一定能劃出5個完整的等級,如碳酸鹽類岩石。在實際工作中要按規范的標准,綜合各類信息,結合當地經驗來判斷岩石的風化等級。

(四)岩體的結構類型

在物理學、化學及其地質學等學科中對「結構」這一術語的概念是明確的,但有各自的含義,如原子結構、分子結構、晶體結構、礦物結構、岩石結構、區域地質結構、地殼結構等等,岩體作為工程地質學的一個主要研究對象,提出「岩體結構」術語的意義是十分明確的。

岩體結構有兩個含義,可以稱之為岩體結構的兩個要素:結構面和結構體。結構面是指層理、節理、裂隙、斷裂、不整合接觸面等等。結構體是岩體被結構面切割而形成的單元岩塊和岩體。結構體的形狀是受結構面的組合所控制的。

事實上,所有與岩石有關的工程,除建築材料外,都是與有較大幾何尺寸的岩體打交道,岩石經過建造成岩(岩漿岩的浸入,火山岩的噴出,沉積岩的層狀成沉積,變質岩的混合與動力變質)及後期的改造(褶皺、斷裂、風化等),使得岩體的完整性遭到了巨大的破壞,成為了存在大量不同性質結構面的現存岩體。為了給工程界一個明朗的技術路線,不妨以建造性結構面和改造性結構面(軟弱結構面)為基礎,從各自側面首先對岩體結構基本類型進行研究,其次將兩方面的成果加以綜合,即可得出關於岩體結構基本類型的完整概念(圖2-2-1)。

(1)以建造性結構面為主的岩體結構基本類型的劃分(表2-2-11)

表2-2-11 建造性結構面的岩體結構分類

(2)以改造性結構面(軟弱結構面)為主的岩體結構類型的劃分(表2-2-12)

表2-2-12 改造結構面為主的岩體結構分類

圖2-2-1 岩體結構示意圖

(3)由建造性結構面和改造性結構面形成的三維岩體

三維岩體表現出了復雜多變的岩體結構特徵,將其綜合歸納,形成了較系統的岩體結構類型(表2-2-13)。

表2-2-13 岩體結構類型及其特徵

表中表述的岩體結構類型及其特徵基本上涵蓋了深圳地區岩體的全部結構類型。

(4)岩體完整程度的劃分

地質岩體在建造和改造的過程中,岩體被風化、被結構面切割,使其完整性受到了不同程度的破壞。岩體完整程度是決定岩體基本質量諸多因素中的一個重要因素。影響岩體完整性的因素很多,從結構面的幾何特徵來看,有結構面的密度,組數、產狀和延展程度,以及各組結構面相互切割關系;從結構面形狀特徵來看,有結構面的張開度、粗糙度、起伏度、充填情況、水的賦存等。從工程岩體的穩定性著眼,應抓住影響穩定性的主要方面,使評判劃分易於進行。在國標:《工程岩體分級標准》(GB50218-94)中,規定了用結構面發育程度、主要結構的結合程度和主要結構面類型作為劃分岩體完整程度的依據,以「完整」到「極破碎」的形象詞彙來體現岩體被風化、被切割的劇烈變化完整程度(表2-2-14)。

表2-2-14 岩體完整程度的定性分類表

在1994版的《岩土工程勘察規范》中,未見此表。很明顯,此表在《工程岩體分級標准》中出現後,在2001版修訂後的《岩土工程勘察規范》中得到了確認和使用。

(五)岩體基本質量分級

自然界中不同結構類型的岩體,有著各異的工程性質,岩石的硬度、完整程度是決定岩體基本質量的主要因素。在工程實踐中,系統地認識不同質量的工程岩體,針對其特徵性採取不同的設計思路和施工方法是科學進行岩體工程建設的關鍵。

1994年,國家標准《工程岩體分級標准》(50218-94)給出了岩體基本質量分級的標准(表2-2-15)。在此之前發布的國家標准《岩土工程勘察規范》(GB50021-94),該表是作為洞室圍岩質量分級標準的。在2001年修訂的《岩土工程勘察規范》(GB50021-2001)中,岩體基本質量分級以表2-2-15的形式來分類,岩體基本質量等級按表2-2-16分類。

表2-2-15 岩體基本質量分級

表2-2-16 岩體基本質量等級分類

(六)岩體圍岩分類

地鐵、公路、水電、鐵路以及礦山工程等行業,均有地下洞室和隧道(巷道)開挖,工程勘察均需對工程所處的圍岩進行分類。不同的規范對圍岩的分類方法略有不同。

1.隧道圍岩

《地下鐵道、輕軌交通岩土工程勘察規范》(GB50307-1999)和《公路工程地質勘察規范》(JTJ064-98)規定,隧道圍岩分類按表2-2-17劃分。

表2-2-17 隧道圍岩分類

續表

2.圍岩工程地質

《水利水電工程地質勘察規范》(GB50287-99)規定,在地下洞室勘察時,應進行圍岩工程地質分類。分類應符合表2-2-18規定。

表2-2-18 圍岩工程地質分類

上表中的圍岩總評分T為岩石強度、岩體完整程度、結構面狀態、地下水和主要結構面產狀5項因素之和。各項因素的評分辦法在該規范中均有明確規定。圍岩強度應力比亦有專門的公式計算。

3.鐵路隧道圍岩

《鐵路工程地質勘察規范》(TB10012-2001)規定,隧道工程地質調繪時,應根據地質調繪、勘探、測試成果資料,綜合分析岩性、構造、地下水及環境條件,按表2-2-19分段確定隧道圍岩分級。

表2-2-19 鐵路隧道圍岩的基本分級

續表

該規范還規定,鐵路隧道圍岩分級應根據圍岩基本分級,受地下水,高地應力及環境條件等影響的分級修正,綜合分析後確定。關於岩體完整程度的劃分,地下水影響的修正,高地應力影響的修正及環境條件的影響,規范中都有明確的規定。

4.井巷工程圍岩

礦山工程中的井巷工程,其功能和結構更為多樣,所以井巷工程對圍岩的分類更加詳盡,各種定性和定量指標明顯多於其他標准。《岩土工程勘察技術規范》(YS5202-2004、J300-2004)規定,井巷工程評定圍岩質量等級按表2-2-20劃分圍岩類別。

表2-2-20 井巷工程圍岩分類

續表

續表

5.工程岩體

國家規范:《錨桿噴射混凝土支護技術規范》(GB50086-2001)從工程岩體支護設計和施工的需要出發,給出圍岩分級表,與表2-2-20相比,僅少了Ⅵ、Ⅶ兩類,主要工程地質特徵少了岩石質量指標RQD和岩體及土體堅固性系數兩欄,其他完全相同。

(七)岩質邊坡的岩體分類

《建築邊坡工程技術規范》(GB50330-2002)對岩質邊坡的岩體分類方法,見表2-2-21

表2-2-21 岩質邊坡的岩體分類(GB50330-2002)

續表

表2-2-22 岩體完整程度劃分

(八)深圳地區岩體分類、鑒定中存在的問題和改進意見

1)深圳地區的建築工程除大量的房屋建築外,公路(道路)橋梁、水利、地鐵、鐵路等均有大量的投資建設,各行業對岩體質量等級的劃分在執行不同規范的分類標准。在當前情況下,這一狀況將繼續下去。但是,對某一岩體的不同分類標准,僅僅是某一行業的習慣性作法。宏觀上看不同分類標準的具體內容並無原則性的區別。無論採用哪種標准都不應該影響岩體評價的正確性。

2)岩體工程特性的評價中,岩體的結構分類應該受到足夠的重視。尤其是高大邊坡、地質災害評估等岩體結構對岩體穩定起主導作用的工程項目。只有採取多種科學勘察手段和縝密地進行分析,岩體的結構特徵才能弄清楚。

3)岩石風化程度的判斷,現場工作除很具經驗的野外觀察和標准貫入試驗外,應多採用岩體波速測試方法,使之成為常用方法之一。准確的波速測試結果,可能比標貫試驗所得結果更能准確地判斷岩石的風化程度。

4)岩石的風化程度是隨埋藏深度的增加而減弱的,風化岩石的強度則是隨埋藏深度的增加而增加的。為了充分發揮地基承載力,深圳市地基基礎勘察設計規范(送審稿)將厚層花崗岩強風化帶分為上、中、下3個亞帶,其劃分方法見表2-2-23。

表2-2-23 厚層花崗岩強風化帶細分

需要指出的是,花崗岩的風化規律一般是上部風化嚴重,隨深度增加而減弱,但也有個別情況,有時隨深度增加風化程度並無明顯變化,故在劃分風化亞帶時,應視強風化帶的厚度和風化程度改變的深淺,也可以劃分一個亞帶或兩個亞帶,不可強求一律劃分為3個亞帶。

龍崗區的碳酸鹽類岩石——灰岩、白雲岩、大理岩等基本上不存在全風化和強風化層。由於構造的影響或是其他某種原因(如表面溶蝕劇烈),可能岩石的裂隙比較發育,塊度比較小。

二、土體

(一)土體的含義及其工程地質分類

土是泛指還沒有固結硬化成岩石的疏鬆沉積物。土是堅硬岩石經過破壞、搬運和沉積等一系列作用和變化後形成的。土多分布在地殼的最上部。工程地質學把土看作與構成地殼的其他岩石一樣,均是自然歷史的產物。土的形成時間、地點、環境以及形成的方式不同,其工程地質特性也不同。因此在研究土的工程性質時,強調對其成因類型和地質歷史方面的研究具有特殊重要意義。

土的工程地質分類有以下特點:①分類涵蓋自然界絕大多數土體;②同類或同組的土具備相同或相似的外觀和結構特徵,工程性質相近,力學的理論分析和計算基本一致;③獲取土的物理力學指標的試驗方法基本相同;④工程技術人員,從土的類別可以初步了解土的工程性質。

土的工程地質分類是以鬆散粒狀(粗粒土)體系和鬆散分散(細粒土)體系的自然土為對象,以服務於人類工程建築活動為目的的分類。分類的任務是將自然土按其在人類工程建築活動作用下表現出的共性劃分為類或組。

合理的工程地質分類,具有以下實際用途:①根據土的分類,確定土的名稱,它是工程地質各種有關圖件中劃分土類的依據;②根據各類土的工程性質,對土的質量和建築性能提出初步評價;③根據土的類型確定進一步研究的內容、試驗項目和數量、研究的方法和方向;④結合反映土體結構特徵的指標和建築經驗,初步評價地基土體的承載能力和斜坡穩定性,為基礎和邊坡的設計與施工提供依據。

土的工程地質分類有普通的和專門的兩類。普通分類的劃分對象包括人類工程活動可能涉及的自然界中的絕大多數土體,適用於各類工程,分類依據是土的主要工程地質特徵,如碎石土、砂土、黏性土等。專門分類是為滿足某類工程的需要,或者根據土的某一或某幾種性質而制定的分類,這種分類一般比較詳細,比如砂土的密實度分類,黏性土按壓縮性指標分類等等。應當指出的是,普通分類與專門分類是相輔相成的,前者是後者的基礎,後者是前者的補充和深化。

(二)國外土的工程分類概況

近幾十年來,國外在土的工程地質分類研究方面有很大進展,工業和科學技術發達的主要國家,都分別先後制定了各自全國統一的分類標准(表2-2-24)。其中英國、日本、德國的分類均以美國分類為藍本,結合各自國情適當調整、修改而制定的。

表2-2-24 一些國家的土質分類簡況

上述各國的土質分類,都採用了統一分類體系和方法,不僅使各自國內對土質分類有了共同遵循的依據,而且體現了國際統一化的趨勢,以促進國際交流與合作。

下列美國的統一分類法(表2-2-25)作為樣本,以了解國外分類的標准和方法。

表2-2-25 美國的土的統一分類法

續表

(三)國內土的工程分類

1.統一分類法

1990年,國家標准《土的分類標准》(GBJ 145-90)發布,並於1991年8月起執行。在此之前或之後,水利水電、公路交通等行業土的分類標准與GBJ 145-90標准沒有明顯區別。(GBJ 145-90)土的分類如表2-2-26和表2-2-27所示。

表2-2-26 粒組的劃分

表2-2-27 土質分類表

2.建築分類法

國標《建築地基設計規范》(GB50007-2002)土的分類方法(簡稱:建築分類法)如表2-2-28。這是從早期《工業與民用建築地基基礎設計規范》(TJ7-74)(試行)到《建築地基基礎設計規范》(GBJ7-89)一直延續下來的土的分類標准。在TJ7-74規范之前,我國一直沿用前蘇聯規范(HИTY127-55)。建築分類法在房屋建築地基基礎工程或類似的工程中廣泛運用,這在不少行業規范中得以反映,此分類方法也為廣大工程技術人員所熟知。目前深圳除公路、鐵路行業外,大多採用此分類標准,並納入到深圳市的地方標准之中。

表2-2-28 土的分類

(四)土的狀態分類

土的狀態分類屬專門分類。對於某種行業或某類工程,土的狀態標準是有所區別的,現以《岩土工程勘察規范》(50021-2001)中規定的最常用的分類標准,對碎石土、砂土、粉土的密實度和對粉土的濕度及黏性土的狀態進行分類,見表2-2-29至表2-2-34。

表2-2-29 碎石土密實度按M63.5分類

表2-2-30 碎石土密實度按N120分類

表2-2-31 砂土密實度分類

表2-2-32 粉土密實度分類

表2-2-33 粉土濕度分類

表2-2-34 黏性土狀態分類

(五)土的現場鑒別方法

1.碎石土密實度現場鑒別方法(表2-2-35)

表2-2-35 碎石土密實度現場鑒別

2.砂土分類現場鑒別方法(表2-2-36)

表2-2-36 砂土分類現場鑒別

3.砂土密實度現場鑒別方法(表2-2-37)

表2-2-37 砂土密實度現場鑒別

4.砂土濕度的現場鑒別方法(表2-2-38)

表2-2-38 砂土濕度現場鑒別

5.粉土密實度現場鑒別方法(表2-2-39)

表2-2-39 粉土密實度現場鑒別

6.粉土濕度現場鑒別方法(表2-2-40)

表2-2-40 粉土濕度現場鑒別

7.黏性土狀態現場鑒別方法(表2-2-41)

表2-2-41 黏性土狀態現場鑒別

8.有機質土和淤泥質土的分類

土按有機質分類和鑒定方法,《岩土工程勘察規范》(GB50021—2001)的分類方法見表2-2-42。深圳市沿海近岸地區存在大量淤泥或淤泥質土,在上更新統(Q3)的雜色黏土中,有一層泥炭質土,局部有泥炭層發育。

表2-2-42 土按照有機質分類

(六)土的定名和描述

1.統一分類法定名

1)巨粒土和含巨粒的土、粗粒土按粒組、級配、所含細粒的塑性高低可劃分為16種土類;細粒土按塑性圖、所含粗粒類別以及有機質多寡劃分16種土類。

2)土的名稱由一個或一組代號組成:一個代號即表示土的名稱,由兩個基本代號構成時,第一個代號表示土的主成分,第二個代號表示副成分(土的級配或土的液限);由3個基本代號構成時,第一個代號表示土的主成分,第二個代號表示液限;第三個代號表示土中微含的成分。

《土的分類標准》(G B J145-90),對特殊土的判別,列出了黃土,膨脹土和紅黏土。對花崗岩殘積土並沒有特別加以說明。根據深圳有關單位的經驗,花崗岩殘積土中的礫質黏性土相當於G B J145-90中的含細粒土礫,代號GF;砂質黏性土相當於細粒土質礫,代號GC-GM;黏性土相當於高液限粉土一低液限粉土,代號M H-M L。對淤泥和淤泥質土,G B J145-90分的不細,從工程需要出發,淤泥和淤泥質土的分類宜按建築行業標准。

2.建築行業定名

建築行業定名依照下列幾個標准:

1)土名前冠以土類的成因和年代。

2)碎石土和砂土按顆粒級配定名。

3)粉土以顆粒級配及塑性指數定名。

4)黏性土以塑性指數定名。

5)對混合土按主要土類定名並冠以主要含有物,如含碎石黏土,含黏土角礫等。

6)對同一土層中有不同土類呈韻律沉積時,當薄層與厚層的厚度比大於三分之一時,宜定為「互層」;厚度比為十分之一至三分之一時,宜定為「夾層」;厚度比小於十分之一的土層且多次出現時,宜定為「夾薄層」。當土層厚度大於0.5m時,宜單獨分層。

3.土的描述內容

(1)當按統一分類法(GBJ145-90)定名時,應按下列內容描述

1)粗粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;土顆粒形狀(圓、次圓、稜角或次稜角);土顆粒的礦物成分;土顏色和有機質;所含細粒土成分(黏土或粉土);土的代號和名稱。

2)細粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;潮濕時土的顏色及有機質;土的濕度(干、濕、很濕或飽和);土的狀態(流動、軟塑、可塑或硬塑);土的塑性(高、中或低);土的代號和名稱。

(2)當按建築分類法(GB50007-2002)定名時,應按下列內容描述

1)碎石土:名稱、顆粒級配、顆粒排列、渾圓度、母岩成分、風化程度、充填物的性質和充填程度、膠結性、密實度及其他特徵。

2)砂土:名稱、顏色成分、顆粒級配、包含物成分及其含量、黏粒含量、膠結性、濕度、密實度及其他特徵。

3)粉土:名稱、顏色、包含物成分及其含量、濕度、密實度、搖振反應及其他特徵。

4)黏性土:名稱、顏色、結構特徵、包含物成分及其含量、搖振反應、光澤反應、干強度、韌性、異味及其他特徵。

5)特殊性土:除應描述上述相應土類的內容外,尚應描述其特徵成分和特殊性質,如對淤泥尚需描述臭味、有機質含量;對填土尚需描述物質成分、堆積年代、密實度和均勻程度等。

6)互層(夾層)土:對具有互層、夾層、夾薄層特徵的土,尚應描述各層的厚度及層理特徵。

❾ 地質方面結構和構造的區別是什麼

兩者區別在於概念完全不同,地址結構指岩石構成的特徵,地質結構主要表示礦物或礦物之間的各種特徵。

1、地質結構定義:地質學術語,岩石的結構。指組成岩石的礦物的結晶程度、晶料大小、晶料相對大小、晶體形狀及礦物之間結合關系等,所反映出來的岩石構成的特徵。

2、地質構造定義:構造是地質構造的簡稱。地質構造是指地殼中的岩層地殼運動的作用發生變形與變位而遺留下來的形態。

包括褶皺,節理和斷層等最基本的地質元素,地質元素是岩石圈中構造運動的產物。各種地質構造具有相應的地質現象和工程地質條件。

(9)工程地質土的結構擴展閱讀:

地質構造因此可依其生成時間分為原生構造與次生構造。

次生構造是構造地質學研究的主要對象,而原生構造一般是用來判斷岩石有無變形及變形方式的基準。構造也可分為水平構造、傾斜構造、斷裂和褶皺。

地殼或岩石圈各個組成部分的形態及其相互結合方式和面貌特徵的總稱。

地質構造的規模,大的上千公里,需要通過地質和地球物理資料的綜合分析和遙感資料的解譯才能識別,如岩石圈板塊構造。

小的以毫米甚至微米計,需要藉助於光學顯微鏡或電子顯微鏡才能觀察到,如礦物晶粒變形、晶格的位錯等。

貴州位於華南板塊內,處於東亞中生代造山與阿爾卑斯-特提斯新生代造山帶之間,橫跨揚子陸塊和南華活動帶兩個大地構造單元。

在已知1400Ma地質歷史時期中經歷了武陵、雪峰、加里東、華力西-印支、燕山-喜山等5個階段。

雪峰運動奠定了揚子陸塊的基底,廣西運動使黔東南地區褶皺隆起與揚子陸塊熔為一體,以後又經歷了裂陷作用、俯沖作用,燕山運動奠定了現今構造的基本格局。

❿ 岩土體工程地質類型分區

平原區廣泛分布以沖洪積成因為主的第四系堆積物,低山丘陵區出露多種類型的岩組,沂沭斷裂帶西側的鄌郚-葛溝斷裂、沂水-湯頭斷裂縱貫南北,總體看工程地質條件較復雜(圖1-8-3)。

圖1-8-3 昌樂縣岩土體工程地質類型分區略圖

(一)岩體工程地質類型

1.堅硬的塊狀侵入岩岩組

分布於營邱—河頭一帶,為古元古代呂梁期侵入岩,岩性以弱片麻狀中粒含角閃二長花崗岩、弱片麻狀中粒含黑雲二長花崗岩,岩石堅硬,力學強度高,工程地質性質良好,山區風化帶厚度<3m,丘陵及準平原區20~30m,fc=130~170MPa,fr=90~130MPa(fc為岩石極限干抗壓強度,fr為岩石飽和極限抗壓強度)。

2.堅硬的塊狀-似層狀噴出岩岩組

主要分布在南郝—崔家埠—五圖一線以南、鄌郚-葛溝斷裂以西地區,為新近紀臨朐群牛山組、堯山組火山噴出岩,岩性為玄武岩。岩石堅硬,柱狀節理發育,工程地質性質良好。風化帶厚20~30m,fc=140~160MPa。

3.堅硬的塊狀變質岩岩組

主要分布在鄌郚—阿陀一帶,為新太古代泰山岩群山草峪組黑雲變粒岩,岩石堅硬,風化帶厚度30~40m,fc=180~200MPa。

4.堅硬較堅硬的中厚-厚層狀灰岩岩組

僅分布於朱劉街道、五圖街道一帶,主要為寒武紀長清群硃砂洞組、饅頭組、九龍群張夏組、崮山組和炒米店組白雲質灰岩、泥灰岩、泥質條帶灰岩和生物碎屑灰岩等,局部夾細砂岩。灰岩堅硬,力學強度高,泥灰岩強度低。白雲質灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。

5.較堅硬的中厚—厚層碎屑岩岩組

主要分布在鄌郚-葛溝斷裂帶與沂水-湯頭斷裂帶,以及五圖煤礦一帶,岩性為白堊紀淄博群三台組砂岩、礫岩,萊陽群城山後組角礫岩、砂礫岩、砂岩,青山群八畝地組凝灰岩、集塊角礫岩、粉砂岩,大盛群馬郎溝組粉砂岩、細砂岩,田家樓組泥質粉砂岩、細砂岩、黏土岩,古近紀五圖群朱壁店組礫岩、砂礫岩、礫岩,李家崖組黏土岩、砂岩、黏土岩、油頁岩等。風化帶厚度<40m,砂岩和礫岩fc=30~80MPa,fr=20~50MPa。

6.較堅硬的薄層狀頁岩夾灰岩岩組

局限分布在阿陀東北部,岩性為中寒武系、下寒武系及元古宇土門群頁岩、博層灰岩、泥灰岩。頁岩夾泥灰岩fc=30~40MPa,fr=10~15MPa。

(二)土體工程地質類型

1.北部沖洪積上層黏性土多層或雙層結構

分布於北部山前平原地區,以上層黏性土多層結構為主,上層黏性土厚<5m或5~10m,僅局部>10m,黏性土岩性以粉質黏土、黏土為主,中等壓縮性。砂性土為粉細砂、中細砂,其次粗砂、礫石,砂層顆粒自北至南變粗,工程地質性質良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk為地基承載力標准值)。

2.山前及河谷平原沖洪積上層黏性土雙層、多層結構及黏性土單層結構

分布於山前坡麓、山間河谷地區,上部黏性土為粉質黏土、粉土、黏土,厚度5m左右,中等壓縮性。下部砂性土為中粗砂、細砂、砂礫石,緊密狀態,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。

3.山麓地區坡洪積及殘坡積黏性土單層結構或上層黏性土雙層結構

分布於南部低山丘陵坡麓地帶,以黏性土單層結構或上層為黏性土雙層結構為主。黏性土厚<5m或5~10m,以黃褐色至棕紅色粉質黏土及黏土為主,含鐵錳質及鈣質結核,可塑—硬塑,中等壓縮性,部分地區分布濕陷性黃土。下部夾透鏡體狀碎石土及泥鈣質膠結礫岩,緊密狀態,工程地質性質良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。

總之,昌樂縣工程地質主要問題是沂沭斷裂帶的活動性,其次是地面沉陷、岩溶塌陷、局部黃土濕陷等問題。

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864