特殊土的工程地質性質
① 淺談幾種特殊土地基的工程特性及地基處理
摘要:隨著科學復技術制的進步和發展,建築行業進入了一個新的時代。建築工程施工過程中,首先要考慮的就是地基問題,只有確定地基土壤的種類,才能制定正確的施工方法,從而保證工程能夠順利進行。但對於比較特殊的地基土壤,就要使用特殊的方法。例如:濕陷性黃土、膨脹土、粘性紅土等都是一些比較特殊的土壤,只有了解土壤的特性才能制定出相應的處理辦法。
② 特殊土地基工程性質及處理原則是什麼
1.飽和淤泥土
工程上將淤泥和淤泥質土稱為軟土。軟土以黏粒為主
③ 簡述濕陷性黃土的基本工程地質性質
陷性黃土是一復種特殊性質制的土,其土質較均勻、結構疏鬆、孔隙發育。在未受水浸濕時,一般強度較高,壓縮性較小。當在一定壓力下受水浸濕,土結構會迅速破壞,產生較大附加下沉,強度迅速降低。故在濕陷性黃土場地上進行建設,應根據建築物的重要性、地基受水浸濕可能性的大小和在使用期間對不均勻沉降限制的嚴格程度,採取以地基處理為主的綜合措施,防止地基濕陷對建築產生危害
④ 各類土的工程性質如何
土的復工程分類:
土的種類繁多,作為建制築物地基的土分為岩石、碎石土、砂土、粉土、粘性土和特殊土(如淤泥、泥碳、人工填土等)。岩石可分為硬質與軟質以及微風化、中風化、強風化、全風化和殘積土;碎石土分為漂石、塊石、軟石、碎石、圓礫和角礫碎石;砂土分為礪砂、粗砂、中砂、細砂和粉砂以及密實、中密、稍密和鬆散砂土;粘性土可分為粘土、粉質粘土以及堅硬、硬塑、可塑、軟塑和流塑等粘性土。
在土方工程施工中,根據土的開挖難易程度,將土分為軟鬆土、普通土、堅土、砂礫堅土、軟石、次堅石、堅石、特堅石八類。前四類屬一般土,後四類屬岩石。
最優和最差要相對於該項目的用途來判定,如基礎施工,或土方開挖、綠化種植等性質
⑤ 土的工程特性包括哪些
一、抄土的主要工程性質有:
土的可襲松性、原狀土經機械壓實後的沉降量、滲透性、密實度、抗剪強度、土壓力等。
二、土的簡單介紹:
土是尚未固結成岩的松、軟堆積物。主要為第四紀時的產物。土與岩石的根本區別是土不具有剛性的聯結,物理狀態多變,力學強度低等。土由各類岩石經風化作用而成。土位於地殼的表層,是人類工程經濟活動的主要地質環境。土與岩石一起是工程岩土學的研究對象。
⑥ 特殊土體的類型主要有哪些,其典型工程性質如何
1、凍土,顧名思義,是存在溫度較低的地區。分為常年凍土和非常年凍土。回
2、濕陷土,遇水後體積發生收答縮的一種土,主要以黃土地區的黃土為主。因為黃土的孔隙率很高,顆粒級配差,預固結差等原因造成。
3、膨脹土,遇水發生膨脹,失水收縮開裂的一種特殊土。膨脹土主要與土質內部的礦物成分——高嶺土有很大關系。
4、淤泥,粘土和粉質粘土,含水率很高,抗剪能力基本等於零。主要存在於三角洲,草澤地,草地,湖泊和臨海平原地區。
5、紅粘土,主要存在南方濕潤地區。土體風化嚴重,遇水後變成流性土體。土體高嶺土含量非常高。所謂:干時硬邦邦,遇水一場糟。遇水後基本喪失承載力。
⑦ 淺談幾種特殊土地基的工程特性及地基處理論文
以下內容均為引用,成果不歸本人,希望對您的提問有所幫助
軟土地基處理方法概述
杜艷花(中交一公局第五工程有限公司京密項目部)
摘要:本文介紹了軟土及軟土地基的定義及特點,探討了軟土地基在公路工程中造成的危害,並介紹了幾種軟土地基的處理措施,對軟土地基的施工具有一定的指導意義。
關鍵詞:軟土地基 噴粉樁法 土工格柵 換土墊層法
改革開放以來,我國的公路運輸事業經歷了一次前所未有的發展機遇,取得了輝煌的成就。隨著國民經濟的發展,公路對經濟的發展產生了越來越大的影響,也越來越受到國家的重視。雖然東南沿海地區的高速公路建設水平居國內前列,但是軟土路基公路病害也時有發生。尤其橋頭跳車現象嚴重,影響高速公路使用功能。由於橋頭與路堤沉降差異太大,造成行車事故,不得不反復根治,不僅耗費資金,還造成嚴重的社會影響。為了保證道路的安全運行,對軟土路基進行處理就顯得尤為重要。
1 軟土及軟土地基
1.1 軟土
軟土是指濱海、湖沼、谷地、河灘沉積的天然含水量高、孔隙比大、壓縮性高、抗剪強度低的細粒土。具有天然含水量高、天然孔隙比大、壓縮性高、抗剪強度低、固結系數小、固結時間長、靈敏度高、擾動性大、透水性差、土層層狀分布復雜、各層之間物理力學性質相差較大等特點。
1.2 軟土地基
我國公路行業規范對軟土地基未作定義。日本高等級公路設計規范將其定義為:主要由粘土和粉土等細微顆粒含量多的松軟土、孔隙大的有機質土、泥炭以及鬆散砂等土層構成。地下水位高,其上的填方及構造物穩定性差且發生沉降的地基。日本規范還對軟土地基做了分類,提出了類型概略判斷標准。在給出軟土地基定義時指出:軟土地基不能簡單地只按地基條件確定,因填方形狀及施工狀況而異,有必要在充分研究填方及構造物的種類、形式、規模、地基特性的基礎上,判斷是否應按軟土地基處理。
2 軟土地基在公路工程中造成的危害
(1) 勘察設計不詳細或不準確,導致對應該做軟基處理的地段未做處理設計。
(2) 已知是軟土地基,但是未做好軟土地基處理,造成路堤失穩或危及線外建築物。
(3) 雖然做了軟土地基處理,但是措施不力,施工不當造成路堤失穩。
(4) 堆料不當,未按規定分層填築,填土過快,碾壓不當,造成路堤失穩。
(5) 擾動「硬殼層」或填築不當,使「硬殼層」遭受破壞,導致路堤失穩。
3軟土地基的處理方法
地基處理的方法很多,高速公路軟基處理與其它如房建等地基處理相比,有其自身的特點。一般處理路基的地質穩定問題從以下幾個方面進行考慮:
(1)改善剪切特性
路基的剪切破壞以及在土壓力作用下的穩定性取決於路基土的抗剪強度。因為了防止剪切破壞以及減輕土壓力,需要採取一定措施以增加路基土的抗剪度。
(2)改善壓縮特性
需採取措施提高地基土的壓縮模量,以減少地基土的沉降。
(3)改善透水特性
由於是在地下水的運動中所出現的問題,因此,需要採取措施使地基土變成不透水或減輕其水壓力。
(4)改善動力特性
地震時飽和鬆散粉細砂(包括一部分粉土)將會產生液化,因此,需要採取某種措施避免地基土液化,並改善其振動特性以提高地基的抗震性能。
(5)改善特殊土的不良地基的特性
主要是指消除或減少黃土的濕陷性和膨脹土的脹縮性等特殊土的不良地基特性。
地基處理的方法可以從不同角度來分類,一般是根據地基處理的原理來進行分類,大致可以分為以下幾種方法。
3.1換土墊層法
當軟弱土地基的承載力或變形滿足不了設計要求,而軟弱土層的厚度又不是很大時,將基礎地面下處理范圍內的軟弱土層部分或全部挖除,然後分層換填強度較大的砂或其它性能穩定、無侵蝕性的材料,並壓實至要求的密度為止,這種地基處理方法稱為換土墊層法,簡稱為換填法。它適用於處理淤泥、淤泥質土、濕陷性黃土、素填土、雜填土地基。
換填法的加固機理是:將軟弱土層利用人工、.機械或其他方法清除,分層置換強度較高的砂、碎石、素土、灰土以及其他性能穩定和無侵蝕性的材料,並夯實(或振實)至要求的密實度。對軟土厚度小於3米的情況,一般可採用全部挖除換填的方法。對厚度大於3米的情況,通常只採取部分挖除換填的方法。全部挖除換填從根本上改善了地基,不留後患,效果最佳,是最為徹底的措施。當高速公路路線通過的軟弱土層位於地表、厚度較薄(小於3米)且呈局部分布的軟土或泥沼地段,常宜採用全部挖除換填法處理地基。
此種方法又可以分為:機械換土法、爆破擠淤法、拋石擠淤法、砂墊層法。
3.2強夯法
強夯法是20世紀60年代末、70年代初首先在法國發展起來的,國外稱之為動力固結法,以區別於靜力固結法。它一般是用50噸左右的強夯機,將大噸位(100~400KN)的夯錘起吊到6~40米的高度自由落下,對地基土施加強大的沖擊能,在地基土中形成沖擊波和動應力,使地基土壓密和振密,以加固地基土,達到提高強度、降低壓縮性、改善砂土的抗液化條件、消除濕陷性黃土的濕陷性目的。
強夯法主要適用於加固砂土和碎石土、低飽和度粉土與粘性土、濕陷性黃土、雜填土和素填土等地基。因其加固效果顯著,設備簡單,施工方便、快捷,經濟易行和節省材料,有利於環境保護等特點,很快傳到世界各地
3.3約束法
在路堤兩側坡腳附近打入木樁、鋼筋混凝土樁或者設置片石齒牆等,可限制基底軟土的擠動,從而保證基底的穩定。地基在實行側向約束後,路堤的填築速度可不加控制,且較反壓護道節省土方,少佔耕地,但需耗費一定數量的三材,成本較高。此法適用於軟土層較薄、底部有較硬土層且施工期緊迫的情況,下卧層面具有橫向坡度時尤其適合。
3.4土工織物加固法
通過在土層中埋設強度較大的土工聚合物、拉筋、受力桿件等,使這種人工復合的土體,可承受抗拉、抗壓、抗剪或抗彎作用,以提高地基承載力,減少沉降和增加地基的穩定。它適用於各種軟弱地基。
加固法的基本原理是通過土體與筋體間的摩擦作用,使土體中的拉應力傳遞到筋體上,筋體承受拉力,而筋間土承受壓應力及剪應力,使加筋土中的筋體和土體能較好發揮各自的作用。
常見的土工織物有土工格柵、土工帶及土工格室,其中土工格室除了能夠像土工帶和土工格柵一樣,能延緩或者切斷地基破壞的滑動面,從而使地基承載能力提高。而且,土工格室能對處於格室內的土粒給予三維約束,,使土粒與格室成為一個剛度遠大於地基的整體,它能較好分布施加在它上面的荷載,使地基受力較為均勻,從而提高地基承載力。
3.5粉噴樁法
粉噴樁法,是用特製的設備和機具,將加固劑粉體材料(水泥或石灰)通過壓縮空氣的傳送,與地基土強行拌和,使之產生充分的物理、化學反應後,形成一定強度的樁體(簡稱粉噴樁)。這是一種改善土質,提高地基強度的軟土地基加固方法,可以廣泛地適用於淤泥質土,雜填土,軟粘土等地基加固。
粉噴樁處理軟基屬於深層攪拌法中的一種,它是利用壓縮空氣向軟弱土層中輸送石灰、水泥等粉狀加固料,使其與原位軟弱土混合、壓密,通過加固料與軟弱土之間的離子交換作用、凝聚作用、化學結合作用等一系列物理化學作用,使軟弱土硬結成具有整體性、水穩性和一定強度的柱狀加固土,它與原位軟弱土層組成復合地基,提高軟土地基承載力,減少地基沉降量。
3.6高壓噴射注漿法
我國簡稱為高噴法或旋噴法,這種方法是利用鑽機把帶有噴嘴的注漿管鑽到設計深度的土層,將漿液或水從噴嘴中高壓噴射出來,形成噴射流沖擊破壞土層。當能量大、速度快呈脈動狀的射流,其動壓大於土層結構強度時,土顆粒便從土層中剝落下來,一部分細顆粒隨漿液或水冒出,其餘土粒在射流的沖擊力、離心力和重力等力的作用下,與漿液攪拌混合,並按一定的漿土比例和質量大小,有規律的重新排列,漿液凝固後,便在土層中形成一個固結體,可提高地基承載力,減少沉降,還可起到支擋與防滲的作用。它適用於淤泥、淤泥質土、粘性土、黃土、砂土、人工填土和碎石土等地基。
3.7輕質路基粉煤灰處理法
粉煤灰是一種質輕、多孔隙、顆粒均勻、具有一定水穩性的無粘性材料。由於粉煤灰中含有一定量的CaO,SiO2,MgO等成份,它們在粉煤灰水化過程中體積產生膨脹,可利用這一膨脹率來增加軟基加固效果。其路用性能滿足公路中的技術要求。
Ø 粉煤灰重量輕,最大幹容重1.19/耐左右,比一般土的最大幹容重輕40%左右,在軟土路基上填築粉煤灰時,可有效地減輕路堤重量,減少路基沉降及工後沉降量,從而影響路基處理方案,降低地基處理費用。
Ø 粉煤灰強度高、磨擦系數大,在路面設計時,由於粉煤灰提高了軟土的回
彈模量值,相應減薄路面設計厚度。
Ø 擊實試驗表明,粉煤灰和軟土混合物具有更好的干密度,含水量和最大幹
密度的關系曲線較平緩,更利於在野外的施工
3.8水泥土攪拌法
是通過攪拌機械將水泥或(石灰)等材料與地基的軟土攪拌成樁柱體,這種樁柱體成為水泥粘土樁、石灰粘土樁或某膠結物粘土樁,它具有一定的強度和水穩性。攪拌樁柱體與四周軟土組成復合地基,可以提高地基承載力、提高地基強度、增大地基變形模量。因此,經攪拌法加固的軟弱地基能提高地基承載力,減少地基沉降,阻止水體流動,增強地基的穩定性,還能阻止地下水的滲透。水泥土攪拌法分為深層攪拌法(濕法)和粉體噴攪法。
處理正常固結的淤泥、淤泥質土和含水量較高的粘性土、粉土等軟土地基,用於處理泥炭土或地下水具有侵蝕性時宜通過試驗確定其適用性。
在軟土地基上修築公路和橋梁並不都會發生問題、只要設計和施工措施得當,就可以保證路堤、橋梁的穩定和使用效果。軟土地基上路堤的設計與施工方案,應結合當地工程地質條件、材料供應、投資環境、工期要求和環境保護等因素,按照因地制宜、就地取材、分期修建、綜合處治的原則進行充分論證,使設計和施工方案達到技術上先進、經濟上合理。
軟土地基的處理方法很多,總之,軟土地基處理的目的是增加地基穩定性,減少施工後的不均勻沉陷,所以施工的技術人員必須意識到軟土地基的危害性,堅決以數據說話,認真測定基底的承載力,並根據不同的地質情況,不同的投資和工期要求,採用切實可行的處理方案,同時一定要採集橋涵施工後的工後沉降數據,積累經驗,為今後的施工打下堅實的基礎。
參考文獻
[1]林宗元.岩土工程治理手冊[M].沈陽:遼寧科學技術出版社,1993.
[2]葉書麟.地基處理與托換技術[M].北京:中國建築工業出版社,1992.
[3]朱梅生.軟土地基[M].北京:中國鐵道出版社,1989.
[4]劉玉卓.公路工程軟基處理[M].北京:人民交通出版社,2002
[5]徐至鈞.水泥土攪拌法處理地基[M].北京:機械工業出版社,2004
[6]汪雙傑.高速公路不良地基處理理論與方法[M].北京:人民交通出版社,2004
[7]SidnegM,JohnsonandJ』homas.C.Kavangh.TheDesi,offoundationsBuildings[M].1968
[8]曾國熙.地基處理手冊[M].北京:中國建築工業出版社,1993
[9]孫更生.軟土地基與地下工程[M].北京:中國建築工業出版社,1984
[10]葉觀寶.地基加固新技術(第二版)「M].北京:機械工業出版社,2002
[11]錢家歡.殷宗澤.土工原理與計算[M].北京:中國水利水電出版社,1996
[12]葉觀寶.高速公路軟基處理的優化設計[D].同濟大學博士論文,2003
[13]劉寶興.路基工程新技術實用全書[M].北京:海潮出版社,2001
[14]劉興德,牛福生,倪文.粉煤灰的資源化利用現狀與研究進展[J].建材技術與應用,2005.
[15]王建華.粉噴樁加固高速公路的機理和有效樁長的分析[D].河海大學碩士論文,2007.
[16] 張洪強,房建果.土工格室在軟土地基處理中的應用[J].山東交通科技,2003.
⑧ 土的主要工程性質有什麼
土的工程性質是在設計和建造各種工程建築物時所必須掌握的天然土體或填築土料的工程特性。
不同類別的工程,對 土的物理和力學性質的研究重點和深度都各自不同。對沉降限制嚴格的建築物,需要詳細掌握土和土層的壓縮固結特性;天然斜坡或人工邊坡工程,需要有可靠的土抗剪強度指標;土作為填築材料時,其粒徑級配和壓密擊實性質是主要參數。
土的形成年代和成因對土的工程性質有很大影響,不同成因類型的土,其力學性質會有很大差別(見土和土體)。各種特殊土(黃土、軟土、膨脹土、多年凍土、鹽漬土和紅粘土等)又各有其獨特的工程性質。 除土的粒徑級配外,土中各個組成部分(固相、液相、氣相)之間的比例,將影響到土的物理性質,如單位體積重,含水量,孔隙比,飽和度和孔隙度等。
粘性土中含水量的變化,還能使土的狀態發生改變,阿太堡最早提出將土的狀態分為堅硬、可塑和流動三種,並提出了測定區分三種狀態的界限含水量的方法。從流動轉到可塑狀態的界限含水量稱液性界限;從可塑轉到堅硬狀態時的界限含水量稱塑性界限。兩者之間的差值稱土的塑性指數,它反映了土的可塑狀態的范圍。
拓展資料
土的界限含水量和土中粘粒含量、粘土礦物的種類有密切關系。為反映天然粘性土的狀態,常用液性指數,它等於天然含水量和塑性界限的差值(-)與其塑性 指數的比值。≤0時,土處於堅硬狀態;>1時,為流動狀態,0≤≤1時,為可塑狀態。
砂土的密實狀態是決定砂土力學性質的重要因素之一,用相對密度表示:=( -)/( - )。為天然狀態時孔隙比, 為砂土最松狀態時的孔隙比, 則為最密狀態時的孔隙比。≈1時,最密實;≈0時,最鬆散。
土的壓縮和固結性質 土在荷載作用下其體積將發生壓縮,測定土的壓縮特性可分析工程建築物的地基沉降和土體變形。飽和粘土的壓縮時間決定於土中孔隙水排出的快慢。逐漸完成土壓縮的過程,即土中孔隙水受壓而排出土體之外,同時導致孔隙壓力消失的過程稱土的固結或滲壓。
K.泰爾扎吉最早提出計算土固結過程的一維固結理論,並指出某些 粘土中超靜孔隙水壓力完全消失後,土還可能繼續壓縮,稱次固結。產生次固結的原因一般認為是土的結構變形。反映土固結快慢的指標是固結系數,土層的水平向固結系數和垂直向的不一定相同。
土的壓縮量還和它的應力歷史有關。土層在其堆積歷史上曾受過的最大有效固結壓力稱先期固結壓力。它與現今作用的有效覆蓋壓力相同時,土層為正常固結土;若先期固結壓力大於現今的覆蓋壓力,則為超固結土;反之則為欠固結土。對於超固結土,外加荷載小於其先期固結壓力時,土層的壓縮很微小,外加荷載一旦超過先期固結壓力,土的變形將顯著增大。
土的強度性質 通常指土體抵抗剪切破壞的能力,它是土基承載力、土壓和邊坡穩定計算中的重要指標之一。它和土的類型、密度、含水量和受力條件等因素有關。飽和或干砂或砂礫的強度表現為顆粒接觸面上的摩阻力,它與作用在接觸面的上法向有效應力σ和砂的內摩擦角有關,即=σtg。純粘性土的不排水抗剪強度僅表現為內聚力,而與法向應力無關,即=。
一般土則既有內聚力又有摩阻力,即=+σtg。式中的和不是常量而是變數,不僅決定於土的基本狀態,還和外加荷載速率、外加荷載條件、應力路線等有關。飽和土中的孔隙為水充滿,受外加荷載作用時,控制土體強度的不是其所受的總應力σ,而是有效應力σ′(即總應力與孔隙壓力μ之差):σ′=σ-μ。
因而強度試驗的條件不同,所得的強度指標亦異。試驗時,不允許土樣排水所得到的是土的總強度指標;如允許完全排水則得到的是土的有效強度指標。理論上用有效應力和有效強度指標進行工程計算較為合適,但正確判別實際工程土體中的孔隙水壓水較困難,因而目前生產上仍多用總強度原理和總強度指標。
土體的強度還因其沉積條件的影響而存在各向異性。 土的流變性質土工建築物的變形和穩定是時間的函數。有些人工邊坡在建成後數年甚至數十年才發生坍滑,擋土牆後的土壓力也會隨時間而增大等,都與土的流變性質有關。
土的流變特性主要表現為:①常荷載下變形隨時間而逐漸增長的蠕變特性;②應變一定時,應力隨時間而逐漸減小的應力鬆弛現象;③強度隨時間而逐漸降低的現象,即長期強度問題。三者是互相聯系的。作用在土體上的荷載超過某一限值時,土體的變形速率將從等速轉變至加速而導致蠕變破壞,作用應力愈大,變形速率愈大,達到破壞的時間愈短。通過試驗可確定變形速率與達到破壞的時間的經驗關系,並用以預估滑坡的破壞時間。
產生蠕變破壞的限界荷載小於常規試驗時土的破壞強度。從長期穩定性要求,採用的土體強度應小於室內試驗值。土體強度隨時間而降低的原因,當然不只限於蠕變的影響。土的蠕變變形因修建擋土牆或其他建築物而被阻止時,作用在建築物上的土壓力就隨時間逐漸增大。
土的壓實性質 對土進行人工壓實可提高強度、降低壓縮性和滲透性。土的壓實程度與壓實功能、壓實方法和含水量有關。當壓實方法和功能不變時,土的干容重隨含水量的增加而增加,達到最大值後,再增加含水量,其干容重將逐漸下降。
對應於最大幹容重時的含水量稱最佳含水量。壓實功能不增大而僅增加壓實次數或碾壓次數所能提高土的壓實度有一定限度,超過該限度再增加壓實或碾壓次數則無效果。填築土堤,在最佳含水量附近可用最小的功能達到最大的干容重,因而要在室內通過壓實試驗確定填料的最佳含水量和最大幹容重(見路基填土壓實)。
但壓實的方法也影響壓實效果,對非粘性土,振動搗實的效果優於碾壓;對粘土則反之。研究土的壓實性能,可選擇最合適的壓實機具。為改善土的壓實性能,可鋪撒少量添加劑。中國古代已盛行摻加生石灰來改善土的壓實性能。
此外,人工控制填料的級配,也可達到改善壓實性能的目的。 土的應力-應變關系 土的變形和強度是土的最重要的工程性質。60年代以前,在工程上通常分別確定土的變形和強度指標,不考慮強度與變形間的相互影響。因為土的應力-應變關系是非線性的並具有彈塑性、 甚至粘彈塑性特徵,而當時的計算技術,尚無法進行分析。
隨著計算機和數值分析法的普及,已可能把土的應力-應變關系納入土工建築物的分析計算中。正常固結粘土和松砂的剪應力和軸向應變的曲線呈雙曲線型,在整個剪切過程中,土的體積發生收縮,這類土具有應變硬化的特性。 超固結粘土和密實砂的應力-應變曲線則有峰值,其後應變再增大時,則土的強度下降,最後達穩定值。
剪切過程中,土的體積先有輕微壓縮,隨後即不斷膨脹,這類土具有應變軟化的特徵。為了使用數學方程描述各類土的應力-應變特性,現已有各種非線性彈性、彈塑性和粘彈塑性模型。利用這些模型和數值分析法,可以分析一些復雜邊界條件和不均質土體的變形和穩定問題。但是這些模型中所對應的土的參數,目前尚難正確測定,土體的原始應力狀態也難確定,因而還難於在工程中普遍應用。 土的動力性質 土在岩爆、動力基礎或地震等動力作用下的變形和強度特性與靜荷載下有明顯不同。
土的動力性質主要指模量、阻尼、振動壓密、動強度等,它與應變幅度的大小有關。應變幅度增大(<10),土的動剪切模量減小,而阻尼比例則增大。土的動模量和阻尼是動力機器基礎和抗震設計的重要參數,可在室內或現場測試。1964年日本新潟大地震,大面積砂土液化造成大量建築物的破壞,推動了對飽和砂土液化特性的研究。
液化的主要機理是土的有效強度在動荷載作用下瞬時消失,導致土體結構失穩。一般松的粉細砂最容易發生液化,但砂的結構和地層的應力歷史也有一定的影響。具有內聚力的粘性土一般不發生 液化現象。 黃土的工程性質 一般分為新黃土和老黃土兩大類,其性質也有顯著差異(見黃土地區築路、路基設計)。
軟土的工程性質 軟土一般指壓縮性大和強度低的飽和粘性土,多分布在江、河、海洋沿岸、內陸湖、塘、盆地和多雨的山間窪地。軟土的孔隙比一般大於1.0,天然含水量常高出其液限,不排水抗剪強度很低,壓縮性很高,因而常需加固處理。最簡單的方法是預壓加固法(見預壓法)。軟土強度的增加有賴於孔隙壓力的消失,因而在地基中設置砂井以加快軟土中水的排出,這是最常用的加固方法之一。
預壓加固過程中通過觀測地基中孔隙水壓力的消失來控制加壓,這是保證施工安全和效率的有效方法。此外,也可用碎石樁(見振沖法)和生石灰樁等加固軟土地基。 膨脹土的工程性質 粘土中的粘土礦物(主要是蒙脫石),當遇水或失水時,將發生膨脹或收縮,引起整個土體的大量脹縮變形,給建築物帶來損害(見膨脹土地基)。
多年凍土的工程性質 高緯度或高海拔地區,氣溫寒冷,土中水分全年處於凍結狀態且延續三年以上不融化凍土稱多年凍土。凍土地帶表層土隨季節氣溫變化有凍融交替的變化,季節凍融層的下限即為多年凍土的上限,上限的變化對建築物的變形和穩定有重大影響(見凍土 地基、多年凍土地區 築路)。
鹽漬土的工程性質見鹽漬土地區築路。 紅粘土的工程性質 熱帶和亞熱帶溫濕氣候條件下由石灰岩、白雲石、玄武岩等類岩石風化形成的殘積粘性土。粘土礦物主要是高嶺石,其活動性低。中國紅粘土的特點一般是天然含水量高、孔隙比大,液限和塑性指數高,但抗水性強,壓縮性較低,抗剪強度也較高,可用作土壩填料。
⑨ 土的工程性質
題問工程性質就是指明是工程用途而非栽花種草。
工程性質包括成因、礦物組成、顆回粒大小及膠結、密實程答度、可壓縮性、狀態;壓縮模量、承載能力等,詳細分物理性能各種指標和力學性能各種指標。
作為工程應用當然是礦物組成好、整體性、硅質膠結的微風化或未風化的基岩最好,因為它被視為不可壓縮、承載能力最高、最穩定的岩土,如具有上述性質的花崗岩、礫岩、砂岩、灰岩等;
而顆粒極小、壓縮性大、含水大大,軟塑狀態的土就最差,如淤泥質土、膨脹土、流沙等就最差。
⑩ 土的工程特性有哪些
1.土的物理性質 :除土的粒徑級配外,土中各個組成部分(固相、液相、氣相)之間的比例,將影響到土的物理性質,如單位體積重 γ,含水量w,孔隙比e,飽和度sr和孔隙度n等。
2.土的壓縮和固結性質 :土在荷載作用下其體積將發生壓縮,測定土的壓縮特性可分析工程建築物的地基沉降和土體變形。飽和粘土的壓縮時間決定於土中孔隙水排出的快慢。逐漸完成土壓縮的過程,即土中孔隙水受壓而排出土體之外,同時導致孔隙壓力消失的過程稱土的固結或滲壓。
3.土的流變性質 :土工建築物的變形和穩定是時間的函數。
4.土的強度性質 :通常指土體抵抗剪切破壞的能力,它是土基承載力、土壓和邊坡穩定計算中的重要指標之一。它和土的類型、密度、含水量和受力條件等因素有關。
5.土的壓實性質 :對土進行人工壓實可提高強度、降低壓縮性和滲透性。土的壓實程度與壓實功能、壓實方法和含水量有關。
6.土的動力性質 :土在岩爆、動力基礎或地震等動力作用下的變形和強度特性與靜荷載下有明顯不同。土的動力性質主要指模量、阻尼、振動壓密、動強度等,它與應變幅度的大小有關。
(10)特殊土的工程地質性質擴展閱讀:
對土進行人工壓實可提高強度、降低壓縮性和滲透性。土的壓實程度與壓實功能、壓實方法和含水量有關。當壓實方法和功能不變時,土的干容重隨含水量的增加而增加,達到最大值後,再增加含水量,其干容重將逐漸下降。
對應於最大幹容重時的含水量稱最佳含水量。壓實功能不增大而僅增加壓實次數或碾壓次數所能提高土的壓實度有一定限度,超過該限度再增加壓實或碾壓次數則無效果。填築土堤,在最佳含水量附近可用最小的功能達到最大的干容重,因而要在室內通過壓實試驗確定填料的最佳含水量和最大幹容重(見路基填土壓實)。
但壓實的方法也影響壓實效果,對非粘性土,振動搗實的效果優於碾壓;對粘土則反之。研究土的壓實性能,可選擇最合適的壓實機具。為改善土的壓實性能,可鋪撒少量添加劑。中國古代已盛行摻加生石灰來改善土的壓實性能。此外,人工控制填料的級配,也可達到改善壓實性能的目的。
土的變形和強度是土的最重要的工程性質。60年代以前,在工程上通常分別確定土的變形和強度指標,不考慮強度與變形間的相互影響。因為土的應力-應變關系是非線性的並具有彈塑性、 甚至粘彈塑性特徵,而當時的計算技術,尚無法進行分析。