公路工程地質分區原則
⑴ 岩土體工程地質類型分區
平原區廣泛分布以沖洪積成因為主的第四系堆積物,低山丘陵區出露多種類型的岩組,沂沭斷裂帶西側的鄌郚-葛溝斷裂、沂水-湯頭斷裂縱貫南北,總體看工程地質條件較復雜(圖1-8-3)。
圖1-8-3 昌樂縣岩土體工程地質類型分區略圖
(一)岩體工程地質類型
1.堅硬的塊狀侵入岩岩組
分布於營邱—河頭一帶,為古元古代呂梁期侵入岩,岩性以弱片麻狀中粒含角閃二長花崗岩、弱片麻狀中粒含黑雲二長花崗岩,岩石堅硬,力學強度高,工程地質性質良好,山區風化帶厚度<3m,丘陵及準平原區20~30m,fc=130~170MPa,fr=90~130MPa(fc為岩石極限干抗壓強度,fr為岩石飽和極限抗壓強度)。
2.堅硬的塊狀-似層狀噴出岩岩組
主要分布在南郝—崔家埠—五圖一線以南、鄌郚-葛溝斷裂以西地區,為新近紀臨朐群牛山組、堯山組火山噴出岩,岩性為玄武岩。岩石堅硬,柱狀節理發育,工程地質性質良好。風化帶厚20~30m,fc=140~160MPa。
3.堅硬的塊狀變質岩岩組
主要分布在鄌郚—阿陀一帶,為新太古代泰山岩群山草峪組黑雲變粒岩,岩石堅硬,風化帶厚度30~40m,fc=180~200MPa。
4.堅硬較堅硬的中厚-厚層狀灰岩岩組
僅分布於朱劉街道、五圖街道一帶,主要為寒武紀長清群硃砂洞組、饅頭組、九龍群張夏組、崮山組和炒米店組白雲質灰岩、泥灰岩、泥質條帶灰岩和生物碎屑灰岩等,局部夾細砂岩。灰岩堅硬,力學強度高,泥灰岩強度低。白雲質灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。
5.較堅硬的中厚—厚層碎屑岩岩組
主要分布在鄌郚-葛溝斷裂帶與沂水-湯頭斷裂帶,以及五圖煤礦一帶,岩性為白堊紀淄博群三台組砂岩、礫岩,萊陽群城山後組角礫岩、砂礫岩、砂岩,青山群八畝地組凝灰岩、集塊角礫岩、粉砂岩,大盛群馬郎溝組粉砂岩、細砂岩,田家樓組泥質粉砂岩、細砂岩、黏土岩,古近紀五圖群朱壁店組礫岩、砂礫岩、礫岩,李家崖組黏土岩、砂岩、黏土岩、油頁岩等。風化帶厚度<40m,砂岩和礫岩fc=30~80MPa,fr=20~50MPa。
6.較堅硬的薄層狀頁岩夾灰岩岩組
局限分布在阿陀東北部,岩性為中寒武系、下寒武系及元古宇土門群頁岩、博層灰岩、泥灰岩。頁岩夾泥灰岩fc=30~40MPa,fr=10~15MPa。
(二)土體工程地質類型
1.北部沖洪積上層黏性土多層或雙層結構
分布於北部山前平原地區,以上層黏性土多層結構為主,上層黏性土厚<5m或5~10m,僅局部>10m,黏性土岩性以粉質黏土、黏土為主,中等壓縮性。砂性土為粉細砂、中細砂,其次粗砂、礫石,砂層顆粒自北至南變粗,工程地質性質良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk為地基承載力標准值)。
2.山前及河谷平原沖洪積上層黏性土雙層、多層結構及黏性土單層結構
分布於山前坡麓、山間河谷地區,上部黏性土為粉質黏土、粉土、黏土,厚度5m左右,中等壓縮性。下部砂性土為中粗砂、細砂、砂礫石,緊密狀態,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。
3.山麓地區坡洪積及殘坡積黏性土單層結構或上層黏性土雙層結構
分布於南部低山丘陵坡麓地帶,以黏性土單層結構或上層為黏性土雙層結構為主。黏性土厚<5m或5~10m,以黃褐色至棕紅色粉質黏土及黏土為主,含鐵錳質及鈣質結核,可塑—硬塑,中等壓縮性,部分地區分布濕陷性黃土。下部夾透鏡體狀碎石土及泥鈣質膠結礫岩,緊密狀態,工程地質性質良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。
總之,昌樂縣工程地質主要問題是沂沭斷裂帶的活動性,其次是地面沉陷、岩溶塌陷、局部黃土濕陷等問題。
⑵ 工程地質分區與評價
5.4.1 區域穩定性分區
海口地區區域穩定性分為二級。其中一級分區主要依據構造穩定性劃定,劃分為兩個區,基本上以馬裊-鋪前斷裂為界,以南為次穩定區,以北為不穩定區;二級分區主要考慮岩土體穩定性和地面穩定性劃分為4個地段(見圖5.1、表5.4)。
圖5.1 海口地區環境工程地質圖
表5.4 海口市城市調查區區域穩定性分區表
5.4.1.1 文明村、府城薜村、靈山、道殿村次穩定區(A)
(1)火山岩台地穩定地段(A1):①岩土體穩定性:該地段為火山岩台地,岩性為褐紅色粘土(玄武岩殘坡積土),局部(美楠村一帶)玄武岩裸露。土體呈可塑—硬塑狀,承載力特徵值230~660kPa,岩體飽和單軸抗壓強度53.8~184.4MPa,軟化系數0.1~0.84。岩體穩定性較好。②地面穩定性:本區除局部紅土較厚和台地坡度較陡的地段出現有沖溝、水土流失較嚴重外,就整個火山岩台地來說,地形起伏不大,水系不發育,地面穩定性較好。
(2)海積三級階地較穩定地段(A2):①土體穩定性:以可塑—硬塑含礫粘土、粉質粘土為主,承載力特徵值180~660kPa,穩定性一般。②地面穩定性:該地段地形波狀起伏,沖溝發育,地表遭受侵蝕切割,常引起崩塌,水土流失嚴重,地面穩定性差。
5.4.1.2 長流、秀英、海口、桂林洋不穩定區(B)
(1)長流-秀英海積階地基本不穩定地段(B1):①土體穩定性:主要為可塑狀粉土、粉質粘土,承載力特徵值140~270kPa,穩定性一般;局部分布膨脹土,膨脹土膨脹率2.1%,收縮率3.0%,自由膨脹率43%,具有濕脹干縮特徵,常對建築物造成破壞,土體穩定性差;沿海一帶為沙堤沙地和淤泥,土體結構鬆散,具流變性、觸變性,穩定性很差。金牛嶺一帶為玄武岩,穩定性相對較好。②地面穩定性:本地段為沿海地帶,地勢低平,常受洪潮侵襲,地下水埋深小,局部地段地下水對混凝土具腐蝕性,地面穩定性較差。
(2)海口、桂林洋三角洲平原不穩定地段(B2):①土體穩定性:主要為含砂粉質粘土、淤泥質粉質粘土和膨脹土。含砂粉質粘土為可塑狀,承載力特徵值50~240kPa;淤泥質粉質粘土,具有高壓縮性、流變性和觸變性,強度低;膨脹土膨脹率8.57%~13.07%,自由膨脹率43%~57%,具有濕脹干縮特徵,常對建築造成破壞;沿海是海灣、海灘沉積,鬆散狀。土體穩定性差。②地面穩定性:該地段地形低平,易受台風、洪潮侵害,土體具流變性,常引起地基不均勻沉降或擠出,南渡江沿岸,由於河流侵蝕,常出現崩塌,而沿海出現海岸淤積。地下水埋深淺,局部地下水對混凝土具侵蝕性。地面穩定性差。
海口城市環境地質調查區的區域穩定性評價工作,以地質調查為基礎,盡可能收集了各方面的資料,綜合分析了本區的構造、岩土體和地面穩定性,對海南島東北部進行初步的穩定性評價和分區。基本上以馬裊-鋪前斷裂為界,南部穩定性較好,北部穩定性差。海南島東北部設防地震基本烈度為Ⅷ度,設計基本地震加速度值為0.30g。因此,對重大工程建築要考慮其穩定性,採取相應的措施,進行防震設計。
5.4.2 工程地質分區與評價
在區域穩定性分區的基礎上,以地貌條件和岩土體工程地質特徵為主要依據,結合物理地質現象、環境工程地質問題和水文地質條件等因素,並考慮地域上的連續性,對海南島東北部進行工程地質分區,共劃分為5個區8個亞區(見圖5.1)。
5.4.2.1 新海-府城海風積平原沉積土區(I)
(1)新海海風積沙堤沙地鬆散砂類地基土亞區(Ⅰ1):主要分布於新海林場一帶沿海,呈堤狀,為海相堆積,後經風力改造加高而成,頂部常見草叢、沙丘、沙壟等。岩性以細砂、中砂或含礫中砂為主,局部為含礫粗砂,鬆散—稍密狀,宜作一般小型工民建築地基,但由於其淺層土層鬆散,側壓力大,邊岸、基坑易崩塌,另外,本區台風作用強烈,常使沙丘遷移造成工程設施的破壞或掩埋。
(2)榮山海積一級階地淤泥地基土亞區(Ⅰ2):分布於榮山—博養一帶,地形低平,上部為含貝殼砂、淤泥或中粗砂、粉土,下部為含礫粗砂、礫砂及粉土等。頂板埋深0~4.05m,一般小於2m,具流動性、高壓縮性。本區地基土軟弱,承載力低,並易受洪、潮侵襲,不宜做工民建築場地。
(3)秀英-府城海積三級階地粘性地基土亞區(I3):分布於區內火山台地與海積一級階地之間,地基土以更新統粉土、粉質粘土和上新統粘土為主,力學強度較高,地形平緩,外動力地質現象較少,適合各種工民建築和道路工程。但局部陡坡地帶有沖溝、崩塌等現象發生,在此地帶的工程建設應注意邊坡的穩定性。另外,本區地震烈度為Ⅷ度,工程建築應採取相應的抗震措施。
(4)府城海積階地中等膨脹地基土亞區(Ⅰ4):分布於儲城東沿階地邊緣,局部受河流侵蝕切割成殘丘地形,岩性以雜色粘土為主,上部覆蓋層多為人工填土或北海組含礫粉土。具中等膨脹性,由於具有濕脹干縮的特徵,建築物常被破壞。如海南幹部療養所地處孤丘上,建築物以秀英組(Q p1x)雜色粘土為天然地基,造成平房、水池等建築物開裂。
(5)浮陵水三級階地中等膨脹地基土亞區(I5):分布於三級階地後緣白水塘南一帶,岩性以雜色粘土為主,上部覆蓋層多為北海組(Qp2 b)褐紅色粉質粘土、粉土等,覆蓋層厚度小於2m,局部因眾多磚瓦廠開采已出露地基。本層土具有中等膨脹性,濕脹干縮常使建築物造成破壞,工程建築施工應對此引起足夠的重視。
5.4.2.2 海口-桂林洋、河口三角洲堆積平原沉積土區(Ⅱ)
沿東部海岸和南渡江河岸分布,為全新統地層,地基土力學強度一般較低。
(1)玉沙村海灘階地淤泥地基土亞區(Ⅱ1):分布於海口玉沙村—海甸島一帶,上部覆蓋層一般為人工填土、粉質粘土、粉土、中細砂等,岩性為灰黑色淤泥,呈流塑—軟塑狀。
本區地勢低平,易受台風洪潮侵蝕,淺部地基土軟弱,淤泥具高壓縮性、流變性、觸變性和不均勻性,常出現地基不均勻沉降或擠出、基坑滑移等,對工程建築不利。
(2)新埠島-鐵橋三角洲平原、河流階地夾淤泥質地基土亞區(Ⅱ2):分布於南渡江兩岸及河口一帶,呈向海凸出的扇形,地形平坦,微向海傾,區內出露的為全新統沉積層,岩性和土層結構復雜。
區內地基土強度一般,但隱伏有淤泥質粉質粘土,因此工程建設時應查明其分布和埋藏條件,採取防範措施。另外,本區南渡江沿岸河流侵蝕作用強烈,常發生崩塌,且本區地勢較低,易受洪澇、潮害和台風侵襲,對工程不利。
(3)桂林洋海灣一級階地淤泥質地基土亞區(Ⅱ3):分布於桂林洋農場以北,地基土以淤泥質粉質粘土為主,埋藏較淺,一般0.80~1.25m,具高壓縮性,強度低,不宜做天然地基。
本區地勢低平,易受風暴潮侵襲,對工程建築不利。本區地震烈度為Ⅷ度,鄰區發生過7.5級的強震,地基土有觸變性,工程建築應特別注重防震措施,以策安全。
5.4.2.3 長流海積三級階地粘性地基土區(Ⅲ)
分布於長流附近,被後期熔岩所包圍,地形平坦或略有起伏,地基土強度一般,物理地質現象不發育,適宜各種工民建築和道路工程,但地震烈度為Ⅷ度,應設防。
5.4.2.4 道殿村海積三級階地粘性土地基土區(Ⅳ)
分布於桂林洋農場北道殿村一帶,地形平坦,地基土強度一般,適宜一般工民建築,但由於地勢低平,易受風暴潮等影響,且地震烈度較高(Ⅷ度),應採取防範措施。
5.4.2.5 火山岩台地殘坡積地基土區(Ⅴ)
分布於長流文明村、府城薜村及靈山等地,美楠村一帶為玄武岩裸露區,但由於分布范圍較小,未進行分區而歸並於本區。殘坡積土岩性為褐紅色粘土,局部含鐵豆砂,下部為玄武岩。區內岩土力學強度較高,地形平緩,適宜各類工民建築場地,但由於殘坡積土孔隙比大,具高壓縮性,厚度變化大,土層中常見球狀風化玄武岩塊,易造成建築物的不均勻沉降,所以興建工程應查明其厚度變化,採取防範措施。
⑶ 我國現行《公路自然區劃標准》中,一級區劃是根據哪些因素分區的
根據公路工程的地理,氣候差異特點,自然區的劃分,按其重要性和規模的大小分為三個等級。一級區劃是按自然氣候,全國輪廓性地理,地貌劃分的,全國共劃分七個一級區;二級區劃是在一級區劃內,考慮水溫狀況不同,以潮濕系數為主導標志,按公路工程的相似性及地表氣候的差異,進一步劃分二級區以及與二級區劃相當的副區,全國共分為33個二級區和19個副區。三級區劃是二級區的進一步劃分。由於目前各地區的特點和掌握的調查研究資料不充分,還不具備劃分條件,再則,三級區不一定要列入全國性的范圍,由個省,自治區自行劃分,以便更切合當地的實際情況。
我國地域遼闊,各地氣候、地形、地貌、工程地質和水文地質等自然條件差異很大,而這些自然條件與公路建設密切相關。為反映不同地區公路設計與施工的特點,交通部制定了《公路自然區劃標准》(JTJ003-86),將具有相同自然條件的地區歸類。全國的公路自然區劃分為三個層次:
(1)一級區劃
全國分為7個一級區,它們是:I—北部多年凍土區;Ⅱ—東部濕潤季凍區;Ⅲ—黃土高原干濕過渡區;IV—東南濕熱區;V—西南潮暖區;Ⅵ—西北乾旱區;Ⅶ—青藏高寒區。
(2)二級區劃
二級區劃以潮濕系數為主要分區依據,按公路工程的相似性及地表氣候的差異,在7個一級區劃內進步分為33個二級區和19個副區。
潮濕系數K為年降水量(mm)與同年蒸發量(mm)之比,按區內的K值大小分為6個等級。
(3)三級區劃
三級區劃是二級區劃的進一步劃分。各省、市、自治區可以根據當地的地貌、水文和土質等具體情況,在二級區劃的基礎上進行細分。公路自然區劃的名稱和特徵詳見《公路自然區劃標准》
⑷ 地質環境條件復雜程度的分區
綜上所述,輸油管線穿越不同的構造單元,穿越地貌類型多樣,沿線出露除中生界以內外的華北容地台上所有地層,岩性岩相較復雜,地質構造條件復雜,新構造運動強烈,地下水類型復雜多樣,礦產資源分布不均,人類工程—經濟活動強烈程度不等,地質災害發育程度差別較大。其中地質環境條件簡單的分布區段189.23km,佔全線總長的37.3%;地質環境條件中等的分布區段203.27km,佔全線總長的40.0%;地質環境條件復雜的分布區段115.49km,佔全線總長的22.7%。各區段地質環境條件復雜程度說明見表9-8和圖9-7。
⑸ 如何進行工程地質分區
進行區域的靶區區分 逐步進入
⑹ —、地質災害危險性綜合分區評估原則與量化指標的確定
(一)地質災害危險性綜合分區評估原則
地質災害危險性綜合評估原則內,應依據地質災害危容險性現狀評估、預測評估結果,充分考慮地質環境條件的差異,基於管道工程及鄰近可能危及工程安全的地質災害及其災害隱患點的分布、危害程度、危險性,確定判別區段危險性量化指標;根據「區內相似、區際相異」的原則,結合擬建工程,劃分出危險性大、中、小三級。如果同一區段各個災種共生時,其地質災害危險性等級按就大不就小,就高不就低的原則來劃分。
(二)綜合分區評估方法與量化指標的確定
評估方法首先以地質環境條件為背景,以擬建工程沿線地質災害災種數(種)、災害點平均密度(個/km)、災害分布長度比例(m/km)等三個量化指標,結合預測評估確定的危害程度和危險性大小,定性與半定量相結合確定擬建工程沿線地質災害危險性等級。量化指標取值標准列於表9-18中。
按表9-18的標准,先作地質環境條件分段,進行災種、災害點密度、災害點線密度統計,進行危險性等級初步劃分,既要符合標准,又要切合實際,充分體現出「區內相似,區際相異」、「就大不就小」的評估原則。
表9-18 地質災害危險性分級量化指標
⑺ 地質分區圖要反映一些什麼東西
地質分區圖要反映的是
其工程類型和
分布進行工程地質
分區的評價。
工程地質分專區是在研究屬區內,
依據工程地質條件相似或
相近的基本原則進行的區域劃分。
其成果是編制出
工程地質分區圖和說明書,
並配以表格形式說明
各區的工程地質特徵和評價。
⑻ 岩土工程到底是搞什麼的賺頭和橋梁比起怎麼樣通常在哪種地方工作
概述 由於國民經濟的發展和路網完善的需求,高速公路逐步進入山區。高速公路由於其線形指標高,工程艱巨,投資巨大,對自然環境的破壞也非常嚴重。隨著環境保護理念的日益深入人心,對於山區高速公路的勘察設計、施工運營等方面的環保要求也越來越高。山區公路環境載體主要是自然環境,也是地質環境。山區一般地形地質條件復雜,地質環境脆弱,地質災害多發,高速公路的建設不可避免的要切坡、填溝、打洞(隧道),對地質環境造成嚴重破壞,處理不好還會誘發和加劇各種地質災害,增加公路建設投資,影響工期,甚至給運營階段帶來嚴重的安全隱患。因此山區高速公路的環保主要是地質環境的保護和地質災害的防治。 要建設一條兼顧交通、環保、生態等方面要求的高標準的山區高速公路,應該重視和加強地質工作。地質工作應貫穿於設計、施工和運營的全過程。對地質現象和規律的認識(岩土工程勘察工作)是由面到線、由線到點、由表及裡、由粗到細、由宏觀到微觀,逐步深入的,根據不同階段應採取不同的方法和手段。 2 勘察設計階段 地質條件是客觀存在的,山區高速公路在自然地質環境中穿行,並對地質環境進行改造,應該認識地質規律,尊重地質規律,在設計中充分考慮地質因素,遵循地質原則,從源頭上盡量減少山區高速公路對自然環境的破壞,並且為施工和運營提供良好的條件。 2.1工可階段――貫徹地質選線的原則 山區公路地質選線主要受到地形和不良地質現象的制約,主要的不良地質現象有滑坡、泥石流、岩崩、岩溶、岩堆(坡積層)、軟弱土、膨脹土、濕陷性黃土、凍土、水害、采空區以及強震區(高地應力)等。本階段應盡可能詳細地收集區域構造地質、岩石地層、水文地質、工程地質、地震地質、環境地質等方面的資料,利用遙感資料(衛片和航片),編制中比例尺(1:5萬或1:10萬)工程地質圖和地質災害(不良地質現象)分布圖,圖上標注大的地質構造(主要是斷層)、重大的地質病害體,分析區域性的地質災害發生條件,進行初步的地質災害評估,配合路線方案設計,進行必要的現場踏勘和重點路段的調查,反復對比,優選出工程地質條件最好、地質災害最少、工程建設對地質環境的不利影響最小的路線走廊帶,真正貫徹地質選線的原則。對於滑坡、崩塌、岩堆、泥石流、岩溶、軟土、泥沼等嚴重不良地質地段和沙漠、多年凍土等特殊地區,一般情況下路線應設法繞避。 2.2初設階段――突出重大地質病害對路線方案的制約 確定路線方案前應對沿線地質構造帶、斷層、岩石的層理情況、地質病害的分布及范圍等,通過對遙感地質判釋資料以及不同勘測階段的勘探、調查資料的分析,研究路線通過方案並不斷優化。對地質較為復雜地段還應注意在設線後誘發並加劇地質病害的可能性,謹慎的確定路線的線位和採取的工程措施。地質技術人員應配合路線設計師作好地質咨詢工作,可以沿初步擬定的路線線位,進行全線踏勘,對重點工點進行地質調查,得出初擬線位沿線的基本工程地質情況,評估路線方案的可行性,發現重大不良地質地段或預測工後會出現難以治理的地質病害的路段要及時反饋信息,以便盡快調整路線線位。基本確定路線方案後,及時委託有資質的單位進行建設用地地質災害危險性評估工作,並進行大比例尺(1:1萬)的地質遙感解譯及地質災害調查和工程地質調繪工作,編制1:1萬工程地質圖和路線區域地質病害現狀圖。圖件的重點是地質災害和重要工點的工程地質條件,要有針對性,要突出重點,不可以拿1:5萬地質圖放大。現在委託地質部門做的圖件,有些不能稱為工程地質圖,只能稱為基本地質圖(工程地質分區太籠統、工程地質條件的論述太簡略)。地質災害評估工作不能夠代替1:1萬工程地質圖的編制,但二者可結合進行,以節約時間和經費。 很多地質災害(滑坡、泥石流等)由於植被覆蓋、後期人工改造以及觀察角度和范圍有限等原因,在現場難以判斷。通過遙感資料(如航片)可以從宏觀上觀察全貌,合理的解譯,有利於對此類不良地質體的正確認識。 當工作中發現仍有重大的地質病害存在或有潛在的重大地質病害時,必須及時調整線位。對於重大的地質病害應盡量繞避,實在無法繞避的要考慮工程措施的可能性與可靠性,盡量在路線的平縱面優化上下功夫(採用分離式路基、用橋隧構造物通過、從滑坡體上部通過、半路半橋等),避免高填深挖,以減少對地質環境的破壞,提高工程措施的可靠性和安全度。對地質病害應以防為主,以治為輔,能避當避,即使增加工程造價也是值得的。 以安徽省徽杭高速公路為例,該路全長約80km,有四分之三路段位於山區,由於勘測時間較早,對山區高速公路特點認識不足,以投資為主要控制因素,其中有一半左右的路段基本沿區域性的三陽斷裂帶布設。受構造影響,岩體風化破碎嚴重,並且沿線分布有雄村滑坡、朱村滑坡等規模較大的不良地質體。施工開挖後,出現大量的不穩定邊坡,甚至誘發了部分滑坡。對於部分地質病害路段及時調整線位,進行了避讓,而更多的病害段只能採取治理措施,結果造價大幅攀升,嚴重影響了工期,並且治理效果也難以預測。 必要時應增加技術設計階段,對重大地質病害路段進行深入勘察,確定路線可行性。 2.3施工圖設計階段――詳查工點地質條件 通過初步設計階段的各種地質工作,已經基本查明路沿線的地質條件,但是工作深度和廣度還不夠。本階段應詳查工點地質(橋位、隧道、深路塹、高填路堤、陡坡路堤、支擋構造物),進行重要工點1:2000地質測繪。採用調查、測繪、槽探、坑探、鑽探、物探等綜合勘察手段。查明場地岩土體組成、性質、分布以及風化層、不良地質、特殊性岩土等工程地質條件在路線縱橫方向的變化。以前對於橋位和隧道等構造物工點地質勘察較為重視,但是對於深路塹和陡路堤、斜坡路堤、支擋構造物等路基方面的工點也必須加強勘察,特別是高邊坡和不良地質體的勘察和預測。另外對於築路材料料場和棄土場的勘察一定要重視,以前山區公路曾出現過取土、棄土場所不合理,亂挖亂棄,破壞環境,導致水土流失的事例。 除了詳細的地質勘察工作之外,還要貫徹綜合設計原則,在路線設計的各個階段,對工程地質條件要有充分的了解,保證路線方案的科學性。對地質資料要充分利用,橋位、隧道、路線各有一套地質資料,但彼此經常脫節。比如當橋隧相連時,隧道勘察發現有不良地質現象,橋梁設計人員卻不知道,還把橋台置於其上。因此加強各專業之間的交流溝通,互相學習。從事路線、隧道、橋梁設計的人員要盡量多地掌握一些基本的地質知識,以有利於對地質資料的合理使用。 3 施工階段――遵循信息化施工、補充勘察、動態設計原則 由於地質條件的復雜性和勘察周期的制約,有些復雜場地(岩溶、破碎帶、岩性縱橫向差異大的地區)或地形困難場地(陡坡、魚塘等)在設計階段難以布置充分的勘察工作量,無法查清場地詳細工程地質條件。在施工期間,可以進行補充勘察,如對岩溶發育區或岩性差異大的場地逐樁鑽探,對原進場困難場地通過施工便道進場鑽探。施工中發現新的地質問題也要補充勘察。應該把施工期間的勘察工作視作設計期間勘察工作的重要補充。 另外本階段應遵循信息化施工(施工中監測)、動態設計的原則。隧道的超前預報、邊坡的動態監測都是施工階段必須要進行的工作。施工單位一定要配備過硬的地質技術人員,及時發現問題,不要等到地質病害已經發生才去治理,要有前瞻性、預見性,發現邊坡、隧道等有失穩的趨勢之後要立即反饋業主和設計單位,並及時採取合適的加固措施,避免邊坡、隧洞大面積失穩。應該認識到,設計階段的勘察工作對地質現象和地質規律的認識往往是不全面的,甚至是錯誤的,據此進行的設計只能稱為預設計。在邊坡或隧道斷面開挖以後,很多問題才會發現,此時應有岩土工程技術人員在現場,對照原有的勘察設計方案,發現新的問題之後通過合理工序及時調整設計方案。等到問題已經發生才去採取措施,既多花了錢,又耽誤了工期。 目前施工單位的岩土工程技術人員也是極為缺乏的,有時由於不合理的施工方法導致或加劇了地質病害的發生和發展(如在破碎岩體上放大炮、自下而上開挖邊坡等) 施工期間的岩土工程監理工作目前還較為薄弱的,有豐富理論知識和實踐經驗的岩土監理工程師極為缺乏,使施工期間的地質病害預防工作遠遠達不到要求。 4 運營階段――加強敏感點監測 山區高速公路運營期間也要高度重視地質工作。因為有些地質災害的發生是一個長期的過程,應力釋放或邊坡的蠕變有些需要長達幾年乃至十幾年的時間,一次性治理有時並不能保證長治久安。因此對於一些在施工中出現病害的路段或重要工點要建立資料庫,進行變形、位移和地下水的動態監測,定期巡查,建立防災和預警系統,在雨季或洪水季節要加強對敏感點的監測。通過長期觀測記錄,還可以更深入的認識地質規律,分析地質病害的發生發展機理,預測發展趨勢,發現有不利的趨勢要及時採取措施。 5 山區公路建設地質工作中存在的問題 5.1前期階段 工可階段對地質工作不夠重視,地質遙感工作不做或精度不夠,不能夠貫徹地質選線的原則,導致選定的路線走廊帶中地質病害多,處理難度大,給後期工作帶來極大難度。 初步設計階段,由於路線方案調整較大,而工期緊張,因此很多勘察工作量作廢,路線地質精度不夠,部分工點缺少地質資料,給設計工作帶來隱患,也使得施工圖設計階段路線方案有時發生較大調整。 施工圖設計階段不做或漏做重要工點的1:2000地質測繪,或雖做了但精度不夠;對一些地質病害研究不深,導致對一些重要工點的勘察深度不夠;對於路線地質調查深度不夠,導致一些地質敏感點遺漏,在施工中出現地質病害。構造物勘察相對較細,而路基方面的勘察則往往較粗略。 目前的山區公路工程勘察還存在許多有待改進的地方。由於現在很多項目的勘察設計工期都非常緊張,如何在很短的時間內達到盡可能高的勘察精度,的確是一個難題。為搶時間,現在地質勘察工作很大一部分外委出去,全線人員設備上了很多,但在施工中仍會暴露出很多地質問題。這一方面是由於地質現象的隱蔽性和地質科學的復雜性,難以全面深入地認識地質現象,另一方面也是由於從事岩土工程的技術人員本身能力有限所致。岩土工程在一定程度上屬於經驗學科,技術人員的經驗非常重要。外委的勘察單位一定要過硬,對於其提供的地質資料要進行審核,去偽存真,對於不能夠滿足規范和設計要求的堅決返工。在其外業和內業階段要進行監督,多溝通。外行業的地勘隊伍往往對公路工程的特點及公路勘察規范了解不夠,不能夠有針對性的進行勘察,資料經常不能滿足設計要求。另外由於工期緊,技術准備不足,勘察手段不合理,經常導致勘察深度不足,如隧道勘探未採用雙管單動鑽進,無法判斷RQD,鑽探工藝和技術不過硬,岩石取心率低,鑽孔水文地質試驗數據不足,對邊坡勘察無法判斷滑動面,無法取得可信的各種力學參數,物探手段與其他勘探手段的互相校核精度不夠等,甚至有個別單位編造資料應付設計。所以不僅要看投入了多少人力物力,還要看投入人員技術水平、職業技能和職業道德素質如何,擬定的勘察方案是否合理,對地質現象的認識是否科學。在實踐中,由於技術人員水平參差不齊,經常會出現錯判、漏判地質病害的現象。因此加強公路岩土工程從業人員的技術水平是非常緊迫的事情。 5.2施工階段 地質技術力量薄弱,岩土工程監測和監理不力,施工工序和方法不對,導致地質病害的加劇,甚至誘發地質病害。對工程地質特點認識不足,不能夠及時預測和反饋地質病害,只能被動地等待地質病害的發生。 5.3運營階段 地質工作目前還基本上是空白,無法保證山區高速公路的安全順暢。 6 正確認識地質工作的重要性和特殊性 由於岩土體的組成物質差異,更重要的是在岩土體內部分布有大量的不連續界面,把完整的岩土體分割成許多塊體,總體為非均質體,在應力的傳遞上非常復雜,因此岩土工程屬於非線性科學。現有的岩石力學、土力學、岩體力學等均難以准確的描述岩土體實際的力學本構關系。地質災害的發生除了其本身的因素外,還受到許多外界的因素影響,十分復雜。因此,對於岩土工程的分析計算只能是半定量的,在很大程度上受分析者經驗的制約。對於已經存在的滑坡、崩塌、泥石流等地質病害,其周界相對清楚,各種勘察設計技術規范較完備,認識起來相對容易。最難的是對於現狀穩定的高邊坡,預測其人工開挖後的穩定性。對於其地質構造的分析,地質-力學模型的建立,穩定計算分析都十分困難。勘察深度難以保證,穩定性計算方法不夠科學,邊坡設計時也有其不合理之處,如一般都只給出最終的邊坡坡率和邊界,各種邊坡加固設計也是針對最終邊坡的,各種分析計算也是以最終邊坡為約束條件的。這樣即使地質條件清楚,分析計算合理,設計穩妥,施工嚴格遵循規范和設計要求,也往往會出現難以預料的地質病害。其中一個重要原因是未對開挖過程中的各種邊坡條件進行分析計算,雖然按最終邊坡條件計算是穩定的,但不能夠保證任意開挖條件下邊坡都是穩定的。因此對於從事邊坡設計的岩土工程師而言,應該對於邊坡開挖過程中的多種控制性斷面穩定性進行計算,提供合理的開挖步驟和各種穩定的開挖斷面,並對不穩定的中間邊坡提出臨時性的工程加固措施,以保證邊坡的穩定開挖。 7 展望 技術進步是山區高速公路成功修築的重要保證。現在採用三維數模,可以很快的得出路線平縱面模型,任意切割縱橫斷面,發現問題之後可以很快的調整線位並重新進行分析,大大提高了工作效率。相信隨著3S技術的發展,今後三維數模會和三維地學模型、岩土工程專家分析系統結合起來,對於重要工點通過現場地質工作,建立地質-力學模型,通過專家分析系統,可以任意模擬邊坡開挖後的形狀及物理力學狀態的變化,迅速分析其穩定性,進行針對性的設計。甚至還可以對邊坡等地質病害通過互聯網進行遠程會診,聚集各方面力量以解決問題。 8 結語 地質環境保護和地質災害防治是山區高速公路建設成敗的關鍵,為此必須重視地質工作。(1)業主要認識到,前期的地質工作一定要認真細致,勘察設計階段多花些錢和時間,盡量詳細地查明地質條件,避免地質隱患,對於施工來說會節約大量的投資和工期。(2)設計階段的地質勘察工作必須加強,要達到必要的深度。(3)施工單位要加強地質技術力量,業主單位也要增加地質技術人員,岩土工程監理工作要加強。(4)運營階段的岩土工程監測工作必須重視。(5)單純依靠前期地質工作對地質客觀規律和地質環境的認識是不夠的,在設計施工運營的全過程中要不斷的加強地質工作。(6)由於地質條件的復雜性,雖然進行了前期地質勘察工作,在施工和運營中出現地質病害也是正常的。(7)設計階段深入細致的地質工作可以確保施工時不出現大的地質病害,施工階段的細致的地質工作可以確保運營期間不出現大的地質病害。(8)公路勘察設計、施工、建設及運營管理單位一般岩土工程技術力量相對薄弱,應加強人才培養,適應山區高等級公路建設的需要。 山區高速公路的修建對勘察、設計、施工、監理、管理等各個環節和部門都提出了更高的要求,大家要加強學習,真正重視問題的嚴重性。可以說,山區高速公路的修建,岩土工程是關鍵,地質病害是控制性因素。 參考資料: http://ke..com/view/507169.html
麻煩採納,謝謝!
⑼ 工程地質分區
研究區小清河以北為黃河三角洲平原,小清河以南多為山前沖洪積平原(圖2-6),基岩埋深在數百米以下,表層均為第四系鬆散沉積物,鑒於一般工業與民用建築物地基持力層一般均在15m以上,一般中高層建築物持力層一般在25m以上的特點,下面僅以0~25m的土體為對象,進行分析和研究。
1.土體的岩性與結構特徵
(1)土體岩性分類
區內0~25m深度內的地層多為第四系全新統地層,其沉積環境受黃河和海洋交互或共同影響,形成了以細顆粒為主的地層。所表現出的岩性以粉土最為廣泛,其次為粉質粘土、粉砂、粘土,局部有細砂,其主要岩性特徵見表2-9。
圖2-6 黃河三角洲工程地質分區圖
Fig.2-6 Map of Engineering geology zoning in the Yellow River Delta
(2)土體結構特點
區內土體結構無單層結構,多為多層結構(多層結構是指一定深度內由3層或3層以上的地層構成),這也是區內的沉積環境所決定的,該區已瀕渤海,是河流的最下游段,河道游盪較頻繁,古地貌特點反復變化,攜帶泥、砂的水動力特點也隨之變化,因此,區內一般無巨厚的單層岩性沉積。
表2-9 黃河三角洲0~25m 地層岩性分類及主要特徵表Tab.2-9 Lithology of strata down to 25m depth in the Yellow River Delta
2.土體工程地質特徵
(1)山前沖積洪平原區土體工程地質特徵
該區地面下25m的沉積物為第四系全新統沖積、洪積(
(2)古黃河三角洲區土體工程地質特徵
該區地面下25m的沉積物為第四系全新統沖積、海積、湖沼相沉積(
(3)現代黃河三角洲平原區土體工程地質特徵
該區地面下25m的沉積物為第四系全新統沖積海積物(
3.地表下0~25m土體物理力學指標的變化規律
1)古黃河三角洲區的物理力學性質總體上好於現代黃河三角洲,這是由於現代黃河三角洲的成陸時間晚於古黃河三角洲,其自重固結的程度弱於前者。
2)無論是古黃河三角洲區還是現代黃河三角洲區,各類岩性土層的物理力學指標顯示出一個較明顯的規律,即從地表向下,隨深度的增加土層的物理力學指標以較好—較差—好的規律發生變化。一般較差的深度段在5~10m和10~15m。這一變化規律也與區內的沉積環境相吻合,力學指標較差的深度段為1855年黃河改道以前沉積的以沖湖積-沖海積相為主的地層。