地圖在地質災害監測方面的應用
A. 地質災害的遙感監測與研究
地質災害的種類很多,火山、地震、滑坡、泥石流、地面沉降、水土流失、沙漠化、鹽鹼化等。遙感資料尤其衛星圖像能大面積、周期性具體而微地把地面實況記錄下來,為地質災害的定時定位監測、預報研究提供極為寶貴的資料。對地質災害的實時監測更是地學遙感發展的一個新方向。
我國是地震較多的國家。地震災害主要是由斷裂的新構造活動引起,多波段多時相遙感資料對大斷裂的新構造活動研究很有效。從遙感資料可以獲得:①查明區域斷裂格架基礎上,把易誘發地震的活動斷裂交切點、端點、拐點,這些都是地殼應力最集中的地段,為孕震及發震構造研究提供非常有用的基礎資料。②對已經發生震災地區的遙感圖像(如唐山地區),為震災調查與評估、地震地質研究提供其他技術方法無可取代的資料。③利用遙感某些特殊影像特徵,進行地震預報與分析,如強祖基等(1991)用多時相NOAA衛星熱紅外圖像對1990年中國與獨聯體邊界齋桑泊兩次強震研究(參閱第十一章有關部分)。④為研究板塊活動及地震預報,美國在聖安德列斯斷裂兩盤各安裝一台紅寶石激光器,利用1972年發射的激光測地衛星反射回來的信號,長期、定位地監測斷裂兩盤精確位移。
滑坡泥石流是交通、水利建設重要自然災害,對我國西北地區交通及長江中上游航行和水利工程危害大、損失重。長江三峽工程的環境地質工作就包括庫區沿江地段滑坡的調查。R.Guillande等人(1991)對安第斯山滑坡災害研究時,把構造、地震、地表徑流以及用數字圖像編制出邊坡坡度大於30°的坡度圖,作為誘發滑坡的因子來研究滑坡。鐵道部遙感工作者通過具體調查,提出用遙感圖像來判定泥石流溝的八條直接解譯標志與統計判別的標准,並據此判定成昆線和普雄工務段的某溝為泥石流溝,採取措施,使1986年7月6日暴雨引發的泥石流的破壞損失減小到最低。
B. 地質災害防治工程中監測新技術的開發應用與展望
季偉峰
(中國地質科學院探礦工藝研究所,四川成都,610081)
【摘要】地質災害防治工程中對地質災害體的監測十分必要。本文簡要介紹了我國當前地質災害監測的主要方法及新技術在工程實踐中的應用,指出了地質災害監測工程實踐中存在的主要問題,展望了我國在本領域技術發展的趨勢。
【關鍵詞】地質災害監測技術應用展望
自然地質環境和人為活動是引發地質災害的兩大主要原因。在最近的20多年時間里,隨著我國人口的增加,經濟建設的快速發展,特別是基礎設施建設規模的擴大,建設與用地的矛盾十分突出。植被的破壞嚴重,使山體滑坡、泥石流、地面沉降等地質災害在全國許多地區頻繁發生,嚴重阻礙了災害發生地的經濟建設和社會發展。
1我國主要的地質災害形式及危害
1.1地質災害及常見形式
地質災害是指由自然地質作用和人為活動作用形成的,對人類生存和工程建設可能構成危害的各種特有的自然環境災害的總稱。
常見的地質災害形式主要有6種,它們是崩塌、滑坡、泥石流、地面塌陷、地裂縫和地面沉降,簡稱為崩、滑、流、塌、裂、沉。
1.2三峽庫區的主要地質災害
三峽水利工程建成後將產生巨大的經濟效益和社會效益。但它的建設對庫區的自然環境也帶來一定的直接或潛在影響。三峽工程的一期蓄水、二期蓄水和新城鎮的建設已經給庫區帶來了不少地質災害問題。在淹沒區的新城鎮建設中,由於在選址時考慮地質環境因素不夠,使有些新城鎮從建設一開始就與地質災害結下了「不解之緣」。主要表現形式為人為高切坡和深基坑誘發的滑坡和崩塌。湖北的巴東、秭歸,重慶的巫山、奉節、雲陽、萬縣等地在新城鎮的建設中都引發了大量的地質災害,如何趨利避害是擺在我們面前的重大課題。
1.3地質災害的主要危害
地質災害的危害是顯而易見的。我國幅員遼闊,地質構造復雜,地貌千姿百態,山地和丘陵面積占國土總面積的2/3以上。全國34個省、直轄市、自治區以及特別行政區均存在著不同形式和不同程度的地質災害,每年都要造成慘重的人員傷亡和財產損失。其中滑坡、泥石流和山洪等突發性地質災害被定為國際減災10年的主要災種,由於這些災害具有潛在性和突發性,一旦發生,來勢兇猛,常造成斷道、斷航、構築物損毀、人員傷亡和財產損失。在我國,每年喪生地質災害的總人數達800~1000人,經濟損失超過100億元人民幣。
1.4地質災害監測的特點
(1)滑坡等變形體分布通常較為分散,成因機制復雜。開展監測工作前,需有一定前期地質環境勘察、研究工作基礎;
(2)地質災害體大多位於交通、通訊十分不便地區,電源接入也很困難;
(3)目前大多數監測以手動為主,數據匯交速度相對較慢,人工勞務成本較高;
(4)與大壩、橋梁、隧道等固定建築物、構築物的安全監測相比,地質災害監測具有開放的監測邊界,條件復雜,自動化監測和遙測等監測手段、監測儀器的選擇、固定安裝、運行等須注意儀器設備的環境適應性和抗干擾性能,保證正常使用和安全運行。
2地質災害防治工程中監測的必要性
地質災害防治工程的監測根據工程所處的不同階段,可分為施工安全監測、防治效果監測和長期穩定性監測,目前一般簡單地統稱為監測。在以往的工作實踐中經常發現,除經濟原因外,在地質災害的治理過程中存在一定的盲目性。有些地質災害進行了治理,理由是認為它不穩定。有些沒有進行治理,理由是認為它是穩定的。除一些簡單粗糙的勘察資料外,幾乎沒有充分的證據證明一個變形體穩定與否,是否需要進行工程治理。如果對滑坡等變形體進行必要的監測,將會減少這種盲目性,收到事半功倍的效果。
2.1對於已採取工程措施的地質災害體
對於已採取工程措施的地質災害防治工程,在治理過程中,根據監測結果進行效果評價,指導施工,及時對設計進行修改;防治工程竣工後,隨著周圍環境條件的變化,約束條件也會發生變化。如錨索的腐蝕和鬆弛、地下水位變化、臨空面加大、工程質量不高、巨大外力(如地震和大爆破)等,都有可能使一些已經治理過、暫時處於相對穩定的滑坡變形體重新失穩,如不進行持久的監測,它們具有更大的欺騙性和危險性,並非就可以高枕無憂,仍需通過必要的監測來評判它的治理效果和長期穩定性。
2.2對於未採取工程措施的地質災害體
對於一些未經治理、而又具有潛在危害的地質災害體,監測也是十分必要的。一些暫時沒有資金進行工程整治但又對人民生命財產構成較大潛在威脅的大型滑坡變形體,以投資較小的監測工作來彌補是有效的方法和途徑。通過有效的監測既可對其穩定性進行評價,監測結果又可為是否治理和如何治理提供設計依據。用監測的手段對滑坡等變形體進行有效的監控,是一項投資少、見效快的方法,目前已逐步被一些政府官員和業主所接受並推崇。他們也意識到用工程手段進行整治後應該用監測數據來驗證,否則是盲目的。但目前仍有相當多的管理和設計部門只注重被動的治理和亡羊補牢,而不注重防患於未然。
3當前地質災害監測的主要方法
以往作為監測工作的對象,主要是對一些重要的構築物和大型建設工程的變形、位移、沉降等進行監測,如水利水電大壩、大型橋梁、重要廠房、大型地下隱蔽工程、礦山邊坡和尾礦壩等。對復雜的地質災害體進行監測,則是近些年才逐漸開始應用的,當前採用的主要監測方法有以下幾種。
3.1地面絕對位移監測
絕對位移監測是最基本的常規監測方法,測量崩滑體測點的三維坐標,從而得出測點的三維變形位移量、位移方位與變形位移速率。主要使用經緯儀、水準儀、紅外測距儀、激光準直儀、全站儀和GPS等,應用大地測量法來測得變形體上某點的三維坐標。
3.2地面相對位移監測
地面相對位移監測是量測崩滑體重點變形部位點與點之間相對位移變化(張開、閉合、下沉、抬升、錯動等)的一種常用的變形監測方法。主要用於對裂縫、崩滑帶、采空區頂底板等部位的監測、沉降觀測等,是位移監測的重要內容之一。目前常用的監測儀器有振弦位移計、電阻式位移計、裂縫計、變位計、收斂計等。
3.3鑽孔深部位移監測
對於滑坡等變形地質體來講,不僅要監測其地表位移,也要監測其深部位移,這樣才能對整體的位移進行判斷監測。方法是先在滑坡等變形體上鑽孔並穿過滑帶以下至穩定段,定向下入專用測斜管,管孔間環狀間隙用水泥砂漿(適於岩體鑽孔)或砂、土石(適於鬆散堆積體鑽孔)回填固結測斜管;下入鑽孔傾斜儀,以孔底為零位移點,向上按一定間隔(一般為0.5m或1m)測量鑽孔內各深度點相對於孔底的位移量。常用的監測儀器有鑽孔傾斜儀、鑽孔多點位移計等。
3.4應力監測
對於滑坡等變形體不僅要監測其位移的變化,還需要監測其內部應力的變化。因為在地質體變形(或稱運動)的過程中必定伴隨著變形體內部應力變化和調整,所以監測應力的變化是十分必要的。常用的儀器有錨桿應力計、錨索應力計、振弦式土壓力計等。
3.5水環境監測
對於崩滑體來講,除了自然地質條件和人為擾動外,水是對滑坡的穩定狀態起直接作用的最主要因素,所以對水環境(含過程降雨及降雨強度、地表水的流量、地下水位、滲流量、滲流壓、孔隙水壓力、地下水溫度等)進行監測十分重要。常用的監測儀器有量水堰、遙測雨量計、測鍾、電測水位計、遙測水位計、滲壓計、滲流計、電測溫度計等。
3.6地震監測
地震監測適用於所有的崩滑監測。地震力是作用於崩滑體的特殊荷載之一,因此對崩滑體的穩定性起著重要作用。當地質災害位於地震高發區時,應經常及時收集附近地震台站資料;必要且條件許可時,可採用地震儀等監測區內及外圍發生的地震強度、發震時間等。分析震中位置、震源深度、地震烈度、評價地震作用對區內的崩滑體穩定性的影響。
3.7 人類相關活動監測
人類活動如掘洞采礦、削坡取土、爆破採石、載入及水利設施的運營等,往往造成人工型地質災害或誘發產生地質災害,在出現上述情況時,應予以監測並停止某項活動。對人類活動監測,應監測對崩滑體有影響的項目,監測其范圍、強度、速度等。
3.8宏觀地質調查監測
採用常規地質調查法,定期對崩滑體出現的宏觀變形痕跡(如裂縫發生及發展、地面沉降、塌陷、坍塌、膨脹、隆起、建築物變形等)和與變形有關的異常現象(如地聲、地下水異常等)進行調查記錄。該法具有直觀性強、適應性強、可信程度高的特點,為崩滑監測的主要手段,也是群測群防的主要內容。適用於所有崩滑體,具有準確的預報功能。
4監測新技術的研究與工程實踐
4.1國外監測新技術的研究與應用
發達國家在岩土工程及地質災害監測領域不但有傳統的監測方法和儀器,近年來已將高新技術應用於地質災害預測、預警工程。美國的PDI公司、Geokon公司、義大利Sisgeo公司、瑞士Leica公司、瑞典Geotech公司、德國Zeiss公司、日本尼康公司等在監測方法的創新和新技術的應用方面都處於領先地位。紅外技術、激光技術、微波技術、光纖技術、格區式光柵技術、機電一體化、自動化技術、衛星通訊技術、計算機及人工智慧等高新技術在監測技術方法和儀器的開發研究中得到了廣泛的應用。可以這樣講,作為岩土工程監測一個分支的地質災害監測及監測儀器,已經不是傳統意義上的大地測量儀器,而是實現了傳統方法和儀器與現代高新技術的完美結合,把監測儀器的技術水平推到了一個嶄新的階段,並正在向更高層次發展。國外具有代表性的產品有 Leica公司的TCR1800全站儀、TCR2003測量機器人、Geomos系統、DNA電子水準儀、GPS,Zeiss公司的DiNi12系列電子水準儀、North America公司的鑽孔多點位移計、Sicon公司的岩土工程監測系列儀器等。
4.2國內監測新技術的研究與應用
國內水電系統和國土資源部都開展了這方面的研究,如水利科學院、中科院有關院所、國土資源部技術方法研究所等。我所伴隨著三峽工程的建設,在國土資源部的大力資助下,也開發了多種岩土工程及地質災害防治監測儀器,如鑽孔傾斜儀系列、應力測量系列、地面位移測量系列等監測儀器、多參數遙測系統等,還承擔了科技部「崩滑地質災害自動化監測系統」項目的研究,為測量儀器國產化做了大量的工作,產品在三峽庫區和國家的重大工程中得到了較好的應用。我所近幾年研究的成果並形成的產品主要有以下8項:
(1)DMY型激光隧道斷面張斂測量系統;
(2)BYT型光纖崩滑體推力監測系統;
(3)DZQX新型多功能鑽孔傾斜儀;
(4)崩塌無線自動化監測預報系統;
(5)PSD型微位移變形測量系統;
(6)MS型錨索(錨桿)測力系統;
(7)DHS型地層含水率儀;
(8)岩心定向與取心技術研究。
4.3工程監測實踐
在研究開發的同時,我所用自己研究的成果積極參與國家重大基本建設工程的監測工作和三峽庫區地質災害防治的工程監測,取得了較好的經濟效益和社會效益。最近幾年承擔的重大監測工程有:
(1)寶成復線清江大斷面雙線長隧道變形量測;
(2)成昆鐵路電氣化改造西昌南馬鞍堡隧道變形量測;
(3)北京地鐵復八線變形量測;
(4)上海地鐵一號線人民廣場站變形量測;
(5)青島地鐵試驗段變形量測;
(6)成(都)—南(充)高速公路高陡邊坡變形及量測;
(7)內(江)—宜(賓)高速公路高邊坡變形量測;
(8)丹(東)—沈(陽)高速公路丹本(溪)段全線隧道驗收工程;
(9)318國道二郎山—康定段 K2794+860~980滑坡的地面位移、深部位移及應力監測;
(10)奉節縣、雲陽縣地質災害監測工程。
5監測技術發展展望
(1)地質災害的發生將更加頻繁,危害程度更大,監測工作將受到更多的重視,監測成果應用將產生更大的社會效益。
(2)在我們的上級主管部門——中國地質調查局的支持下,我們的監測儀器研究及運行系統軟體開發將會得到更多資助,並使我們的監測手段更加完備,登上一個新的台階,具有更強的市場競爭能力。
(3)自動化監測和遙測是地質災害監測的發展方向,但目前實施還有很多困難。
(4)地質災害具有一定區域性,是一項公益性的事業,更需要政府的引導和支持。
6結語
通過幾年的監測工程實踐,目睹了不少由於忽視地質災害的工程安全監測和失效工程而導致生命和財產的損失,也看到不少通過監測成功預報災害而避免災害發生的實例。在實行工程質量終生追究制的今天,對地質災害及相關岩土工程的安全進行長期監測顯得尤為重要和迫切。
監測工程是地質災害防治工程體系的重要組成部分,不能重治輕防,應做到治理、防範、監測並重,有時甚至重於工程治理手段。
在一定時期內對滑坡變形體實施監測工程,可以節省大量的投資。
地質災害防治工程應建立在科學監測的基礎上,以監測指導設計、施工、工程效果評價,以科學的態度面對它,應從過去的憑經驗和粗糙的勘察上升到定量階段,只有這樣,才能對滑坡變形體進行深入的認識和科學評價。
監測工作不是可有可無的,它是工程診斷的需要,是從事地質災害研究和預測必不可少的一項工作。
防範重於救災,監測勝於治理。
參考文獻
[1]殷躍平等.地質工程設計支持系統與鏈子崖錨固設計.北京:地質出版社,1995
[2]黃潤秋主編.高邊坡穩定性的系統工程地質研究.成都:成都科技大學出版社,1991
[3]喬建平主編.滑坡減災理論與實踐.北京:科學出版社,1997
[4]唐邦興主編.山洪泥石流滑坡災害及防治.北京:科學出版社,1994
[5]國家技術監督局,建設部.工程測量規范.北京:中國計劃出版社,2003
[6]國家技術監督局,建設部.工程岩體試驗方法標准.北京:中國計劃出版社,2001
[7]王永年,殷世華主編.岩土工程安全監測手冊.北京:中國水利電力出版社,1999
[8]季偉峰主編.工程地質與地質工程.北京:地質出版社,1999.
C. 怎樣看待遙感技術在地質災害監測中的應用
威海晶合了解到復,地質災制害是指在地球的發展演變過程中,由各種自然地質作用和人類活動所形成的災害性地質事件。現代航天技術和遙感技術的飛速發展不僅為地球資源與環境監測研究開辟了廣闊的前景,而且為地質災害的調查和研究提供了嶄新的手段。
長期以來,遙感技術已經成為對區域地質災害及其發育環境宏觀調查的不可缺少的先進技術,遙感技術的應用在滑坡、崩塌、泥石流和地面裂縫等地質災害的調查、監測和研究工作中發揮了重要的作用,為大型工程建設的環境災害調查及防災減災工作做出了重要貢獻。
D. 遙感技術在地質災害調查與監測中的應用
熊盛青聶洪峰楊金中
(中國國土資源航空物探遙感中心,北京,100083)
【摘要】遙感技術已成為區域地質災害及其發育環境宏觀調查的不可缺少的先進技術之一,在地震(活動性斷裂)、滑坡、崩塌、泥石流、地面沉降和土地荒漠化等地質災害的調查、監測和研究工作中已發揮了重要的作用。本文簡要介紹近年來利用遙感技術進行地質災害調查與監測的成果,並展望其發展趨勢。
【關鍵詞】地質災害遙感影像解譯綜述
地質災害是指在地球的發展演變過程中,由各種自然地質作用和人類活動所形成的災害性地質事件(潘懋等,2002)。地質災害包括突發性的,如火山、地震、崩塌、滑坡、泥石流、岩溶塌陷等,也包括漸進性的,如水土流失、地面沉降和土地荒漠化等。現代航天技術和遙感技術的飛速發展不僅為地球資源與環境監測研究開辟了廣闊的前景,而且為地質災害的調查和研究提供了嶄新的手段。長期以來,遙感技術已經成為對區域地質災害及其發育環境宏觀調查的不可缺少的先進技術,在地震(活動性斷裂)、滑坡、崩塌、泥石流、地面沉降和土地荒漠化等地質災害的調查、監測和研究工作中發揮了重要的作用,為山區大型工程建設的環境災害調查及防災減災工作作出了重要貢獻。
1 在斜坡地質災害調查工作中的應用
1.1 斜坡地質災害發育環境遙感調查
崩塌、滑坡、泥石流等斜坡地質災害的分布發育主要受地形、地貌、地層岩性、地質構造、新構造活動、氣象以及人為活動等多種因素的制約。要了解崩塌、滑坡、泥石流等斜坡地質災害的區域分布規律,必須首先了解這些因素的空間分布特徵。因此地質災害發育環境的調查常常是斜坡地質災害(崩塌、滑坡、泥石流等)遙感調查的重要內容之一。
以滑坡為例。在遙感影像上,滑坡常常沿著地球應力形變的形跡——線性構造分布,並多產在不穩定物質覆蓋的地區。期望通過遙感預測每一次滑坡的發生相當困難,但通過對不同時相遙感資料的對比分析,就可以對地表線性構造和不穩定物質覆蓋區進行解譯和判斷,從而預測、圈定滑坡地質災害易發區,對已發生的滑坡地質災害進行調查。
在20世紀80年代初期,主要利用TM遙感影像,通過分析滑坡發育的地質環境、自然環境條件和社會經濟環境條件等因素的影響、作用,間接研究、推斷區域內滑坡發育的可能性;同時利用重點區域的1∶1萬~1∶5萬航空遙感影像,識別典型滑坡體,檢驗滑坡發育環境研究的正確性。
以三峽庫區為例,原地質礦產部地質遙感中心(現中國國土資源航空物探遙感中心,以下簡稱航遙中心)先後開展了「長江三峽工程庫區被淹城鎮選址方案的遙感地質穩定性評價」 地礦部地質遙感中心.「長江三峽工程庫區被淹城鎮選址方案的遙感地質穩定性評價」研究報告.1986 地礦部地質遙感中心.「長江三峽工程前期論證階段庫岸穩定性研究」研究報告.1986 地礦部地質遙感中心.「長江三峽地區遙感信息的斷裂構造解譯及對壩區穩定性初步評價」研究報告.1986
1.2斜坡地質災害的遙感判譯
在遙感影像上,通過人機交互解譯的方式,進行斜坡地質災害影像光譜、紋理、地形、地貌、覆蓋植被等的分析,確定災害體的分布位置、面積、產出的地質背景等屬性,是斜坡地質災害遙感調查的重要內容。長期以來,我國遙感工作者在崩塌、滑坡、泥石流的遙感解譯方面積累了豐富的經驗。航空立體像對(黑白、標准彩色、彩紅外)已經廣泛用於識別滑坡、崩塌、泥石流等災害體和易發災害的地帶;衛星、雷達和側向掃描測距系統更擴展了這些方面的能力。在目前的調查研究工作中,多採用航片、衛片相結合使用的方法,即採用不同時相的航片資料對滑坡、崩塌、泥石流個體進行室內解譯和野外驗證,採用衛片對其發生的地質背景進行解譯。
以滑坡災害的遙感解譯為例。我國的滑坡解譯技術是在近20年為山區大型工程服務中逐漸發展起來的,已經探索出一套較為合理的工作方法,即在充分收集和分析前人資料的基礎上,採用以彩紅外航片為主的遙感資料,通過室內解譯與野外實地驗證相結合的技術路線,進行滑坡災害的調查與綜合分析。以目視解譯為主、計算機圖像處理為輔,根據滑坡的形態特徵(滑坡體、後壁、側壁、滑坡台坎、滑舌等)在航空和衛星圖像上判譯、識別滑坡,製作滑坡等地質災害分布圖;根據滑坡發育的微地貌類型,判別滑坡的活動性。
1986年開展的「新灘滑坡遙感地質調查」 地礦部地質遙感中心.「新灘滑坡遙感地質調查」研究報告.1986
由於中國大型滑坡主要分布在強烈切割的中、高山區,例如岷江、大渡河、金沙江等高陡的深切河谷地帶,地形高差變化較大,利用一般的衛星遙感影像進行遙感解譯,必然存在因衛星投影性質形成的投影差。正射遙感影像地圖是對遙感數字圖像進行幾何校正和投影差改正,並與數字化的簡化地形圖復合的一種新型遙感影像資料。近年來,航遙中心先後在金沙江、進藏公路和鐵路沿線及長江三峽庫區,利用具有地形要素的正射遙感影像地圖,開展中等比例尺(1:5萬~1∶20萬)的地質災害(以滑坡、泥石流為主)遙感調查工作,不僅基本查明了上述區域的滑坡、泥石流分布現狀,而且提高了圖像的解譯精度和解譯結果的正確性。滑坡、泥石流的遙感解譯識別准確率在90%以上。
2003年3月,航遙中心在三峽庫區成功獲取了135m高程水位臨蓄水前的航攝資料,製作了三峽庫區(宜昌—江津)1∶5萬航空遙感圖像,目前正製作三峽庫區1:5萬及重點城鎮1:1萬正射遙感影像地圖。這項工作的開展,不僅為庫區災害遙感調查提供有準確地理坐標、反映庫區135m水位臨蓄水前狀況的圖像,而且通過對比以前獲得的和即將獲得的航空遙感影像,進行蓄水前後的庫區地質災害狀況遙感動態調查,將為三峽庫區災害評價與災害防治提供災害與地質環境基礎數據。
2在土地荒漠化調查與監測中的應用
土地是人類賴以生存的基礎。但由於人類對土地資源的過度開發利用,天然植被減少以及某些自然因素的作用,土地荒漠化現象不斷加劇。目前,我國荒漠化土地面積為262.2萬km2,每年因荒漠化而造成的經濟損失達541億元;與此同時,我國沙質荒漠化土地仍以2460km2/a的速度擴展(潘懋等,2002)。進行土地荒漠化的動態監測,及時採取防治措施,已經成為當前一項緊迫的任務。
遙感技術具有信息量大、觀測范圍廣、精度高和速度快的特點,其強實時性和動態性更是傳統的資源環境監測和預報方法難以比擬的。近20年來,在中國北方荒漠化的形成機制、發展過程、分布規律和演變趨勢和西南岩溶石山地區的石漠化調查與監測等研究工作中,遙感技術發揮了重要作用(潘懋等,2002);利用反映植被覆蓋度和生長狀況差異的比值植被指數(RVI)方法,通過石漠化面積占研究區總面積百分比、石漠化年均變化面積占研究區總面積百分比、地表植被覆蓋度等的調查,航遙中心在廣西、貴州的一些石漠化監測區進行了卓有成效的工作。以貴州普定縣蒙鋪河監測區為例 中國國土資源航空物探遙感中心.「西南岩溶石山重點地區遙感動態監測」研究報告.2004
表1不同坡度類型石漠化分布面積一覽表單位:km2
地質災害調查與監測技術方法論文集
3 在地震研究(活動性斷裂)中的應用
20世紀70年代以來,遙感技術在地震地質、區域構造穩定性及工程地震、現代構造應力場及地震形成機制和震害調查等方面得到了廣泛的應用。國家地震局先後主編的《中國衛星影像地震構造判讀圖》(1∶400萬)、《中國活動構造典型衛星影像集》、《遙感地震地質文集》、《中國主要活動斷裂帶衛星圖像集》等一系列資料即是明證。
以活動性斷裂的調查為例。地震是地殼內部應力積累和突然釋放,地殼破裂活動的一種表現形式。地質災害通常是地殼內部應力聚散時影響地殼表層的反映。而地表活動性構造則是地球應力形變的形跡,是深部的、隱伏的活動構造在淺表部位的顯示。查明區域活動性構造的分布,常常是區域地質災害調查工作中的首要內容。
一般而言,在遙感影像上,活動性線性構造常常具有如下解譯標志(王瑞雪,1997;楊金中等,2003):
(1)差異性影像色調、影像結構單元的界線、色帶異常。
(2)山脈、河谷、山間平原甚至海溝的錯位、扭曲和變形。
(3)現代河流水系直線狀、格狀展布,地下水的局部異常、泉水成串出現,地表土壤含水異常,河流的急轉彎、同步拐點,河流改道、斷流,河流陡緩、曲直劇變,湖泊的線狀排布延伸及其扭曲。
(4)現代沉積盆地線狀排布延伸及其扭曲,近代沉積中心的線狀展布、線狀邊界。
(5)新生代火山口成串展布。
(6)差異性地貌單元、水系類型的急劇變化異常帶、線狀延伸的陡崖、斷層三角面等構造地貌,洪積扇(裙)的線狀排布及其復合疊加,現代沉積物(層)的再破裂、位錯及褶皺。
(7)現代地震活動帶及地震地貌線狀展布帶。近年來,在公路和鐵路的勘測設計、核電站選址、水電工程建設等的前期工作中,利用遙感技術進行活動斷裂的解譯,已經成為工程近場區烈度復核、地震危險性判定、地震小區劃和現代構造應力場研究中必不可少的內容。
4在突發性地質災害監測與評估中的應用
地質災害作用過程屬於一種自然地質現象,它不僅給人類生命安全帶來威脅,而且對財產、環境、資源等具有破壞性。我國是世界上地質災害最嚴重的國家之一,災種類型多、發生頻率高、分布地域廣、災害損失大。以滑坡為例,在過去的20多年裡,我國相繼發生了一系列重大滑坡事件,如重慶市雲陽縣雞扒子滑坡、湖北鹽池河磷礦岩崩、甘肅灑勒山滑坡、湖北新灘滑坡、重慶溪口滑坡、西藏易貢滑坡、湖北秭歸千將坪滑坡等。這些滑坡災害事件均造成了重大的人員傷亡或經濟損失,並造成嚴重的環境影響。就我國地質災害發生的區域性和多發性特點以及我國國民經濟總體水平不高的狀況而言,我國不可能有足夠的經濟力量和技術力量對有潛在危險的地質災害點進行全面的工程治理。因此,作為地質災害綜合防治的一條有效途徑,就是開展地質災害預測預報和風險區劃,為國土規劃、減災救災、災害管理與決策提供可靠依據;對危害性嚴重的地質災害點加強監測預報,避免重大地質災害事件的發生。遙感技術無疑會在這一工作中發揮重要作用。
2000年4月9日,西藏自治區林芝地區波密縣易貢藏布下游左岸札木弄溝發生特大型山體滑坡,滑坡堆積體截斷了易貢藏布,使原先呈網狀的易貢湖面積迅速擴大。王治華等(2000, 2001)利用多時相、多平台的衛星遙感數據和數字高程模型,對易貢湖的變化情況進行了監測,快速獲取了各時相的湖水面積、水位和水量,並對洪水的潰絕時間進行了預測。研究結果與現場調查結果基本一致,顯示了利用遙感數據進行地質災害定量監測的可行性。
2003年2月24日上午10時03分,新疆維吾爾自治區巴楚、伽師地區發生6.8級強烈地震,人民的生命財產遭受嚴重損失。為落實國務院關於做好巴楚、伽師地震災區損失評估工作的要求,航遙中心於2003年2月28日至3月10日完成了巴楚、伽師地區彩色航空遙感攝影工作,製作了地震災區航空遙感正射影像圖,為地震災區損失評估工作提供了基礎資料。
5地質災害遙感技術的發展趨勢
(1)航空遙感技術的發展將為地質災害調查與監測提供有力的技術支撐。近年來,航空遙感技術得到了飛速發展,高精度航空定位定向系統(簡稱 POS系統)、機載激光掃描系統和數字航空攝影等技術將在地質災害調查與監測工作中發揮重要作用。POS系統集差分 GPS技術和慣導技術於一體,在航空遙感影像獲取的同時,同步記錄感測器的三維空間信息及三軸姿態信息,即影像數據的外方位元素,從而能夠大大地減少,乃至無需地面控制就能直接進行航空影像的空間地理定位,為航空影像的進一步應用提供了十分快速、便捷的技術手段。尤其是在崇山峻嶺、戈壁荒漠、沼澤、灘塗、災害頻發區等難以通行區和邊境等難以抵達的地區,採用 POS系統進行直接空間地理定位將是惟一行之有效的方法。機載激光掃描系統是一種採用激光測距技術直接從飛機平台上獲取地物空間位置信息的精密設備。系統主要由 GPS+IMU、激光掃描儀、電視攝像機組成。系統通過發射激光束,對目標地物進行掃描,並接收地物的回波信息。對掃描回波信息用專門的軟體處理後即可獲得地表的DEM、DTM及地表面模型。這些模型數據可廣泛應用於林業資源調查、礦業、災害、城市3D重建等領域。綜合利用POS系統和機載激光掃描系統,可以迅速獲取地質災害發生區的航空影像資料,製作正射影像圖和三維模擬影像,為地質災害的監測和災情評估工作提供基礎資料。
(2)隨著高解析度遙感技術的商業化,對滑坡體等地質災害的動態監測將成為國土資源大調查地質災害預測預警工程中的重要研究內容。在以前的研究中,關於滑坡體大比例尺(1:5000~1:2000)遙感解譯工作和不同時相下某一滑坡體的變化情況的研究幾乎處於空白狀態。高解析度遙感技術的商業化將地質災害遙感預測預警工作帶入一個新的時代。通過不同時相高解析度遙感影像資料的對比分析,我們將可以對一些重點地質災害體進行監測,通過變化信息的提取,及時進行地質災害的預測預警工作。
(3)隨著干涉雷達技術的日益成熟,滑坡體的地表細微變化將得到有效監測。干涉雷達是近幾年發展起來的用於探測地表細微變化的遙感新技術。該技術利用電磁波的相干原理,在一定時間間隔內對同一地物進行兩次平行觀測,獲取其復圖像對。如果目標物與天線的幾何關系發生變化,則會在復圖像對產生相位差,形成干涉圖像。通過理論計算,可以精確地測出圖像上每一點的三維位置,提取變化信息。該技術的測量精度達到厘米級,將在地質災害監測、地殼形變探測等方面發揮重要作用。
(4)地質災害的經濟危險性評估將成為滑坡發育環境遙感調查的重要內容。在以往的研究工作中,地質災害發育環境遙感調查多側重於地質災害與線性構造、岩性、水文地質條件等關系的研究,對場區人文條件變化與滑坡關系等方面研究偏少。隨著可持續發展戰略的實施,人與環境的協調發展成為當代中國經濟和社會建設的主旋律。對地質災害發育區進行地質災害經濟危險性評估,將成為地質災害發育環境遙感調查的重點。
(5)「數字滑坡」等地質災害研究新技術將得到迅速發展。利用「3S」(RS、GIS、GPS)技術,快速獲取基礎資料,並結合地質、地形、鑽探、物探等地面、地下調查資料,形成滑坡等地質災害的三維空間表達,並以此為基礎進行地質災害的相關分析,將成為今後一段時間內地質災害遙感技術的重要研究內容。
參考文獻
[1]潘懋,李鐵峰.災害地質學.北京:北京大學出版社,2002
[2]熊盛青.國土資源遙感技術應用現狀與發展趨勢.國土資源遙感,2002,(1):1~5
[3]楊金中,聶洪峰,李景華.遙感技術在浙江東部穿山半島地區活動斷裂調查中的應用.2003,(4):50~53
[4]韓宗珊主編.長江三峽滑坡崩塌.北京:地質出版社,1988
[5]王治華.金沙江下游的滑坡和泥石流.地理學報,1999,54(2):142~149
[6]王治華.面向新世紀的滑坡、泥石流遙感技術.地球信息科學,1999,(2):71~74
[7]呂傑堂,王治華.西藏易貢滑坡堰塞湖衛星遙感監測方法初探.地球學報,2002,23(4):363~368
[8]袁崇桓,聶洪峰.湖北巴東縣三峽庫區環境遙感調查.見:張雍主編.航空航天遙感技術地學應用研究,北京:地質出版社,1993
[9]張振德,何宇華.遙感技術在長江三峽庫區大型地質災害調查中的應用.國土資源遙感,2003,(2):11~14
[10]王治華,楊日紅,王毅.秭歸沙鎮溪鎮千將坪滑坡航空遙感調查.國土資源遙感,2003,(3):6~9
[11]王治華.青藏公路和鐵路沿線的滑坡研究.現代地質,2003,17(4):355~362
E. 在地質災害評價與其他地質調查中的應用
一、地質災害評價與監測
地質災害主要指崩塌(含危岩體)、滑坡、泥石流、岩溶、地面塌陷和地裂縫等。災害的地質評價與監測的目的是為了科學地確定地質體特徵、穩定狀態和發展趨勢,為分析地質災害發生的危險性,論證地質災害防治的可行性和比選防治方案,最終確定是否要治理,採取躲避方案或實施防治工程對策提供依據。
地質災害勘查的任務與內容包括查明地質災害體的特徵及其地質環境以及自然演化過程或人為誘發因素;分析研究地質災害體的成因機制;勘查地質災害體的形態、結構和主要作用因素等,並評價其穩定性;預測地質災害體的發展趨勢,評價其危險性;和進行防治工程可行性論證,提出防治工程規劃方案。
1.工程建築場地的岩溶和洞穴的調查
對於機場、公路及大型工程建築場地,地下洞穴、人防工程嚴重威脅著地面建築的安全。由於地下洞穴或人防工程的存在,引起地表塌陷,地面建築遭受破壞的現象時有發生,這一現象已引起人們的高度重視,如我國北方的一些城市,廢棄的人防工程已經成為城市建設的主要地質災害之一。因此,在工程地質勘查中採用物探方法查明埋藏地下的土洞、人防工程等不良地質現象,對合理地進行地面建築設計和地基加固是十分必要的。
柳州機場在施工過程中發現有數處大小不一的土洞,為確保機場跑道的安全,在跑道位置進行了探地雷達探測。探測中採用了SIR-10型地質雷達,天線頻率為100 MHz。在跑道位置探查出三處洞穴異常。經開挖驗證,均發現有較大洞穴。洞穴在雷達圖像上的反映呈雙曲線形,圖5-4-1為土洞的地質雷達圖像,開挖驗證的實際洞穴如圖5-4-2。這一探測結果,排除了機場跑道的隱患。
溶洞是可溶岩的一種常見的地質現象,溶洞的存在對可溶岩區的工程建築有較大的危害。當岩面覆蓋為易被沖蝕的滲透地層,且岩溶與上覆地層存在水力聯系時,這種水力聯系加速了岩溶發育。當岩溶頂部變薄不能支持上方地層負荷時,就會發生塌落。
圖5-4-3為廣州花都市某地的開口溶洞的探地雷達圖像。該處覆蓋層為細顆粒粉砂,有一定滲透性,其下為灰岩。灰岩面附近岩溶發育,在灰岩面的地質雷達圖像中可見不規則強反射波。強反射波形成的區域內有一組周期短的弱反射波,其特徵與上覆地層反射波特徵類似,這表明灰岩中空洞已被上覆地層沖蝕的土體所充填。由於開口溶洞上方土體已遭沖蝕,因此,其反射波形態特徵與周圍土層的反射波形態特徵不同,表明上覆地層已受到擾動。擾動土層與充填溶洞構成了開口溶洞特徵。這類溶洞使上覆地層承載力明顯降低,容易引起坍塌。
圖5-4-1 柳州機場洞穴的雷達圖像
圖5-4-2 開挖驗證的實際洞穴圖像
唐山市坐落在斷裂活動帶和隱伏岩溶區,在自然和人為因素影響下曾多次發生岩溶塌陷、地面變形等地質災害,給人民生命、財產安全和經濟建設帶來巨大危害。為了查明第四系覆蓋層厚度並確定基岩中溶洞與斷層位置。在唐山市第十中學操場,對曾經發生過岩溶塌陷並已作填石處理的地段開展了人工地震勘探。縱波反射觀測採用1 m道間距,20 m偏移距,12 次水平疊加;橫波反射觀測參數採用1m道間距,20m偏移距,6次水平疊加。
圖5-4-3 某開口溶洞的地質雷達圖像
該區基岩為中厚微晶灰岩夾泥岩,埋深24.2 m。圖5-4-4為該測區縱波剖面圖,圖中,基岩反射波在已知塌陷坑處同相軸缺失,並有錯斷,反映了斷層破碎帶的形態。其他部位基岩反射波同相軸連續,是完整基岩的反映。
圖5-4-4 唐山市第十中學操場岩溶塌陷地震縱波反射剖面圖
2.地裂縫的物探勘查
西安市是地裂縫的多發區,近年來由於頻繁的構造運動及大量抽水等作用,地面及地下常出現地裂縫,嚴重地破壞了地面及地下的各種建築設施。查明地裂縫的存在與否及地裂縫的位置、埋深、下延深度及其走向延伸,對西安地區的城市規劃和建設有重要意義。
為了證實地裂縫是基底斷裂構造向上延展活動的成因機制,開展了淺層高解析度地震勘探,對展布在西安市的十條地裂縫帶布置了垂直地裂縫帶的地震測線,任務是探查地裂縫帶下是否有隱伏的第四紀斷層。
觀測系統為道間距5 m,最小偏移距220 m。儀器參數為:采樣間隔1 ms,記錄長度512 ms或1024 ms,低截頻率90 Hz。
在第四系平均厚度600 m的地層內,存在可連續追蹤的地震反射層有七組,按其反射時間由小到大標記為t1~t7,與鑽孔地質剖面對比,七組反射層與地質層位關系如表5-4-1。
表5-4-1 地震反射與地層關系表
地震勘查結果證明,跨越地裂縫帶的24條地震剖面,均存在有第四紀斷層,斷層面南傾,傾角較陡,南側的上盤下降,北側的下盤上升,其產狀和斷層特性與其上部地裂縫具有的正斷層式差異沉降特徵是一致的,即以地裂縫為界,南側的上盤土體相對下沉,北側的下盤土體相對上升(圖5-4-5)。
隨著反射層t1~t6深度逐漸加深,各反射層所對應的斷距逐漸加大,而不是所有反射層的斷距都相等。這種現象在所有地震剖面上都存在,它反映了第四紀斷裂是基底斷裂繼承性發展,地裂縫是第四紀斷層在地表的出露。
由於地裂縫具有寬度小、埋深變化大和走向延伸較長等特點,因此,高密度電阻率法對地裂縫探測也有較好的效果。西安工程學院採用中間梯度法和高密度電法相結合對西安市地裂縫進行實驗研究。圖5-4-6是在已知地裂縫上的電探綜合剖面圖,由圖可見,視電阻率高值帶不僅反映出地裂縫的位置,而且也反映出其傾向和位錯動情況。該處探槽可見地裂縫F1、F2寬度分別為1 cm和2 cm。可見,高密度電阻率法在地裂縫探測中有較高的解析度。
地質雷達方法對地裂縫的探測也十分有效(圖5-4-7)。地層受剪切和張力作用產生裂縫,造成地層某一位置錯斷。垂直裂縫走向布置地質雷達測量,地裂縫在雷達剖面上表現為同相軸錯斷,其錯斷程度與裂縫發育程度有關,若裂痕沿橫向發育,裂縫內物質電磁波的吸收,也往往造成此部位反射波同相軸局部缺失,其缺失的范圍與裂縫發育范圍有關。
圖5-4-5 跨越地表地裂縫的反射地震剖面
圖5-4-6 地裂縫上的綜合勘測剖面圖
3.滑坡的監測與調查
在滑坡動態監測中,根據岩土的動力學特徵的動態變化與地球物理場變化的相關性研究,可監測滑坡的形成與發展的動態過程,為災害的預測與防治提供參考資料。
滑坡是由岩石的突然崩塌或岩(土)體滑動造成,地質環境各異,成因各不相同。目前用於調查滑坡范圍及隨時間變化過程研究的地球物理方法較多,如用重力測量圈定滑坡范圍,自然電位監測滑坡動態,地溫測量監測與滑坡有關的地下水流動態。放射性、電法、地震、地質雷達測量也是滑坡調查中常用的方法。
圖5-4-7 地裂縫上的地質雷達剖面圖
此外,目前正在進行研究的有:利用岩石破碎時的聲發射與電磁脈沖輻射,採用聲波測量與電磁波測量監測滑坡動態;利用微動觀測監測滑坡體震動頻譜,確定滑坡滑動方向與滑動面蠕變等方法。
圖5-4-8 為電法和地震研究滑坡的實例,滑坡體靠近高加索,由砂質粘土組成,下部為泥岩風化殼。電測深結果將斜坡斷面分三層,上層為滑體(ρ1=13~29Ω· m),中層為風化泥岩,屬滑動面(ρ2=2~4Ω·m),下層是未風化泥岩組成滑床(ρ3=2~12Ω·m)。地震測量結果將滑坡分上、下兩層與滑體和滑動帶相對應(vP=340~360 m/s),下層與未風化泥岩頂部相符(vP=1360~1400 m/s),速度界面只有一個。在滑坡上部電法和地震的上界面十分吻合,而在滑坡底部速度界面高出電性界面,原因是未風化泥岩上部裂隙度增大造成,這種軟弱帶有可能產生新的滑坡。
圖5-4-8 根據地球物理研究結果綜合繪制的電性界面斷面圖
前蘇聯成功的採用氡氣測量判斷坡度的穩定性,圈閉滑坡體並監測滑坡發展的過程。圖5-4-9示出莫斯科列寧山滑坡地區氡氣測量結果,由圖可見,滑動地塊中氡的濃度通常高於周圍的穩定地段。因此,在不同時間系統進行氡氣測量將可監測滑坡從穩定地塊向活動地塊發展的過程,以及趨向穩定的轉變。
4.煤田陷落柱的調查
陷落柱是煤田開采中危害極大的地質災害之一,它通常是由於基底厚層灰岩中古溶洞的塌陷加上煤層蓋層塌落形成的。目前對陷落柱的調查中通常採用的地球物理方法有放射性、電法及人工地震等。
圖5-4-9 俄羅斯莫斯科列寧山一個滑坡上氡氣測量的結果
放射性方法調查陷落柱的根據是地下水在循環過程中由淺部氧化帶溶解的微量鈾,到達深部還原帶並沉澱在陷落柱的空隙帶中,使得鈾的含量高於周圍的岩石。鈾衰變為鐳後在還原條件下易溶於水,含鐳的地下水沿孔隙向上運移到達氧化帶又沉澱在土壤表面形成鐳暈,同時鈾、鐳衰變後形成氡氣異常,氡氣又衰變為210Po核素,因此,通過氡氣測量或210Po測量,可以間接調查陷落柱。通過氡氣測量或210Po測量,可以間接調查陷落柱。一般來講,210Po法在陷落柱上方的剖面曲線特徵為馬鞍形,即陷落柱邊緣上異常曲線出現高峰值,而在陷落柱的中間210Po值較低,但仍然高出正常值。
河北大油村煤礦陷落柱調查以210Po測量為主,配合電測深、甚低頻電磁法、伽馬測量等地球物理方法,取得較好結果。礦區第四紀地層厚80~120 m,其中河卵石厚30~50 m,下部為二疊紀砂岩、粉砂岩、泥岩互層及煤層,礦區已發現兩個陷落柱,其中DX-1已由巷道控制,DX-2剛開始揭露。210Po測量結果如圖5-4-10所示,210Po脈沖數為60的異常值圈定的結果與已知陷落柱的范圍相符,並圈出新的異常區DX-2的范圍。
5.采空區的調查
采空區是由人類活動引起的地質災害之一,它對地面建築和人身安全帶來嚴重隱患。為了研究對采空區的有效探測方法技術,近年來,煤炭科學研究總院和其他一些科研部門對此進行了大量的研究工作。研究成果表明,採用地震勘探、高密度電法、瞬變電磁、地質雷達、鑽孔彈性波CT、α卡法測量法等物探方法對探測采空區都具有一定的效果。由於每一種物探方法的應用都受到探測深度、地形地貌和岩土特徵的影響,因此,各種方法都有其適應范圍,在實際應用中,應根據具體的地質情況和方法的有效性實驗後選擇適用的物探方法。
圖5-4-10 大油村煤礦210Po異常平面圖
高密度電阻率法和地質雷達對埋藏較淺的采空區具有較好的探測效果。石—太高速公路山西平定境內遇有礬土采空區,由於工程治理的需要,在施工前需查明采空區的空間分布和規模。探測區段上部為第四系覆蓋層,以粘土為主,電阻率為20~30Ω·m,厚度為0~10 m不等。底部為石炭系地層,以粉砂岩和泥岩為主,電阻率為50~100Ω·m,厚度較大。采空區由於坍塌、充填物鬆散、潮濕或充水,電阻率與圍岩相比差異較大,呈低阻特徵。其中3號采空區由於採用旁柱式開采,截面積較大,其坍塌也更嚴重,埋深大約為20 m。
由於地形地表條件復雜,在高密度探測中採用了非正規測網,在120 m×100 m2,的范圍內共布設12條測線。點距2 m,極距a=(1~16)·x。圖5 4 11為3號采空區Ⅱ、Ⅲ測線的高密度測量結果圖。由圖可見,除地表局部地形和電性不均勻體形成的向上開口的「V」字型干擾異常外,在其深部(39點下方)有一低阻閉合圈異常,范圍較大,相應埋深也較大,與正常背景電阻率相差僅10Ω· m,在相鄰測線上連續出現類似異常,深度變化不大,該低阻異常由采空區形成,異常下方為采空區位置。
圖5-4-11 3號采空區Ⅰ、Ⅲ測線的高密度測量結果
地震勘探是采空區探測中應用廣泛的方法之一。由於采空區的存在,采空區周圍的應力平衡受到破壞,產生局部的應力集中,采空區圍岩在上覆岩層壓力作用下,經過一段時間後發生變形、破碎、位移和塌落,這使得采空區地震波的特徵與未開采區圍岩地震波的特徵相比發生較大的差異。圖5-4-12為徐州某煤礦煤層采空區實測地震剖面圖。
圖5-4-12 徐州某煤礦煤層采空區實測地震剖面圖
圖中可見,在采空區上地震剖面通常有如下特徵:反射波速度明顯降低;反射波(組)突然中斷,跨過采空區後又重新出現;反射波的波形發生紊亂。
α卡法探測采空區是通過測量地表氡射氣含量大小,區分出地質異常及其異常性質。實驗研究表明,地表氡射氣含量與地下構造有著密切關系,岩層的裂隙、斷層破碎帶、岩石風化帶和鬆散帶是氡氣向地表運移的良好通道,這為氡射氣探測地質問題提供了地球物理條件。在老窖采空區大都存在著一定程度的塌陷冒落和裂隙,采空區上方至地表將會形成裂隙發育帶和鬆散帶,成為氡氣上移的通道,通道上方將出現α粒子強度的明顯異常,依此可推斷采空區的位置及范圍。圖5-4-13為徐州某煤礦煤層采空區區段土氡射氣探測剖面圖,強異常出現在采空區上方。
圖5-4-13 徐州某煤層采空區區段土氡探測剖面圖
6.地震預報中的地球物理方法
地震頻繁發生的地區一般是地殼的薄弱帶和活動帶。深大斷裂是幔源物質上侵和地球脫氣的主要通道,是地震活動的發源地。地震活動又派生出新的構造運動,構造運動產生的裂隙帶是氣體上移的通道。利用地表自由逸出的氣體溶解於水中及吸附於土壤中氣體的濃度變化來監測預報地震,是當前國內外廣泛採用的地震預報方法。研究證實,地震前後由於地應力的變化,可引起地下水中化學成分的變化,特別是水中氣體成分對地應力的反應十分靈敏。因此,水中氣體成分的變化可作為地震發生過程的重要標志,其中汞是對地震前兆響應最為靈敏的有效指標。
1985年11月21日,北京西郊妙峰山發生4.1級地震,震中距北京火車站汞監測井40 km;同年11月30日河北巨鹿發生5.1級地震,震中距汞監測井125 km。據北京火車站觀測井的水汞含量觀測,水中汞濃度有明顯變化,正常情況下,水中汞的平均值為14 ng/L。妙峰山地震臨震前汞濃度達到629.3 ng/L,為平均值的42倍(圖5-4-14)。
圖5-4-14 京西妙峰山、巨鹿地震前後北京火車站觀測井水中汞量變化曲線
由於大地震的發生大多與斷層活動有關,而活動斷層是地表與地殼深部聯系的通道,在活動斷層附近,通過土壤中氡和水中氡測量,可以從地表直接獲得深部構造活動的信息。在山東菏澤,1987年發生7.0級地震,據劉西林和華愛軍1984年進行的8條剖面氡測量結果,認為1987年的7.0級地震和1983年的5.9級地震是北西向定陶—成武斷裂和北東向的解元集—小留集斷裂的共軛斷裂發震,並確定了其產狀和活動程度。
二、在考古研究中的應用
地球物理方法在考古中發揮著重要的作用。通過地面高精度磁測對古遺址分布區內與回填土的磁性差異的探測,可了解遺址的位置、邊界形態及鐵磁性器物的賦存特徵;通過電阻率法、激發極化法、自然電場法、地質雷達等手段了解不同岩土層及各種金屬器物和介質的電性差異;通過地震反射波和地震面波方法探測古墓與周圍介質的彈性差異,探索陵墓地宮的結構和深度的邊界及埋深;利用放射性勘測技術及天然氣態放射性元素氡濃度變化的測量,來了解某些陵墓區或古建築遺址地下結構的分布。物探方法用於考古工作,可實現對古文化的無損探測,提高了考古發掘的准確度。例如中科院地球物理所採用地震面波、高精度磁測、大地電場岩性探測和地球化學測汞對三峽庫區故陵楚墓的探測,准確地確定出故陵楚墓的位置和分布形態,證實了所推測的古墓的存在,為三峽庫區文物搶救保護解決了重要的難題。
1.高精度磁測在考古中的應用
地面高精度磁測是對古墓、古文化的分布探測中最主要的地球物理方法之一。古遺存或古人類化石本身及所處地層的磁性、磁化率、磁化率各向異性、剩餘磁化強度等與周圍環境存在的磁性差異是磁測考古的基礎。經有關學者研究得出如下結論:被火燒過的泥土製品、土壤、石頭等可獲得較強的磁性;有機質的腐爛使土壤獲得較高的磁性;人為翻動過的土壤或夯土、與周圍天然的沉積物之間有明顯的磁性差異;表5-4-2給出了不同考古材料的磁性參數。
表5-4-2 不同考古材料的磁性參數(據中國地質大學閻桂林)
考古對象的空間規模一般較小,形態復雜,埋深不一。考古對象與周圍物質間雖有一定的磁性差別,但磁性還是較弱,再加上人文干擾,所以,考古對象產生的磁異常,其特點是范圍小,強度低,梯度變化大,形態多樣,有時干擾嚴重。因而,在考古調查中必須採用高精度的質子磁力儀或光泵磁力儀。
地面磁測時測網的比例尺一般為1∶100~1∶200。儀器探頭距地面高度可為1 m至0.1 m。除觀測磁場強度ΔT外,還可觀測磁場的垂直梯度變化ΔTZ。河南新鄭某古墓的調查是磁法考古探測的成功實例之一。
該測區位於一戰國至漢代古墓葬區內,黃土覆蓋,土質均勻,地形平坦。墓葬區已經初步鑽探普查,磁力調查是作為詳查和核實。採用兩台MP 4 型質子磁力儀,一台用於地磁日變觀測。儀器探頭距地面高0.5 m。測網比例尺1∶200,線距2 m,點測1 m。觀測結果見圖5-4-15。由ΔT平面等值線圖可見,在已知墓葬A、B、C及大型陪葬坑上顯示出一定強度和輪廓明顯的磁異常。有些異常還勾繪出墓葬的形態及細節。如A異常清楚顯示該墓有一較長的南北向墓道,墓室南側有兩個小耳室。A墓引起的磁異常為20 nT左右。據其形態,考古工作者判定為漢代「甲」字型磚墓。B異常形態表明該墓為典型的「刀」字型磚墓。圖中黑粗線輪廓是根據磁異常推斷的結果。C異常較弱,對其墓的形態輪廓顯示不清楚,這表明該墓為一土坑墓,非磚結構。E、D異常反映的是兩個新發現的墓葬,沒有原始資料。陪葬坑的磁異常南、北部分有較大的區別,它表明坑內較多的陶器物品主要堆放在坑的南半部。該區這些異常推斷的遺存埋深為地下1~2m。實際鑽探資料證實了磁測結果的分析。
圖5-4-15 河南新鄭戰國至漢代某古墓的磁異常等值線圖
2.電法在考古中的應用
電法也是考古工作中常採用的地球物理方法。一般古墓多埋藏於第四系鬆散地層中,古墓上下及周圍應有厚度不等的青膏泥(粘土)填充,構成一個以厚層粘土包裹著的「古墓體」,此外,墓室有可能有地下水滲入。這就使得古墓與周圍地層存在一定的磁性與電性差異,為採用電法探測古墓提供了地球物理條件。
圖5-4-16是河南省某古墓地面磁測剖面平面圖。圖中各測線在22~26點和30~36點形成了兩個近EW向的條帶狀正異常(ΔZmax=53 nT),其間有一下降近20 nT的鞍部,其南、北、東三面均為負異常。結合地面情況推斷兩條正異常的鞍部為古墓位置,而南、北、東三面負異常為高差近20 m的人工開挖陡壁引起。
圖5-4-17是0號 剖面等視電阻率斷面圖。由圖可見,0線在三角點往西有ρs小於8Ω·m的極小值區,其他測線也有同樣反映。極小值出現在AB/2=40~100 m之間,以AB/2=65 m為中心部位。圖5-4-18是AB/2=65 m的等ρs平面圖。由該圖反映出ρs小於8Ω·m的極小值范圍為坐標原點往西11.2 m,坐標原點往南9.8 m。該范圍內ρs值均在7.2~7.65Ω· m內,且范圍外 ρs變化梯度較大。由此推斷 ρs小於8Ω·m的范圍為主墓葬的位置。本區電測深曲線類型以H型為主,按電性可分為三層:第一層為覆蓋層,第二層為「古墓體」,第三層為「古墓體」底板。由電測深曲線解釋得主墓頂部埋深為6.9 m,底板埋深為21 m。經挖掘驗證,基本與物探探測結果相符。
圖5-4-16 河南省某古墓磁測剖面平面圖
圖5-4-17 0線等ρs斷面圖
圖5-4-18 等ρs平面圖
3.地質雷達在古遺址探測中的應用
由於古遺址體與周圍介質在相對介電常數上存在有差異,為地質雷達方法探測古遺址提供了地球物理條件。對於埋深較淺的古遺址,採用地質雷達方法具有較好的探測效果。湖北大冶銅錄山古銅礦遺址是我國西周末期與春秋戰國時期的采礦遺址,該銅礦目前仍在開采,為了協調礦山開采與古銅礦遺址保護之間的關系,應用地質雷達探測了銅礦遺址的規模及其分布,取得了令人滿意的探測結果。
古銅礦遺址(稱老窿區)都形成於接觸破碎帶中相當於礦體的氧化次生富集帶中,鑒於當時開採的對象為高品位銅,因此老窿區發育地段首先要具備一定數量高品位銅礦可開采,二是當時用人力與較原始的工具挖掘,開采礦石的層位應該比較松軟,老窿區對應的是接觸破碎帶經強烈風化區,古礦坑內都有回填土充填,回填土與原狀土的差異明顯。因此調查中老窿區的探地雷達圖像應有如下特徵:①由於地層風化是逐漸加深,因此原狀土風化層應為一組均勻密集的窄反射波,同時地層風化進程是同步的,因此這些反射波的同相軸平整且可橫向追蹤;②老窿區現由回填土充填,而回填土與原狀土差異增大,並且老窿區應處在礦石高品位地段,雖然銅已被開采,但鐵礦石仍保留,因此反射信號強度大;③原狀大理岩或矽卡岩由於物性相對均勻,因此反射界面相對較少,基本無明顯的反射信號。
圖5-4-19 老窿區的探地雷達圖像
圖5-4-20 地質雷達與勘探結果對照圖
圖5-4-19為老窿區的地質雷達圖像。由圖可見原狀土為密集的窄反射波,而老窿區中的回填土為強反射波,橫向變化大且同相軸難以追蹤,原狀土與回填土兩者差異明顯。根據雷達剖面圖像我們構築了3個高程的老窿投影與勘探解釋進行對照。圖5-4-20為Ⅲ號遺址老窿投影的地質雷達與勘探結果對照圖。(a)是勘探結果,(b)是地質雷達解釋結果。由圖可見標高+53 m與+48 m老窿投影的地質雷達解釋結果與勘探結果基本一致,但標高+43 m的老窿區投影與雷達解釋結果有較大差異,這是因為在無鑽孔區地質人員往往採用外推法解釋。而這種解釋在不規則的老窿區會產生較大的誤差。
杭州雷峰塔始建於公元972年,於1924年倒塌,為了重建雷峰塔,浙江省考古所進行考古挖掘工作,為了確定雷峰塔是否存在有地宮,祝煒平等人開展了地質雷達方法探測工作,根據探測結果,明確了雷峰塔地宮的存在,提供了地宮的大致位置,為雷峰塔地宮的考古挖掘起到了指導作用。雷峰塔地宮探測中使用的地質雷達是瑞典瑪拉公司生產的RAMAC/GPR地質雷達,選用的工作天線的中心頻率為250 MHZ,在遺址上布置了四條呈「豐」字形地質雷達測線,測線間距為1.5 m,測點間距為0.03~0.05 m,採用剖面法測量。
圖5-4-21為雷峰塔塔基內的一條地質雷達探測剖面圖,橫坐標為1.0~2.8 m,縱坐標1.3~2.6 m處雷達波同相軸錯斷,橫坐標1.5~2.4 m,縱坐標2.6 m處有一雙曲線型拱起的反射波同相軸,塔基中心位置的雷達波圖像與周圍介質的雷達波圖像的差異明顯,因此,雙曲線型拱起異常應為地宮引起。地宮存在的范圍,測線1.0~2.8 m,埋藏深度1.3~3.1 m。考古挖掘表明,地質雷達探測的結果是准確的,水平位置1.0~2.8 m,縱向深度1.3~2.6 m處雷達波異常反射由夯土層引起,地宮大小為0.9×0.9 m,高0.5 m。圖5-4-22為地宮挖掘後繪制的地質剖面圖。
圖5-4-21 塔基內一條雷達探測剖面圖
圖5-4-22 地宮挖掘後繪制的地質剖面圖
F. 最近在學MAPGIS軟體,想請問一下,MAPGIS在地質災害危險性評估中有什麼應用
主要是製作實際材料圖,地質災害易發程度圖、地質災害危險區劃圖等,國土部分提交的很多圖形數據格式也是基於mapgis格式的!
G. 實時監測技術在地質災害防治中的應用——以巫山縣地質災害實時監測預警示範站為例
高幼龍1張俊義1薛星橋1謝曉陽2
(1中國地質調查局水文地質工程地質技術方法研究所,河北保定,071051;2西北化工研究院,陝西臨潼,710600)
【摘要】本文在地調項目工作實踐的基礎上,系統地總結了地質災害實時監測的含義、特點和系統構成。詳細介紹了巫山縣地質災害實時監測預警示範站的構建,針對實際運行狀況,評價了實時監測技術的可行性和可靠性。
【關鍵詞】地質災害實時監測遠程傳輸示範站
1 引言
隨著現代科學技術的發展和邊緣學科的相互滲透,自動控制、網路傳輸等越來越多的技術被不斷應用於地質災害的監測當中,極大地提高了監測的自動化水平,在一定程度上緩解了生產力匱乏和地質災害急劇增加之間的矛盾。國際上,美國、日本、義大利等發達國家在一定的區域范圍內建立了基於降水量、滲透壓、斜坡變形等參數的地質災害實時監測系統,藉助國際互聯網實現了監測數據的集中處理與實時發布。與之相比,我國地質災害監測的實時化、網路化水平依然較低,監測信息為公眾服務的功能未能得到明顯體現,預警的信息渠道不暢,對重大臨災的地質災害缺乏快速反應能力。因此,在我國進行地質災害實時監測預警研究,對重大災害體實施實時化監測預警,具有十分現實的意義。
筆者在參加地質調查計劃項目《地質災害預警關鍵技術方法研究與示範》的過程中,對實時監測技術進行了較為深入的研究,並在我國重慶市巫山縣新城區建立了地質災害實時監測預警示範站,經過1.5個水文年的示範運行,驗證了實時監測的可行性和可靠性。在對示範成果初步總結的基礎上形成此文,以期實時監測技術得以快速成熟及推廣應用,為我國地質災害防治事業作出貢獻。
2實時監測的含義和特點
實時監測(Real-Time Monitor,RTM)指通過各種監測、採集、傳輸、發布技術,讓目標層人員在第一時間內了解、掌握有關災害體的變形動態和發展趨勢,進而作出決策的多種技術的集合。其最主要的特點為實時性,即遠程的目標層人員可在第一時間獲取災害體的全部變形信息,而獲取的過程是自動的,無需技術人員值守干預。顯而易見,實時的特性可以最大限度地解放勞動力,降低監測人員風險和運營成本。
同傳統監測技術相比,實時監測的數據採集方式是連續的、跟蹤式的,數據的採集周期很短,通常在數小時之內,甚至更短。這對於跟蹤災害體變形過程,進行反演分析具有十分重要的意義。其龐大的數據量通常也會對配套的軟硬體系統提出更高的要求。
不難理解,實時監測也是自動化監測。所使用的監測儀器均需自動化作業方可實現無人值守。監測儀器自動化分為兩種,一種是監測儀器本身具備定時采樣和存儲功能,另一種是通過第三方的自動採集儀控制采樣。不管使用何種方式或基於何種原理,其數據採集是能夠自動或觸發實現的。
監測數據遠程傳輸是實時監測的另一主要特點。通常情況下,監測控制中心設立在遠離災體、經濟相對發達的城鎮區,需要藉助公眾通信網路或其他介質將各種類型的監測數據「搬運」過來,進行相應的轉換計算,生成目標層人員所需要的成果。這個「搬運」過程即監測數據的遠程傳輸。傳輸分為兩種方式,一種是有線傳輸方式,如架設通信線纜或光纜,在電話線兩端載入 Modem等;另一種是無線傳輸方式,如藉助 GSM/GPRS或 CDMA網路、UHF數傳電台或通信衛星等。
由於實時監測是數據自動採集、傳輸、發布等多個技術的集合,其中的任何一個環節失敗均可導致系統無法正常工作,因此,實時監測是存在風險性的。其風險構成除電力(如斷電停電)等保障體系統風險和監測儀器(如感測器、採集儀故障)、傳輸系統(如占線、網路資源不足、數據安全)、發布系統(如網路阻塞、病毒入侵、系統崩潰)等技術風險外,還包括人為抗力風險,如監測儀器設施的人為破壞、網路系統的惡意攻擊等。對於風險的營救除最大程度地降低保障體系風險和技術風險外,需要通過立法、宣傳等有效措施降低人為抗力風險,並設技術人員對監測系統進行即時維護,保障系統正常運行。
3實時監測系統構成
實時監測系統由監測儀器設施、數據採集系統、數據傳輸系統和網路發布系統四個子系統構成。各子系統均可獨立運行,以單鏈的方式協同工作。其工作原理如圖1所示。
圖1實時監測系統工作原理示意圖
3.1監測儀器設施
監測儀器及設施是獲取災害體變形參數最前端、最主要的組成部分,固定安裝於災害體表層或深部,並能夠表徵災害體對應部位的變形、變化。監測儀器的類型取決於所採用的監測方法。在地質災害監測中,常用的監測方法包括災害體地表及深部位移、應力、地下水動態、地溫、降水量等(表1)。監測儀器的精度、數量及布設位置是在地質災害勘查及綜合分析的基礎上,從控制災害體主體變形的需要設計確定的。監測儀器通常和相應的監測設施,如監測標(墩)、保護裝置等相互配合,完成災害體相關參數的獲取。
3.2數據採集系統
顧名思義,數據採集系統用於收集、儲存各類監測數據,是通過單片機或工業控制技術實現的。目前,多數監測儀器均有配套的數據採集及存儲裝置,可按設定的數據採集間隔定時自動化工作,並對原始數據進行轉換計算。數據採集裝置通常具有 RS-232或其他標准通信介面,可以方便地將數據下載至 PC中作進一步分析處理。對於不具備配套數據採集裝置或僅具備攜帶型讀數裝置的監測儀器,則可以通過第三方的數據採集儀實現自動採集工作,通用型的數據採集儀可方便地將頻率、電壓等模擬信號轉換為數字信號加以存儲和處理,並具備標准通信介面和PC交換數據。由於數據採集儀多置於監測儀器附近,二者間通常使用線纜相連接。
表1常用監測技術方法簡表
3.3數據傳輸系統
數據傳輸系統用於完成數據採集儀—控制中心—用戶間的數據傳遞。實際上,控制中心—用戶間通常是利用國際互聯網、通過發布系統實現的,所以狹義上的數據傳輸指數據採集儀—控制中心之間(即災害體現場至控制中心)的數據傳遞。
按照災害體和控制中心空間距離的長短,可將數據傳輸分為近距離數據傳輸(一般低於2km)和遠程數據傳輸兩種類型。前者由於傳輸距離較短,一般採用線纜連接,後者則採用遠程數據傳輸裝置。
按傳輸介質,遠程數據傳輸分為有線傳輸和無線傳輸兩種方式。目前常用的有線傳輸方式有電話線連接(即在電話線兩端載入 Modem對數據進行調制、解調)、光纜連接等,無線傳輸方式有數傳電台(用於中遠距離)、GSM/GPRS或 CDMA移動通信網路、通信衛星等(圖2)。
圖2常用的數據傳輸方法
3.4信息發布系統
信息發布系統通過國際互聯網,以 Web主頁的方式向目標層人員(即用戶)提供各類監測信息。監測信息包括災害體地質條件、發育特徵、監測網布置方式、多元監測數據、監測數據隨時間推移曲線變化情況、監測信息公告及圖片、視頻等。
信息發布系統由底層資料庫和發布主頁兩部分構成。前者用於管理各類基礎信息及監測數據,為後者提供數據源,後者為用戶提供信息訪問平台。二者之間通常採用B/S等架構交換數據。
信息發布系統一旦建立完成後,一些信息內容,如災害體地質條件、發育特徵、監測網布置方式等說明性的文字便相對固定下來,在短時間內不會做大的改動,這些信息通常稱為靜態信息。而隨著時間推移,監測數據及其曲線等信息不斷產生,且呈現動態變化並需在主頁上自動更新、顯示,這些信息稱為動態信息。要實現監測數據的實時發布,需建立動態主頁來顯示動態數據。
由於監測數據是由底層資料庫管理的,故只要即時將監測數據自動寫入資料庫中,為動態主頁提供隨時更新的數據源,便可實現自動顯示,即實時發布。而這一點是易於做到的。
4巫山縣地質災害實時監測示範站簡介
重慶市巫山縣新城區是我國地質災害危害最為嚴重的地區之一,全縣約1/3的可用建設用地受到不同程度地質災害的威脅。通過論證對比,在城區27個較大滑坡(崩塌)中,選擇了近期變形相對較為明顯、危害較為嚴重的向家溝滑坡和玉皇閣崩滑體建立實時監測預警系統進行應用示範。選用GPS監測地表位移、固定式鑽孔傾斜儀和TDR技術監測深部位移、孔隙水壓力監測儀監測滑體孔隙水壓力及飽水時的水位、水溫,同時通過安裝儀器的附加功能或定期搜集的方法兼顧了地溫、降水量及庫水位等監測。截至目前,共建立GPS監測標22處(含基準標)、固定式鑽孔傾斜儀和TDR監測點(孔)各3處、孔隙水壓力監測3孔7測點。多種監測儀器在同一地理位置同組安裝,這樣不僅便於不同監測方法之間資料的相互印證對比,還可以僅使用一台採集儀及傳輸裝置採集、傳輸多種監測數據,降低監測系統建設成本;另外,同組安裝便於修建監測機房(現場站)保護監測儀器設施。以上監測方法除GPS因建設成本、人為抗力風險等原因採用定期觀測外,其餘監測方法均採用實時化監測。
4.1示範站數據採集系統
固定式鑽孔傾斜儀、TDR、孔隙水壓力監測儀三種監測儀器均具備配套的數據採集裝置,其中TDR監測技術使用工業控制機作為數據採集裝置,恰好可以作為另兩種監測儀器的上位機,通過多串口擴展,將固定式鑽孔傾斜儀和孔隙水壓力監測儀連接至工控機,定時下載、存儲數據,並在預定時間統一傳輸至控制中心,同時在工控機上存放數據備份,防止數據丟失。示範站數據採集系統結構圖如圖3所示。
圖3示範站數據採集系統結構圖
4.2GPRS遠程無線傳輸系統
示範站控制中心設在巫山縣國土資源局,距向家溝滑坡直線距離2.74km,距玉皇閣崩滑體約0.6km,其間採用GPRS網路進行數據的遠程無線傳輸。
GPRS(General Packet Radio Service,通用分組無線業務)是中國移動通信在GSM網路上發展起來的2.5G數據承載業務,具有傳輸速度快、永遠在線、按量計費等優點。GPRS使用TCP/IP協議,因此可方便地將數據寫入指定(具固定IP地址)的伺服器中。
GPRS數據傳輸硬體為商用型GPRS-MODEM,控制軟體自主編寫,用於控制數據傳輸時間、目標地址及傳輸過程的錯誤處理,由伺服器端和客戶端兩部分構成。伺服器端用於設置網路配置、資料庫連接方式及數據文件、日誌文件和配置文件的存放路徑。客戶端安裝於現場站數據採集儀(工控機)上,控制網路連接、上傳時間、數據編碼、數據備份及傳輸錯誤處理。客戶端軟體和所有的數據採集軟體設置為不間斷工作狀態,在按控制參數工作的同時,接受控制中心的配置指令即時對控制參數進行調整。
4.3示範站信息發布系統
示範站信息發布系統硬體由1台小型伺服器和2台 PC終端的100M區域網構成。通過2M帶寬的ADSL接入Internet。底層資料庫和WEB主頁同時安裝於伺服器上。伺服器操作系統為Mi-croSoft Windows Server 2000,資料庫系統採用 MicroSoft SQL Server 2000。WEB主頁用 ASP.NET和Visual C﹟編寫,和資料庫之間採用B/S架構。在病毒防護和網路安全方面,採用商業軟體瑞星RAV 2004和天網防火牆系統。
(1)資料庫系統
資料庫系統是信息發布系統的基礎,按管理內容分為基礎信息管理、數據管理、輔助信息管理三部分。基礎信息管理的內容包括監測站(包括中心站和現場站)、監測鑽孔、監測點、發布信息、發布圖片等;數據管理內容包括固定式鑽孔傾斜儀、GPS、TDR監測系統、BOTDR監測系統、孔隙水壓力監測儀、環境溫度、降水量、庫水位等;輔助信息管理內容包括分級用戶、下載信息、訪問統計次數等,資料庫系統構成如圖4所示。
(2)數據伺服處理程序
數據伺服處理程序用於轉換、計算現場站傳來的數據,並即時將處理後的結果寫入資料庫中。處理程序採用Visual BASIC語言編寫,通過計時器控制的定時功能觸發寫庫過程,並在完成寫庫過程後刪除原數據以防止重寫。不難看出,數據伺服程序是傳輸系統和發布系統之間的連接,它使兩個彼此獨立的系統有機地結合起來。
(3)示範站信息發布主頁
信息發布主頁為遠程用戶提供所需的全部信息,包括示範站的概況、實時的監測曲線、最新的監測數據等。從發布信息內容、訪問方式及管理維護的角度出發,主頁設計成導航區、發布區、管理區和下載區,為遠程用戶、管理員提供交互。
圖4示範站資料庫系統構成框圖
導航區為遠程用戶提供必要的導航信息,包括公告信息、圖片及相關的專業網站鏈接,展示示範站建設工作的進展、取得的階段性成果及有關的預警內容。
發布區用於提供示範站概況、實時監測曲線及數據查詢。
示範站概況包括示範區自然地理條件、地質條件、示範站工作的整體部署,監測儀器設施(GPS、固定式鑽孔傾斜儀、TDR、BOTDR、孔隙水壓力監測儀等)的性能指標,監測現場站(含中心站)、監測鑽孔、監測點的基礎信息等內容。
實時監測用於顯示各種監測曲線,是發布主頁最核心的內容。從訪問方便的角度出發,實時監測採取了「選擇災體—選擇監測剖面—選擇監測點—選擇監測時段—顯示監測曲線」逐級打開、層層剝落的展示方式,並全部做成圖形方式鏈接,以增強訪問的直觀性。監測曲線的坐標設計成自適應型,圖形的大小在系統的配置文件中設置,並標明數據的最新更新時間。曲線是以圖片的形式顯示的,用戶可以方便地將其下載到自己的PC中保存。
從安全考慮,數據查詢進行了加密,用戶需用授權的用戶名和密碼登錄後方可查看。查詢採取了「選擇監測方法—選擇監測點—選擇監測起始時間—顯示數據表」組合式篩選的方式。輸入界定參數並提交後系統從底層資料庫中找到所有符合條件的記錄,按日期排序後列表顯示。用戶可以全部或部分選取查詢結果,粘貼至個人PC作為WORD文檔保存。
管理區專為系統管理員設計,用於管理員遠程管理文本、圖片、數據等信息,進行信息的添加、修改、刪除、上傳下載等操作。分為信息管理、圖片管理、數據管理、下載管理4個相互獨立的模塊,具有模糊查找等高級功能。
下載區為授權用戶提供工作圖片、視頻、監測報告、軟體等較大文件的下載功能,補充主頁在文件交換方面的不足。
主頁面布局如圖5所示。欲了解發布系統的更多內容,請登錄Http://www.wss.org.cn。
5示範站實時監測系統運行評價
由於本文著重論述實時監測技術的可行性和可靠性,因此不對監測成果和滑坡穩定性動態做更多分析。從以上論述明顯可以看出,在地質災害監測中,構建實時監測系統從技術上是可行性的。本節主要針對巫山縣實時監測預警示範站運行過程中出現的各種問題,從故障統計、故障原因分析等方面,對示範站採集系統、傳輸系統、發布系統的可靠性進行簡單評價,並提出意向性的改善建議。
圖5示範站信息發布主頁面
根據巫山縣地質災害監測預警示範站建設工作日誌,監測系統故障主要發生在傳輸子系統,故障表現形式為數據不傳輸或不正確傳輸,主要原因為GPRS網路信號不穩定造成傳輸隨機中斷所致;其次,撥號連接失敗後的重復嘗試連接導致伺服器80埠長期無效重復佔用,當超過伺服器最大連接數後導致網路無法正確訪問;再次,監測地區不規律的停電常常使保障體系失效,從而丟失數據。此外,示範站伺服器系統遭受過病毒破壞和惡意攻擊,兩次造成網路系統崩潰。可見,實時監測系統在基礎通信條件和保障體系完備的條件下,是能夠穩定可靠運行的。在建設過程中通過安裝長時後備電源系統、功能完善的病毒防火牆和網路防火牆,可有效降低保障體系風險,進一步提高系統運行的穩定性。
6結語
巫山縣地質災害實時監測預警示範站自2003年陸續建設運行以來,在技術人員的維護下,系統運行正常,取得了數十萬個監測數據,發布公告信息及圖片近百條(幅),編寫監測分析簡報數期,實現了監測信息遠程實時訪問,取得了良好的示範效果。實踐證明,將實時監測技術應用於地質災害防治中是完全可行的,也是比較可靠的。可以預見,實時監測技術將是地質災害監測的必然發展趨勢。
參考文獻
[1]殷躍平等.長江三峽庫區移民遷建新址重大地質災害及防治研究.北京:地質出版社,2004
[2]王洪德,高幼龍等.《地質災害預警關鍵技術方法研究與示範》項目設計書.2003(未出版)
[3]劉新民等.長江三峽工程庫區滑坡及泥石流研究.成都:四川科學技術出版社,1990
[4]何慶成,侯聖山,李昂.國際地質災害防治現狀.科學情報,2004,(5)
[5]鄔曉嵐,塗亞慶.滑坡監測的現狀及進展.中國儀器儀表,2001(3)
[6]張青,史彥新,朱汝烈.TDR滑坡監測技術的研究.中國地質災害與防治學報.第12卷,第2期.2001,(6)
[7]曹修定,阮俊,展建設,曾克.滑坡的遠程實時監測控制與數據傳輸.中國地質災害與防治學報.第13卷第1期.2002(3)
[8]夏柏如,張燕,虞立紅.我國滑坡地質災害監測治理技術.探礦工程(岩土鑽掘工程).2001年增刊
H. 地質災害數據監測系統分析軟體有哪些
青島海徠天創公司的4Dmos—pointcloud變形監測軟體,預測各種地表活動,滑坡、塌陷等,可以咨詢
I. 地質災害監測方法技術現狀與發展趨勢
【摘要】20世紀末期以來,監測理論和技術方法有長足發展,常規技術方法趨於成熟,設備精度、設備性能已具較高水平,並開發了部分高精度(微米級位移識別率)、自計、遙測、自動傳輸的監測設施。未來,將充分綜合運用光學、電學、信息學、計算機和通信等技術(諸如光纖技術—BOTDR、時域反射技術—TDR、激光掃描技術、核磁共振技術、NUMIS、GPS技術、合成孔徑干涉雷達技術—InSAR及互聯網通訊技術等),進一步開發經濟適用、有效可行的地質災害監測新技術,提高精度、准確性和及時性,最大程度地減小地質災害造成的損失。
【關鍵詞】地質災害監測技術方法新技術優化集成
20世紀80年代以來,我國地質災害時空分布特點呈現新的變化。隨著人類工程活動越來越強,人為地質災害日趨嚴重,規模、數量和分布范圍呈增加趨勢;人口密集、經濟發達地區地質災害造成的損失越來越大。崩塌、滑坡和泥石流等突發性地質災害發生頻度和造成的損失不斷加大,地面沉降、海水入侵等緩慢性地質災害的范圍逐漸增加。據相關統計資料顯示,1995~2002年,地質災害共造成9000多人失蹤或死亡,突發性地質災害共造成直接經濟損失524億元,緩慢性地質災害造成直接經濟損失590億元,間接經濟損失2700億元。地質災害已經成為嚴重製約我國經濟發展的重要因素之一。
為了摸清我國地質災害的分布情況,我國系統地開展了地質災害調查工作,先後出台了《地質災害防治管理辦法》和《地質災害防治條例》,明確指出:防治地質災害,實行「以人為本,防治結合,統籌規劃,突出重點,分期實施,逐步到位」的方針。並於2003年4月啟動了全國性地質氣象預報。對已經查明的地質災害體,特別是對生產建設、人民生命財產安全構成嚴重威脅的地質災害,若能運用適當、有效、經濟可行的監測措施,作出科學的監測預報,則可最大程度地減小災害損失。
滑坡監測在不同條件、不同時期其作用不同,總的來說有以下幾個方面:
(1)通過綜合分析多種監測方法的監測數據,確定地質災害穩定狀態及發展趨勢,及時作出預測,防止或減輕災害損失。
(2)研究導致災害體變形破壞的主導因素、作用機理,為防治工程設計提供依據。
(3)在防治工程施工過程中,監測、分析災害體變形發展趨勢及工程施工的擾動,保障施工安全。
(4)施工結束後,進行工程效果監測。
(5)綜合利用長觀監測資料,分析災害體變形破壞機制和規律,檢驗在防治工程設計中所採用的理論模型及岩土體性質指標值的准確性,對已有的監測預報理論及模型進行驗證改進,改善、提高監測預測預報技術方法。
1地質災害監測技術綜述
地質災害監測的主要任務為監測地質災害時空域演變信息(包括形變、地球物理場、化學場)、誘發因素等,最大程度獲取連續的空間變形數據,應用於地質災害的穩定性評價、預測預報和防治工程效果評估。
地質災害監測是集地質災害形成機理、監測儀器、時空技術和預測預報技術為一體的綜合技術。地質災害的形成機理是開展地質災害監測工作的基礎;監測儀器是開展工作的手段;更為重要的是只有充分利用時空技術,才能有效發揮地質監測的作用;預測預報是開展地質災害監測的最終目的。
崩塌、滑坡、泥石流等突發性地質災害,具有爆發周期短、威脅性及破壞性顯著、成因復雜等特點,因此,當前地質災害的監測技術方法的研究和應用多是圍繞突發性地質災害進行的。1.1監測方法
監測方法按監測參數的類型分為四大類:即變形、物理與化學場、地下水和誘發因素監測(見表1)。
表1主要地質災害監測方法一覽表
1.1.1 變形監測
主要包括以測量位移形變信息為主的監測方法,如地表相對位移監測、地表絕對位移監測(大地測量、GPS測量等)、深部位移監測。該類技術目前較為成熟,精度較高,常作為常規監測技術用於地質災害監測。由於獲得的是災害體位移形變的直觀信息,特別是位移形變信息,往往成為預測預報的主要依據之一。
1.1.2物理與化學場監測
監測災害體物理場、化學場等場變化信息的監測技術方法主要有應力監測、地聲監測、放射性元素(氡氣、汞氣)測量、地球化學方法以及地脈動測量等。目前多用於監測滑坡等地質災害體所含放射性元素(鈾、鐳)衰變產物(如氡氣)濃度、化學元素及其物理場的變化。地質災害體的物理、化學場發生變化,往往同災害體的變形破壞聯系密切,相對於位移變形,具有超前性。
1.1.3地下水監測
地下水監測主要是以監測地質災害地下水活動、富含特徵、水質特徵為主的監測方法。如地下水位(或地下水壓力)監測、孔隙水壓力監測和地下水水質監測等。大部分地質災害的形成、發展均與災害體內部或周圍的地下水活動關系密切,同時在災害生成的過程中,地下水的本身特徵也相應發生變化。
1.1.4誘發因素監測
誘發因素類主要包括以監測地質災害誘發因素為主的監測技術方法,如氣象監測、地下水動態監測、地震監測、人類工程活動等。降水、地下水活動是地質災害的主要誘發因素;降雨量的大小、時空分布特徵是評價區域性地質災害(特別是崩、滑、流三大地質災害的判別)的主要判別指標之一;人類工程活動是現代地質災害的主要誘發因素之一,因此地質災害誘發因素監測是地質災害監測技術的重要組成部分。
1.2監測儀器
1.2.1按從監測儀器同災害體的相對空間關系分為接觸類和非接觸類
(1)接觸類:是指必須安裝於災害體現場或進行現場施測的監測儀器系列。如滑坡地表或深部位移監測、物理和化學場監測等。該類儀器所獲得的信息多為災害體細部信息,信息量豐富。
(2)非接觸類:是指於現場安裝簡易標志或直接於災害體外圍施測的監測儀器系列。該類監測方法多以獲得災害體地表的絕對變形信息為主,易採用網式施測;特別是突發性地質災害的臨災前後,具有安全、快捷等特點。如激光微位移監測、測量機器人、遙感雷達監測等。
1.2.2按監測組織方式分為簡易監測、儀表監測、控制網監測、自動遙測
(1)簡易監測:採用簡易的量測工具(皮尺、鋼尺、卡尺)對災害體地表的裂縫等部位進行監測。
(2)儀表監測:採用機測或電測儀表(安裝、埋設感測器)對滑坡進行地表及深部的位移、應力、地聲、水位、水壓、含水量等信息監測。
(3)控制網監測:在滑坡變形破壞區及周邊穩定地帶,布設大地測量或GPS衛星定位測量控制點網,進行滑坡絕對位移三維監測。
(4)自動遙測:利用有線和無線傳輸技術,對儀表監測所得信息進行遠距離遙控自動採集、傳輸,可實現全天候不間斷監測。
2地質災害監測方法技術現狀
地質災害監測技術是集多門技術學科為一體的綜合技術應用,主要發展於20世紀末期。伴隨著電子技術、計算機技術、信息技術和空間技術發展,國內外地質災害調查與監測方法和相關理論得到長足發展,主要表現在:
(1)常規監測方法技術趨於成熟,設備精度、設備性能都具有很高水平。目前地質災害的位移監測方法均可以進行毫米級監測,高精度位移監測方法可以識別0.1mm的位移變形。
(2)監測方法多樣化、三維立體化。由於採用了多種有效方法結合對比校核以及從空中、地面到災害體深部的立體化監測網路,使得綜合判別能力加強,促進了地質災害評價、預測能力的提高。
(3)其他領域的先進技術逐漸向地質災害監測領域進行滲透。隨著高新技術的發展和應用的深入,衛星遙感、航空遙感等空間技術的精度逐漸提高,一些高精度物探(如電法、核磁共振等技術)的發展,使得地質災害的勘查技術與監測技術趨於融合,通過技術上的處理、提升,該類技術逐漸適用於區域性的地質災害和單體災害的監測工作。
「八五」以來,我國在地質災害監測技術研究方面取得了豐碩的成果,並積累了豐富的經驗,使我國的地質災害監測預警水平得到很大程度的提高;但是還存在一定的局限性,主要表現在:
(1)地質災害監測技術、儀器設施多種多樣,應用重復性高,受適用程度、精度、設施集成化程度、自動化程度和造價等因素的制約,常造成設備資源浪費,效果不明顯。
(2)所取得的研究成果多側重於某一工程或某一應用角度,在地質災害成災機理、誘發因素研究的基礎上,對各種監測技術方法優化集成的研究程度較低。
(3)監測儀器設施的研究開發、數據分析理論同相關地質災害目標參數定性、定量關系的研究程度不足,造成監測數據的解釋、分析出現較大的誤差。
因此,要提高地質災害預警技術水平,必須在地質災害研究同開發監測技術方法相結合的基礎上,進行地質災害監測優化集成方案的研究。
3地質災害監測技術方法發展趨勢
3.1高精度、自動化、實時化的發展趨勢
光學、電學、信息學及計算機技術和通信技術的發展,給地質災害監測儀器的研究開發帶來勃勃生機;能夠監測的信息種類和監測手段將越來越豐富,同時某些監測方法的監測精度、採集信息的直觀性和操作簡便性有所提高;充分利用現代通訊技術提高遠距離監測數據信息傳輸的速度、准確性、安全性和自動化程度;同時提高科技含量,降低成本,為地質災害的經濟型監測打下基礎。
監測預測預報信息的公眾化和政府化。隨著互聯網技術的發展普及,以及國家政府的地質災害管理職能的加強,災害信息將通過互聯網進行實時發布,公眾可通過互聯網了解地質災害信息,學習地質災害的防災減災知識;各級政府職能部門可通過所發布信息,了解災情的發展,及時做出決策。
3.2新技術方法的開發與應用
3.2.1調查與監測技術方法的融合
隨著計算機的高速發展,地球物理勘探方法的數據採集、信號處理和資料處理能力大幅度提高,可以實現高解析度、高采樣技術的應用;地球物理技術將向二維、三維採集系統發展;通過加大測試頻次,實現時間序列的地質災害監測。
3.2.2 智能感測器的發展
集多種功能於一體、低造價的地質災害監測智能感測技術的研究與開發,將逐漸改變傳統的點線式空間布設模式;由於可以採用網式布設模式,且每個單元均可以採集多種信息,最終可以實現近似連續的三維地質災害信息採集。
3.3新技術新方法
3.3.1光纖技術(BOTDR)
光導纖維監測技術又稱布里淵散射光時域光纖監測技術(BOTDR),是國際上20世紀70年代後期才迅速發展起來的一種現代化監測技術,在航空、航天領域中已顯示了其有效性。在土木、交通、地質工程及地質災害防治等領域的應用才剛剛開始,並受到各發達國家研究機構的普遍重視,發展前景十分廣闊。
通過合理的光纖敷設,可以監測整個災害體(特別是滑坡)的應變信息。
3.3.2時間域反射技術(TDR)
時間域反射測試技術(Time Domain Reflectometry)是一種電子測量技術。許多年來,一直被用於各種物體形態特徵的測量和空間定位。早在20世紀30年代,美國的研究人員開始運用時間域反射測試技術檢測通訊電纜的通斷情況。在80年代初期,國外的研究人員將時間域反射測試技術用於監測地下煤層和岩層的變形位移等。90年代中期,美國的研究人員將時間域反射測試技術開始用於滑坡等地質災害變形監測的研究,針對岩石和土體滑坡曾經做過許多的試驗研究,國內研究人員已經開始該方法的研究工作,並已經在三峽庫區投入試驗應用階段,同時開展了與之相關的定量數據分析理論研究。
所埋設電纜即是感測器,又可傳輸測試信號;該方法相對於深部位移鑽孔傾斜儀監測具有安裝簡單、使用安全和經濟實用等特點。
3.3.3激光掃描技術
該技術在歐美等發達國家應用較早,我國近期開始逐漸引進。主要是用於建築工程變形監測以及實景再現,隨著掃描距離的加大,逐漸向地質災害調查和監測方向發展。
該技術通過激光束掃描目標體表面,獲得含有三維空間坐標信息的點雲數據,精度較高。應用於地質災害監測,可以進行災害體測圖工作,其點雲數據可以作為地質災害建模、地質災害監測的基礎數據。
3.3.4核磁共振技術(NUMIS)
核磁共振技術是國際上較為先進的一種用來直接找水的地球物理新方法。它應用核磁感應系統,通過從小到大地改變激發電流脈沖的幅值和持續時間,探測由淺到深的含水層的賦存狀態。我國於近期開始引進和研究,目前已經在三峽庫區的部分滑坡體進行了應用試驗,效果較好。
應用於地質災害監測,可以確定地下是否存在地下水、含水層位置以及每一含水層的含水量和平均孔隙度,進而可以獲知如滑坡面的位置、深度、分布范圍等信息,從而對滑坡體進行穩定性評價,並對滑坡體的治理提出科學依據。
3.3.5合成孔徑干涉雷達技術(InSAR)
運用合成孔徑雷達干涉及其差分技術(InSAR及D-InSAR)進行地面微位移監測,是20世紀90年代逐漸發展起來的新方法。該技術主要用於地形測量(建立數字化高程)、地面形變監測(如地震形變、地面沉降、活動構造、滑坡和冰川運動監測)及火山活動等方面。
同傳統地質災害監測方法相比,具有如下特點:
(1)覆蓋范圍大;
(2)不需要建立監測網;
(3)空間解析度高,可以獲得某一地區連續的地表形變信息;
(4)可以監測或識別出潛在或未知的地面形變信息;
(5)全天候,不受雲層及晝夜影響。
但由於系統本身因素以及地面植被、濕度及大氣條件變化的影響,精度及其適用性還不能滿足高精度地質災害監測。
為了克服該技術在地面形變監測方面的不足,並提高其精度,國內外技術人員先後引入了永久散射點(PS)的技術和GPS定位技術,使InSAR技術在城市及岩石出露較好地區地面形變監測精度大大提高,在一定的條件下精度可達到毫米級。永久散射(PS)技術通過選取一定時期內表現出穩定干涉行為的孤立點,克服了許多妨礙傳統雷達干涉技術的解析度、空間及時間上基線限制等問題。
隨著衛星雷達系統資源的改進和發展,以及相應數據處理軟體的提高,該技術在地質災害監測領域的應用將趨於成熟。
3.4地質災害監測技術的優化集成
3.4.1問題的提出
(1)監測方法的適應性。對於各種監測方法所使用的監測儀器設施,均有各自的應用方向和使用技術要求;針對不同地質災害災種、類型,其使用技術要求(包括測點布設模式、安裝使用技術要求等)不同。
(2)地質災害不同的發展階段。對於崩塌、滑坡等突發性地質災害,不同發展階段所適用的監測方法和儀器設施各異,監測數據採集周期頻度不同。
(3)監測參數與監測部位。實踐證明,一方面,不同的監測參數(地表位移、深部位移、應力、地下水動態、地聲等)在不同類型的災害體監測中具有不同程度的表現優勢;另一方面,同一災害體不同部位的監測參數隨時間變化趨勢特點並不相同,即存在反映災害體關鍵部位特徵的監測點,又存在僅反映局部單元(不具有明顯的代表性,甚至是孤立的)特徵的監測點。因此,監測要素(監測參數、監測部位)的優化選擇,是整個監測設計工作的基礎。
(4)自動化程度。決定於設備的集成度、控制模式、數據標准化程度和信息發布方式。
(5)經濟效益。決定於地質災害的規模、危害程度、監測技術組合、設備選型等因素。
3.4.2設計原則
地質災害監測技術優化集成方案遵循以下原則:
(1)監測技術優化原則:針對某一類型地質災害,確定優勢監測要素,進行監測內容、監測方法優化組合,使監測工作高效、實用。
(2)經濟最優原則:首先,不過於追求高、精、尖的監測技術,而應選擇發展最為成熟、應用程度較高的監測技術;其次,對於危害程度較大的大型地質災害體,可選擇專業化程度較高的監測技術方法,由專業人員進行操作、維護,對於危害程度低,規模小的災害體,可選擇操作簡單、結果直觀的宏觀監測技術,由群測群防級人員進行操作。
3.4.3最終目標
根據不同種類地質災害和不同類型地質災害的物質組成、動力成因類型、變形破壞特徵、外形特徵、發育階段等因素,研究適用於不同類型地質災害的監測要素(監測參數、監測點位的集合)、監測方法、監測點網的時空布置模式、監測技術要求,建立典型地質災害監測的優化集成方案。