當前位置:首頁 » 地質工程 » 岩土體工程地質特徵內容

岩土體工程地質特徵內容

發布時間: 2021-03-03 14:52:22

⑴ 某某工程岩土體工程性質淺析 某某地區地質災害防治技術探討 某某工程工程地質條件淺析 某某礦區水文地質

你丫的這什麼問題

⑵ 岩土體的工程地質分類和鑒定

一、岩體

(一)岩體(岩石)的基本概念岩體(岩石)是工程地質學科的重要研究領域。岩石和岩體的內涵是有區別的兩個概念,又是密不可分的工程實體。在《建築岩土工程勘察基本術語標准》(JG J84-92)中給出的岩石定義是:天然產出的具有一定結構構造的單一或多種礦物的集合體。岩石的結構是指岩石組成物質的結晶程度、大小、形態及其相互關系等特徵的總稱。岩石的構造是指岩石組成物質在空間的排列、分布及充填形式等特徵的總稱。所謂岩體,就是地殼表部圈層,經建造和改造而形成的具有一定岩石組分和結構的地質體。當它作為工程建設的對象時,可稱為工程岩體。岩石是岩體內涵的一部分。

岩體(岩石)的工程分類,可以分為基本分類和工程個項分類。基本分類主要是針對岩石而言,根據其地質成因、礦物成分、結構構造和風化程度,用岩石學名稱加風化程度進行分類,如強風化粗粒黑雲母花崗岩、微風化泥質粉砂岩等。岩石的基本分類,在本書第一篇基礎地質中有系統論述。工程個項分類,是針對岩體(岩石)的工程特點,根據岩石物理力學性質和影響岩體穩定性的各種地質條件,將岩體(岩石)個項分成若干類別,以細劃其工程特徵,為岩石工程建設的勘察、設計、施工、監測提供不可缺少的科學依據,使工程師建立起對岩體(岩石)的明確的工程概念。岩石按堅硬程度分類和按風化程度分類即為工程個項分類。

在岩體(岩石)的各項物理力學性質中,岩石的硬度是岩體最典型的工程特性。岩體的構造發育狀況體現了岩體是地質體的基本屬性,岩體的不連續性及不完整性是這一屬性的集中反映。岩石的硬度和岩體的構造發育狀況是各類岩體工程的共性要點,對各種類型的工程岩體,穩定性都是最重要的,是控制性的。

岩石的風化,不同程度地改變了母岩的基本特徵,一方面使岩體中裂隙增加,完整性進一步被破壞;另一方面使岩石礦物及膠結物發生質的變化,使岩石疏軟以至鬆散,物理力學性質變壞。

(二)岩石按堅硬程度分類

岩石按堅硬程度分類的定量指標是新鮮岩石的單軸飽和(極限)抗壓強度。其具體作法是將加工製成一定規格的進行飽和處理的試樣,放置在試驗機壓板中心,以每秒0.5~1.0M Pa的速度加荷施壓,直至岩樣破壞,記錄破壞荷載,用下列公式計算岩石單軸飽和抗壓強度:

深圳地質

式中:R為岩石單軸飽和抗壓強度,單位為MPa;p為試樣破壞荷載,單位為N;A為試樣截面積,單位為mm2

對岩石試樣的幾何尺寸,國家標准《工程岩體試驗方法標准》(GB/T50266-99)有明確的規定,試樣應符合下列要求:①圓柱體直徑宜為48~54mm;②含大顆粒的岩石,試樣的直徑應大於岩石的最大顆粒尺寸的10倍;③試樣高度與直徑之比宜為2.0~2.5。

在此標准發布之前,岩石抗壓強度試驗的試樣尺寸要求如下:極限抗壓強度大於75M Pa時,試樣尺寸為50mm×50mm×50mm立方體;抗壓強度為25~75MPa時,試樣尺寸為70mm×70mm×70mm立方體;抗壓強度小於25MPa時,試樣尺寸為100mm×100mm×100mm立方體。

(G B/T 50266-99)的規定顯然是為了方便取樣,以金剛石鑽頭鑽探,取出的岩心進行簡單的加工,即可成為抗壓試樣。岩樣的尺寸效應對岩石抗壓強度是略有影響的。

岩石按堅硬程度分類,各行業的有關規定,雖然各自表述方式有所區別,但其標準是基本一致的(表2-2-1)。

表2-2-1 岩石堅硬程度分類

除了以單軸飽和抗壓強度這一定量指標確定岩石堅硬程度外,尚可按岩性鑒定進行定性劃分。國標:建築地基基礎設計規范(GB50007-2002)按表2-2-2進行岩石堅硬程度的定性劃分。其他規范的劃分標准大同小異。

表2-2-2 岩石堅硬程度的定性劃分

岩石堅硬程度的劃分,無論是定量的單軸飽和抗壓強度,還是加入了風化程度內容的定性標准,都是用於確定小塊岩石的堅硬程度的。岩石的單軸飽和抗壓強度是計算岩基承載力的重要指標。

(三)岩石按風化程度分類

關於岩石風化程度的劃分及其特徵,國家規范和各行業的有關規范中均有規定,其分類標准基本一致,表述略有差異。表2-2-3至表2-2-10是部分規范給出的分類標准。

表2-2-3《工程岩體分級標准》(GB50218-94)岩石風化程度劃分表

表2-2-4《岩土工程勘察規范》(GB50021-2001)岩石按風化程度分類表

續表

表2-2-5《公路橋涵地基與基礎設計規范》(JTJ024-85)岩石風化程度劃分表

表2-2-6《水利水電工程地質勘察規范》(GB50287-99)岩體風化帶劃分表

《港口工程地質勘察規范》(JTJ240-97)、《港口工程地基規范》(JTJ250-98)岩體風化程度的劃分按硬質、軟質岩體來劃分,硬質岩石岩體風化程度按表2-2-7劃分。軟質岩石岩體風化程度按表2-2-8劃分。

表2-2-7 硬質岩石岩體風化程度劃分表

表2-2-8 軟質岩石岩體風化程度劃分表

表2-2-9《地下鐵道、輕軌交通岩土工程勘察規范》(GB5037-1999)岩石風化程度分類表

續表

表2-2-10 廣東省《建築地基基礎設計規范》(DBJ15-31-2003)岩石風化程度劃分表

國家標准《建築地基基礎設計規范》(GB5007-2002)對岩石的風化只有第4.1.3條作如下敘述:岩石的風化程度可分為未風化、微風化、中風化、強風化和全風化。未列表給出風化特徵,但在岩石堅硬程度的定性劃分中(表A.0.1)把不同風化程度的岩石歸類到了岩石堅硬程度的類別中。

深圳市標准:《地基基礎勘察設計規范》(報批稿)關於岩石風化程度的劃分標准,基本採用了《地下鐵道、輕軌交通岩土工程勘察規范》GB(50307-1999)的表述形成和內容(表2-2-9),文字略有調整。

縱觀各類規范對岩石風化程度的劃分,可以看出:

1)除個別規范未列出未風化一類外,岩石風化程度的劃分均為未風化、微風化、中等(弱)風化、強風化和全風化。特徵描述簡繁不一,中等風化與弱風化相對應的風化程度略有差別。

2)風化程度的特徵描述,主要是岩石的結構構造變化、節理裂隙發育程度、礦物變化、顏色變化、錘擊反映、可挖(鑽)性等方面來定性劃定。部分規范用波速和波速比及風化系數來定量劃定是對岩石風化程度確定的有力支撐。

3)從新鮮母岩到殘積土的風化過程是連續的,有些規范把殘積土的特徵描述放在岩石風化程度劃分表中,有一定的道理。國際標准:ISO/TC182/SC,亦將風化程度分為五級,並列入了殘積土。從工程角度考慮,殘積土對母岩而言已經發生了全面質的變化,物理力學性質和對它的理論研究已屬松軟土,表中對殘積土特徵的表述對區別殘積土與全風化岩是有現實意義的。

4)國家標准:《工程岩體分級標准》中「岩石風化程度的劃分」(表2-2-3)看似簡單,規范「條文說明」解釋了這一現象,表2-2-3關於岩石風化程度的劃分和特徵的描述,僅是針對小塊岩石,為表2-2-2服務的,它並不代表工程地質中對岩體風化程度的定義和劃分。表2-2-2是把岩體完整程度從整個地質特徵中分離出去之後,專門為描述岩石堅硬程度作的規定,主要考慮岩石結構構造被破壞,礦物蝕變和顏色變化程度,而把裂隙及其發育情況等歸入岩體完整程度這另一個基本質量分級因素中去。

5)上述列表中可以看出,某些規范把硬質岩石和軟質岩石的風化程度劃分區別開來,而《工程岩體分級標准》中「岩石堅硬程度的定性劃分」表(2.2-2)將風化後的硬質岩劃入軟質岩中。這里有兩個概念不可混淆:一是從工程角度看,硬質岩石風化後其工程性質與軟質岩相近,可等同於軟質岩;二是新鮮岩石中是存在軟質岩的,如深圳的泥質砂岩、泥岩、頁岩等。

6)相鄰等級的風化程度其界線是漸變的、模糊的,有時不一定能劃出5個完整的等級,如碳酸鹽類岩石。在實際工作中要按規范的標准,綜合各類信息,結合當地經驗來判斷岩石的風化等級。

(四)岩體的結構類型

在物理學、化學及其地質學等學科中對「結構」這一術語的概念是明確的,但有各自的含義,如原子結構、分子結構、晶體結構、礦物結構、岩石結構、區域地質結構、地殼結構等等,岩體作為工程地質學的一個主要研究對象,提出「岩體結構」術語的意義是十分明確的。

岩體結構有兩個含義,可以稱之為岩體結構的兩個要素:結構面和結構體。結構面是指層理、節理、裂隙、斷裂、不整合接觸面等等。結構體是岩體被結構面切割而形成的單元岩塊和岩體。結構體的形狀是受結構面的組合所控制的。

事實上,所有與岩石有關的工程,除建築材料外,都是與有較大幾何尺寸的岩體打交道,岩石經過建造成岩(岩漿岩的浸入,火山岩的噴出,沉積岩的層狀成沉積,變質岩的混合與動力變質)及後期的改造(褶皺、斷裂、風化等),使得岩體的完整性遭到了巨大的破壞,成為了存在大量不同性質結構面的現存岩體。為了給工程界一個明朗的技術路線,不妨以建造性結構面和改造性結構面(軟弱結構面)為基礎,從各自側面首先對岩體結構基本類型進行研究,其次將兩方面的成果加以綜合,即可得出關於岩體結構基本類型的完整概念(圖2-2-1)。

(1)以建造性結構面為主的岩體結構基本類型的劃分(表2-2-11)

表2-2-11 建造性結構面的岩體結構分類

(2)以改造性結構面(軟弱結構面)為主的岩體結構類型的劃分(表2-2-12)

表2-2-12 改造結構面為主的岩體結構分類

圖2-2-1 岩體結構示意圖

(3)由建造性結構面和改造性結構面形成的三維岩體

三維岩體表現出了復雜多變的岩體結構特徵,將其綜合歸納,形成了較系統的岩體結構類型(表2-2-13)。

表2-2-13 岩體結構類型及其特徵

表中表述的岩體結構類型及其特徵基本上涵蓋了深圳地區岩體的全部結構類型。

(4)岩體完整程度的劃分

地質岩體在建造和改造的過程中,岩體被風化、被結構面切割,使其完整性受到了不同程度的破壞。岩體完整程度是決定岩體基本質量諸多因素中的一個重要因素。影響岩體完整性的因素很多,從結構面的幾何特徵來看,有結構面的密度,組數、產狀和延展程度,以及各組結構面相互切割關系;從結構面形狀特徵來看,有結構面的張開度、粗糙度、起伏度、充填情況、水的賦存等。從工程岩體的穩定性著眼,應抓住影響穩定性的主要方面,使評判劃分易於進行。在國標:《工程岩體分級標准》(GB50218-94)中,規定了用結構面發育程度、主要結構的結合程度和主要結構面類型作為劃分岩體完整程度的依據,以「完整」到「極破碎」的形象詞彙來體現岩體被風化、被切割的劇烈變化完整程度(表2-2-14)。

表2-2-14 岩體完整程度的定性分類表

在1994版的《岩土工程勘察規范》中,未見此表。很明顯,此表在《工程岩體分級標准》中出現後,在2001版修訂後的《岩土工程勘察規范》中得到了確認和使用。

(五)岩體基本質量分級

自然界中不同結構類型的岩體,有著各異的工程性質,岩石的硬度、完整程度是決定岩體基本質量的主要因素。在工程實踐中,系統地認識不同質量的工程岩體,針對其特徵性採取不同的設計思路和施工方法是科學進行岩體工程建設的關鍵。

1994年,國家標准《工程岩體分級標准》(50218-94)給出了岩體基本質量分級的標准(表2-2-15)。在此之前發布的國家標准《岩土工程勘察規范》(GB50021-94),該表是作為洞室圍岩質量分級標準的。在2001年修訂的《岩土工程勘察規范》(GB50021-2001)中,岩體基本質量分級以表2-2-15的形式來分類,岩體基本質量等級按表2-2-16分類。

表2-2-15 岩體基本質量分級

表2-2-16 岩體基本質量等級分類

(六)岩體圍岩分類

地鐵、公路、水電、鐵路以及礦山工程等行業,均有地下洞室和隧道(巷道)開挖,工程勘察均需對工程所處的圍岩進行分類。不同的規范對圍岩的分類方法略有不同。

1.隧道圍岩

《地下鐵道、輕軌交通岩土工程勘察規范》(GB50307-1999)和《公路工程地質勘察規范》(JTJ064-98)規定,隧道圍岩分類按表2-2-17劃分。

表2-2-17 隧道圍岩分類

續表

2.圍岩工程地質

《水利水電工程地質勘察規范》(GB50287-99)規定,在地下洞室勘察時,應進行圍岩工程地質分類。分類應符合表2-2-18規定。

表2-2-18 圍岩工程地質分類

上表中的圍岩總評分T為岩石強度、岩體完整程度、結構面狀態、地下水和主要結構面產狀5項因素之和。各項因素的評分辦法在該規范中均有明確規定。圍岩強度應力比亦有專門的公式計算。

3.鐵路隧道圍岩

《鐵路工程地質勘察規范》(TB10012-2001)規定,隧道工程地質調繪時,應根據地質調繪、勘探、測試成果資料,綜合分析岩性、構造、地下水及環境條件,按表2-2-19分段確定隧道圍岩分級。

表2-2-19 鐵路隧道圍岩的基本分級

續表

該規范還規定,鐵路隧道圍岩分級應根據圍岩基本分級,受地下水,高地應力及環境條件等影響的分級修正,綜合分析後確定。關於岩體完整程度的劃分,地下水影響的修正,高地應力影響的修正及環境條件的影響,規范中都有明確的規定。

4.井巷工程圍岩

礦山工程中的井巷工程,其功能和結構更為多樣,所以井巷工程對圍岩的分類更加詳盡,各種定性和定量指標明顯多於其他標准。《岩土工程勘察技術規范》(YS5202-2004、J300-2004)規定,井巷工程評定圍岩質量等級按表2-2-20劃分圍岩類別。

表2-2-20 井巷工程圍岩分類

續表

續表

5.工程岩體

國家規范:《錨桿噴射混凝土支護技術規范》(GB50086-2001)從工程岩體支護設計和施工的需要出發,給出圍岩分級表,與表2-2-20相比,僅少了Ⅵ、Ⅶ兩類,主要工程地質特徵少了岩石質量指標RQD和岩體及土體堅固性系數兩欄,其他完全相同。

(七)岩質邊坡的岩體分類

《建築邊坡工程技術規范》(GB50330-2002)對岩質邊坡的岩體分類方法,見表2-2-21

表2-2-21 岩質邊坡的岩體分類(GB50330-2002)

續表

表2-2-22 岩體完整程度劃分

(八)深圳地區岩體分類、鑒定中存在的問題和改進意見

1)深圳地區的建築工程除大量的房屋建築外,公路(道路)橋梁、水利、地鐵、鐵路等均有大量的投資建設,各行業對岩體質量等級的劃分在執行不同規范的分類標准。在當前情況下,這一狀況將繼續下去。但是,對某一岩體的不同分類標准,僅僅是某一行業的習慣性作法。宏觀上看不同分類標準的具體內容並無原則性的區別。無論採用哪種標准都不應該影響岩體評價的正確性。

2)岩體工程特性的評價中,岩體的結構分類應該受到足夠的重視。尤其是高大邊坡、地質災害評估等岩體結構對岩體穩定起主導作用的工程項目。只有採取多種科學勘察手段和縝密地進行分析,岩體的結構特徵才能弄清楚。

3)岩石風化程度的判斷,現場工作除很具經驗的野外觀察和標准貫入試驗外,應多採用岩體波速測試方法,使之成為常用方法之一。准確的波速測試結果,可能比標貫試驗所得結果更能准確地判斷岩石的風化程度。

4)岩石的風化程度是隨埋藏深度的增加而減弱的,風化岩石的強度則是隨埋藏深度的增加而增加的。為了充分發揮地基承載力,深圳市地基基礎勘察設計規范(送審稿)將厚層花崗岩強風化帶分為上、中、下3個亞帶,其劃分方法見表2-2-23。

表2-2-23 厚層花崗岩強風化帶細分

需要指出的是,花崗岩的風化規律一般是上部風化嚴重,隨深度增加而減弱,但也有個別情況,有時隨深度增加風化程度並無明顯變化,故在劃分風化亞帶時,應視強風化帶的厚度和風化程度改變的深淺,也可以劃分一個亞帶或兩個亞帶,不可強求一律劃分為3個亞帶。

龍崗區的碳酸鹽類岩石——灰岩、白雲岩、大理岩等基本上不存在全風化和強風化層。由於構造的影響或是其他某種原因(如表面溶蝕劇烈),可能岩石的裂隙比較發育,塊度比較小。

二、土體

(一)土體的含義及其工程地質分類

土是泛指還沒有固結硬化成岩石的疏鬆沉積物。土是堅硬岩石經過破壞、搬運和沉積等一系列作用和變化後形成的。土多分布在地殼的最上部。工程地質學把土看作與構成地殼的其他岩石一樣,均是自然歷史的產物。土的形成時間、地點、環境以及形成的方式不同,其工程地質特性也不同。因此在研究土的工程性質時,強調對其成因類型和地質歷史方面的研究具有特殊重要意義。

土的工程地質分類有以下特點:①分類涵蓋自然界絕大多數土體;②同類或同組的土具備相同或相似的外觀和結構特徵,工程性質相近,力學的理論分析和計算基本一致;③獲取土的物理力學指標的試驗方法基本相同;④工程技術人員,從土的類別可以初步了解土的工程性質。

土的工程地質分類是以鬆散粒狀(粗粒土)體系和鬆散分散(細粒土)體系的自然土為對象,以服務於人類工程建築活動為目的的分類。分類的任務是將自然土按其在人類工程建築活動作用下表現出的共性劃分為類或組。

合理的工程地質分類,具有以下實際用途:①根據土的分類,確定土的名稱,它是工程地質各種有關圖件中劃分土類的依據;②根據各類土的工程性質,對土的質量和建築性能提出初步評價;③根據土的類型確定進一步研究的內容、試驗項目和數量、研究的方法和方向;④結合反映土體結構特徵的指標和建築經驗,初步評價地基土體的承載能力和斜坡穩定性,為基礎和邊坡的設計與施工提供依據。

土的工程地質分類有普通的和專門的兩類。普通分類的劃分對象包括人類工程活動可能涉及的自然界中的絕大多數土體,適用於各類工程,分類依據是土的主要工程地質特徵,如碎石土、砂土、黏性土等。專門分類是為滿足某類工程的需要,或者根據土的某一或某幾種性質而制定的分類,這種分類一般比較詳細,比如砂土的密實度分類,黏性土按壓縮性指標分類等等。應當指出的是,普通分類與專門分類是相輔相成的,前者是後者的基礎,後者是前者的補充和深化。

(二)國外土的工程分類概況

近幾十年來,國外在土的工程地質分類研究方面有很大進展,工業和科學技術發達的主要國家,都分別先後制定了各自全國統一的分類標准(表2-2-24)。其中英國、日本、德國的分類均以美國分類為藍本,結合各自國情適當調整、修改而制定的。

表2-2-24 一些國家的土質分類簡況

上述各國的土質分類,都採用了統一分類體系和方法,不僅使各自國內對土質分類有了共同遵循的依據,而且體現了國際統一化的趨勢,以促進國際交流與合作。

下列美國的統一分類法(表2-2-25)作為樣本,以了解國外分類的標准和方法。

表2-2-25 美國的土的統一分類法

續表

(三)國內土的工程分類

1.統一分類法

1990年,國家標准《土的分類標准》(GBJ 145-90)發布,並於1991年8月起執行。在此之前或之後,水利水電、公路交通等行業土的分類標准與GBJ 145-90標准沒有明顯區別。(GBJ 145-90)土的分類如表2-2-26和表2-2-27所示。

表2-2-26 粒組的劃分

表2-2-27 土質分類表

2.建築分類法

國標《建築地基設計規范》(GB50007-2002)土的分類方法(簡稱:建築分類法)如表2-2-28。這是從早期《工業與民用建築地基基礎設計規范》(TJ7-74)(試行)到《建築地基基礎設計規范》(GBJ7-89)一直延續下來的土的分類標准。在TJ7-74規范之前,我國一直沿用前蘇聯規范(HИTY127-55)。建築分類法在房屋建築地基基礎工程或類似的工程中廣泛運用,這在不少行業規范中得以反映,此分類方法也為廣大工程技術人員所熟知。目前深圳除公路、鐵路行業外,大多採用此分類標准,並納入到深圳市的地方標准之中。

表2-2-28 土的分類

(四)土的狀態分類

土的狀態分類屬專門分類。對於某種行業或某類工程,土的狀態標準是有所區別的,現以《岩土工程勘察規范》(50021-2001)中規定的最常用的分類標准,對碎石土、砂土、粉土的密實度和對粉土的濕度及黏性土的狀態進行分類,見表2-2-29至表2-2-34。

表2-2-29 碎石土密實度按M63.5分類

表2-2-30 碎石土密實度按N120分類

表2-2-31 砂土密實度分類

表2-2-32 粉土密實度分類

表2-2-33 粉土濕度分類

表2-2-34 黏性土狀態分類

(五)土的現場鑒別方法

1.碎石土密實度現場鑒別方法(表2-2-35)

表2-2-35 碎石土密實度現場鑒別

2.砂土分類現場鑒別方法(表2-2-36)

表2-2-36 砂土分類現場鑒別

3.砂土密實度現場鑒別方法(表2-2-37)

表2-2-37 砂土密實度現場鑒別

4.砂土濕度的現場鑒別方法(表2-2-38)

表2-2-38 砂土濕度現場鑒別

5.粉土密實度現場鑒別方法(表2-2-39)

表2-2-39 粉土密實度現場鑒別

6.粉土濕度現場鑒別方法(表2-2-40)

表2-2-40 粉土濕度現場鑒別

7.黏性土狀態現場鑒別方法(表2-2-41)

表2-2-41 黏性土狀態現場鑒別

8.有機質土和淤泥質土的分類

土按有機質分類和鑒定方法,《岩土工程勘察規范》(GB50021—2001)的分類方法見表2-2-42。深圳市沿海近岸地區存在大量淤泥或淤泥質土,在上更新統(Q3)的雜色黏土中,有一層泥炭質土,局部有泥炭層發育。

表2-2-42 土按照有機質分類

(六)土的定名和描述

1.統一分類法定名

1)巨粒土和含巨粒的土、粗粒土按粒組、級配、所含細粒的塑性高低可劃分為16種土類;細粒土按塑性圖、所含粗粒類別以及有機質多寡劃分16種土類。

2)土的名稱由一個或一組代號組成:一個代號即表示土的名稱,由兩個基本代號構成時,第一個代號表示土的主成分,第二個代號表示副成分(土的級配或土的液限);由3個基本代號構成時,第一個代號表示土的主成分,第二個代號表示液限;第三個代號表示土中微含的成分。

《土的分類標准》(G B J145-90),對特殊土的判別,列出了黃土,膨脹土和紅黏土。對花崗岩殘積土並沒有特別加以說明。根據深圳有關單位的經驗,花崗岩殘積土中的礫質黏性土相當於G B J145-90中的含細粒土礫,代號GF;砂質黏性土相當於細粒土質礫,代號GC-GM;黏性土相當於高液限粉土一低液限粉土,代號M H-M L。對淤泥和淤泥質土,G B J145-90分的不細,從工程需要出發,淤泥和淤泥質土的分類宜按建築行業標准。

2.建築行業定名

建築行業定名依照下列幾個標准:

1)土名前冠以土類的成因和年代。

2)碎石土和砂土按顆粒級配定名。

3)粉土以顆粒級配及塑性指數定名。

4)黏性土以塑性指數定名。

5)對混合土按主要土類定名並冠以主要含有物,如含碎石黏土,含黏土角礫等。

6)對同一土層中有不同土類呈韻律沉積時,當薄層與厚層的厚度比大於三分之一時,宜定為「互層」;厚度比為十分之一至三分之一時,宜定為「夾層」;厚度比小於十分之一的土層且多次出現時,宜定為「夾薄層」。當土層厚度大於0.5m時,宜單獨分層。

3.土的描述內容

(1)當按統一分類法(GBJ145-90)定名時,應按下列內容描述

1)粗粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;土顆粒形狀(圓、次圓、稜角或次稜角);土顆粒的礦物成分;土顏色和有機質;所含細粒土成分(黏土或粉土);土的代號和名稱。

2)細粒土:通俗名稱及當地名稱;土顆粒的最大粒徑;巨粒、礫粒、砂粒組的含量百分數;潮濕時土的顏色及有機質;土的濕度(干、濕、很濕或飽和);土的狀態(流動、軟塑、可塑或硬塑);土的塑性(高、中或低);土的代號和名稱。

(2)當按建築分類法(GB50007-2002)定名時,應按下列內容描述

1)碎石土:名稱、顆粒級配、顆粒排列、渾圓度、母岩成分、風化程度、充填物的性質和充填程度、膠結性、密實度及其他特徵。

2)砂土:名稱、顏色成分、顆粒級配、包含物成分及其含量、黏粒含量、膠結性、濕度、密實度及其他特徵。

3)粉土:名稱、顏色、包含物成分及其含量、濕度、密實度、搖振反應及其他特徵。

4)黏性土:名稱、顏色、結構特徵、包含物成分及其含量、搖振反應、光澤反應、干強度、韌性、異味及其他特徵。

5)特殊性土:除應描述上述相應土類的內容外,尚應描述其特徵成分和特殊性質,如對淤泥尚需描述臭味、有機質含量;對填土尚需描述物質成分、堆積年代、密實度和均勻程度等。

6)互層(夾層)土:對具有互層、夾層、夾薄層特徵的土,尚應描述各層的厚度及層理特徵。

⑶ 粘土化蝕變軟岩的工程地質特性

一、蒙脫石化蝕變岩的發育特徵

我們在滇藏鐵路滇西北段野外地質調查過程中,發現了多處工程性質極差的火成岩和玄武岩的蝕變岩,它們主要分布在洱海東側的禾洛山隧道、大墓坪隧道及公路邊坡的露頭上;在洱海東、鶴慶北衙等地還發現了多處蝕變岩脈遭受侵蝕後形成的深切溝槽,它們很可能標志著蝕變岩的分布。

1.蝕變岩的宏觀地質特徵

(1)康廊村蝕變岩帶

在洱海東岸康廊村一帶,沿D1k白雲質灰岩中的裂隙帶發育閃長岩脈,岩脈寬達4.5 m,走向80°,近直立,岩脈與灰岩交界處形成鍾乳狀的方解石,在後期的構造活動和熱液作用下閃長岩脈發生蝕變,呈軟弱泥狀(圖12-1)。

(2)禾洛山隧道的蝕變岩

在禾洛山隧道一帶,發育近SN向的斷裂帶,二疊系玄武岩常沿斷裂帶遭受熱液作用、產生蝕變。在隧道北口西側,玄武岩擠壓破碎明顯,蝕變程度不同的深褐色蝕變岩與褐黃色蝕變岩交替出現,構成寬達15 m的蝕變帶(圖12-2)。由於蝕變岩體與隧道近於平行,隧道斷面不得不擴挖並採用弧形板支護。在山體西側,施工便道開挖的邊坡在半年內即風化成砂,覆蓋於母岩之上,厚達3~5 cm,這顯然與玄武岩蝕變作用引起的性質蛻化有關。

(3)康海村蝕變岩帶

位於雙廊鎮康海村北的山體主要由二疊系灰色石灰岩構成,沿斷裂帶間斷出現玄武岩。受蝕變作用影響,玄武岩風化程度高。二疊系石灰岩常沿斷層方向或岩脈產生溶蝕,出現岩溶裂隙或寬大裂縫。鐵路從該蝕變帶附近以邊坡形式通過,在斷裂帶和玄武岩復合部位的邊坡易於風化剝落。

(4)大墓坪隧道的蝕變岩帶

大墓坪隧道圍岩為層狀玄武岩,產狀290°∠30°,隧道軸走向340°,圍岩中發育較多的NE向構造節理,且有煌斑岩侵入跡象。玄武岩沿節理蝕變現象明顯,蝕變後呈紫紅色、灰綠色、米黃色等,且性質軟弱。

圖12-1 洱海東岸康廊村一帶蝕變岩特徵

圖12-2 禾洛山隧道北口蝕變岩特徵

(5)奔子欄西北的蝕變岩

在德欽奔子欄西北,214國道邊坡由玄武岩構成,節理密集發育,屬斷層影響帶,斜坡表層蝕變風化現象明顯,玄武岩成為淺黃綠色泥礫質蝕變物,其中夾雜石膏脈和黃鐵礦斑點,說明它們遭受過低溫熱液礦化作用。蝕變岩風化後呈豆腐渣狀,在蝕變岩分布區出現多處邊坡滑塌現象。

2.粘土化蝕變岩的物質組成

經蝕變的岩體多呈鬆散狀,經後期錯動或風化後呈土狀。在不少情況下,蝕變物與原岩或圍岩交錯鑲嵌在一起。通過野外系統取樣進行粒度分析,蝕變岩的粒度組成因蝕變程度的不同而有所差異,不少蝕變岩<5 μm粘粒含量達50%以上,最高達71.84%(表12-1),這也是蝕變後的岩石極易風化的原因之一。

表12-1 滇藏鐵路滇西北段蝕變岩的粒度分析結果

粘土礦物含量和組成是決定蝕變岩工程地質特性的物質基礎。本次研究中,分別對<2 μm樣品採用3種處理方法(懸液製成的定向片、乙二醇飽和處理的定向片、550℃條件下加熱2小時的定向片)進行粘土礦物XRD定量測定。測試結果表明,滇西北強烈粘土化的土狀蝕變岩的粘土礦物成分全部為單礦物蒙脫石,蒙脫石相對含量達100%;蝕變程度較低的斑塊狀蝕變岩的粘土礦物成分由蒙脫石、伊利石、高嶺石和綠泥石組成,但蒙脫石相對含量也達到35%~82%(表12-2,圖12-3)。值得一提的是,組成蝕變岩粘土礦物的蒙脫石是以單礦物形式出現的,而不以混層礦物形式出現。採用SnCl2容量法測得的有效蒙脫石含量(絕對含量)多數在50%以上。這說明所研究的蝕變岩類型全部為蒙脫石化蝕變岩。

表12-2 蝕變帶粘土礦物組成定量測試結果

圖12-3 蝕變岩<5 μm粘粒的XRD定量測試結果

二、蒙脫石化蝕變岩的工程地質特性

1.物理性質和物理化學活性

室內測試表明,由於大量蒙脫石的存在,蒙脫石化蝕變岩在天然狀態下可保持較高的含水量(達40%以上),而乾燥後在水中崩解成泥狀、碎屑泥狀(表12-3)。蝕變岩的比表面積通常很高,一般在200 m2/g以上,有的高達507.66 m2/g,具有蝕變程度越高、比表面積越大的特點,這說明蝕變岩通常具有較高-很高的物理化學活性,在環境變化的條件下,極易誘發工程問題。

表12-3 蒙脫石化蝕變岩的物性指標和工程特性測試結果

2.膨脹勢

蒙脫石化蝕變岩屬於膨脹岩的一種地質成因類型,國外雖有現場膨脹勢的快速判別方法,但沒有定量指標。目前國內尚無統一的膨脹岩判別標准,多採用曲永新(1992)提出的不規則岩塊乾燥飽和吸水率指標進行判別,吸水率的大小反映膨脹勢的強弱。測試表明,多數樣品為強膨脹性的,少數為微膨脹性的(圖12-4)。為了揭示蝕變作用的工程效應和環境效應,張永雙等(2007)認為可以採用「蝕變系數」來反映蝕變岩的蝕變程度,其值為岩塊乾燥飽和吸水率與<0.5 mm岩粉吸水率的比值,表達式為:

滇藏鐵路沿線地殼穩定性及重大工程地質問題

式中,ζ——蝕變系數;

圖12-4 蝕變岩的蝕變程度和膨脹勢判別圖

Wb——岩塊乾燥飽和吸水率/%;

Wp——岩粉乾燥飽和吸水率/%。

蝕變系數反映岩石的蝕變程度,值越大蝕變程度越高,蝕變岩的膨脹性越強。

三、粘土化蝕變岩的形成條件及其分布規律

1.岩石蒙脫石化作用的形成條件

大面積區域蝕變岩的形成,常受控於區域內重大地質事件和地質作用,尤其是區域蝕變帶常與區域深斷裂的構造岩漿活動有關。因此,岩石類型、活動斷裂和流體作用是產生區域蝕變帶的前提,具有一定規模且穩定的熱源是促使岩石蝕變的動力條件。從工程地質的角度,蒙脫石化、伊利石化、高嶺石化尤其是蒙脫石化蝕變作用對工程的危害最嚴重,常成為工程地質研究中最受關注的對象。

大量研究表明,雖然硅酸鹽岩經過熱液作用都可以形成蒙皂石(蒙脫石),但不同岩石形成蒙脫石所需要的條件是不同的。由於蒙脫石硅氧四面體和鋁氧八面體晶層中普遍存在著Mg2+和Al3+的同晶置換作用,Mg2+是蒙脫石礦物晶格中不可缺少的化學成分,因此蒙脫石的形成必須有足夠的Mg2+參與。Mg2+的來源一般有3種途徑:①富含Mg的火成岩體本身,如輝綠岩、輝長岩、玄武岩等基性岩;②富Mg的圍岩,如白雲岩、白雲質灰岩、白雲質大理岩;③存在富含Mg2+的地下熱水作用。在對侵入體蒙脫石化工程地質預報中,不僅要充分注意侵入體和圍岩的礦物化學成分,還必須分析是否出現過熱液作用。通常,對後者的宏觀判別並不容易,可行的判別辦法主要有2個,一是調查熱液礦床和熱液蝕變岩帶的分布,二是調查溫泉和地下熱水的分布。橫斷山區是我國地熱活動高異常區,有大量溫泉分布,其中大理至德欽所經地區已發現溫泉(群)達69個之多,為圍岩蝕變提供了極為充分的條件。

2.滇藏鐵路滇西北段的主要蝕變岩類型

前人成果和野外實地調查表明,滇藏鐵路滇西北段的粘土化蝕變岩主要屬於岩漿期後的熱液蝕變岩,少量為火山岩的熱液蝕變。岩漿期後的熱液蝕變作用通常伴隨著淺成(次火山岩)的岩漿活動,由殘余熱液和揮發分的作用而發生的蝕變作用。一般遭受鹼性-微鹼性熱液作用的火成岩侵入體均可以發生蒙脫石化作用。岩漿期後的熱液蝕變岩按照母岩的岩性大致可劃分為:①輝綠岩、輝長岩脈的蝕變岩;②安山玢岩、閃長玢岩脈的蝕變岩;③酸性和鹼性岩脈的蝕變岩。在某些火山岩分布區,火山岩的蝕變通常是在鹼性-微鹼性富Mg熱水的作用下形成的。遭受蒙脫石化蝕變作用的岩體,其工程性質迅速蛻化,成為容易誘發工程問題的特殊岩土體。

根據蝕變岩的全岩XRD測定結果推測,洱海東側康海一帶蝕變岩的母岩可能為輝綠岩,禾洛山隧道北口為蝕變玄武岩,奔子欄北和康廊村蝕變岩的母岩可能為閃長玢岩,蝕變岩樣品中黃鐵礦和石膏的存在,表明它們為低溫熱液蝕變的產物(表12-4)。

表12-4 蝕變岩的全岩礦物組成的XRD測試結果

⑷ 工程地質學的主要內容(作者:石證明)

不是幾字能說清的,你自己去查吧 ,推薦《專門工程地質學》

⑸ 工程地質的研究內容

工程地質研究的主內容有:確定岩土組分、組織結構(微觀結構)、物理、化學與力學性質(特別是強度及應變)及其對建築工程穩定性的影響,進行岩土工程地質分類,提出改良岩土的建築性能的方法;研究由於人類工程活動的影響而破壞的自然環境的平衡,以及自然發生的崩塌、滑坡、泥石流及地震等物理地質作用對工程建築的危害及其預測、評價和防治措施;研究解決各類工程建築中的地基穩定性,如邊坡、路基、壩基、橋墩、硐室,以及黃土的濕陷、岩石的裂隙的破壞等,制定一套科學的勘察程序、方法和手段,直接為各類工程的設計、施工提供地質依據;研究建築場區地下水運動規律及其對工程建築的影響,制定必要的利用和防護方案;研究區域工程地質條件的特徵,預報人類工程活動對其影響而產生的變化,作出區域穩定性評價,進行工程地質分區和編圖。隨著大規模工程建設的發展,其研究領域日益擴大。除了岩土學和工程動力地質學、專門工程地質學和區域工程地質學外,一些新的分支學科正在逐漸形成,如礦山工程地質學、海洋工程地質學、城市工程地質及環境工程地質學、工程地震學。
1工程地質與岩土工程的區別工程地質是研究與工程建設有關地質問題的科學(張咸恭等著《中國工程地質學》)。工程地質學的應用性很強,各種工程的規劃、設計、施工和運行都要做工程地質研究,才能使工程與地質相互協調,既保證工程的安全可靠、經濟合理、正常運行,又保證地質環境不因工程建設而惡化,造成對工程本身或地質環境的危害。工程地質學研究的內容有:土體工程地質研究、岩體工程地質研究、工程動力地質作用與地質災害的研究、工程地質勘察理論與技術方法的研究、區域工程地質研究、環境工程地質研究等。岩土工程是土木工程中涉及岩石和土的利用、處理或改良的科學技術(國家標准《岩土工程基本術語標准》)。岩土工程的理論基礎主要是工程地質學、岩石力學和土力學;研究內容涉及岩土體作為工程的承載體、作為工程荷載、作為工程材料、作為傳導介質或環境介質等諸多方面;包括岩土工程的勘察、設計、施工、檢測和監測等等。由此可見,工程地質是地質學的一個分支,其本質是一門應用科學;岩土工程是土木工程的一個分支,其本質是一種工程技術。從事工程地質工作的是地質專家(地質師),側重於地質現象、地質成因和演化、地質規律、地質與工程相互作用的研究;從事岩土工程的是工程師,關心的是如何根據工程目標和地質條件,建造滿足使用要求和安全要求的工程或工程的一部分,解決工程建設中的岩土技術問題。
2工程地質與岩土工程的關系雖然工程地質與岩土工程分屬地質學和土木工程,但關系非常密切,這是不言而喻的。有人說:工程地質是岩土工程的基礎,岩土工程是工程地質的延伸,是有一定道理的。工程地質學的產生源於土木工程的需要,作為土木工程分支的岩土工程,是以傳統的力學理論為基礎發展起來的。但單純的力學計算不能解決實際問題,從一開始就和工程地質結下了不解之緣。與結構工程比較,結構工程面臨的是混凝土、鋼材等人工製造的材料,材質相對均勻,材料和結構都是工程師自己選定或設計的,可控的。計算條件十分明確,因而建立在材料力學、結構力學基礎上的計算是可信的。而岩土材料,無論性能或結構,都是自然形成,都是經過了漫長的地質歷史時期,在多種復雜地質作用下的產物,對其材質和結構,工程師不能任意選用和控制,只能通過勘察查明,而實際上又不可能完全查清。岩土工程師不敢相信單純的計算結果,單純的計算是不可靠的,原因就在於工程地質條件的不確知性和岩土參數的不確定性,不同程度地存在計算條件的模糊性和信息的不完全性。因而雖然土力學、岩石力學、計算技術取得了長足進步,並在岩土工程設計中發揮了重要作用,但由於計算假定、計算模式、計算方法、計算參數等與實際之間存在很多不一致,計算結果總是與工程實際有相當大的差別,需要進行綜合判斷。

⑹ 什麼工程地質

工程地質學 是地質學的一個分支,是調查、研究、解決與興建各類工程建築有關的內地質問題的科學容。其基本理論是岩土特性的成因控制論、岩土結構的結構控制論和人地調諧理論。主要研究人類活動與地質環境的相互作用,評價工程地質條件,預測在工程建築的作用下地質條件在空間、時間和強度上的變化,制定控制自然地質作用和工程地質作用以及地質災害的方法、對策方案和措施;進行岩土體的專門分類和工程地質分區,為國民經濟規劃布局和地質環境的合理應用與保護提供科學依據。工程地質學對國家經濟建設和社會發展中的作用是十分重要的。

⑺ 堆積體工程地質特徵

下咱日堆積體是壩址區體積最大的一個堆積體,由於緊靠壩址上游左岸,堆積體下游部分為電站進水口,研究下咱日堆積體的空間工程地質結構以及對其穩定性問題做出合理的分析判定,對於電站在施工及運營期間的安全性具有重要的意義。該堆積體分布高程從河邊至高程 1920 m,面積約 1. 5 km2,估計方量約 9800 × 104m3

下咱日堆積體分布於金沙江左岸上、下壩之間,根據堆積體的空間分布 ( 分布高程)及對工程的影響程度,大致以下咱日溝為界將堆積體分為Ⅰ、Ⅱ兩個區 ( 圖 6. 1. 1) 。Ⅰ區分布於上壩址左岸,下咱日溝西南側,靠河邊地形平緩且薄,地形較陡且厚度較大地段比正常蓄水位高約百餘米,對樞紐建築物影響較小; Ⅱ區分布於下咱日溝北側,緊鄰樞紐建築物,其分布位置及高程不僅影響樞紐建築物的布置,且水庫蓄水後堆積體的穩定對大壩的安全具直接影響,因此,勘察的重點、研究的重點皆在堆積體Ⅱ區,本次研究工作的重點亦為Ⅱ ( 以下所述內容均針對Ⅱ區) 。

圖 6. 1. 1 下咱日堆積體工程地質平面圖

6. 1. 1 堆積體空間分布特徵

6. 1. 1. 1 下咱日堆積體分布區地形特徵

根據堆積體分布區 1∶2000 地形等高線圖,為了能夠更直觀地分析堆積體的空間形態特徵,我們建立了下咱日堆積體三維地形等高線雲圖 ( 圖 6. 1. 2) 及坡度分布雲圖 ( 圖6. 1. 3) 。從中可以清晰看出整個堆積體大約分布有兩個較緩的台地,即: 高程 1540 ~1560 m 及高程 1610 m 以上,其地形坡比約為 10% ~ 32% 。其中高程 1560 ~ 1610 m 附近形成一陡坎,其地形坡比大約 95%。該陡坎上部為膠結較好的硬殼層,下部為具有較好層理狀結構並且具有一般膠結的礫石層,由於兩者強度上的差異在有些部位發育有 「洞穴」( 圖 6. 1. 4) ,甚至在局部還伴有局部小范圍的坍塌現象。

為了研究下咱日堆積體的分布區的地表水文地質特徵及空間流域分布,在研究過程中對其地表形態進行分析,建立了堆積體分布區的空間流域分布圖 ( 圖 6. 1. 5) 。從圖中可以看出,堆積體分布區主要地表徑流排泄通道為下咱日溝,該溝在分析區內其流域面積約為 8. 85 ×105m2。其餘由於常年的沖刷在堆積體表部 ( 尤其是下部台地) 處形成幾條較大的沖溝,也成為堆積體分布區內的小范圍的流域排泄通道 ( 圖 6. 1. 5)

圖 6. 1. 2 下咱日堆積體空間等高線分布

圖 6. 1. 3 下咱日堆積體空間坡度分布

圖 6. 1. 4 下咱日堆積體陡坎處分布的 「洞穴」

圖 6. 1. 5 下咱日堆積體空間流域分布

圖 6. 1. 6 顯示了水庫蓄水到正常設計水位高程 ( 1618 m) 時的堆積體的淹沒情況,下部紅色區域為水庫淹沒區,上部黃色區域為非淹沒區。從圖中可以看出,水庫蓄水後堆積體的陡坎及以下部分將處於水下。

圖 6. 1. 6 下咱日堆積體水庫淹沒分析

6. 1. 1. 2 堆積體三維空間結構及規模

為了探明堆積體的規模、成因及分布規律,中水顧問集團昆明勘察設計研究院針對堆積體共布置勘探鑽孔 19 個、勘探平洞 6 個、豎井 2 個,同時開展部分物探工作。各勘探點及勘探剖面布置見圖 6. 1. 1。根據現場鑽孔資料,堆積體最大厚度可達 118 m。

為進一步研究下咱日堆積體的三維空間結構形態特徵及其分布規模,以便為電站後期的設計及施工階段提供可靠的依據,我們根據現場地面調查、地形圖 ( 1∶2000) 、地質圖 ( 1∶2000) 、已有的上述鑽探及物探等資料建立了其相應的三維空間結構模型( 圖 6. 1. 7、圖 6. 1. 8) 。

從圖中可以看出下咱日堆積體總體上像一個裝滿東西的 「勺子」,其中部厚度較大,基覆面 ( 基岩與堆積體接觸界面,以下同) 中部下凹,呈 「勺」狀或 「鍋底」狀。從縱向上看,堆積體的底界面在三維空間總體上呈現為傾向河谷,傾角也由 35°左右逐漸變為水平,甚至前緣靠江邊部位出現反翹現象 ( 如Ⅲ、Ⅳ號剖面) ( 圖 6. 1. 8) 。橫向上,沿河谷方向,堆積體底界面總體上為傾向下游並在上、下游兩端逐漸翹起,且具有堆積體的厚度上游相對較薄、下游相對較厚的趨勢。

此外,從鑽孔勘查資料表明在基覆面的某些部位仍然保存有磨圓度很好,岩性成分相當復雜、含有不少本地區沒有的花崗岩類的卵礫石 ( 圖 6. 1. 9) ,且大都已經呈現完全膠結或半膠結成岩狀態,顯然是金沙江自上游數百公里外搬運而來。因此,在堆積體形成之前的一段時間內該部位應為古金沙江的古河槽 ( 圖 6. 1. 10) 。

圖 6. 1. 7 下咱日堆積體三維空間結構

6. 1. 2 堆積體工程地質結構

根據現場工程地質調研及鑽孔、平硐 209 等勘探資料,對下咱日堆積體主剖面 ( Ⅲ-Ⅲ剖面) 進行工程地質結構分區 ( 圖 6. 1. 11) ,並建立了其相應的三維工程地質結構分區( 圖 6. 1. 12) 。從上往下依次為:

6. 1. 2. 1 膠結、半膠結的砂、卵礫石層

該層位於堆積體的前部,其主要成分為具有層理狀的膠結、半膠結的砂、卵礫石層,組成物質成分較雜,以灰岩、玄武岩居多,部分為花崗岩、砂岩等卵、礫石。具 PD209及 PD221 揭露該層部為一層厚度較薄的膠結硬殼層,局部分布有崩坡積層、河流相沉積的卵礫石層及較大的滾石物質 ( 滾石最大可視粒徑可達 10 m) 。

圖 6. 1. 8 下咱日堆積體三維形態特徵

為進一步認識該層粒度分布特徵,分別在 PD209 內分別選取了四個試樣點進行了相應的粒度篩分試驗 ( 圖6. 1. 13) ,由於現場條件限制粒度篩分試樣大小為20 cm ×20 cm ×20 cm,且粒徑范圍為大於 1 cm 的顆粒。從頻率分布柱狀圖上可以看出在粒度分析范圍內絕大部分粒度小於 1 cm,粒徑 <1 cm 的顆粒最大可達 60%以上,平均含量約為 47. 2%。

通過鑽孔及平洞揭露,該層內部夾有粉細砂層。但通過地表調查及勘探成果分析,該層內部的粉細砂層在空間上的分布呈透鏡狀 ( 圖 6. 1. 14) ,分布不連續,其延展長度一般小於 5 m,且較為緻密並呈半膠結狀態,不具有成層性。從總體上不構成連續性的軟弱界面,不會影響堆積體的穩定性。

6. 1. 2. 2 土石混合體層

該層為冰磧成因的土石混合體層,具泥質膠結或呈架空結構特徵,其含石量大於40% ,現場平硐揭示,最大粒徑可達 3 m 左右,組成物質絕大部分為灰岩、玄武岩。

圖 6. 1. 9 鑽孔揭露堆積體底界 ( 基覆面) 分布的卵礫石層

圖 6. 1. 10 下咱日堆積體分布區古河槽及今河槽基岩面等高線 ( m) 圖

根據平洞 209 揭露,該層土石混合體在內部細觀結構上從坡體外部到內部大致可以劃分為兩個亞層 ( 圖 6. 1. 15) : 具有泥質膠結的土石混合體層及具有架空結構的堆石體層。其內部塊石粒徑較大,具有一定的磨圓度。其中具泥質膠結的土石混合體層,塊石構成的骨架內部空隙被粘土及粉土充填,填充成分較為緻密,透水性較弱; 具有架空結構的堆石體內部大塊體構成的骨架內部有粒徑較小的塊體填充,且塊體內部排列緊密,呈高度壓密狀態,深部可見局部有少量泥質充填成分。但從整體上這兩個亞層沒有明顯的界線,基本上呈逐漸過渡趨勢。

為了明確下咱日堆積體內部分布的這兩類岩土介質的粒度組成,為其抗剪強度研究提供依據,我們採用數字圖像處理技術對 PD209 所揭露的這類岩土體進行了大面積粒度分析試驗。

根據現場斷面特徵,選取土石閾值為2 cm,即: 粒徑 <2 cm 的顆粒將被視為 「土體」成分。因此對圖像所顯示的粒徑大於 2 cm 的顆粒進行統計,圖 6. 1. 16 顯示了兩組圖像顆粒提取過程。

圖6.1.11 下咱日堆積體地質結構剖面圖

圖 6. 1. 12 下咱日堆積體三維工程地質結構分區

圖 6. 1. 13 砂卵礫石層粒度分析成果

圖 6. 1. 14 下咱日堆積體內部呈透鏡狀分布的粉細砂層

圖 6. 1. 15 PD209 揭露的下咱日堆積體內部土石混和體層

圖 6. 1. 16 基於數字圖像處理技術對 PD209 內揭露冰水堆積層( 土石混合體) 進行粒度分析

根據上述方法,我們共對7組圖像進行了相應的粒度分析,累計分析總面積約26m2,圖6.1.17。從圖中可知該土石混合體的含石量(粒徑大於2cm的顆粒)分布范圍為30%~70%之間,平均含石量約52%,根據水利部行業標准《土工試驗規程》(SL237-1999)中的土的分類標准,該層岩土體應屬於混合巨粒土—巨礫混合土范疇。從圖6.1.16圖像處理圖上還可以看出該層土石混合體粒度分布及其不均勻。

圖6.1.17 各粒度分析試驗成果圖

6.1.2.3 基岩

二疊繫上統玄武質噴發岩(P2d),其岩性主要為灰、灰黑及紫灰色的玄武岩、杏仁狀玄武岩及火山角礫熔岩等,該層從上到下又可分為全風化、強風化、弱風化及新鮮基岩。根據鑽孔揭露顯示,除堆積體上部及Ⅲ號剖面揭露為全風化或強風化接觸外,絕堆積體下伏基岩大部分為弱風化玄武岩體。基岩接觸面處,根據鑽孔揭露堆積體物質基本處於超固結或膠結、半膠結狀態(圖6.1.18),接觸較為緊密,不可能成為堆積體失穩的軟弱界面。

⑻ 岩土體工程地質類型分區

平原區廣泛分布以沖洪積成因為主的第四系堆積物,低山丘陵區出露多種類型的岩組,沂沭斷裂帶西側的鄌郚-葛溝斷裂、沂水-湯頭斷裂縱貫南北,總體看工程地質條件較復雜(圖1-8-3)。

圖1-8-3 昌樂縣岩土體工程地質類型分區略圖

(一)岩體工程地質類型

1.堅硬的塊狀侵入岩岩組

分布於營邱—河頭一帶,為古元古代呂梁期侵入岩,岩性以弱片麻狀中粒含角閃二長花崗岩、弱片麻狀中粒含黑雲二長花崗岩,岩石堅硬,力學強度高,工程地質性質良好,山區風化帶厚度<3m,丘陵及準平原區20~30m,fc=130~170MPa,fr=90~130MPa(fc為岩石極限干抗壓強度,fr為岩石飽和極限抗壓強度)。

2.堅硬的塊狀-似層狀噴出岩岩組

主要分布在南郝—崔家埠—五圖一線以南、鄌郚-葛溝斷裂以西地區,為新近紀臨朐群牛山組、堯山組火山噴出岩,岩性為玄武岩。岩石堅硬,柱狀節理發育,工程地質性質良好。風化帶厚20~30m,fc=140~160MPa。

3.堅硬的塊狀變質岩岩組

主要分布在鄌郚—阿陀一帶,為新太古代泰山岩群山草峪組黑雲變粒岩,岩石堅硬,風化帶厚度30~40m,fc=180~200MPa。

4.堅硬較堅硬的中厚-厚層狀灰岩岩組

僅分布於朱劉街道、五圖街道一帶,主要為寒武紀長清群硃砂洞組、饅頭組、九龍群張夏組、崮山組和炒米店組白雲質灰岩、泥灰岩、泥質條帶灰岩和生物碎屑灰岩等,局部夾細砂岩。灰岩堅硬,力學強度高,泥灰岩強度低。白雲質灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。

5.較堅硬的中厚—厚層碎屑岩岩組

主要分布在鄌郚-葛溝斷裂帶與沂水-湯頭斷裂帶,以及五圖煤礦一帶,岩性為白堊紀淄博群三台組砂岩、礫岩,萊陽群城山後組角礫岩、砂礫岩、砂岩,青山群八畝地組凝灰岩、集塊角礫岩、粉砂岩,大盛群馬郎溝組粉砂岩、細砂岩,田家樓組泥質粉砂岩、細砂岩、黏土岩,古近紀五圖群朱壁店組礫岩、砂礫岩、礫岩,李家崖組黏土岩、砂岩、黏土岩、油頁岩等。風化帶厚度<40m,砂岩和礫岩fc=30~80MPa,fr=20~50MPa。

6.較堅硬的薄層狀頁岩夾灰岩岩組

局限分布在阿陀東北部,岩性為中寒武系、下寒武系及元古宇土門群頁岩、博層灰岩、泥灰岩。頁岩夾泥灰岩fc=30~40MPa,fr=10~15MPa。

(二)土體工程地質類型

1.北部沖洪積上層黏性土多層或雙層結構

分布於北部山前平原地區,以上層黏性土多層結構為主,上層黏性土厚<5m或5~10m,僅局部>10m,黏性土岩性以粉質黏土、黏土為主,中等壓縮性。砂性土為粉細砂、中細砂,其次粗砂、礫石,砂層顆粒自北至南變粗,工程地質性質良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk為地基承載力標准值)。

2.山前及河谷平原沖洪積上層黏性土雙層、多層結構及黏性土單層結構

分布於山前坡麓、山間河谷地區,上部黏性土為粉質黏土、粉土、黏土,厚度5m左右,中等壓縮性。下部砂性土為中粗砂、細砂、砂礫石,緊密狀態,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。

3.山麓地區坡洪積及殘坡積黏性土單層結構或上層黏性土雙層結構

分布於南部低山丘陵坡麓地帶,以黏性土單層結構或上層為黏性土雙層結構為主。黏性土厚<5m或5~10m,以黃褐色至棕紅色粉質黏土及黏土為主,含鐵錳質及鈣質結核,可塑—硬塑,中等壓縮性,部分地區分布濕陷性黃土。下部夾透鏡體狀碎石土及泥鈣質膠結礫岩,緊密狀態,工程地質性質良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。

總之,昌樂縣工程地質主要問題是沂沭斷裂帶的活動性,其次是地面沉陷、岩溶塌陷、局部黃土濕陷等問題。

⑼ 岩土體工程環境地質的特徵

環境地質特徵復指的是制一環境在地質方面區別於其它環境的獨特性,實際上就是指該環境自身的地質特徵,主要包括區域地質,地層,岩性組成,地震烈度,水文地質狀況,地形等方面。岩土體工程環境地質的特徵涉及到具體的用途就是岩土體工程,它在地質環境特徵方面依然具有普遍都有的這些項目,但在描述上更加側重與岩土體工程的相關性,具體依工程的不同而有所區別。

⑽ 工程地質包括哪些內容(土力學地基基礎第四版)

工程地質研究的主內容有:確定岩土組分、組織結構(微觀結構)、物理、化學與力學性質(特別是強度及應變)及其對建築工程穩定性的影響,進行岩土工程地質分類,提出改良岩土的建築性能的方法;研究由於人類工程活動的影響而破壞的自然環境的平衡,以及自然發生的崩塌、滑坡、泥石流及地震等物理地質作用對工程建築的危害及其預測、評價和防治措施;研究解決各類工程建築中的地基穩定性,如邊坡、路基、壩基、橋墩、硐室,以及黃土的濕陷、岩石的裂隙的破壞等,制定一套科學的勘察程序、方法和手段,直接為各類工程的設計、施工提供地質依據;研究建築場區地下水運動規律及其對工程建築的影響,制定必要的利用和防護方案;研究區域工程地質條件的特徵,預報人類工程活動對其影響而產生的變化,作出區域穩定性評價,進行工程地質分區和編圖。隨著大規模工程建設的發展,其研究領域日益擴大。除了岩土學和工程動力地質學、專門工程地質學和區域工程地質學外,一些新的分支學科正在逐漸形成,如礦山工程地質學、海洋工程地質學、城市工程地質及環境工程地質學、工程地震學。

1工程地質與岩土工程的區別
工程地質是研究與工程建設有關地質問題的科學(張咸恭等著《中國工程地質學》)。工程地質學的應用性很強,各種工程的規劃、設計、施工和運行都要做工程地質研究,才能使工程與地質相互協調,既保證工程的安全可靠、經濟合理、正常運行,又保證地質環境不因工程建設而惡化,造成對工程本身或地質環境的危害。工程地質學研究的內容有:土體工程地質研究、岩體工程地質研究、工程動力地質作用與地質災害的研究、工程地質勘察理論與技術方法的研究、區域工程地質研究、環境工程地質研究等。
岩土工程是土木工程中涉及岩石和土的利用、處理或改良的科學技術(國家標准《岩土工程基本術語標准》)。岩土工程的理論基礎主要是工程地質學、岩石力學和土力學;研究內容涉及岩土體作為工程的承載體、作為工程荷載、作為工程材料、作為傳導介質或環境介質等諸多方面;包括岩土工程的勘察、設計、施工、檢測和監測等等。
由此可見,工程地質是地質學的一個分支,其本質是一門應用科學;岩土工程是土木工程的一個分支,其本質是一種工程技術。從事工程地質工作的是地質專家(地質師),側重於地質現象、地質成因和演化、地質規律、地質與工程相互作用的研究;從事岩土工程的是工程師,關心的是如何根據工程目標和地質條件,建造滿足使用要求和安全要求的工程或工程的一部分,解決工程建設中的岩土技術問題。

2工程地質與岩土工程的關系
雖然工程地質與岩土工程分屬地質學和土木工程,但關系非常密切,這是不言而喻的。有人說:工程地質是岩土工程的基礎,岩土工程是工程地質的延伸,是有一定道理的。
工程地質學的產生源於土木工程的需要,作為土木工程分支的岩土工程,是以傳統的力學理論為基礎發展起來的。但單純的力學計算不能解決實際問題,從一開始就和工程地質結下了不解之緣。與結構工程比較,結構工程面臨的是混凝土、鋼材等人工製造的材料,材質相對均勻,材料和結構都是工程師自己選定或設計的,可控的。計算條件十分明確,因而建立在材料力學、結構力學基礎上的計算是可信的。而岩土材料,無論性能或結構,都是自然形成,都是經過了漫長的地質歷史時期,在多種復雜地質作用下的產物,對其材質和結構,工程師不能任意選用和控制,只能通過勘察查明,而實際上又不可能完全查清。岩土工程師不敢相信單純的計算結果,單純的計算是不可靠的,原因就在於工程地質條件的不確知性和岩土參數的不確定性,不同程度地存在計算條件的模糊性和信息的不完全性。因而雖然土力學、岩石力學、計算技術取得了長足進步,並在岩土工程設計中發揮了重要作用,但由於計算假定、計算模式、計算方法、計算參數等與實際之間存在很多不一致,計算結果總是與工程實際有相當大的差別,需要進行綜合判斷。

熱點內容
鹿特丹港國家地理 發布:2021-03-15 14:26:00 瀏覽:571
地理八年級主要的氣候類型 發布:2021-03-15 14:24:09 瀏覽:219
戴旭龍中國地質大學武漢 發布:2021-03-15 14:19:37 瀏覽:408
地理因素對中國文化的影響 發布:2021-03-15 14:18:30 瀏覽:724
高中地理全解世界地理 發布:2021-03-15 14:16:36 瀏覽:425
工地質檢具體幹些什麼 發布:2021-03-15 14:15:00 瀏覽:4
東南大學工程地質考試卷 發布:2021-03-15 14:13:41 瀏覽:840
中國地質大學自動取票機 發布:2021-03-15 14:13:15 瀏覽:779
曾文武漢地質大學 發布:2021-03-15 14:11:33 瀏覽:563
中國冶金地質總局地球物理勘察院官網 發布:2021-03-15 14:10:10 瀏覽:864