預警在地質災害中的作用
㈠ 地質災害預警級別 地質災害預警什麼意思
地質災害預警制度。預警內容主要包括地質災害可能發生的時間、地點、成專災范圍和影響程度屬等。地質災害預警由縣級以上人民政府國土資源主管部門會同氣象主管機構發布。任何單位和個人不得擅自向社會發布地質災害預警。
按照未來24小時內,地質災害發生的可能性大小,地質災害預警分為五級,分別為
一級:可能性很小;
二級:可能性較小;
三級:可能性較大(通知監測人員和威脅住戶注意);
四級:可能性大(預報階段,停止外業,各崗位人員到崗待命);
五級:可能性很大(警報階段,無條件緊急疏散,密切觀測)。
㈡ 地質災害氣象風險預警指的是什麼
地質災害氣象風險預警是指在一定地質環境和人為活動背景條件下,專受氣象因素的影響,某屬一地域、地段或地點在某一時間段內發生地質災害的可能性大小。它是真實世界遭受損失可能性的一種狀態,而不是真實發生的一種狀況。由於人類防禦災害能力和實施防災措施的不同,這種可能性的狀態可能發生也可能不發生或部分發生。地質災害氣象風險預警基於地質災害的主要控制因素(地層岩性、地質結構、地形地貌、岩土體類型等)和激發因素(降雨、地震、冰雪消融、人為活動)通過模型運算來開展工作,控制因素是基本條件,激發因素在不同地區或同一地區不同時段、不同地段常常表現出較大差異。
㈢ 四信地質災害監測預警系統主要功能有哪些
主要作用是:通過野外監測站對降雨量、表面位移、泥水位、地聲、次聲內、孔隙水壓力容、視頻、深部位移、土壓力等要素進行實時監測,使用GPRS/LoRa/3G/4G等通信方式將數據傳輸到管理及監測預警雲平台,為防災減災提供實時信息服務。
廣泛應用於滑坡監測預警、泥石流監測預警、地面沉降監測預警、崩塌監測預警等,有效保障地質災害多發地區人民群眾的生命與財產安全。
㈣ 實時監測技術在地質災害防治中的應用——以巫山縣地質災害實時監測預警示範站為例
高幼龍1張俊義1薛星橋1謝曉陽2
(1中國地質調查局水文地質工程地質技術方法研究所,河北保定,071051;2西北化工研究院,陝西臨潼,710600)
【摘要】本文在地調項目工作實踐的基礎上,系統地總結了地質災害實時監測的含義、特點和系統構成。詳細介紹了巫山縣地質災害實時監測預警示範站的構建,針對實際運行狀況,評價了實時監測技術的可行性和可靠性。
【關鍵詞】地質災害實時監測遠程傳輸示範站
1 引言
隨著現代科學技術的發展和邊緣學科的相互滲透,自動控制、網路傳輸等越來越多的技術被不斷應用於地質災害的監測當中,極大地提高了監測的自動化水平,在一定程度上緩解了生產力匱乏和地質災害急劇增加之間的矛盾。國際上,美國、日本、義大利等發達國家在一定的區域范圍內建立了基於降水量、滲透壓、斜坡變形等參數的地質災害實時監測系統,藉助國際互聯網實現了監測數據的集中處理與實時發布。與之相比,我國地質災害監測的實時化、網路化水平依然較低,監測信息為公眾服務的功能未能得到明顯體現,預警的信息渠道不暢,對重大臨災的地質災害缺乏快速反應能力。因此,在我國進行地質災害實時監測預警研究,對重大災害體實施實時化監測預警,具有十分現實的意義。
筆者在參加地質調查計劃項目《地質災害預警關鍵技術方法研究與示範》的過程中,對實時監測技術進行了較為深入的研究,並在我國重慶市巫山縣新城區建立了地質災害實時監測預警示範站,經過1.5個水文年的示範運行,驗證了實時監測的可行性和可靠性。在對示範成果初步總結的基礎上形成此文,以期實時監測技術得以快速成熟及推廣應用,為我國地質災害防治事業作出貢獻。
2實時監測的含義和特點
實時監測(Real-Time Monitor,RTM)指通過各種監測、採集、傳輸、發布技術,讓目標層人員在第一時間內了解、掌握有關災害體的變形動態和發展趨勢,進而作出決策的多種技術的集合。其最主要的特點為實時性,即遠程的目標層人員可在第一時間獲取災害體的全部變形信息,而獲取的過程是自動的,無需技術人員值守干預。顯而易見,實時的特性可以最大限度地解放勞動力,降低監測人員風險和運營成本。
同傳統監測技術相比,實時監測的數據採集方式是連續的、跟蹤式的,數據的採集周期很短,通常在數小時之內,甚至更短。這對於跟蹤災害體變形過程,進行反演分析具有十分重要的意義。其龐大的數據量通常也會對配套的軟硬體系統提出更高的要求。
不難理解,實時監測也是自動化監測。所使用的監測儀器均需自動化作業方可實現無人值守。監測儀器自動化分為兩種,一種是監測儀器本身具備定時采樣和存儲功能,另一種是通過第三方的自動採集儀控制采樣。不管使用何種方式或基於何種原理,其數據採集是能夠自動或觸發實現的。
監測數據遠程傳輸是實時監測的另一主要特點。通常情況下,監測控制中心設立在遠離災體、經濟相對發達的城鎮區,需要藉助公眾通信網路或其他介質將各種類型的監測數據「搬運」過來,進行相應的轉換計算,生成目標層人員所需要的成果。這個「搬運」過程即監測數據的遠程傳輸。傳輸分為兩種方式,一種是有線傳輸方式,如架設通信線纜或光纜,在電話線兩端載入 Modem等;另一種是無線傳輸方式,如藉助 GSM/GPRS或 CDMA網路、UHF數傳電台或通信衛星等。
由於實時監測是數據自動採集、傳輸、發布等多個技術的集合,其中的任何一個環節失敗均可導致系統無法正常工作,因此,實時監測是存在風險性的。其風險構成除電力(如斷電停電)等保障體系統風險和監測儀器(如感測器、採集儀故障)、傳輸系統(如占線、網路資源不足、數據安全)、發布系統(如網路阻塞、病毒入侵、系統崩潰)等技術風險外,還包括人為抗力風險,如監測儀器設施的人為破壞、網路系統的惡意攻擊等。對於風險的營救除最大程度地降低保障體系風險和技術風險外,需要通過立法、宣傳等有效措施降低人為抗力風險,並設技術人員對監測系統進行即時維護,保障系統正常運行。
3實時監測系統構成
實時監測系統由監測儀器設施、數據採集系統、數據傳輸系統和網路發布系統四個子系統構成。各子系統均可獨立運行,以單鏈的方式協同工作。其工作原理如圖1所示。
圖1實時監測系統工作原理示意圖
3.1監測儀器設施
監測儀器及設施是獲取災害體變形參數最前端、最主要的組成部分,固定安裝於災害體表層或深部,並能夠表徵災害體對應部位的變形、變化。監測儀器的類型取決於所採用的監測方法。在地質災害監測中,常用的監測方法包括災害體地表及深部位移、應力、地下水動態、地溫、降水量等(表1)。監測儀器的精度、數量及布設位置是在地質災害勘查及綜合分析的基礎上,從控制災害體主體變形的需要設計確定的。監測儀器通常和相應的監測設施,如監測標(墩)、保護裝置等相互配合,完成災害體相關參數的獲取。
3.2數據採集系統
顧名思義,數據採集系統用於收集、儲存各類監測數據,是通過單片機或工業控制技術實現的。目前,多數監測儀器均有配套的數據採集及存儲裝置,可按設定的數據採集間隔定時自動化工作,並對原始數據進行轉換計算。數據採集裝置通常具有 RS-232或其他標准通信介面,可以方便地將數據下載至 PC中作進一步分析處理。對於不具備配套數據採集裝置或僅具備攜帶型讀數裝置的監測儀器,則可以通過第三方的數據採集儀實現自動採集工作,通用型的數據採集儀可方便地將頻率、電壓等模擬信號轉換為數字信號加以存儲和處理,並具備標准通信介面和PC交換數據。由於數據採集儀多置於監測儀器附近,二者間通常使用線纜相連接。
表1常用監測技術方法簡表
3.3數據傳輸系統
數據傳輸系統用於完成數據採集儀—控制中心—用戶間的數據傳遞。實際上,控制中心—用戶間通常是利用國際互聯網、通過發布系統實現的,所以狹義上的數據傳輸指數據採集儀—控制中心之間(即災害體現場至控制中心)的數據傳遞。
按照災害體和控制中心空間距離的長短,可將數據傳輸分為近距離數據傳輸(一般低於2km)和遠程數據傳輸兩種類型。前者由於傳輸距離較短,一般採用線纜連接,後者則採用遠程數據傳輸裝置。
按傳輸介質,遠程數據傳輸分為有線傳輸和無線傳輸兩種方式。目前常用的有線傳輸方式有電話線連接(即在電話線兩端載入 Modem對數據進行調制、解調)、光纜連接等,無線傳輸方式有數傳電台(用於中遠距離)、GSM/GPRS或 CDMA移動通信網路、通信衛星等(圖2)。
圖2常用的數據傳輸方法
3.4信息發布系統
信息發布系統通過國際互聯網,以 Web主頁的方式向目標層人員(即用戶)提供各類監測信息。監測信息包括災害體地質條件、發育特徵、監測網布置方式、多元監測數據、監測數據隨時間推移曲線變化情況、監測信息公告及圖片、視頻等。
信息發布系統由底層資料庫和發布主頁兩部分構成。前者用於管理各類基礎信息及監測數據,為後者提供數據源,後者為用戶提供信息訪問平台。二者之間通常採用B/S等架構交換數據。
信息發布系統一旦建立完成後,一些信息內容,如災害體地質條件、發育特徵、監測網布置方式等說明性的文字便相對固定下來,在短時間內不會做大的改動,這些信息通常稱為靜態信息。而隨著時間推移,監測數據及其曲線等信息不斷產生,且呈現動態變化並需在主頁上自動更新、顯示,這些信息稱為動態信息。要實現監測數據的實時發布,需建立動態主頁來顯示動態數據。
由於監測數據是由底層資料庫管理的,故只要即時將監測數據自動寫入資料庫中,為動態主頁提供隨時更新的數據源,便可實現自動顯示,即實時發布。而這一點是易於做到的。
4巫山縣地質災害實時監測示範站簡介
重慶市巫山縣新城區是我國地質災害危害最為嚴重的地區之一,全縣約1/3的可用建設用地受到不同程度地質災害的威脅。通過論證對比,在城區27個較大滑坡(崩塌)中,選擇了近期變形相對較為明顯、危害較為嚴重的向家溝滑坡和玉皇閣崩滑體建立實時監測預警系統進行應用示範。選用GPS監測地表位移、固定式鑽孔傾斜儀和TDR技術監測深部位移、孔隙水壓力監測儀監測滑體孔隙水壓力及飽水時的水位、水溫,同時通過安裝儀器的附加功能或定期搜集的方法兼顧了地溫、降水量及庫水位等監測。截至目前,共建立GPS監測標22處(含基準標)、固定式鑽孔傾斜儀和TDR監測點(孔)各3處、孔隙水壓力監測3孔7測點。多種監測儀器在同一地理位置同組安裝,這樣不僅便於不同監測方法之間資料的相互印證對比,還可以僅使用一台採集儀及傳輸裝置採集、傳輸多種監測數據,降低監測系統建設成本;另外,同組安裝便於修建監測機房(現場站)保護監測儀器設施。以上監測方法除GPS因建設成本、人為抗力風險等原因採用定期觀測外,其餘監測方法均採用實時化監測。
4.1示範站數據採集系統
固定式鑽孔傾斜儀、TDR、孔隙水壓力監測儀三種監測儀器均具備配套的數據採集裝置,其中TDR監測技術使用工業控制機作為數據採集裝置,恰好可以作為另兩種監測儀器的上位機,通過多串口擴展,將固定式鑽孔傾斜儀和孔隙水壓力監測儀連接至工控機,定時下載、存儲數據,並在預定時間統一傳輸至控制中心,同時在工控機上存放數據備份,防止數據丟失。示範站數據採集系統結構圖如圖3所示。
圖3示範站數據採集系統結構圖
4.2GPRS遠程無線傳輸系統
示範站控制中心設在巫山縣國土資源局,距向家溝滑坡直線距離2.74km,距玉皇閣崩滑體約0.6km,其間採用GPRS網路進行數據的遠程無線傳輸。
GPRS(General Packet Radio Service,通用分組無線業務)是中國移動通信在GSM網路上發展起來的2.5G數據承載業務,具有傳輸速度快、永遠在線、按量計費等優點。GPRS使用TCP/IP協議,因此可方便地將數據寫入指定(具固定IP地址)的伺服器中。
GPRS數據傳輸硬體為商用型GPRS-MODEM,控制軟體自主編寫,用於控制數據傳輸時間、目標地址及傳輸過程的錯誤處理,由伺服器端和客戶端兩部分構成。伺服器端用於設置網路配置、資料庫連接方式及數據文件、日誌文件和配置文件的存放路徑。客戶端安裝於現場站數據採集儀(工控機)上,控制網路連接、上傳時間、數據編碼、數據備份及傳輸錯誤處理。客戶端軟體和所有的數據採集軟體設置為不間斷工作狀態,在按控制參數工作的同時,接受控制中心的配置指令即時對控制參數進行調整。
4.3示範站信息發布系統
示範站信息發布系統硬體由1台小型伺服器和2台 PC終端的100M區域網構成。通過2M帶寬的ADSL接入Internet。底層資料庫和WEB主頁同時安裝於伺服器上。伺服器操作系統為Mi-croSoft Windows Server 2000,資料庫系統採用 MicroSoft SQL Server 2000。WEB主頁用 ASP.NET和Visual C﹟編寫,和資料庫之間採用B/S架構。在病毒防護和網路安全方面,採用商業軟體瑞星RAV 2004和天網防火牆系統。
(1)資料庫系統
資料庫系統是信息發布系統的基礎,按管理內容分為基礎信息管理、數據管理、輔助信息管理三部分。基礎信息管理的內容包括監測站(包括中心站和現場站)、監測鑽孔、監測點、發布信息、發布圖片等;數據管理內容包括固定式鑽孔傾斜儀、GPS、TDR監測系統、BOTDR監測系統、孔隙水壓力監測儀、環境溫度、降水量、庫水位等;輔助信息管理內容包括分級用戶、下載信息、訪問統計次數等,資料庫系統構成如圖4所示。
(2)數據伺服處理程序
數據伺服處理程序用於轉換、計算現場站傳來的數據,並即時將處理後的結果寫入資料庫中。處理程序採用Visual BASIC語言編寫,通過計時器控制的定時功能觸發寫庫過程,並在完成寫庫過程後刪除原數據以防止重寫。不難看出,數據伺服程序是傳輸系統和發布系統之間的連接,它使兩個彼此獨立的系統有機地結合起來。
(3)示範站信息發布主頁
信息發布主頁為遠程用戶提供所需的全部信息,包括示範站的概況、實時的監測曲線、最新的監測數據等。從發布信息內容、訪問方式及管理維護的角度出發,主頁設計成導航區、發布區、管理區和下載區,為遠程用戶、管理員提供交互。
圖4示範站資料庫系統構成框圖
導航區為遠程用戶提供必要的導航信息,包括公告信息、圖片及相關的專業網站鏈接,展示示範站建設工作的進展、取得的階段性成果及有關的預警內容。
發布區用於提供示範站概況、實時監測曲線及數據查詢。
示範站概況包括示範區自然地理條件、地質條件、示範站工作的整體部署,監測儀器設施(GPS、固定式鑽孔傾斜儀、TDR、BOTDR、孔隙水壓力監測儀等)的性能指標,監測現場站(含中心站)、監測鑽孔、監測點的基礎信息等內容。
實時監測用於顯示各種監測曲線,是發布主頁最核心的內容。從訪問方便的角度出發,實時監測採取了「選擇災體—選擇監測剖面—選擇監測點—選擇監測時段—顯示監測曲線」逐級打開、層層剝落的展示方式,並全部做成圖形方式鏈接,以增強訪問的直觀性。監測曲線的坐標設計成自適應型,圖形的大小在系統的配置文件中設置,並標明數據的最新更新時間。曲線是以圖片的形式顯示的,用戶可以方便地將其下載到自己的PC中保存。
從安全考慮,數據查詢進行了加密,用戶需用授權的用戶名和密碼登錄後方可查看。查詢採取了「選擇監測方法—選擇監測點—選擇監測起始時間—顯示數據表」組合式篩選的方式。輸入界定參數並提交後系統從底層資料庫中找到所有符合條件的記錄,按日期排序後列表顯示。用戶可以全部或部分選取查詢結果,粘貼至個人PC作為WORD文檔保存。
管理區專為系統管理員設計,用於管理員遠程管理文本、圖片、數據等信息,進行信息的添加、修改、刪除、上傳下載等操作。分為信息管理、圖片管理、數據管理、下載管理4個相互獨立的模塊,具有模糊查找等高級功能。
下載區為授權用戶提供工作圖片、視頻、監測報告、軟體等較大文件的下載功能,補充主頁在文件交換方面的不足。
主頁面布局如圖5所示。欲了解發布系統的更多內容,請登錄Http://www.wss.org.cn。
5示範站實時監測系統運行評價
由於本文著重論述實時監測技術的可行性和可靠性,因此不對監測成果和滑坡穩定性動態做更多分析。從以上論述明顯可以看出,在地質災害監測中,構建實時監測系統從技術上是可行性的。本節主要針對巫山縣實時監測預警示範站運行過程中出現的各種問題,從故障統計、故障原因分析等方面,對示範站採集系統、傳輸系統、發布系統的可靠性進行簡單評價,並提出意向性的改善建議。
圖5示範站信息發布主頁面
根據巫山縣地質災害監測預警示範站建設工作日誌,監測系統故障主要發生在傳輸子系統,故障表現形式為數據不傳輸或不正確傳輸,主要原因為GPRS網路信號不穩定造成傳輸隨機中斷所致;其次,撥號連接失敗後的重復嘗試連接導致伺服器80埠長期無效重復佔用,當超過伺服器最大連接數後導致網路無法正確訪問;再次,監測地區不規律的停電常常使保障體系失效,從而丟失數據。此外,示範站伺服器系統遭受過病毒破壞和惡意攻擊,兩次造成網路系統崩潰。可見,實時監測系統在基礎通信條件和保障體系完備的條件下,是能夠穩定可靠運行的。在建設過程中通過安裝長時後備電源系統、功能完善的病毒防火牆和網路防火牆,可有效降低保障體系風險,進一步提高系統運行的穩定性。
6結語
巫山縣地質災害實時監測預警示範站自2003年陸續建設運行以來,在技術人員的維護下,系統運行正常,取得了數十萬個監測數據,發布公告信息及圖片近百條(幅),編寫監測分析簡報數期,實現了監測信息遠程實時訪問,取得了良好的示範效果。實踐證明,將實時監測技術應用於地質災害防治中是完全可行的,也是比較可靠的。可以預見,實時監測技術將是地質災害監測的必然發展趨勢。
參考文獻
[1]殷躍平等.長江三峽庫區移民遷建新址重大地質災害及防治研究.北京:地質出版社,2004
[2]王洪德,高幼龍等.《地質災害預警關鍵技術方法研究與示範》項目設計書.2003(未出版)
[3]劉新民等.長江三峽工程庫區滑坡及泥石流研究.成都:四川科學技術出版社,1990
[4]何慶成,侯聖山,李昂.國際地質災害防治現狀.科學情報,2004,(5)
[5]鄔曉嵐,塗亞慶.滑坡監測的現狀及進展.中國儀器儀表,2001(3)
[6]張青,史彥新,朱汝烈.TDR滑坡監測技術的研究.中國地質災害與防治學報.第12卷,第2期.2001,(6)
[7]曹修定,阮俊,展建設,曾克.滑坡的遠程實時監測控制與數據傳輸.中國地質災害與防治學報.第13卷第1期.2002(3)
[8]夏柏如,張燕,虞立紅.我國滑坡地質災害監測治理技術.探礦工程(岩土鑽掘工程).2001年增刊
㈤ 什麼是地質災害監測預警
地質災害來源於自然和人為地質作用對地質環境的災難性破壞,主要包括崩塌內、滑坡、泥石流、地面塌陷和地裂容縫等。我國是世界上地質災害頻發的地區之一,近年來,關於滑坡、泥石流類災害的研究是行業研究的重點。地質災害的防治常常因為工作的分散,造成標准化程度較差,資源共享較難的問題。
㈥ 地質災害調查與預警
一、部署重點
開展我國西南山區、黃土高原、湘鄂桂山區等主要地質災害高易發區地質災害詳細調查,建立典型地質災害監測預警區;完善長江三角洲、華北平原和汾渭盆地地面沉降監測網,開展珠江三角洲、東北平原等地區地面沉降調查,開展京滬、大同—西安等高速鐵路沿線地面沉降與地裂縫詳細調查。
二、部署建議
(一)全國地質災害調查監測綜合評價
1.工作現狀
完成了全國1:50萬以地質災害為主的環境地質調查與綜合研究,完成了700個縣(市)的縣市地質災害調查成果集成,正在開展1640個縣(市)的縣市地質災害調查成果集成。2005年起,開展1:5萬地質災害詳細調查資料庫建設及成果初步梳理工作。開展地質災害氣象預警技術方法研究,逐步提高我國區域地質災害預警預報技術水平。
但隨著詳細調查與監測預警示範的大規模鋪開,需要進一步進行數據的整理、分析與綜合集成,並在研究基礎上編制滿足國家層面需求的系列圖系。
2.工作目標
總體目標:整合地質災害詳細調查成果,分析地質災害發育分布規律,劃定地質災害易發區,搭建綜合研究技術平台和信息化平台,建立全國地質災害資料庫。整合監測預警示範區成果,研究監測預警網路建設模式,形成全國地質災害監測預警信息平台。完善地質災害調查與監測技術規程與技術要求,綜合研究並編制滿足國家需要的地質災害系列圖系。
「十二五」期間:建立地質災害調查與地質災害監測預警成果集成體系。總結地質災害調查成果,開展區域地質災害易發區綜合評價和易發程度區劃。總結地質災害監測預警示範區建設成果,搭建地質災害監測預警信息平台。
「十三五」期間:完善地質災害調查與地質災害監測預警成果集成體系。進一步總結地質災害調查成果,形成全國和省級地質災害易發區綜合評價和易發程度區劃。系統總結地質災害調查與地質災害監測成果,形成全國地質災害早期預警區劃。
3.工作任務
完成全國1:5萬地質災害調查與典型預警示範區建設成果的匯總、集成與綜合研究。搭建1:5萬地質災害調查綜合研究技術平台和信息化平台,建立全國地質災害資料庫。搭建全國地質災害監測預警信息平台,完善早期預警產品發布體系。總結修訂《崩塌、滑坡、泥石流1:50000調查規范》,完成全國地質災害早期預警區劃,編制全國及分省地質災害與地質災害早期預警綜合圖系。
「十二五」期間:對西北黃土高原區、西南山區、湘鄂桂山區、東南沿海地區地質災害高易發區1:5萬地質災害調查成果進行集成,建立1:5萬地質災害調查信息化成果技術要求;完成11個地質災害監測預警示範區成果綜合研究,搭建全國地質災害監測預警信息平台,初步建立全國地質災害早期預警區劃。
「十三五」期間:完成西北黃土高原區、西南山區、湘鄂桂山區、東南沿海地區地質災害高、中易發區1:5萬地質災害調查成果集成,完善1:5萬地質災害調查信息化成果技術要求。完成全國30個地質災害監測預警示範區成果綜合研究,形成建立全國地質災害早期預警區劃。編制完成全國及分省地質災害與地質災害早期預警綜合圖系。
(二)西北黃土高原區1:5萬地質災害調查
1.工作現狀
完成了以省(區、市)為單元的西北省區1:50萬以地質災害為主的環境地質調查、263個縣的1:10萬山區丘陵縣地質災害調查。2005年起,在46個縣近10萬平方千米范圍內開展了1:5萬地質災害調查。
通過開展1:5萬地質災害調查,基本摸清了調查區地質災害分布和發育規律,有力地支持了完善地質災害防治規劃和各項減災防災工作。根據縣市地質災害調查成果,在西北黃土高原區及秦巴山區中,仍有處於地質災害高、中易發區的191個縣近54萬平方千米需要盡快開展1:5萬地質災害調查工作。
2.工作目標
以遙感解譯、地面調查、測繪和工程勘查為主要手段,以縣(區)級行政區劃為基本單元,開展西北黃土高原區及秦巴山區20萬平方千米(191個縣)的1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,圈定地質災害易發區和危險區,建立地質災害信息預警系統,建立健全群專結合的監測網路,為減災防災提供基礎地質依據。
「十二五」期間:開展西北地質災害高易發區1:5萬地質災害調查,基本查清區內地質災害分布發育規律,逐步建立地質災害風險控制管理工作體系。
「十三五」期間:繼續開展地質災害高、中易發區1:5萬地質災害調查,查清區內地質災害分布發育規律,形成西北地區地質災害易發區區劃和重點區域地質災害風險管理區劃,顯著提高我國地質災害防治水平。
3.工作任務
開展西北地區地質災害中、高易發區1:5萬地質災害調查;完善地質災害易發性和危險性區劃;健全完善地質災害群測群防體系,建立地質災害空間資料庫。
在已經圈定的地質災害易發區內,以縣為單位採用點、線、面結合,重點和一般調查結合的方式開展1:5萬地質災害調查工作。2015年前優先開展地質災害高易發區及經濟損失較大地區調查,基本覆蓋人員傷亡及財產損失主要地區。2020年前,逐步推進,最終完成西北地區高、中易發區調查。在調查基礎上,完善地質災害易發性和危險性區劃,健全完善地質災害群測群防體系,探索建立地質災害風險評價與風險控制管理工作體系。
「十二五」期間:開展西北黃土高原區地質災害高易發區1:5萬地質災害調查。
「十三五」期間:繼續開展西北黃土高原區地質災害高、中易發區1:5萬地質災害調查。
(三)西南山區1:5萬地質災害調查
1.工作現狀
完成了以省(區、市)為單元的西南山區1:50萬以地質災害為主的環境地質調查、423個縣的1:10萬山區丘陵縣地質災害調查。2005年起,在29個縣(近10萬平方千米)開展了1:5萬地質災害調查。
通過開展1:5萬地質災害調查,基本摸清了調查區地質災害分布和發育規律,有力支持並完善了地質災害防治規劃和各項減災防災工作。根據縣市地質災害調查成果,在西南山區,仍有處於地質災害高、中易發區的190個縣近75萬平方千米需要盡快開展地質災害詳細調查工作。
2.工作目標
總體目標:以遙感解譯、地面調查、測繪和工程勘查為主要手段,以縣(區)級行政區劃為基本單元,開展西南山區、藏東地區75萬平方千米,1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,圈定地質災害易發區和危險區,建立地質災害信息預警系統,建立健全群專結合的監測網路,為減災防災提供基礎地質依據。
「十二五」期間:開展西南川滇山區、藏東地區等地質災害高易發區1:5萬地質災害調查,基本查清區內地質災害分布發育規律,逐步建立地質災害風險控制管理工作體系。
「十三五」期間:繼續開展西南川滇山區、藏東地區地質災害高、中易發區1:5萬地質災害調查,查清區內地質災害分布發育規律,形成全國地質災害易發區區劃和重點區域地質災害風險管理區劃。顯著提高我國地質災害防治水平。
3.工作任務
開展西南川滇山區、藏東地區滑坡、崩塌、泥石流等突發性地質災害中、高易發區1:5萬地質災害調查;健全完善覆蓋地質災害中、高易發區的群測群防網路,完善地質災害易發性和危險性區劃。建立地質災害空間資料庫。
在已經圈定的地質災害易發區內,以縣為單位採用點、線、面結合,重點和一般調查結合的方式開展1:5萬地質災害調查工作。2015年前優先開展地質災害高易發區及經濟損失較大地區調查,基本覆蓋人員傷亡及財產損失主要地區。2020年前,逐步推進,最終完成西南山區高、中易發區調查。在調查基礎上,建立完善群測群防體系,完善地質災害易發性和危險性區劃,探索建立區域風險評價與風險控制管理工作體系。
「十二五」期間:開展西南山區高易發區1:5萬地質災害調查工作。
「十三五」期間:繼續開展西南山區高、中易發區1:5萬地質災害調查工作。
(四)湘鄂桂山區地質災害詳細調查
1.工作現狀
完成了以省(區、市)為單元的1:50萬以地質災害為主的環境地質調查、287個縣的1:10萬山區丘陵縣地質災害調查。2005年起,在14個縣近4萬平方千米范圍內開展了1:5萬地質災害調查。
通過開展1:5萬地質災害調查,基本摸清了調查區地質災害分布和發育規律,有力地支持了完善地質災害防治規劃和各項減災防災工作。根據縣市地質災害調查成果,在湘鄂桂山區,仍有處於地質災害高、中易發區的82個縣近20萬平方千米需要盡快開展1:5萬地質災害詳細調查工作。
2.工作目標
總體目標:以遙感解譯、地面調查、測繪和工程勘查為主要手段,以縣(區)級行政區劃為基本單元,開展西南山區、藏東地區1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,圈定地質災害易發區和危險區,建立地質災害信息預警系統,建立健全群專結合的監測網路,為減災防災提供基礎地質依據。
「十二五」期間:完成湘鄂桂山地丘陵區20個縣(市)1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,為制定防災規劃和減災提供技術支撐。
「十三五」期間:全面完成湘鄂桂山地丘陵區40個縣(市)1:5萬地質災害調查,基本查明區內地質災害及其隱患的分布、形成的地質環境條件和發育特徵,並對其危害程度進行評價,為制定防災規劃和減災提供技術支撐。
3.工作任務
開展湘鄂黔山地區滑坡、崩塌、泥石流等突發性地質災害中、高易發區1:5萬地質災害調查;健全完善覆蓋地質災害中、高易發區的群測群防網路,完善地質災害易發性和危險性區劃。建立地質災害空間資料庫。
在已經圈定的地質災害易發區內,以縣為單位採用點、線、面結合,重點和一般調查結合的方式開展地質災害1:5萬調查工作。2015年前優先開展地質災害高易發區及經濟損失較大地區調查,基本覆蓋人員傷亡及財產損失主要地區。2020年前,逐步推進,最終完成湘鄂黔山地區高、中易發區調查。在調查基礎上,建立完善群測群防體系,完善地質災害易發性和危險性區劃,探索建立區域風險評價與風險控制管理工作體系。
「十二五」期間:開展高易發區1:5萬地質災害調查。
「十三五」期間:繼續開展高、中易發區1:5萬地質災害調查。
(五)東南沿海山區1:5萬地質災害調查
調查區主要包括浙江、福建、安徽、江西四省常年遭受台風襲擊的地質災害高風險區及中低山丘陵區,總面積約12萬平方千米。該區域人口密度高、經濟發達,地質條件復雜,台風和降雨頻繁,地質災害影響嚴重。
1.工作現狀
完成了以省(區、市)為單元的1:50萬以地質災害為主的環境地質調查,以縣(市)為單元的1:10萬丘陵山區地質災害調查約271個縣(市),浙江省開展了小流域1:1萬地質災害調查。初步查明了崩塌、滑坡、泥石流等突發性地質災害分布情況、發育特徵、發育強度及其形成條件和發生規律,對地質災害發生的環境地質條件和發展趨勢進行了區劃及預測評價,調查成果及時為重點縣(市)及區域地質災害防治提供了技術支撐。
雖然浙江開展小流域1:1萬地質災害調查調查,尚未系統開展1:5萬地質災害調查,缺少區域1:5萬地質災害調查資料,目前地質災害防治依靠的是以往1:10萬縣市地質調查資料,地質災害防災工作能力和水平亟待提升。
2.工作目標
總體目標:全面完成地質災害高、中易發區1:5萬地質災害調查工作,查明崩塌、滑坡、泥石流等突發性地質災害分布情況、發育特徵、發育強度及其形成條件和發生規律,對地質災害發生的環境地質條件和發展趨勢進行了區劃及預測評價,調查成果及時為重點縣(市)及區域地質災害防治提供了技術支撐。
「十二五」期間:完成地質災害高易發區1:5萬地質災害調查工作,選擇25處重大地質災害高易發區開展風險管理。
「十三五」期間:完成地質災害中易發區1:5萬地質災害調查工作,選擇15處重大地質災害中易發區開展風險管理。
3.工作任務
以保護人民生命財產和生存環境、保障重大建設工程、重要礦山、國家級或省級旅遊景區建設為目標,開展1:5萬地質災害調查,基本查明地質災害發育及危害現狀、形成條件和形成機理,進行地質災害危險性評價和風險評估;開展區域地質災害監測預警網路建設,建立典型區地質災害監測預警示範;開展重大地質災害調查與風險管理選區及評估;建立區域地質災害數據共享平台。
(六)汶川地震地質災害調查評價
1.工作現狀
開展了工作區在內的青藏高原東南緣的地殼變形、斷裂運動、地震活動研究、活動斷裂和古地震研究、區內區域地殼穩定性研究及一系列的深部地球物理探測研究。從1991年到2006年已在青藏高原東部及鄰區開展了十多年地殼形變監測。震後完成了地震災區地質災害應急調查、詳細調查及對重大災害體的勘察。
但震後地質環境、地應力場及位移場均發生了較大變化,需盡快完成調查。震後地震災區地質災害應急調查、詳細調查及對重大災害體的勘察資料亟待整理。災後恢復重建迫切需要區域穩定性評價及地質災害防治區劃。與地震及地震地質災害相關的關鍵科學問題亟待解決。
2.工作目標
總體目標:以汶川地震為契機,全面開展龍門山地區地震與地質災害詳細調查工作,結合綜合地球物理勘查,摸清龍門山斷裂帶主要特徵;系統總結工作區現代構造運動的地質災害效應規律及地質災害鏈形成機理;揭示龍門山及鄰近構造帶未來地震活動趨勢;了解龍門山及鄰近構造帶的地震工程地質條件;開展區域地殼穩定性和重要場地工程地質穩定性評價;為龍門山地震重災區恢復重建及鄰區重要工程規劃提供地質依據;建設地震地質災害信息系統,為地震災區防災減災和重建規劃服務。
「十二五」期間:完成龍門山地區地震地質災害調查,確定汶川地震發震斷裂和同震斷裂的地表變形特徵,確定活動斷裂深部結構,初步完成青藏高原東緣地殼形變和斜坡動力響應綜合監測及汶川地震災區地脈動測試,建立極震區滑坡形成機理模式及汶川地震區工程岩體穩定性評價與地質災害填圖技術方法,完成地質災害相應成果建設,為汶川地震災後重建提供相關地震地質災害資料和必要的技術支撐。
「十三五」期間:深入研究地震地質災害鏈的形成機理和演化過程,開展區域地殼穩定性評價,總結提升各種地震地質災害調查、監測和評價的技術水平,並促進相關技術方法的推廣應用。
3.工作任務
在廣泛收集利用前期已有相關地質研究資料的基礎上,利用遙感解譯與野外地面調查、深部探測相結合,線路地質調查與重點地段大比例尺填圖調查相結合,新構造運動特徵定性分析與斷裂活動時域及強度定量測試分析相結合,內動力與外動力地質作用調查相結合,物理模擬模擬與數值模擬相結合,對工作區活動斷裂特別是發震斷裂及其災害效應進行定量—半定量評價;基於青藏高原東緣地殼形變和斜坡動力響應綜合監測,以及對地震動力與地質災害相關性的多方位綜合調查和研究(模擬試驗、常規和非常規岩土工程特性試驗等),分析龍門山及鄰近構造帶未來新構造運動趨勢及其災害效應,開展汶川地震地質災害關鍵科學問題的深入研究,力圖在典型地震地質災害的成災機理和評價技術方面有所突破。
「十二五」期間:開展汶川地震災區以滑坡、崩塌、泥石流災害為主要內容的1:5萬地質災害調查與測繪;進行龍門山及鄰近構造帶地震工程地質調查評價;開展龍門山及鄰近構造帶活動斷裂調查;開展區域地殼穩定性綜合評價;在龍門山及其鄰近地區開展綜合地球物理探測,取得地震活動帶較詳細的岩石圈結構模型;在青藏高原東緣開展系統的高精度GPS測量與監測,重點開展對龍門山斷裂帶、鮮水河—安寧河—小江斷裂帶及其附近區域的監測。
開展川西地區地震地質及區域構造穩定性研究,研究更加符合斜坡地震動響應客觀實際的地震動穩定性評價方法;通過大型振動台試驗,揭示不同地震波下邊坡的動力響應規律;通過開展汶川地震災區地脈動測試及研究分析,提升對地震及餘震有關的地質災害問題更深層次的研究;在先期地震災區地質災害隱患巡排查工作的基礎上,建立地震滑坡穩定性評價及失穩概率的定量評價模型,對地震滑坡危險程度進行分級,並對其危險性進行分區,形成地震滑坡災害編圖的一套技術方法體系。
「十三五」期間:地震災區地質災害調查和研究成果進行綜合分析研究。
(七)西部復雜山體地質災害成災模式與風險評價
1.工作現狀
西部地區復雜山體區已開展過不同程度的調查工作。其中包括基礎性的1:20萬區域地質圖和1:20萬水文地質圖,及部分區域完成了1:5萬地質填圖。專業性的包括以省(區、市)為單元的1:50萬以地質災害為主的環境地質調查、1:10萬山區丘陵縣地質災害調查。2005年起,部分地區開展了1:5萬地質災害調查。
但由於西部大型山體滑坡成因復雜,只依靠地表普查很難認清成災模式,更難以掌握災害的多米諾效應。如武隆雞尾山滑坡,前期工作已將滑坡區圈定為危險區,但調查成果並沒能對滑坡破壞機理與成災模式作出正確的判斷。武隆雞尾山滑坡、宣漢天台鄉滑坡、馮店垮梁子滑坡多起災難性滑坡災害的發生,表明在西部山區復雜斜坡地帶,存在隱蔽性極高、突發性強、成因機理復雜、災害隱患極大的特殊類型滑坡。這些滑坡成災機理、致災模式亟待研究。
2.工作目標
總體目標:以西部復雜山體為研究對象,依託已有調查成果,全面開展西部復雜山體成災機理研究。開展地質災害成災模式調查、成災條件與機理研究、致災模式與機理研究、重大災害防治對策研究。初步摸清西部地區地質災害成因機制,建立西部復雜山體災害識辨方法、完善災害評價體系、提出區劃防治建議,為主動防災服務。
「十二五」期間:完成烏江流域、清江流域、三峽庫區等西南山區復雜山體滑坡和黃土地區灌溉型滑坡、秦巴山區淺表層滑坡的形成機理和成災模式研究;完成西部復雜山體特大地震滑坡的致災范圍預測研究;完成復雜山體滑坡的快速加固技術及復雜山體滑坡的遙感早期識別技術研究;建立融合重大地質災害識別、穩定性判定、致災模式判別、監測防治措施的防災體系。
「十三五」期間:深入研究復雜山體地質災害鏈的形成機理和演化過程,完善融合重大地質災害識別、穩定性判定、致災模式判別、監測防治措施的防災體系,總結提升各種地質災害調查、評價、監測和防治的技術,並促進相關技術方法的推廣應用。
3.工作任務
「十二五」期間:在重大地質災害易發的烏江流域、清江流域、三峽庫區、西部山區、秦巴山區和黃土地區選擇有代表性的滑坡,通過調查、勘察及試驗,深入研究這些地區滑坡形成原因、運動機理及致災模式,完善災害發育特徵認識,構建主動防災體系。
通過對西部復雜山體地震滑坡三維物理模擬、多種三維數值模擬、變形破壞過程分析以及滑坡動力學分析等分析手段,對滑坡的影響范圍進行深入探討。開展微型組合抗滑樁、土工合成擋牆、快速注漿、預制格構等地質災害快速加固技術的研究,並開展快速加固技術應用示範及加固效果監測分析,開展遙感早期識別技術研究等關鍵問題研究,提升主動防災能力。
「十三五」期間:開展西部復雜山體地質災害成災模式與風險評價綜合研究。
(八)典型地質災害監測預警與示範推廣
1.工作現狀
完成了長江三峽庫區滑坡等地質災害GPS控制監測網建設。初步建立四川雅安、重慶巫山、雲南哀牢山等8個代表不同突發性地質災害類型的監測預警示範區。解決了地質災害實時監測、實時傳輸、預警產品快速發布等多項關鍵技術。2003年開始,開展了全國和省級尺度的汛期地質災害氣象預警,取得了良好的效果。研製了三維激光微位移監測系統、滑坡微震自動連續觀測系統、滑坡監測多媒體網路遠程監控技術、FBG滑坡監測解調設備、地質災害光導監測儀等多項技術與設備。研製了適用於地質災害群測群防的系列儀器,已推廣20萬套,並在「5·12」抗震救災工作中發揮了重要作用。
健全監測預警網路,形成覆蓋我國主要災害類型的國家級地質災害監測工程示範區,進一步開發實用監測預警設備是下一步工作的重點。
2.工作目標
建立30個國家級地質災害監測工程示範區,對地質災害高風險區的重點區域實施專業監控,不斷提高預測預警水平,推動區域地質災害監測工作,為全國地質災害綜合預警提供依據。研製系列監測預警儀器和防治技術設備,不斷完善突發性地質災害監測數據採集、傳輸與分析管理技術,為突發性地質災害監測和減災防災提供技術支持。
「十二五」期間:完成11個典型地質災害監測預警示範區建設,建立區內有效的地質災害預警系統。
「十三五」期間:全面完成地質災害高易發區30個典型區域國家級專業監測工程示範區建設。
3.工作任務
以地質構造背景、氣候條件和地質災害發育規律為基礎,選擇典型地質災害區域建設地質災害監測預警示範區,研究探索不同地質災害區地質災害監測預警技術工作方法,為減災防災提供技術支持。根據1:5萬地質災害調查成果,優先考慮有代表性、工作基礎較好、示範作用明顯的區域開展工作。協助地方開展全國山地丘陵區縣(市)地質災害群測群防早期預警能力建設。
在地質災害高易發區30個典型區域建立國家級專業監測工程示範區,完善監測內容、建立監測網路。開展全國山地丘陵區縣(市)地質災害群測群防早期預警能力建設,為已經確認的5萬余處群測群防地質災害隱患點,安裝自動監測報警儀器。
開展簡易監測儀器研發與示範、實時監測新技術研究與示範、監測技術平台建設。
「十二五」期間:在突發性地質災害高易發區,根據不同地質災害類型,選擇建設完善燕山山地滑坡泥石流監測預警區、遼東南中低山泥石流區等11個典型區域地質災害監測預警區。
建設區域地質災害群測群防網路,對2萬處隱患點進行簡易儀器自動觀測。
「十三五」期間:繼續加強突發性地質災害高易發區專業監測示範工程建設,完成長白山崩塌滑坡、天山谷地降雨—融雪型滑坡泥石流等19個區域突發性地質災害監測預警區建設。
建設區域地質災害群測群防網路,對1萬處隱患點進行簡易儀器自動觀測。
(九)全國地面沉降調查與監測
1.工作現狀
初步完成長江三角洲地區、華北平原、汾渭盆地等重點地區地面沉降和地裂縫調查10萬平方千米,基本查明該地區發生的地質背景和地面沉降分布規律,基本建立以基岩標、分層標和GPS、水準測量為主的區域地面沉降立體監測網路,在上海、江蘇和北京地面監測站,實現了監測數據自動採集、傳輸,初步建成地面沉降地理信息系統,為制定科學的地面沉降防治措施打下了良好的基礎。
存在問題主要包括:地面沉降發展的趨勢加劇,防治任務艱巨;地面沉降調查工作程度不平衡;監測網路需要進一步完善,監測技術有待進一步提升;重大工程面臨地面沉降的威脅。
2.工作目標
建成平面以GPS監測和水準測量為主,垂向以分層標、基岩標及地下水監測為主,以及空間遙感觀測技術(In SAR)監測為主的地面沉降立體綜合監測體系,實現對地面沉降的有效監控。
「十二五」期間:完成我國所有地面沉降區、城市及重要交通干線地面沉降調查。在主要地面沉降區建成平面以GPS監測和水準測量為主,垂向以分層標、基岩標及地下水監測為主,以及空間遙感觀測技術(In SAR)監測為主的地面沉降立體綜合監測體系,基本實現對主要沉降區地面沉降的有效監控。
「十三五」期間:在所有地面沉降區建成平面以GPS監測和水準測量為主,垂向以分層標、基岩標及地下水監測為主,以及空間遙感觀測技術(In SAR)監測為主的地面沉降綜合監測體系,實現對所有地面沉降區地面沉降的有效監控。完成所有地面沉降區地面沉降風險管理與區劃,為制定科學的地面沉降防治措施打下堅實的基礎。
3.工作任務
利用In SAR等現代化監測技術,完善長江三角洲、華北平原、汾渭盆地地面沉降監測網,並繼續進行監測;開展珠江三角洲、東北平原等地面沉降工作空白區地面沉降調查,建立地面沉降監測網路;和鐵道部、交通部等部門密切合作開展重大工程區地面沉降調查與監測;結合區域地質環境背景和區域經濟發展布局,開展地面沉降災害風險評估,制定分區地面沉降控制目標和管理措施。
「十二五」期間:開展安徽阜陽、松嫩平原、珠江三角洲、江漢—洞庭湖平原等一般地面沉降區1:10萬的地面沉降調查5000平方千米;繼續對長三角、華北平原、汾渭盆地等主要沉降區進行地面沉降監測。
長江三角洲地區:開展江浙兩省沿海平原等以往工作較薄弱地區包括淮安、揚州、泰州、南通、紹興、台州地區的1:25萬地面沉降災害調查,重點城市1:5萬地面沉降災害調查。
華北平原:對前期工作薄弱的地區開展1:5萬地面沉降調查工作;基本覆蓋以開采地下水為主要水源的平原地區。
汾渭盆地:開展汾渭盆地陝西咸陽、渭南和榆次、臨汾及運城等重點城市的地面沉降地裂縫災害調查。
繼續對長三角、華北平原、汾渭盆地等主要沉降區進行地面沉降監測與風險管理。
「十三五」期間:重要地面沉降區監測。
長江三角洲地區:完善地面沉降監測網路,每年定期開展In SAR地面沉降監測。
華北平原:完善地面沉降監測網路,每年定期開展In SAR地面沉降監測。
汾渭盆地:完善地面沉降地裂縫監測網路,每年定期開展山西地面沉降監測。每年定期開展In SAR地面沉降監測。
一般沉降區地面沉降監測。即安徽阜陽、松嫩平原、珠江三角洲、江漢—洞庭湖平原等一般地面沉降區地面沉降In SAR監測。
重大工程地面沉降調查與監測。主要開展涉及華北平原、汾渭盆地和長三角地區三個地面沉降防治規劃區的主要高速鐵路建設項目的地面沉降災害防治工作,包括:全線位於汾渭盆地的大同—西安高速鐵路、跨華北平原和長三角地區的京滬高速鐵路。
㈦ 地質災害黃色預警是什麼意思
地質災害黃色預警信號是指24小時內地質災害發生的風險較高。地質災害黃色預警信號是地質災害預警信號中的第一級。
地質災害預警級別分為五級,但預警信號為四級,即藍色、黃色、橙色和紅色,分別代表一般、較重、嚴重和特別嚴重,黃色預警是指未來24小時內發生地質災害的可能性較大,應及時通知監測人員和受威脅住戶注意避險。
(7)預警在地質災害中的作用擴展閱讀:
質災害氣象預警預報信息每年汛期(5-9月)在中央電視台天氣預報節目中和中國地質環境信息網上發布,目的是提醒被預警區的幹部和群眾防範滑坡、崩塌和泥石流災害。可以分為以下等級:
一級提醒級,24小時內,災害發生可能性很小。 啟動重要地質災害隱患點的群測群防巡查。
二級 提醒級,24小時內,災害發生可能性較小。 預報預警時間內對重要地質災害隱患點24小時監測。
三級 注意級,24小時內,災害發生可能性較大。 預報預警時間內啟動地質災害隱患點群測群防,並24小時監測;採取防禦措施,提醒災害易發地點附近的居民、廠礦、學校、企事業單位密切關注天氣預報,以防天氣突然惡化。
四級 預警級,24小時內,災害發生可能性大。 啟動受地質災害隱患點威脅區居民臨時避讓方案;暫停災害易發地點附近的戶外作業,各有關單位值班指揮人員到崗准備應急措施。組織搶險隊伍,轉移危險地帶居民,密切注意雨情變化。
五級 警報級,24小時內,災害發生可能性很大。 啟動不穩定危險斜坡威脅區居民臨時避讓方案;緊急疏散災害易發地點附近的居民、學生、廠礦、企事業單位人員,關閉有關道路,組織人員准備搶險。
參考資料:網路—地質災害黃色預警信號
㈧ 全國地質災害監測預警體系建設規劃的必要性、指導思想、基本原則和目標
7.2.1 必要性
《中國21世紀議程》提出了我國可持續發展的戰略目標。在我國經濟和社會快速發展的過程中,人類活動的強度和范圍達到前所未有的程度,其對包括地質環境在內的人類生態環境的干擾與破壞也日益增強,在許多地區引發的不同程度的自然地質災害造成了危害和損失成倍增加的現象,礦產資源和地下水資源等的開發利用以及各種工程活動誘發的地面沉降、崩塌、滑坡、泥石流等人為地質災害也較為普遍,對城市、公共基礎設施和廣大人民群眾的生命財產安全構成嚴重威脅。特別是地面沉降多發生在我國經濟最發達、人口密度最大、公共基礎設施最密集的東部地區,成為這些地區乃至國家可持續發展的重要制約因素。因此,保護生態環境、進行生態環境建設和防災減災,已經成為國家長期的目標和任務。為此,加強地質災害監測,進行全國地質災害監測與預警體系建設的規劃,在監測基礎上,實現對地質災害的治理與對地質環境的保護,不僅是防災減災的需要,而且也是國家經濟社會可持續發展、保護生態環境和進行生態環境建設的最基本的保障,是一項重要的基礎性和公益性的國家地質工作。現就從我國社會經濟的發展的幾個重要方面,對地質環境與地質災害監測的必要性,進行簡要論述:
(1)保障國家重大工程建設安全與西部大開發戰略的需求
全國有20餘條鐵路干線和所有山區公路不同程度地受到滑坡、崩塌、泥石流的危害或威脅。大型水庫岸邊,河流傍岸,尤其是峽谷段,常因發生滑坡、崩塌、泥石流而阻塞航道,並引起洪災。中東部沿海平原和盆地地面沉降、地裂縫和地面塌陷等地質災害嚴重威脅和破壞基礎工程設施。加強這些基礎工程設施和沿大江大河危險地段的地質環境監測,採取科學的分析方法進行預測預報,是一項長期的工作。
西部大開發戰略把加快水利、交通、能源和通訊等基礎設施建設放在首位,其中包括:長江三峽工程、南水北調工程、大江大河上中游干(支)流控制性水利樞紐工程、內河航運通道、青藏鐵路、西電東送工程、西氣東輸工程等。這些重大工程地域跨度大,多處在或穿越地質災害易發區,為保障上述工程安全施工和運營,必須加強地質環境監測工作。
(2)城市化發展對地質災害監測的需求
目前,我國有城市668座。預計2020年左右,我國城鎮化水平將提高到45%~50%,我國城市數將達到1000~1100座。城市是人類活動最集中,環境地質問題最突出的地區。為了保障城市化進程,指導城市規劃,預防由於不合理的工程活動引發的地面沉降、地裂縫、崩塌、滑坡等地質災害和其他環境地質問題,必須加強對城市地下水環境和地質災害的監測。
(3)礦產資源開發對地質災害監測的需求
我國礦產資源開發帶來了很多環境地質問題,產生大量的地質災害隱患。每年礦石開采量57億~60億t,礦山企業每年產生固體廢棄物133.8億t、產生尾礦26.5億t,處置率僅為6.95%。礦山固體廢棄物任意堆放形成了嚴重的滑坡、泥石流等地質災害隱患,地下采礦活動誘發的滑坡、地面塌陷等地質災害十分突出。礦山地質環境監測十分薄弱,礦山地質災害防治工作任重道遠。為了保障礦產資源的安全開發和礦山地質環境的有效治理,必須加強礦山地質環境監測。
7.2.2 指導思想
應堅持以人為本,全面、協調、可持續的科學發展觀和人口、資源、環境協調發展的一系列方針政策。緊密結合經濟社會發展規劃的總體目標和要求,充分認識地質災害監測預警體系建設的重要性和緊迫性。動員社會各方面的力量,從我國地質災害發生發育的實際出發,尊重自然規律和經濟規律,正確處理長遠與當前、整體與局部的關系,依靠科技進步,運用新思路、新理論、新技術、新方法,實現對地質災害的有效監控和預報預警,為我國地質災害防治、地質環境保護和資源環境的可持續利用提供有力支撐。
7.2.3 基本原則
(1)與國家國民經濟社會發展進程相適應的原則
建立和完善與全面建設小康社會相適應的、符合可持續發展要求的地質災害監測預警體系,為國家和地方宏觀調控和指導國土資源開發與整治提供依據。
(2)突出「以人為本」
堅持按客觀規律辦事,從實際出發,講求實效,山區、平原和不同災種的監測重點各有側重的原則。在以突發性地質災害為重點的地區,應以最大限度地減少人員傷亡、保障社會穩定和人民生命財產安全作為主要目的;緩變性地質災害應以專業監測為主要手段進行監測與規劃。
(3)群、專結合的原則
建立以縣、鄉、村為基礎,全民參與、群專結合的群策群防體系,是多年來地質災害防治工作中總結出來的寶貴經驗,也是避免人員傷亡,把災害損失降到最低限度的重要保證。
(4)統籌規劃、分步實施、分級管理
密切結合生產力布局和人口分布狀況,對全國地質災害監測預警體系建設工作進行統籌規劃,制定切實可行的分階段實施方案,明確各級政府和企(事)業單位在地質災害監測中的責任和義務,建立統一管理和分級(國家、省、市、縣)管理相結合,處理好全部與局部、長遠與當前的關系,優先實施重點地區和重要經濟區(帶)的監測預警體系建設。
(5)監測網建設與保護並重
擯棄重建設、輕保護的觀念,嚴禁邊建設、邊破壞,通過法律、經濟等手段,明確保護責任,落實保護費用,切實保護監測儀器、設備、設施的建設成果。
(6)站網建設與能力建設並舉
在不斷完善地質災害監測網基礎硬體設施建設的同時,加強機構建設、法規制度建設、技術規范建設、信息系統建設、人力資源建設和研究能力建設。
(7)專業服務功能與公眾服務功能並重
地質災害監測信息既要為國家決策和專業調查評價提供支持,也要為社會公眾提供地質災害現狀信息和防災減災信息。
(8)依靠科技創新、提高監測工作質量
加強科學研究,改進監測設施,依靠科技進步,全面提升監測能力和服務水平。
(9)建立多渠道籌資機制
各級地質災害監測機構的監測經費要納入同級政府財政預算。多渠道籌集監測資金,設立各級地質災害監測專項經費,確保監測工作的順利實施。
7.2.4 目標
地質災害監測預警體系建設的目的是最大限度地減少人民群眾的生命財產損失,以保障經濟、社會的可持續發展;為國家及地方宏觀調控和指導國土資源開發與整治提供依據;從地質環境可持續開發利用角度提出地區發展戰略建議;為改善人居環境,保障交通大動脈安全暢通,水電工程正常運行等提供保障;為地區社會經濟發展提供決策參考。在基本掌握全國地質災害分布狀況與危害程度的基礎上,建立並逐步完善全國地質災害的監測預警網路體系。
(1)總體目標
從現在起到2020年,在逐步查明我國地質災害分布狀況與危害程度的基礎上,建成覆蓋全國的較完善的突發性地質災害群測群防網路體系;建成以省(區、市)及部分縣(市)地質環境監測站為骨乾的突發性地質災害應急反應體系;建成我國較完善的地質災害專業監測骨幹網路,重點地區及重要經濟區(帶)達到監測數據的實時採集、分析、預警預報的水平。使地質災害防治工作以被動救災為主的局面得到根本性扭轉,人為有效控制地質災害,使損失逐年攀升的趨勢得到有效控制。
(2)階段目標
1)到2010年,地質災害監測預警體系建設的目標如下:①群測群防監測網路覆蓋到全國突發性地質災害易發區的1400個縣(市),形成縣、鄉、村三級監測體系。②初步建成由各級政府和有關部門參與的全國地質災害專業監測骨幹網路。③初步建成重要交通干線和水利工程區的專業監測預警系統。充分推廣高新技術在地質災害監測中的應用,利用計算機技術、3S技術等先進手段,提高監測預報的自動化水平。④在進一步完善群、專結合,群測群防監測網路的同時,完成分布在全國各省(區、市)重大突發性地質災害隱患點的監測預警預報示範系統。⑤建成較完善的地質災害監測信息網路系統,重點地區及重要經濟區(帶)的專業監測要初步達到監測數據的實時採集、自動分析、自動預警預報的水平。⑥初步建成重點地區及重要經濟區(帶)地面沉降等緩變性地質災害監測網路系統。力爭使我國地質災害監測預警預報的儀器、設備達到國際水平。
2)到2020年,在地質災害監測管理法規、規章的支持下,要使國土資源部門對地質災害監測監督管理的職能全面到位,並逐步納入科學化、規范化和法制化的軌道;使地質災害監測體系的科學理論與技術方法達到國際先進水平,建成覆蓋全國的較完善的地質災害重點防治區突發性地質災害群專結合的監測預警預報網路;建成全國地面沉降、地裂縫等緩變性地質災害的實時監控體系;建成完善的地質災害監測信息網路,實現地質災害監測數據的自動化採集、傳輸、存儲和信息的實時發布。建成比較完善的地質災害防災預警指揮系統。
㈨ 地質災害的預警級別
按照未來24小時內,地質災害發生的可能性大小,地質災害預警分為五級,分別版為
一級:可能性很小;
二級權:可能性較小;
三級:可能性較大(通知監測人員和威脅住戶注意);
四級:可能性大(預報階段,停止外業,各崗位人員到崗待命);
五級:可能性很大(警報階段,無條件緊急疏散,密切觀測)。
㈩ 地質災害區域預警原理
據檢索統計,世界上約有20多個國家或地區不同程度地開展過降雨引發滑坡、泥石流的研究或預警工作。其中,中國香港(Brandetal.,1984)、美國(Keeferetal.,1987)、日本(Fukuzono,1985)、巴西(Neiva,1998)、委內瑞拉(Wieczoreketal.,2001)、波多黎各(Larsen&Simon,1993)和中國大陸等曾經或正在進行面向公眾社會的降雨引發區域性滑坡、泥石流的早期預警與減災服務工作,預警的地質空間精度達到數千米量級,時間精度達到小時量級。這些國家和地區一般都在地質災害多發區或敏感區開展或完成了比較詳細的地質災害調查評價工作,擁有比較長期且比較完整的降雨與滑坡、泥石流關系資料,或在典型地區建立了比較完善的降雨遙控監測網路和先進的數據傳輸系統。
綜合分析國內外研究與應用狀況,基於氣象因素的區域地質災害預警預報理論原理可初步劃分為三大類,即隱式統計預報法、顯式統計預報法和動力預報法。
4.2.1 隱式統計預報法
隱式統計預報法把地質環境因素的作用隱含在降雨參數中,某地區的預警判據中僅僅考慮降雨參數建立模型。隱式統計預報法可稱為第一代預報方法,比較適用於地質環境模式比較單一的小區域。由於這種方法只涉及一個或一類參數,無論預警區域的研究程度深淺均可使用,所以這是國內外廣泛使用的方法,也是最易於推廣的方法。這種方法特別適用於有限空間范圍,且地質環境條件變化不大的地區,如以花崗岩及其風化殘積物分布為主的中國香港地區多年來一直在研究應用和深化這一方法。
這種方法考慮的降雨參數包括年降雨量、季度降雨量、月降雨量、多日降雨量、日降雨量、小時降雨量和10min降雨量等。實際應用時,一般只涉及1~3個參數作為預報判據,如臨界降雨量、降雨強度、有效降雨量或等效降雨量等。
突發性地質災害臨界過程降雨量判據的預警方法抓住了氣象因素誘發地質災害的關鍵方面,但預警精度必然受到所預警地區面積大小、突發性地質事件樣本數量、地質環境復雜程度和地質環境穩定性及區域社會活動狀況的限制,單一臨界降雨量指標作為預警判據的代表性是有限的。
代表性研究成果主要有:
Onodera et al.( 1974) 通過研究日本的大量滑坡,提出累計降雨量超過 150 ~ 200mm,或每小時降雨強度超過 20 ~30mm 作為判據。Nilsen et al.( 1976) 發現美國 Alameda,Califor-nia 在累計降雨量超過 180mm 時,滑坡將頻繁發生。Oberste-lehn( 1976) 認為累計降雨量達到 250mm 左右,美國 San Benito,California 將發生滑坡。Guidicini and Iwasa( 1977) 通過對巴西 9 個地區滑坡記錄和降雨資料的分析,認為降雨量超過年平均降雨量的 8% ~17%,滑坡將滑動; 超過 20%,將發生災難性滑坡。Caine( 1980) 全面總結了全球的可利用數據,給出了不同地區誘發滑坡暴雨事件的降雨強度和持續時間與滑坡的關系式。這一關系式當然不可能適用於全球所有地區( Crozier 在 1997 年證明) ,仍不失為探討誘發滑坡臨界降雨值的里程碑。
Brand et al.( 1984) 在中國香港研究表明,大多數滑坡由局部高強度短歷時降雨誘發,而前期降雨量不是主要因素,除非是小型滑坡。Ng and Shi( 1998) 認為降雨的持續也是一個非常重要的誘發滑坡的因素。中國香港地區預測 24h 內降雨量達到 175mm 或 60min 內市區內雨量超過 70mm,即認為達到滑坡預報閾值,即由政府發出通報。中國香港平均每年約發出 3 次山洪滑坡暴發警報。
Ganuti et al.( 1985) 提出了臨界降雨系數( critical precipitation coefficient,CPC) 的概念,並總結出當 CPC >0.5 時,將有 10a 一遇的滑坡發生; 當 CPC >0.6 時,將有 20a 一遇的滑坡發生。
Glade( 1997) 綜合前人研究成果建立了確定誘發滑坡的降雨臨界值的 3 個模型,並在紐西蘭北島南部的 Wellington 地區進行了驗證。3 個模型要求的基本數據為: 日降雨量、滑坡發生日期和土體潛在日蒸發量( 通過 Thornthwaite method 方法計算得到) 。降雨強度臨界值Glade( 1997) 的模型 1———日降雨模型( daily rainfall model) ,只使用日降雨量參數,簡單地分析誘發滑坡和不誘發滑坡的日降雨量( Glade,1998) ,得出最小臨界值和最大臨界值,即在最小臨界值以下,沒有滑坡發生; 在最大臨界值以上,滑坡一定發生。降雨量等級劃分以20mm 為一個等級; 降雨過程雨量臨界值 Glade( 1997) 的模型 2———前期日降雨量模型( an-tecedent daily rainfall model) ,考慮了前期降雨的影響。他認為決定前期情況有兩個主要因素: 前期降雨的歷時時間和土體含水量減少的速率; 土體含水狀態臨界值 Glade( 1997) 的模型 3———前期土體含水狀態模型( antecedent soil water status model) ,他認為除了前期雨量,土體含水量和潛在的蒸發量對滑坡的影響也很大。
劉傳正在 2003 年 5 月主持全國地質災害氣象預警工作過程中,利用地質災害發生前15d 降雨量建立滑坡、泥石流發生區帶的臨界過程降雨量創建了預警判據模式圖,並結合具體區域( 2003 年28 個區、2004 年以後74 個區) 進行校正的方法。該方法適應3 級預報的要求界定了 α 線和 β 線作為預警等級界限。3 年多來汛期的預警成果發布檢驗與應用證明,該方法在科學依據上是成立的,但限於預警區域過大、基礎數據和地質災害統計樣本數量太少,准確率有待提高,同時也充分說明了開展地質災害數據集成研究的迫切性。
另外,中國科學院成都山地災害與環境研究所等機構在單條泥石流監測與預警建模方面進行了多年持續不懈的研究工作,取得了具有代表性的成果。
4.2.2 顯式統計預報法
顯式統計預報法是一種考慮地質環境變化與降雨參數等多因素疊加建立預警判據模型的方法,它是由地質災害危險性區劃與空間預測轉化過來的(CarraraA.,1983;HaruyamaH.&KawakamiH.,1984;BaezaC.&CorominasJ.,1996;CarraraA.,CardinaliM.&GuzzettiF.,1991;劉傳正,2004;殷坤龍,2005)。
區域地質災害危險性評價和風險區劃研究仍是當前的研究主流,而利用之進行地質災害的實時預警與發布則多處於探索階段。這種方法可以充分反映預警地區地質環境要素的變化,並隨著調查研究精度的提高相應地提高地質災害的空間預警精度。顯式統計預報法可稱為第二代預報方法,是正在探索中的方法,比較適用於地質環境模式比較復雜的大區域。
基於地質環境空間分析的突發性地質災害時空預警理論與方法是根據單元分析結果經過合成實現的,克服了僅僅依據單一臨界雨量指標的限制,但對臨界誘發因素的表達、預警指標的選定與量化分級等尚存在需要進一步研究的諸多問題。
因此,要實現完全科學意義上的區域突發性地質災害預警,必須建立臨界過程降雨量判據與地質環境空間分析耦合模型的理論方法———廣義顯式統計模式地質災害預報方法,預警等級指數(W)是內外動力的聯立方程組。即
中國地質災害區域預警方法與應用
式中:W為預警等級指數;a為地外天體引力作用,包括太陽、月亮的引潮力,太陽黑子、表面耀斑和太陽風等對地球表面的作用,a=f(a1,a2,…,an);b為地球內動力作用,主要表現為斷裂活動、地震和火山爆發等,b=f(b1,b2,…,bn);c為地球表層外動力作用,包括降雨、滲流、沖刷、侵蝕、風化、植物根劈、風暴、溫度、乾燥和凍融作用等,c=f(c1,c2,…,cn);d為人類社會工程經濟活動作用,包括資源、能源開發和工程建設等引起地質環境的變化,d=f(d1,d2,…,dn)。
20世紀70年代,以美國加利福尼亞州舊金山地區聖馬提俄郡的滑坡敏感性圖為代表,利用多參數圖的加權(或不加權)疊加得到區域滑坡災害預測圖。
20世紀80年代,CarraraA.(1983)將多元統計分析預測方法引用到區域滑坡空間預測中,並在世界各國得到迅速發展與推廣。如HaruyamaH.&KawakamiH.(1984)利用數學統計理論對日本活火山地區降雨引起的滑坡災害進行了危險度評價。BaezaC.&CorominasJ.(1996)利用統計判別分析模型進行了淺層滑坡敏感性評估,結果斜坡破壞的正確預測率達到96.4%,有力地說明了統計預測的適用性。CarraraA.,CardinaliM.&GuzzettiF.等(1991)將統計模型與GIS結合,應用於義大利中部某小型匯水盆地的滑坡危險性評估,實現從數據獲取到分析、管理的自動化,結果證明統計分析與GIS的綜合使用是一種快速、可行、費用低的區域滑坡危險性評價與制圖方法。
20世紀90年代中後期以來,隨著計算機技術和信息科學的高速發展,RS、GIS和GPS等「3S」技術聯合應用使快速處理海量的地質環境數據成為可能,出現了地質災害空間預測模型方法應用研究逐步從地質災害危險評價與預警應用相結合的新態勢。
劉傳正等(2004)創建並發表了用於區域地質災害評價和預警的「發育度」、「潛勢度」、「危險度」和「危害度」時空遞進分析理論與方法,簡稱「四度」遞進分析法(AMFP),並在三峽庫區(54175km2)和四川雅安地質災害預警試驗區(1067km2)進行了應用,結果是可信的。
李長江等(2004)將GIS和ANN(人工神經網路)相互融合,考慮不同的地質、地貌和水文地質背景,建立了給定降雨量的浙江省區域群發性滑坡災害概率預報(警)系統(LAPS)。
宋光齊等(2004)根據地貌、岩性和地質構造幾率分布,基於GIS建立了給定降雨量的四川省地質災害預報系統。
殷坤龍等(2005)以浙江省為例探索了基於WebGIS的突發性地質災害預警預報問題。
由於我國政府在全國范圍內推行區域地質災害預警預報機制,目前我國的預警探索工作走在世界前列。
4.2.3 動力預報法
動力預報法是一種考慮地質體在降雨過程中地-氣耦合作用下研究對象自身動力變化過程而建立預警判據方程的方法,實質上是一種解析方法。動力預報方法的預報結果是確定性的,可稱為第三代預報方法,目前只適用於單體試驗區或特別重要的局部區域。該方法主要依據降雨前、降雨中和降雨後降水入滲在斜坡體內的轉化機制,具體描述整個過程斜坡體內地下水動力作用變化與斜坡體狀態及其穩定性的對應關系。通過鑽孔監測地下水位動態、孔隙水壓力和斜坡應力-位移等,揭示降雨前、降雨過程中和降雨後斜坡體內地下水的實時動態響應變化規律、整個坡體物理性狀變化及其變形破壞過程的關系。在充分考慮含水量、基質吸力、孔隙水壓力、滲透水壓力、飽水帶形成和滑坡—泥石流轉化因素條件下,選用數學物理方程研究解析斜坡體內地下水動力場變化規律與斜坡穩定性的關系,確定多參數的預警閾值,從而實現地質災害的實時動力預報。
目前,這種方法局限於試驗場地或單個斜坡的研究探索階段,必須依賴具有實時監測、實時傳輸和實時數據處理功能的立體監測網(地-氣耦合)作為支撐才能實現實時預報。由於理論、技術和經費等方面的高要求,這種方法比較適用於重要的小區域或單體的研究性監測預警。
據研究,美國舊金山海灣地區的6h降雨量達到4in(101.6mm)時,就可能引發大面積泥石流。為了監測降雨期間地下水壓力的變化,研究人員設置了若干個孔隙水壓力計以觀測斜坡中地下水壓力變化。舊金山海灣地區實時區域滑坡預警系統包括降雨與滑坡發生的經驗和分析關系式,實時雨量監測數據,國家氣象服務中心降雨預報以及滑坡易發區略圖。
在我國,劉傳正等(2004)在四川雅安區域地質災害監測預警試驗區進行了大氣降水與斜坡岩土層含水量變化的分層響應監測,發現不同降雨過程和降雨強度下,斜坡岩土體的含水量相應發生明顯變化,可以研究降雨在斜坡岩土體內的滲流過程直至出現滑坡、泥石流的成因機理。
2003年8月23~25日是一個引發多處地質災害並造成人員傷亡的典型降雨過程,可以作為分析實例。以8月19日15時的含水量為背景值,則8月23,24和25日降雨過程分別對應第96,120和144h的含水量,4個層位的記錄曲線明確反映了隨累計降雨量增加斜坡岩土體含水量急劇增加,第一、二層位達到過飽和狀態,且含水量急劇增加出現於第121h,即24日15時之後,滯後於降雨時間約20h。各層含水量峰值出現於第151h,即接近滑坡呈區域性暴發時間(26日零時,對應第153h)。該分析未考慮沿裂隙的地下水滲流作用(圖4.1)。
圖4.1 四川雅安桑樹坡監測試驗點第1~4層含水量隨時間變化曲線
分析對比隱式統計預報法、顯式統計預報法和動力預報法3類方法,我們認為,未來的方向是探索地質災害隱式統計、顯式統計與動力預警3種模型的聯合應用方法,以適應不同層級的地質災害預警需求。研究內容包括臨界雨量統計模型、地質環境因素疊加統計模型和地質體實時變化(水動力、應力、應變、熱力場和地磁場等)的數學物理模型等多參數、多模型的耦合。3種模型的聯合應用不僅適應特別重要的區域或小流域,也為單體地質災害的動力預警與應急響應提供決策依據。